1/*
2 * Contributed to the OpenSSL Project by the American Registry for
3 * Internet Numbers ("ARIN").
4 */
5/* ====================================================================
6 * Copyright (c) 2006 The OpenSSL Project.  All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in
17 *    the documentation and/or other materials provided with the
18 *    distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 *    software must display the following acknowledgment:
22 *    "This product includes software developed by the OpenSSL Project
23 *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 *    endorse or promote products derived from this software without
27 *    prior written permission. For written permission, please contact
28 *    licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 *    nor may "OpenSSL" appear in their names without prior written
32 *    permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 *    acknowledgment:
36 *    "This product includes software developed by the OpenSSL Project
37 *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com).  This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 */
57
58/*
59 * Implementation of RFC 3779 section 2.2.
60 */
61
62#include <stdio.h>
63#include <stdlib.h>
64
65#include "cryptlib.h"
66#include <openssl/conf.h>
67#include <openssl/asn1.h>
68#include <openssl/asn1t.h>
69#include <openssl/buffer.h>
70#include <openssl/x509v3.h>
71
72#ifndef OPENSSL_NO_RFC3779
73
74/*
75 * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
76 */
77
78ASN1_SEQUENCE(IPAddressRange) = {
79  ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
80  ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
81} ASN1_SEQUENCE_END(IPAddressRange)
82
83ASN1_CHOICE(IPAddressOrRange) = {
84  ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
85  ASN1_SIMPLE(IPAddressOrRange, u.addressRange,  IPAddressRange)
86} ASN1_CHOICE_END(IPAddressOrRange)
87
88ASN1_CHOICE(IPAddressChoice) = {
89  ASN1_SIMPLE(IPAddressChoice,      u.inherit,           ASN1_NULL),
90  ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
91} ASN1_CHOICE_END(IPAddressChoice)
92
93ASN1_SEQUENCE(IPAddressFamily) = {
94  ASN1_SIMPLE(IPAddressFamily, addressFamily,   ASN1_OCTET_STRING),
95  ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
96} ASN1_SEQUENCE_END(IPAddressFamily)
97
98ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
99  ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
100			IPAddrBlocks, IPAddressFamily)
101ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
102
103IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
104IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
105IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
106IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
107
108/*
109 * How much buffer space do we need for a raw address?
110 */
111#define ADDR_RAW_BUF_LEN	16
112
113/*
114 * What's the address length associated with this AFI?
115 */
116static int length_from_afi(const unsigned afi)
117{
118  switch (afi) {
119  case IANA_AFI_IPV4:
120    return 4;
121  case IANA_AFI_IPV6:
122    return 16;
123  default:
124    return 0;
125  }
126}
127
128/*
129 * Extract the AFI from an IPAddressFamily.
130 */
131unsigned int v3_addr_get_afi(const IPAddressFamily *f)
132{
133  return ((f != NULL &&
134	   f->addressFamily != NULL &&
135	   f->addressFamily->data != NULL)
136	  ? ((f->addressFamily->data[0] << 8) |
137	     (f->addressFamily->data[1]))
138	  : 0);
139}
140
141/*
142 * Expand the bitstring form of an address into a raw byte array.
143 * At the moment this is coded for simplicity, not speed.
144 */
145static int addr_expand(unsigned char *addr,
146			const ASN1_BIT_STRING *bs,
147			const int length,
148			const unsigned char fill)
149{
150  if (bs->length < 0 || bs->length > length)
151    return 0;
152  if (bs->length > 0) {
153    memcpy(addr, bs->data, bs->length);
154    if ((bs->flags & 7) != 0) {
155      unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
156      if (fill == 0)
157	addr[bs->length - 1] &= ~mask;
158      else
159	addr[bs->length - 1] |= mask;
160    }
161  }
162  memset(addr + bs->length, fill, length - bs->length);
163  return 1;
164}
165
166/*
167 * Extract the prefix length from a bitstring.
168 */
169#define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
170
171/*
172 * i2r handler for one address bitstring.
173 */
174static int i2r_address(BIO *out,
175		       const unsigned afi,
176		       const unsigned char fill,
177		       const ASN1_BIT_STRING *bs)
178{
179  unsigned char addr[ADDR_RAW_BUF_LEN];
180  int i, n;
181
182  if (bs->length < 0)
183    return 0;
184  switch (afi) {
185  case IANA_AFI_IPV4:
186    if (!addr_expand(addr, bs, 4, fill))
187      return 0;
188    BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
189    break;
190  case IANA_AFI_IPV6:
191    if (!addr_expand(addr, bs, 16, fill))
192      return 0;
193    for (n = 16; n > 1 && addr[n-1] == 0x00 && addr[n-2] == 0x00; n -= 2)
194      ;
195    for (i = 0; i < n; i += 2)
196      BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i+1], (i < 14 ? ":" : ""));
197    if (i < 16)
198      BIO_puts(out, ":");
199    if (i == 0)
200      BIO_puts(out, ":");
201    break;
202  default:
203    for (i = 0; i < bs->length; i++)
204      BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
205    BIO_printf(out, "[%d]", (int) (bs->flags & 7));
206    break;
207  }
208  return 1;
209}
210
211/*
212 * i2r handler for a sequence of addresses and ranges.
213 */
214static int i2r_IPAddressOrRanges(BIO *out,
215				 const int indent,
216				 const IPAddressOrRanges *aors,
217				 const unsigned afi)
218{
219  int i;
220  for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
221    const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
222    BIO_printf(out, "%*s", indent, "");
223    switch (aor->type) {
224    case IPAddressOrRange_addressPrefix:
225      if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
226	return 0;
227      BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
228      continue;
229    case IPAddressOrRange_addressRange:
230      if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
231	return 0;
232      BIO_puts(out, "-");
233      if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
234	return 0;
235      BIO_puts(out, "\n");
236      continue;
237    }
238  }
239  return 1;
240}
241
242/*
243 * i2r handler for an IPAddrBlocks extension.
244 */
245static int i2r_IPAddrBlocks(X509V3_EXT_METHOD *method,
246			    void *ext,
247			    BIO *out,
248			    int indent)
249{
250  const IPAddrBlocks *addr = ext;
251  int i;
252  for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
253    IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
254    const unsigned int afi = v3_addr_get_afi(f);
255    switch (afi) {
256    case IANA_AFI_IPV4:
257      BIO_printf(out, "%*sIPv4", indent, "");
258      break;
259    case IANA_AFI_IPV6:
260      BIO_printf(out, "%*sIPv6", indent, "");
261      break;
262    default:
263      BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
264      break;
265    }
266    if (f->addressFamily->length > 2) {
267      switch (f->addressFamily->data[2]) {
268      case   1:
269	BIO_puts(out, " (Unicast)");
270	break;
271      case   2:
272	BIO_puts(out, " (Multicast)");
273	break;
274      case   3:
275	BIO_puts(out, " (Unicast/Multicast)");
276	break;
277      case   4:
278	BIO_puts(out, " (MPLS)");
279	break;
280      case  64:
281	BIO_puts(out, " (Tunnel)");
282	break;
283      case  65:
284	BIO_puts(out, " (VPLS)");
285	break;
286      case  66:
287	BIO_puts(out, " (BGP MDT)");
288	break;
289      case 128:
290	BIO_puts(out, " (MPLS-labeled VPN)");
291	break;
292      default:
293	BIO_printf(out, " (Unknown SAFI %u)",
294		   (unsigned) f->addressFamily->data[2]);
295	break;
296      }
297    }
298    switch (f->ipAddressChoice->type) {
299    case IPAddressChoice_inherit:
300      BIO_puts(out, ": inherit\n");
301      break;
302    case IPAddressChoice_addressesOrRanges:
303      BIO_puts(out, ":\n");
304      if (!i2r_IPAddressOrRanges(out,
305				 indent + 2,
306				 f->ipAddressChoice->u.addressesOrRanges,
307				 afi))
308	return 0;
309      break;
310    }
311  }
312  return 1;
313}
314
315/*
316 * Sort comparison function for a sequence of IPAddressOrRange
317 * elements.
318 *
319 * There's no sane answer we can give if addr_expand() fails, and an
320 * assertion failure on externally supplied data is seriously uncool,
321 * so we just arbitrarily declare that if given invalid inputs this
322 * function returns -1.  If this messes up your preferred sort order
323 * for garbage input, tough noogies.
324 */
325static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
326				const IPAddressOrRange *b,
327				const int length)
328{
329  unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
330  int prefixlen_a = 0;
331  int prefixlen_b = 0;
332  int r;
333
334  switch (a->type) {
335  case IPAddressOrRange_addressPrefix:
336    if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
337      return -1;
338    prefixlen_a = addr_prefixlen(a->u.addressPrefix);
339    break;
340  case IPAddressOrRange_addressRange:
341    if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
342      return -1;
343    prefixlen_a = length * 8;
344    break;
345  }
346
347  switch (b->type) {
348  case IPAddressOrRange_addressPrefix:
349    if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
350      return -1;
351    prefixlen_b = addr_prefixlen(b->u.addressPrefix);
352    break;
353  case IPAddressOrRange_addressRange:
354    if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
355      return -1;
356    prefixlen_b = length * 8;
357    break;
358  }
359
360  if ((r = memcmp(addr_a, addr_b, length)) != 0)
361    return r;
362  else
363    return prefixlen_a - prefixlen_b;
364}
365
366/*
367 * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
368 * comparision routines are only allowed two arguments.
369 */
370static int v4IPAddressOrRange_cmp(const IPAddressOrRange * const *a,
371				  const IPAddressOrRange * const *b)
372{
373  return IPAddressOrRange_cmp(*a, *b, 4);
374}
375
376/*
377 * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
378 * comparision routines are only allowed two arguments.
379 */
380static int v6IPAddressOrRange_cmp(const IPAddressOrRange * const *a,
381				  const IPAddressOrRange * const *b)
382{
383  return IPAddressOrRange_cmp(*a, *b, 16);
384}
385
386/*
387 * Calculate whether a range collapses to a prefix.
388 * See last paragraph of RFC 3779 2.2.3.7.
389 */
390static int range_should_be_prefix(const unsigned char *min,
391				  const unsigned char *max,
392				  const int length)
393{
394  unsigned char mask;
395  int i, j;
396
397  OPENSSL_assert(memcmp(min, max, length) <= 0);
398  for (i = 0; i < length && min[i] == max[i]; i++)
399    ;
400  for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--)
401    ;
402  if (i < j)
403    return -1;
404  if (i > j)
405    return i * 8;
406  mask = min[i] ^ max[i];
407  switch (mask) {
408  case 0x01: j = 7; break;
409  case 0x03: j = 6; break;
410  case 0x07: j = 5; break;
411  case 0x0F: j = 4; break;
412  case 0x1F: j = 3; break;
413  case 0x3F: j = 2; break;
414  case 0x7F: j = 1; break;
415  default:   return -1;
416  }
417  if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
418    return -1;
419  else
420    return i * 8 + j;
421}
422
423/*
424 * Construct a prefix.
425 */
426static int make_addressPrefix(IPAddressOrRange **result,
427			      unsigned char *addr,
428			      const int prefixlen)
429{
430  int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
431  IPAddressOrRange *aor = IPAddressOrRange_new();
432
433  if (aor == NULL)
434    return 0;
435  aor->type = IPAddressOrRange_addressPrefix;
436  if (aor->u.addressPrefix == NULL &&
437      (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
438    goto err;
439  if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
440    goto err;
441  aor->u.addressPrefix->flags &= ~7;
442  aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
443  if (bitlen > 0) {
444    aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
445    aor->u.addressPrefix->flags |= 8 - bitlen;
446  }
447
448  *result = aor;
449  return 1;
450
451 err:
452  IPAddressOrRange_free(aor);
453  return 0;
454}
455
456/*
457 * Construct a range.  If it can be expressed as a prefix,
458 * return a prefix instead.  Doing this here simplifies
459 * the rest of the code considerably.
460 */
461static int make_addressRange(IPAddressOrRange **result,
462			     unsigned char *min,
463			     unsigned char *max,
464			     const int length)
465{
466  IPAddressOrRange *aor;
467  int i, prefixlen;
468
469  if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
470    return make_addressPrefix(result, min, prefixlen);
471
472  if ((aor = IPAddressOrRange_new()) == NULL)
473    return 0;
474  aor->type = IPAddressOrRange_addressRange;
475  OPENSSL_assert(aor->u.addressRange == NULL);
476  if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
477    goto err;
478  if (aor->u.addressRange->min == NULL &&
479      (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
480    goto err;
481  if (aor->u.addressRange->max == NULL &&
482      (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
483    goto err;
484
485  for (i = length; i > 0 && min[i - 1] == 0x00; --i)
486    ;
487  if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
488    goto err;
489  aor->u.addressRange->min->flags &= ~7;
490  aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
491  if (i > 0) {
492    unsigned char b = min[i - 1];
493    int j = 1;
494    while ((b & (0xFFU >> j)) != 0)
495      ++j;
496    aor->u.addressRange->min->flags |= 8 - j;
497  }
498
499  for (i = length; i > 0 && max[i - 1] == 0xFF; --i)
500    ;
501  if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
502    goto err;
503  aor->u.addressRange->max->flags &= ~7;
504  aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
505  if (i > 0) {
506    unsigned char b = max[i - 1];
507    int j = 1;
508    while ((b & (0xFFU >> j)) != (0xFFU >> j))
509      ++j;
510    aor->u.addressRange->max->flags |= 8 - j;
511  }
512
513  *result = aor;
514  return 1;
515
516 err:
517  IPAddressOrRange_free(aor);
518  return 0;
519}
520
521/*
522 * Construct a new address family or find an existing one.
523 */
524static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
525					     const unsigned afi,
526					     const unsigned *safi)
527{
528  IPAddressFamily *f;
529  unsigned char key[3];
530  unsigned keylen;
531  int i;
532
533  key[0] = (afi >> 8) & 0xFF;
534  key[1] = afi & 0xFF;
535  if (safi != NULL) {
536    key[2] = *safi & 0xFF;
537    keylen = 3;
538  } else {
539    keylen = 2;
540  }
541
542  for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
543    f = sk_IPAddressFamily_value(addr, i);
544    OPENSSL_assert(f->addressFamily->data != NULL);
545    if (f->addressFamily->length == keylen &&
546	!memcmp(f->addressFamily->data, key, keylen))
547      return f;
548  }
549
550  if ((f = IPAddressFamily_new()) == NULL)
551    goto err;
552  if (f->ipAddressChoice == NULL &&
553      (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
554    goto err;
555  if (f->addressFamily == NULL &&
556      (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
557    goto err;
558  if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
559    goto err;
560  if (!sk_IPAddressFamily_push(addr, f))
561    goto err;
562
563  return f;
564
565 err:
566  IPAddressFamily_free(f);
567  return NULL;
568}
569
570/*
571 * Add an inheritance element.
572 */
573int v3_addr_add_inherit(IPAddrBlocks *addr,
574			const unsigned afi,
575			const unsigned *safi)
576{
577  IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
578  if (f == NULL ||
579      f->ipAddressChoice == NULL ||
580      (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
581       f->ipAddressChoice->u.addressesOrRanges != NULL))
582    return 0;
583  if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
584      f->ipAddressChoice->u.inherit != NULL)
585    return 1;
586  if (f->ipAddressChoice->u.inherit == NULL &&
587      (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
588    return 0;
589  f->ipAddressChoice->type = IPAddressChoice_inherit;
590  return 1;
591}
592
593/*
594 * Construct an IPAddressOrRange sequence, or return an existing one.
595 */
596static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
597					       const unsigned afi,
598					       const unsigned *safi)
599{
600  IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
601  IPAddressOrRanges *aors = NULL;
602
603  if (f == NULL ||
604      f->ipAddressChoice == NULL ||
605      (f->ipAddressChoice->type == IPAddressChoice_inherit &&
606       f->ipAddressChoice->u.inherit != NULL))
607    return NULL;
608  if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
609    aors = f->ipAddressChoice->u.addressesOrRanges;
610  if (aors != NULL)
611    return aors;
612  if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
613    return NULL;
614  switch (afi) {
615  case IANA_AFI_IPV4:
616    (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
617    break;
618  case IANA_AFI_IPV6:
619    (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
620    break;
621  }
622  f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
623  f->ipAddressChoice->u.addressesOrRanges = aors;
624  return aors;
625}
626
627/*
628 * Add a prefix.
629 */
630int v3_addr_add_prefix(IPAddrBlocks *addr,
631		       const unsigned afi,
632		       const unsigned *safi,
633		       unsigned char *a,
634		       const int prefixlen)
635{
636  IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
637  IPAddressOrRange *aor;
638  if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
639    return 0;
640  if (sk_IPAddressOrRange_push(aors, aor))
641    return 1;
642  IPAddressOrRange_free(aor);
643  return 0;
644}
645
646/*
647 * Add a range.
648 */
649int v3_addr_add_range(IPAddrBlocks *addr,
650		      const unsigned afi,
651		      const unsigned *safi,
652		      unsigned char *min,
653		      unsigned char *max)
654{
655  IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
656  IPAddressOrRange *aor;
657  int length = length_from_afi(afi);
658  if (aors == NULL)
659    return 0;
660  if (!make_addressRange(&aor, min, max, length))
661    return 0;
662  if (sk_IPAddressOrRange_push(aors, aor))
663    return 1;
664  IPAddressOrRange_free(aor);
665  return 0;
666}
667
668/*
669 * Extract min and max values from an IPAddressOrRange.
670 */
671static int extract_min_max(IPAddressOrRange *aor,
672			    unsigned char *min,
673			    unsigned char *max,
674			    int length)
675{
676  if (aor == NULL || min == NULL || max == NULL)
677    return 0;
678  switch (aor->type) {
679  case IPAddressOrRange_addressPrefix:
680    return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
681	    addr_expand(max, aor->u.addressPrefix, length, 0xFF));
682  case IPAddressOrRange_addressRange:
683    return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
684	    addr_expand(max, aor->u.addressRange->max, length, 0xFF));
685  }
686  return 0;
687}
688
689/*
690 * Public wrapper for extract_min_max().
691 */
692int v3_addr_get_range(IPAddressOrRange *aor,
693		      const unsigned afi,
694		      unsigned char *min,
695		      unsigned char *max,
696		      const int length)
697{
698  int afi_length = length_from_afi(afi);
699  if (aor == NULL || min == NULL || max == NULL ||
700      afi_length == 0 || length < afi_length ||
701      (aor->type != IPAddressOrRange_addressPrefix &&
702       aor->type != IPAddressOrRange_addressRange) ||
703      !extract_min_max(aor, min, max, afi_length))
704    return 0;
705
706  return afi_length;
707}
708
709/*
710 * Sort comparision function for a sequence of IPAddressFamily.
711 *
712 * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
713 * the ordering: I can read it as meaning that IPv6 without a SAFI
714 * comes before IPv4 with a SAFI, which seems pretty weird.  The
715 * examples in appendix B suggest that the author intended the
716 * null-SAFI rule to apply only within a single AFI, which is what I
717 * would have expected and is what the following code implements.
718 */
719static int IPAddressFamily_cmp(const IPAddressFamily * const *a_,
720			       const IPAddressFamily * const *b_)
721{
722  const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
723  const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
724  int len = ((a->length <= b->length) ? a->length : b->length);
725  int cmp = memcmp(a->data, b->data, len);
726  return cmp ? cmp : a->length - b->length;
727}
728
729/*
730 * Check whether an IPAddrBLocks is in canonical form.
731 */
732int v3_addr_is_canonical(IPAddrBlocks *addr)
733{
734  unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
735  unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
736  IPAddressOrRanges *aors;
737  int i, j, k;
738
739  /*
740   * Empty extension is cannonical.
741   */
742  if (addr == NULL)
743    return 1;
744
745  /*
746   * Check whether the top-level list is in order.
747   */
748  for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
749    const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
750    const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
751    if (IPAddressFamily_cmp(&a, &b) >= 0)
752      return 0;
753  }
754
755  /*
756   * Top level's ok, now check each address family.
757   */
758  for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
759    IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
760    int length = length_from_afi(v3_addr_get_afi(f));
761
762    /*
763     * Inheritance is canonical.  Anything other than inheritance or
764     * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
765     */
766    if (f == NULL || f->ipAddressChoice == NULL)
767      return 0;
768    switch (f->ipAddressChoice->type) {
769    case IPAddressChoice_inherit:
770      continue;
771    case IPAddressChoice_addressesOrRanges:
772      break;
773    default:
774      return 0;
775    }
776
777    /*
778     * It's an IPAddressOrRanges sequence, check it.
779     */
780    aors = f->ipAddressChoice->u.addressesOrRanges;
781    if (sk_IPAddressOrRange_num(aors) == 0)
782      return 0;
783    for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
784      IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
785      IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
786
787      if (!extract_min_max(a, a_min, a_max, length) ||
788	  !extract_min_max(b, b_min, b_max, length))
789	return 0;
790
791      /*
792       * Punt misordered list, overlapping start, or inverted range.
793       */
794      if (memcmp(a_min, b_min, length) >= 0 ||
795	  memcmp(a_min, a_max, length) > 0 ||
796	  memcmp(b_min, b_max, length) > 0)
797	return 0;
798
799      /*
800       * Punt if adjacent or overlapping.  Check for adjacency by
801       * subtracting one from b_min first.
802       */
803      for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--)
804	;
805      if (memcmp(a_max, b_min, length) >= 0)
806	return 0;
807
808      /*
809       * Check for range that should be expressed as a prefix.
810       */
811      if (a->type == IPAddressOrRange_addressRange &&
812	  range_should_be_prefix(a_min, a_max, length) >= 0)
813	return 0;
814    }
815
816    /*
817     * Check range to see if it's inverted or should be a
818     * prefix.
819     */
820    j = sk_IPAddressOrRange_num(aors) - 1;
821    {
822      IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
823      if (a != NULL && a->type == IPAddressOrRange_addressRange) {
824	if (!extract_min_max(a, a_min, a_max, length))
825	  return 0;
826	if (memcmp(a_min, a_max, length) > 0 ||
827	    range_should_be_prefix(a_min, a_max, length) >= 0)
828	  return 0;
829      }
830    }
831  }
832
833  /*
834   * If we made it through all that, we're happy.
835   */
836  return 1;
837}
838
839/*
840 * Whack an IPAddressOrRanges into canonical form.
841 */
842static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
843				      const unsigned afi)
844{
845  int i, j, length = length_from_afi(afi);
846
847  /*
848   * Sort the IPAddressOrRanges sequence.
849   */
850  sk_IPAddressOrRange_sort(aors);
851
852  /*
853   * Clean up representation issues, punt on duplicates or overlaps.
854   */
855  for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
856    IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
857    IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
858    unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
859    unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
860
861    if (!extract_min_max(a, a_min, a_max, length) ||
862	!extract_min_max(b, b_min, b_max, length))
863      return 0;
864
865    /*
866     * Punt inverted ranges.
867     */
868    if (memcmp(a_min, a_max, length) > 0 ||
869	memcmp(b_min, b_max, length) > 0)
870      return 0;
871
872    /*
873     * Punt overlaps.
874     */
875    if (memcmp(a_max, b_min, length) >= 0)
876      return 0;
877
878    /*
879     * Merge if a and b are adjacent.  We check for
880     * adjacency by subtracting one from b_min first.
881     */
882    for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--)
883      ;
884    if (memcmp(a_max, b_min, length) == 0) {
885      IPAddressOrRange *merged;
886      if (!make_addressRange(&merged, a_min, b_max, length))
887	return 0;
888      sk_IPAddressOrRange_set(aors, i, merged);
889      (void)sk_IPAddressOrRange_delete(aors, i + 1);
890      IPAddressOrRange_free(a);
891      IPAddressOrRange_free(b);
892      --i;
893      continue;
894    }
895  }
896
897  /*
898   * Check for inverted final range.
899   */
900  j = sk_IPAddressOrRange_num(aors) - 1;
901  {
902    IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
903    if (a != NULL && a->type == IPAddressOrRange_addressRange) {
904      unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
905      extract_min_max(a, a_min, a_max, length);
906      if (memcmp(a_min, a_max, length) > 0)
907	return 0;
908    }
909  }
910
911  return 1;
912}
913
914/*
915 * Whack an IPAddrBlocks extension into canonical form.
916 */
917int v3_addr_canonize(IPAddrBlocks *addr)
918{
919  int i;
920  for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
921    IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
922    if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
923	!IPAddressOrRanges_canonize(f->ipAddressChoice->u.addressesOrRanges,
924				    v3_addr_get_afi(f)))
925      return 0;
926  }
927  (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
928  sk_IPAddressFamily_sort(addr);
929  OPENSSL_assert(v3_addr_is_canonical(addr));
930  return 1;
931}
932
933/*
934 * v2i handler for the IPAddrBlocks extension.
935 */
936static void *v2i_IPAddrBlocks(struct v3_ext_method *method,
937			      struct v3_ext_ctx *ctx,
938			      STACK_OF(CONF_VALUE) *values)
939{
940  static const char v4addr_chars[] = "0123456789.";
941  static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
942  IPAddrBlocks *addr = NULL;
943  char *s = NULL, *t;
944  int i;
945
946  if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
947    X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
948    return NULL;
949  }
950
951  for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
952    CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
953    unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
954    unsigned afi, *safi = NULL, safi_;
955    const char *addr_chars;
956    int prefixlen, i1, i2, delim, length;
957
958    if (       !name_cmp(val->name, "IPv4")) {
959      afi = IANA_AFI_IPV4;
960    } else if (!name_cmp(val->name, "IPv6")) {
961      afi = IANA_AFI_IPV6;
962    } else if (!name_cmp(val->name, "IPv4-SAFI")) {
963      afi = IANA_AFI_IPV4;
964      safi = &safi_;
965    } else if (!name_cmp(val->name, "IPv6-SAFI")) {
966      afi = IANA_AFI_IPV6;
967      safi = &safi_;
968    } else {
969      X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_NAME_ERROR);
970      X509V3_conf_err(val);
971      goto err;
972    }
973
974    switch (afi) {
975    case IANA_AFI_IPV4:
976      addr_chars = v4addr_chars;
977      break;
978    case IANA_AFI_IPV6:
979      addr_chars = v6addr_chars;
980      break;
981    }
982
983    length = length_from_afi(afi);
984
985    /*
986     * Handle SAFI, if any, and BUF_strdup() so we can null-terminate
987     * the other input values.
988     */
989    if (safi != NULL) {
990      *safi = strtoul(val->value, &t, 0);
991      t += strspn(t, " \t");
992      if (*safi > 0xFF || *t++ != ':') {
993	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
994	X509V3_conf_err(val);
995	goto err;
996      }
997      t += strspn(t, " \t");
998      s = BUF_strdup(t);
999    } else {
1000      s = BUF_strdup(val->value);
1001    }
1002    if (s == NULL) {
1003      X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1004      goto err;
1005    }
1006
1007    /*
1008     * Check for inheritance.  Not worth additional complexity to
1009     * optimize this (seldom-used) case.
1010     */
1011    if (!strcmp(s, "inherit")) {
1012      if (!v3_addr_add_inherit(addr, afi, safi)) {
1013	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_INHERITANCE);
1014	X509V3_conf_err(val);
1015	goto err;
1016      }
1017      OPENSSL_free(s);
1018      s = NULL;
1019      continue;
1020    }
1021
1022    i1 = strspn(s, addr_chars);
1023    i2 = i1 + strspn(s + i1, " \t");
1024    delim = s[i2++];
1025    s[i1] = '\0';
1026
1027    if (a2i_ipadd(min, s) != length) {
1028      X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
1029      X509V3_conf_err(val);
1030      goto err;
1031    }
1032
1033    switch (delim) {
1034    case '/':
1035      prefixlen = (int) strtoul(s + i2, &t, 10);
1036      if (t == s + i2 || *t != '\0') {
1037	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1038	X509V3_conf_err(val);
1039	goto err;
1040      }
1041      if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
1042	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1043	goto err;
1044      }
1045      break;
1046    case '-':
1047      i1 = i2 + strspn(s + i2, " \t");
1048      i2 = i1 + strspn(s + i1, addr_chars);
1049      if (i1 == i2 || s[i2] != '\0') {
1050	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1051	X509V3_conf_err(val);
1052	goto err;
1053      }
1054      if (a2i_ipadd(max, s + i1) != length) {
1055	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
1056	X509V3_conf_err(val);
1057	goto err;
1058      }
1059      if (memcmp(min, max, length_from_afi(afi)) > 0) {
1060	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1061	X509V3_conf_err(val);
1062	goto err;
1063      }
1064      if (!v3_addr_add_range(addr, afi, safi, min, max)) {
1065	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1066	goto err;
1067      }
1068      break;
1069    case '\0':
1070      if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1071	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1072	goto err;
1073      }
1074      break;
1075    default:
1076      X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1077      X509V3_conf_err(val);
1078      goto err;
1079    }
1080
1081    OPENSSL_free(s);
1082    s = NULL;
1083  }
1084
1085  /*
1086   * Canonize the result, then we're done.
1087   */
1088  if (!v3_addr_canonize(addr))
1089    goto err;
1090  return addr;
1091
1092 err:
1093  OPENSSL_free(s);
1094  sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1095  return NULL;
1096}
1097
1098/*
1099 * OpenSSL dispatch
1100 */
1101const X509V3_EXT_METHOD v3_addr = {
1102  NID_sbgp_ipAddrBlock,		/* nid */
1103  0,				/* flags */
1104  ASN1_ITEM_ref(IPAddrBlocks),	/* template */
1105  0, 0, 0, 0,			/* old functions, ignored */
1106  0,				/* i2s */
1107  0,				/* s2i */
1108  0,				/* i2v */
1109  v2i_IPAddrBlocks,		/* v2i */
1110  i2r_IPAddrBlocks,		/* i2r */
1111  0,				/* r2i */
1112  NULL				/* extension-specific data */
1113};
1114
1115/*
1116 * Figure out whether extension sues inheritance.
1117 */
1118int v3_addr_inherits(IPAddrBlocks *addr)
1119{
1120  int i;
1121  if (addr == NULL)
1122    return 0;
1123  for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1124    IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1125    if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1126      return 1;
1127  }
1128  return 0;
1129}
1130
1131/*
1132 * Figure out whether parent contains child.
1133 */
1134static int addr_contains(IPAddressOrRanges *parent,
1135			 IPAddressOrRanges *child,
1136			 int length)
1137{
1138  unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1139  unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1140  int p, c;
1141
1142  if (child == NULL || parent == child)
1143    return 1;
1144  if (parent == NULL)
1145    return 0;
1146
1147  p = 0;
1148  for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1149    if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1150			 c_min, c_max, length))
1151      return -1;
1152    for (;; p++) {
1153      if (p >= sk_IPAddressOrRange_num(parent))
1154	return 0;
1155      if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1156			   p_min, p_max, length))
1157	return 0;
1158      if (memcmp(p_max, c_max, length) < 0)
1159	continue;
1160      if (memcmp(p_min, c_min, length) > 0)
1161	return 0;
1162      break;
1163    }
1164  }
1165
1166  return 1;
1167}
1168
1169/*
1170 * Test whether a is a subset of b.
1171 */
1172int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1173{
1174  int i;
1175  if (a == NULL || a == b)
1176    return 1;
1177  if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b))
1178    return 0;
1179  (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1180  for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1181    IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1182    int j = sk_IPAddressFamily_find(b, fa);
1183    IPAddressFamily *fb;
1184    fb = sk_IPAddressFamily_value(b, j);
1185    if (fb == NULL)
1186       return 0;
1187    if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1188		       fa->ipAddressChoice->u.addressesOrRanges,
1189		       length_from_afi(v3_addr_get_afi(fb))))
1190      return 0;
1191  }
1192  return 1;
1193}
1194
1195/*
1196 * Validation error handling via callback.
1197 */
1198#define validation_err(_err_)		\
1199  do {					\
1200    if (ctx != NULL) {			\
1201      ctx->error = _err_;		\
1202      ctx->error_depth = i;		\
1203      ctx->current_cert = x;		\
1204      ret = ctx->verify_cb(0, ctx);	\
1205    } else {				\
1206      ret = 0;				\
1207    }					\
1208    if (!ret)				\
1209      goto done;			\
1210  } while (0)
1211
1212/*
1213 * Core code for RFC 3779 2.3 path validation.
1214 */
1215static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx,
1216					  STACK_OF(X509) *chain,
1217					  IPAddrBlocks *ext)
1218{
1219  IPAddrBlocks *child = NULL;
1220  int i, j, ret = 1;
1221  X509 *x = NULL;
1222
1223  OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0);
1224  OPENSSL_assert(ctx != NULL || ext != NULL);
1225  OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL);
1226
1227  /*
1228   * Figure out where to start.  If we don't have an extension to
1229   * check, we're done.  Otherwise, check canonical form and
1230   * set up for walking up the chain.
1231   */
1232  if (ext != NULL) {
1233    i = -1;
1234  } else {
1235    i = 0;
1236    x = sk_X509_value(chain, i);
1237    OPENSSL_assert(x != NULL);
1238    if ((ext = x->rfc3779_addr) == NULL)
1239      goto done;
1240  }
1241  if (!v3_addr_is_canonical(ext))
1242    validation_err(X509_V_ERR_INVALID_EXTENSION);
1243  (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1244  if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1245    X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL, ERR_R_MALLOC_FAILURE);
1246    ret = 0;
1247    goto done;
1248  }
1249
1250  /*
1251   * Now walk up the chain.  No cert may list resources that its
1252   * parent doesn't list.
1253   */
1254  for (i++; i < sk_X509_num(chain); i++) {
1255    x = sk_X509_value(chain, i);
1256    OPENSSL_assert(x != NULL);
1257    if (!v3_addr_is_canonical(x->rfc3779_addr))
1258      validation_err(X509_V_ERR_INVALID_EXTENSION);
1259    if (x->rfc3779_addr == NULL) {
1260      for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1261	IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1262	if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1263	  validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1264	  break;
1265	}
1266      }
1267      continue;
1268    }
1269    (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, IPAddressFamily_cmp);
1270    for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1271      IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1272      int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1273      IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, k);
1274      if (fp == NULL) {
1275	if (fc->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
1276	  validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1277	  break;
1278	}
1279	continue;
1280      }
1281      if (fp->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
1282	if (fc->ipAddressChoice->type == IPAddressChoice_inherit ||
1283	    addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1284			  fc->ipAddressChoice->u.addressesOrRanges,
1285			  length_from_afi(v3_addr_get_afi(fc))))
1286	  sk_IPAddressFamily_set(child, j, fp);
1287	else
1288	  validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1289      }
1290    }
1291  }
1292
1293  /*
1294   * Trust anchor can't inherit.
1295   */
1296  if (x->rfc3779_addr != NULL) {
1297    for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1298      IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j);
1299      if (fp->ipAddressChoice->type == IPAddressChoice_inherit &&
1300	  sk_IPAddressFamily_find(child, fp) >= 0)
1301	validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1302    }
1303  }
1304
1305 done:
1306  sk_IPAddressFamily_free(child);
1307  return ret;
1308}
1309
1310#undef validation_err
1311
1312/*
1313 * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1314 */
1315int v3_addr_validate_path(X509_STORE_CTX *ctx)
1316{
1317  return v3_addr_validate_path_internal(ctx, ctx->chain, NULL);
1318}
1319
1320/*
1321 * RFC 3779 2.3 path validation of an extension.
1322 * Test whether chain covers extension.
1323 */
1324int v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1325				  IPAddrBlocks *ext,
1326				  int allow_inheritance)
1327{
1328  if (ext == NULL)
1329    return 1;
1330  if (chain == NULL || sk_X509_num(chain) == 0)
1331    return 0;
1332  if (!allow_inheritance && v3_addr_inherits(ext))
1333    return 0;
1334  return v3_addr_validate_path_internal(NULL, chain, ext);
1335}
1336
1337#endif /* OPENSSL_NO_RFC3779 */
1338