1/* $OpenBSD: umac.c,v 1.4 2011/10/19 10:39:48 djm Exp $ */
2/* -----------------------------------------------------------------------
3 *
4 * umac.c -- C Implementation UMAC Message Authentication
5 *
6 * Version 0.93b of rfc4418.txt -- 2006 July 18
7 *
8 * For a full description of UMAC message authentication see the UMAC
9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
10 * Please report bugs and suggestions to the UMAC webpage.
11 *
12 * Copyright (c) 1999-2006 Ted Krovetz
13 *
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation for any purpose and with or without fee, is hereby
16 * granted provided that the above copyright notice appears in all copies
17 * and in supporting documentation, and that the name of the copyright
18 * holder not be used in advertising or publicity pertaining to
19 * distribution of the software without specific, written prior permission.
20 *
21 * Comments should be directed to Ted Krovetz (tdk@acm.org)
22 *
23 * ---------------------------------------------------------------------- */
24
25 /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
26  *
27  * 1) This version does not work properly on messages larger than 16MB
28  *
29  * 2) If you set the switch to use SSE2, then all data must be 16-byte
30  *    aligned
31  *
32  * 3) When calling the function umac(), it is assumed that msg is in
33  * a writable buffer of length divisible by 32 bytes. The message itself
34  * does not have to fill the entire buffer, but bytes beyond msg may be
35  * zeroed.
36  *
37  * 4) Three free AES implementations are supported by this implementation of
38  * UMAC. Paulo Barreto's version is in the public domain and can be found
39  * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
40  * "Barreto"). The only two files needed are rijndael-alg-fst.c and
41  * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
42  * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
43  * includes a fast IA-32 assembly version. The OpenSSL crypo library is
44  * the third.
45  *
46  * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
47  * produced under gcc with optimizations set -O3 or higher. Dunno why.
48  *
49  /////////////////////////////////////////////////////////////////////// */
50
51/* ---------------------------------------------------------------------- */
52/* --- User Switches ---------------------------------------------------- */
53/* ---------------------------------------------------------------------- */
54
55#ifndef UMAC_OUTPUT_LEN
56#define UMAC_OUTPUT_LEN     8  /* Alowable: 4, 8, 12, 16                  */
57#endif
58
59#if UMAC_OUTPUT_LEN != 4 && UMAC_OUTPUT_LEN != 8 && \
60    UMAC_OUTPUT_LEN != 12 && UMAC_OUTPUT_LEN != 16
61# error UMAC_OUTPUT_LEN must be defined to 4, 8, 12 or 16
62#endif
63
64/* #define FORCE_C_ONLY        1  ANSI C and 64-bit integers req'd        */
65/* #define AES_IMPLEMENTAION   1  1 = OpenSSL, 2 = Barreto, 3 = Gladman   */
66/* #define SSE2                0  Is SSE2 is available?                   */
67/* #define RUN_TESTS           0  Run basic correctness/speed tests       */
68/* #define UMAC_AE_SUPPORT     0  Enable auhthenticated encrytion         */
69
70/* ---------------------------------------------------------------------- */
71/* -- Global Includes --------------------------------------------------- */
72/* ---------------------------------------------------------------------- */
73
74#include "includes.h"
75#include <sys/types.h>
76
77#include "xmalloc.h"
78#include "umac.h"
79#include <string.h>
80#include <stdlib.h>
81#include <stddef.h>
82
83/* ---------------------------------------------------------------------- */
84/* --- Primitive Data Types ---                                           */
85/* ---------------------------------------------------------------------- */
86
87/* The following assumptions may need change on your system */
88typedef u_int8_t	UINT8;  /* 1 byte   */
89typedef u_int16_t	UINT16; /* 2 byte   */
90typedef u_int32_t	UINT32; /* 4 byte   */
91typedef u_int64_t	UINT64; /* 8 bytes  */
92typedef unsigned int	UWORD;  /* Register */
93
94/* ---------------------------------------------------------------------- */
95/* --- Constants -------------------------------------------------------- */
96/* ---------------------------------------------------------------------- */
97
98#define UMAC_KEY_LEN           16  /* UMAC takes 16 bytes of external key */
99
100/* Message "words" are read from memory in an endian-specific manner.     */
101/* For this implementation to behave correctly, __LITTLE_ENDIAN__ must    */
102/* be set true if the host computer is little-endian.                     */
103
104#if BYTE_ORDER == LITTLE_ENDIAN
105#define __LITTLE_ENDIAN__ 1
106#else
107#define __LITTLE_ENDIAN__ 0
108#endif
109
110/* ---------------------------------------------------------------------- */
111/* ---------------------------------------------------------------------- */
112/* ----- Architecture Specific ------------------------------------------ */
113/* ---------------------------------------------------------------------- */
114/* ---------------------------------------------------------------------- */
115
116
117/* ---------------------------------------------------------------------- */
118/* ---------------------------------------------------------------------- */
119/* ----- Primitive Routines --------------------------------------------- */
120/* ---------------------------------------------------------------------- */
121/* ---------------------------------------------------------------------- */
122
123
124/* ---------------------------------------------------------------------- */
125/* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
126/* ---------------------------------------------------------------------- */
127
128#define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
129
130/* ---------------------------------------------------------------------- */
131/* --- Endian Conversion --- Forcing assembly on some platforms           */
132/* ---------------------------------------------------------------------- */
133
134#if HAVE_SWAP32
135#define LOAD_UINT32_REVERSED(p)		(swap32(*(UINT32 *)(p)))
136#define STORE_UINT32_REVERSED(p,v) 	(*(UINT32 *)(p) = swap32(v))
137#else /* HAVE_SWAP32 */
138
139static UINT32 LOAD_UINT32_REVERSED(void *ptr)
140{
141    UINT32 temp = *(UINT32 *)ptr;
142    temp = (temp >> 24) | ((temp & 0x00FF0000) >> 8 )
143         | ((temp & 0x0000FF00) << 8 ) | (temp << 24);
144    return (UINT32)temp;
145}
146
147# if (__LITTLE_ENDIAN__)
148static void STORE_UINT32_REVERSED(void *ptr, UINT32 x)
149{
150    UINT32 i = (UINT32)x;
151    *(UINT32 *)ptr = (i >> 24) | ((i & 0x00FF0000) >> 8 )
152                   | ((i & 0x0000FF00) << 8 ) | (i << 24);
153}
154# endif /* __LITTLE_ENDIAN */
155#endif /* HAVE_SWAP32 */
156
157/* The following definitions use the above reversal-primitives to do the right
158 * thing on endian specific load and stores.
159 */
160
161#if (__LITTLE_ENDIAN__)
162#define LOAD_UINT32_LITTLE(ptr)     (*(UINT32 *)(ptr))
163#define STORE_UINT32_BIG(ptr,x)     STORE_UINT32_REVERSED(ptr,x)
164#else
165#define LOAD_UINT32_LITTLE(ptr)     LOAD_UINT32_REVERSED(ptr)
166#define STORE_UINT32_BIG(ptr,x)     (*(UINT32 *)(ptr) = (UINT32)(x))
167#endif
168
169/* ---------------------------------------------------------------------- */
170/* ---------------------------------------------------------------------- */
171/* ----- Begin KDF & PDF Section ---------------------------------------- */
172/* ---------------------------------------------------------------------- */
173/* ---------------------------------------------------------------------- */
174
175/* UMAC uses AES with 16 byte block and key lengths */
176#define AES_BLOCK_LEN  16
177
178/* OpenSSL's AES */
179#include "openbsd-compat/openssl-compat.h"
180#ifndef USE_BUILTIN_RIJNDAEL
181# ifdef __APPLE_CRYPTO__
182#  include "ossl-aes.h"
183# else
184#  include <openssl/aes.h>
185# endif
186#endif
187typedef AES_KEY aes_int_key[1];
188#define aes_encryption(in,out,int_key)                  \
189  AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
190#define aes_key_setup(key,int_key)                      \
191  AES_set_encrypt_key((u_char *)(key),UMAC_KEY_LEN*8,int_key)
192
193/* The user-supplied UMAC key is stretched using AES in a counter
194 * mode to supply all random bits needed by UMAC. The kdf function takes
195 * an AES internal key representation 'key' and writes a stream of
196 * 'nbytes' bytes to the memory pointed at by 'bufp'. Each distinct
197 * 'ndx' causes a distinct byte stream.
198 */
199static void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes)
200{
201    UINT8 in_buf[AES_BLOCK_LEN] = {0};
202    UINT8 out_buf[AES_BLOCK_LEN];
203    UINT8 *dst_buf = (UINT8 *)bufp;
204    int i;
205
206    /* Setup the initial value */
207    in_buf[AES_BLOCK_LEN-9] = ndx;
208    in_buf[AES_BLOCK_LEN-1] = i = 1;
209
210    while (nbytes >= AES_BLOCK_LEN) {
211        aes_encryption(in_buf, out_buf, key);
212        memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
213        in_buf[AES_BLOCK_LEN-1] = ++i;
214        nbytes -= AES_BLOCK_LEN;
215        dst_buf += AES_BLOCK_LEN;
216    }
217    if (nbytes) {
218        aes_encryption(in_buf, out_buf, key);
219        memcpy(dst_buf,out_buf,nbytes);
220    }
221}
222
223/* The final UHASH result is XOR'd with the output of a pseudorandom
224 * function. Here, we use AES to generate random output and
225 * xor the appropriate bytes depending on the last bits of nonce.
226 * This scheme is optimized for sequential, increasing big-endian nonces.
227 */
228
229typedef struct {
230    UINT8 cache[AES_BLOCK_LEN];  /* Previous AES output is saved      */
231    UINT8 nonce[AES_BLOCK_LEN];  /* The AES input making above cache  */
232    aes_int_key prf_key;         /* Expanded AES key for PDF          */
233} pdf_ctx;
234
235static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
236{
237    UINT8 buf[UMAC_KEY_LEN];
238
239    kdf(buf, prf_key, 0, UMAC_KEY_LEN);
240    aes_key_setup(buf, pc->prf_key);
241
242    /* Initialize pdf and cache */
243    memset(pc->nonce, 0, sizeof(pc->nonce));
244    aes_encryption(pc->nonce, pc->cache, pc->prf_key);
245}
246
247static void pdf_gen_xor(pdf_ctx *pc, UINT8 nonce[8], UINT8 buf[8])
248{
249    /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
250     * of the AES output. If last time around we returned the ndx-1st
251     * element, then we may have the result in the cache already.
252     */
253
254#if (UMAC_OUTPUT_LEN == 4)
255#define LOW_BIT_MASK 3
256#elif (UMAC_OUTPUT_LEN == 8)
257#define LOW_BIT_MASK 1
258#elif (UMAC_OUTPUT_LEN > 8)
259#define LOW_BIT_MASK 0
260#endif
261
262    UINT8 tmp_nonce_lo[4];
263#if LOW_BIT_MASK != 0
264    int ndx = nonce[7] & LOW_BIT_MASK;
265#endif
266    *(UINT32 *)tmp_nonce_lo = ((UINT32 *)nonce)[1];
267    tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
268
269    if ( (((UINT32 *)tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
270         (((UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
271    {
272        ((UINT32 *)pc->nonce)[0] = ((UINT32 *)nonce)[0];
273        ((UINT32 *)pc->nonce)[1] = ((UINT32 *)tmp_nonce_lo)[0];
274        aes_encryption(pc->nonce, pc->cache, pc->prf_key);
275    }
276
277#if (UMAC_OUTPUT_LEN == 4)
278    *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
279#elif (UMAC_OUTPUT_LEN == 8)
280    *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
281#elif (UMAC_OUTPUT_LEN == 12)
282    ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
283    ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
284#elif (UMAC_OUTPUT_LEN == 16)
285    ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
286    ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
287#endif
288}
289
290/* ---------------------------------------------------------------------- */
291/* ---------------------------------------------------------------------- */
292/* ----- Begin NH Hash Section ------------------------------------------ */
293/* ---------------------------------------------------------------------- */
294/* ---------------------------------------------------------------------- */
295
296/* The NH-based hash functions used in UMAC are described in the UMAC paper
297 * and specification, both of which can be found at the UMAC website.
298 * The interface to this implementation has two
299 * versions, one expects the entire message being hashed to be passed
300 * in a single buffer and returns the hash result immediately. The second
301 * allows the message to be passed in a sequence of buffers. In the
302 * muliple-buffer interface, the client calls the routine nh_update() as
303 * many times as necessary. When there is no more data to be fed to the
304 * hash, the client calls nh_final() which calculates the hash output.
305 * Before beginning another hash calculation the nh_reset() routine
306 * must be called. The single-buffer routine, nh(), is equivalent to
307 * the sequence of calls nh_update() and nh_final(); however it is
308 * optimized and should be prefered whenever the multiple-buffer interface
309 * is not necessary. When using either interface, it is the client's
310 * responsability to pass no more than L1_KEY_LEN bytes per hash result.
311 *
312 * The routine nh_init() initializes the nh_ctx data structure and
313 * must be called once, before any other PDF routine.
314 */
315
316 /* The "nh_aux" routines do the actual NH hashing work. They
317  * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
318  * produce output for all STREAMS NH iterations in one call,
319  * allowing the parallel implementation of the streams.
320  */
321
322#define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied  */
323#define L1_KEY_LEN         1024     /* Internal key bytes                 */
324#define L1_KEY_SHIFT         16     /* Toeplitz key shift between streams */
325#define L1_PAD_BOUNDARY      32     /* pad message to boundary multiple   */
326#define ALLOC_BOUNDARY       16     /* Keep buffers aligned to this       */
327#define HASH_BUF_BYTES       64     /* nh_aux_hb buffer multiple          */
328
329typedef struct {
330    UINT8  nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
331    UINT8  data   [HASH_BUF_BYTES];    /* Incoming data buffer           */
332    int next_data_empty;    /* Bookeeping variable for data buffer.       */
333    int bytes_hashed;        /* Bytes (out of L1_KEY_LEN) incorperated.   */
334    UINT64 state[STREAMS];               /* on-line state     */
335} nh_ctx;
336
337
338#if (UMAC_OUTPUT_LEN == 4)
339
340static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
341/* NH hashing primitive. Previous (partial) hash result is loaded and
342* then stored via hp pointer. The length of the data pointed at by "dp",
343* "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32).  Key
344* is expected to be endian compensated in memory at key setup.
345*/
346{
347    UINT64 h;
348    UWORD c = dlen / 32;
349    UINT32 *k = (UINT32 *)kp;
350    UINT32 *d = (UINT32 *)dp;
351    UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
352    UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
353
354    h = *((UINT64 *)hp);
355    do {
356        d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
357        d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
358        d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
359        d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
360        k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
361        k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
362        h += MUL64((k0 + d0), (k4 + d4));
363        h += MUL64((k1 + d1), (k5 + d5));
364        h += MUL64((k2 + d2), (k6 + d6));
365        h += MUL64((k3 + d3), (k7 + d7));
366
367        d += 8;
368        k += 8;
369    } while (--c);
370  *((UINT64 *)hp) = h;
371}
372
373#elif (UMAC_OUTPUT_LEN == 8)
374
375static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
376/* Same as previous nh_aux, but two streams are handled in one pass,
377 * reading and writing 16 bytes of hash-state per call.
378 */
379{
380  UINT64 h1,h2;
381  UWORD c = dlen / 32;
382  UINT32 *k = (UINT32 *)kp;
383  UINT32 *d = (UINT32 *)dp;
384  UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
385  UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
386        k8,k9,k10,k11;
387
388  h1 = *((UINT64 *)hp);
389  h2 = *((UINT64 *)hp + 1);
390  k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
391  do {
392    d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
393    d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
394    d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
395    d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
396    k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
397    k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
398
399    h1 += MUL64((k0 + d0), (k4 + d4));
400    h2 += MUL64((k4 + d0), (k8 + d4));
401
402    h1 += MUL64((k1 + d1), (k5 + d5));
403    h2 += MUL64((k5 + d1), (k9 + d5));
404
405    h1 += MUL64((k2 + d2), (k6 + d6));
406    h2 += MUL64((k6 + d2), (k10 + d6));
407
408    h1 += MUL64((k3 + d3), (k7 + d7));
409    h2 += MUL64((k7 + d3), (k11 + d7));
410
411    k0 = k8; k1 = k9; k2 = k10; k3 = k11;
412
413    d += 8;
414    k += 8;
415  } while (--c);
416  ((UINT64 *)hp)[0] = h1;
417  ((UINT64 *)hp)[1] = h2;
418}
419
420#elif (UMAC_OUTPUT_LEN == 12)
421
422static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
423/* Same as previous nh_aux, but two streams are handled in one pass,
424 * reading and writing 24 bytes of hash-state per call.
425*/
426{
427    UINT64 h1,h2,h3;
428    UWORD c = dlen / 32;
429    UINT32 *k = (UINT32 *)kp;
430    UINT32 *d = (UINT32 *)dp;
431    UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
432    UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
433        k8,k9,k10,k11,k12,k13,k14,k15;
434
435    h1 = *((UINT64 *)hp);
436    h2 = *((UINT64 *)hp + 1);
437    h3 = *((UINT64 *)hp + 2);
438    k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
439    k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
440    do {
441        d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
442        d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
443        d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
444        d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
445        k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
446        k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
447
448        h1 += MUL64((k0 + d0), (k4 + d4));
449        h2 += MUL64((k4 + d0), (k8 + d4));
450        h3 += MUL64((k8 + d0), (k12 + d4));
451
452        h1 += MUL64((k1 + d1), (k5 + d5));
453        h2 += MUL64((k5 + d1), (k9 + d5));
454        h3 += MUL64((k9 + d1), (k13 + d5));
455
456        h1 += MUL64((k2 + d2), (k6 + d6));
457        h2 += MUL64((k6 + d2), (k10 + d6));
458        h3 += MUL64((k10 + d2), (k14 + d6));
459
460        h1 += MUL64((k3 + d3), (k7 + d7));
461        h2 += MUL64((k7 + d3), (k11 + d7));
462        h3 += MUL64((k11 + d3), (k15 + d7));
463
464        k0 = k8; k1 = k9; k2 = k10; k3 = k11;
465        k4 = k12; k5 = k13; k6 = k14; k7 = k15;
466
467        d += 8;
468        k += 8;
469    } while (--c);
470    ((UINT64 *)hp)[0] = h1;
471    ((UINT64 *)hp)[1] = h2;
472    ((UINT64 *)hp)[2] = h3;
473}
474
475#elif (UMAC_OUTPUT_LEN == 16)
476
477static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
478/* Same as previous nh_aux, but two streams are handled in one pass,
479 * reading and writing 24 bytes of hash-state per call.
480*/
481{
482    UINT64 h1,h2,h3,h4;
483    UWORD c = dlen / 32;
484    UINT32 *k = (UINT32 *)kp;
485    UINT32 *d = (UINT32 *)dp;
486    UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
487    UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
488        k8,k9,k10,k11,k12,k13,k14,k15,
489        k16,k17,k18,k19;
490
491    h1 = *((UINT64 *)hp);
492    h2 = *((UINT64 *)hp + 1);
493    h3 = *((UINT64 *)hp + 2);
494    h4 = *((UINT64 *)hp + 3);
495    k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
496    k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
497    do {
498        d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
499        d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
500        d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
501        d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
502        k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
503        k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
504        k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
505
506        h1 += MUL64((k0 + d0), (k4 + d4));
507        h2 += MUL64((k4 + d0), (k8 + d4));
508        h3 += MUL64((k8 + d0), (k12 + d4));
509        h4 += MUL64((k12 + d0), (k16 + d4));
510
511        h1 += MUL64((k1 + d1), (k5 + d5));
512        h2 += MUL64((k5 + d1), (k9 + d5));
513        h3 += MUL64((k9 + d1), (k13 + d5));
514        h4 += MUL64((k13 + d1), (k17 + d5));
515
516        h1 += MUL64((k2 + d2), (k6 + d6));
517        h2 += MUL64((k6 + d2), (k10 + d6));
518        h3 += MUL64((k10 + d2), (k14 + d6));
519        h4 += MUL64((k14 + d2), (k18 + d6));
520
521        h1 += MUL64((k3 + d3), (k7 + d7));
522        h2 += MUL64((k7 + d3), (k11 + d7));
523        h3 += MUL64((k11 + d3), (k15 + d7));
524        h4 += MUL64((k15 + d3), (k19 + d7));
525
526        k0 = k8; k1 = k9; k2 = k10; k3 = k11;
527        k4 = k12; k5 = k13; k6 = k14; k7 = k15;
528        k8 = k16; k9 = k17; k10 = k18; k11 = k19;
529
530        d += 8;
531        k += 8;
532    } while (--c);
533    ((UINT64 *)hp)[0] = h1;
534    ((UINT64 *)hp)[1] = h2;
535    ((UINT64 *)hp)[2] = h3;
536    ((UINT64 *)hp)[3] = h4;
537}
538
539/* ---------------------------------------------------------------------- */
540#endif  /* UMAC_OUTPUT_LENGTH */
541/* ---------------------------------------------------------------------- */
542
543
544/* ---------------------------------------------------------------------- */
545
546static void nh_transform(nh_ctx *hc, UINT8 *buf, UINT32 nbytes)
547/* This function is a wrapper for the primitive NH hash functions. It takes
548 * as argument "hc" the current hash context and a buffer which must be a
549 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
550 * appropriately according to how much message has been hashed already.
551 */
552{
553    UINT8 *key;
554
555    key = hc->nh_key + hc->bytes_hashed;
556    nh_aux(key, buf, hc->state, nbytes);
557}
558
559/* ---------------------------------------------------------------------- */
560
561#if (__LITTLE_ENDIAN__)
562static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
563/* We endian convert the keys on little-endian computers to               */
564/* compensate for the lack of big-endian memory reads during hashing.     */
565{
566    UWORD iters = num_bytes / bpw;
567    if (bpw == 4) {
568        UINT32 *p = (UINT32 *)buf;
569        do {
570            *p = LOAD_UINT32_REVERSED(p);
571            p++;
572        } while (--iters);
573    } else if (bpw == 8) {
574        UINT32 *p = (UINT32 *)buf;
575        UINT32 t;
576        do {
577            t = LOAD_UINT32_REVERSED(p+1);
578            p[1] = LOAD_UINT32_REVERSED(p);
579            p[0] = t;
580            p += 2;
581        } while (--iters);
582    }
583}
584#define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
585#else
586#define endian_convert_if_le(x,y,z) do{}while(0)  /* Do nothing */
587#endif
588
589/* ---------------------------------------------------------------------- */
590
591static void nh_reset(nh_ctx *hc)
592/* Reset nh_ctx to ready for hashing of new data */
593{
594    hc->bytes_hashed = 0;
595    hc->next_data_empty = 0;
596    hc->state[0] = 0;
597#if (UMAC_OUTPUT_LEN >= 8)
598    hc->state[1] = 0;
599#endif
600#if (UMAC_OUTPUT_LEN >= 12)
601    hc->state[2] = 0;
602#endif
603#if (UMAC_OUTPUT_LEN == 16)
604    hc->state[3] = 0;
605#endif
606
607}
608
609/* ---------------------------------------------------------------------- */
610
611static void nh_init(nh_ctx *hc, aes_int_key prf_key)
612/* Generate nh_key, endian convert and reset to be ready for hashing.   */
613{
614    kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
615    endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
616    nh_reset(hc);
617}
618
619/* ---------------------------------------------------------------------- */
620
621static void nh_update(nh_ctx *hc, UINT8 *buf, UINT32 nbytes)
622/* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an    */
623/* even multiple of HASH_BUF_BYTES.                                       */
624{
625    UINT32 i,j;
626
627    j = hc->next_data_empty;
628    if ((j + nbytes) >= HASH_BUF_BYTES) {
629        if (j) {
630            i = HASH_BUF_BYTES - j;
631            memcpy(hc->data+j, buf, i);
632            nh_transform(hc,hc->data,HASH_BUF_BYTES);
633            nbytes -= i;
634            buf += i;
635            hc->bytes_hashed += HASH_BUF_BYTES;
636        }
637        if (nbytes >= HASH_BUF_BYTES) {
638            i = nbytes & ~(HASH_BUF_BYTES - 1);
639            nh_transform(hc, buf, i);
640            nbytes -= i;
641            buf += i;
642            hc->bytes_hashed += i;
643        }
644        j = 0;
645    }
646    memcpy(hc->data + j, buf, nbytes);
647    hc->next_data_empty = j + nbytes;
648}
649
650/* ---------------------------------------------------------------------- */
651
652static void zero_pad(UINT8 *p, int nbytes)
653{
654/* Write "nbytes" of zeroes, beginning at "p" */
655    if (nbytes >= (int)sizeof(UWORD)) {
656        while ((ptrdiff_t)p % sizeof(UWORD)) {
657            *p = 0;
658            nbytes--;
659            p++;
660        }
661        while (nbytes >= (int)sizeof(UWORD)) {
662            *(UWORD *)p = 0;
663            nbytes -= sizeof(UWORD);
664            p += sizeof(UWORD);
665        }
666    }
667    while (nbytes) {
668        *p = 0;
669        nbytes--;
670        p++;
671    }
672}
673
674/* ---------------------------------------------------------------------- */
675
676static void nh_final(nh_ctx *hc, UINT8 *result)
677/* After passing some number of data buffers to nh_update() for integration
678 * into an NH context, nh_final is called to produce a hash result. If any
679 * bytes are in the buffer hc->data, incorporate them into the
680 * NH context. Finally, add into the NH accumulation "state" the total number
681 * of bits hashed. The resulting numbers are written to the buffer "result".
682 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
683 */
684{
685    int nh_len, nbits;
686
687    if (hc->next_data_empty != 0) {
688        nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
689                                                ~(L1_PAD_BOUNDARY - 1));
690        zero_pad(hc->data + hc->next_data_empty,
691                                          nh_len - hc->next_data_empty);
692        nh_transform(hc, hc->data, nh_len);
693        hc->bytes_hashed += hc->next_data_empty;
694    } else if (hc->bytes_hashed == 0) {
695    	nh_len = L1_PAD_BOUNDARY;
696        zero_pad(hc->data, L1_PAD_BOUNDARY);
697        nh_transform(hc, hc->data, nh_len);
698    }
699
700    nbits = (hc->bytes_hashed << 3);
701    ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
702#if (UMAC_OUTPUT_LEN >= 8)
703    ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
704#endif
705#if (UMAC_OUTPUT_LEN >= 12)
706    ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
707#endif
708#if (UMAC_OUTPUT_LEN == 16)
709    ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
710#endif
711    nh_reset(hc);
712}
713
714/* ---------------------------------------------------------------------- */
715
716static void nh(nh_ctx *hc, UINT8 *buf, UINT32 padded_len,
717               UINT32 unpadded_len, UINT8 *result)
718/* All-in-one nh_update() and nh_final() equivalent.
719 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
720 * well aligned
721 */
722{
723    UINT32 nbits;
724
725    /* Initialize the hash state */
726    nbits = (unpadded_len << 3);
727
728    ((UINT64 *)result)[0] = nbits;
729#if (UMAC_OUTPUT_LEN >= 8)
730    ((UINT64 *)result)[1] = nbits;
731#endif
732#if (UMAC_OUTPUT_LEN >= 12)
733    ((UINT64 *)result)[2] = nbits;
734#endif
735#if (UMAC_OUTPUT_LEN == 16)
736    ((UINT64 *)result)[3] = nbits;
737#endif
738
739    nh_aux(hc->nh_key, buf, result, padded_len);
740}
741
742/* ---------------------------------------------------------------------- */
743/* ---------------------------------------------------------------------- */
744/* ----- Begin UHASH Section -------------------------------------------- */
745/* ---------------------------------------------------------------------- */
746/* ---------------------------------------------------------------------- */
747
748/* UHASH is a multi-layered algorithm. Data presented to UHASH is first
749 * hashed by NH. The NH output is then hashed by a polynomial-hash layer
750 * unless the initial data to be hashed is short. After the polynomial-
751 * layer, an inner-product hash is used to produce the final UHASH output.
752 *
753 * UHASH provides two interfaces, one all-at-once and another where data
754 * buffers are presented sequentially. In the sequential interface, the
755 * UHASH client calls the routine uhash_update() as many times as necessary.
756 * When there is no more data to be fed to UHASH, the client calls
757 * uhash_final() which
758 * calculates the UHASH output. Before beginning another UHASH calculation
759 * the uhash_reset() routine must be called. The all-at-once UHASH routine,
760 * uhash(), is equivalent to the sequence of calls uhash_update() and
761 * uhash_final(); however it is optimized and should be
762 * used whenever the sequential interface is not necessary.
763 *
764 * The routine uhash_init() initializes the uhash_ctx data structure and
765 * must be called once, before any other UHASH routine.
766 */
767
768/* ---------------------------------------------------------------------- */
769/* ----- Constants and uhash_ctx ---------------------------------------- */
770/* ---------------------------------------------------------------------- */
771
772/* ---------------------------------------------------------------------- */
773/* ----- Poly hash and Inner-Product hash Constants --------------------- */
774/* ---------------------------------------------------------------------- */
775
776/* Primes and masks */
777#define p36    ((UINT64)0x0000000FFFFFFFFBull)              /* 2^36 -  5 */
778#define p64    ((UINT64)0xFFFFFFFFFFFFFFC5ull)              /* 2^64 - 59 */
779#define m36    ((UINT64)0x0000000FFFFFFFFFull)  /* The low 36 of 64 bits */
780
781
782/* ---------------------------------------------------------------------- */
783
784typedef struct uhash_ctx {
785    nh_ctx hash;                          /* Hash context for L1 NH hash  */
786    UINT64 poly_key_8[STREAMS];           /* p64 poly keys                */
787    UINT64 poly_accum[STREAMS];           /* poly hash result             */
788    UINT64 ip_keys[STREAMS*4];            /* Inner-product keys           */
789    UINT32 ip_trans[STREAMS];             /* Inner-product translation    */
790    UINT32 msg_len;                       /* Total length of data passed  */
791                                          /* to uhash */
792} uhash_ctx;
793typedef struct uhash_ctx *uhash_ctx_t;
794
795/* ---------------------------------------------------------------------- */
796
797
798/* The polynomial hashes use Horner's rule to evaluate a polynomial one
799 * word at a time. As described in the specification, poly32 and poly64
800 * require keys from special domains. The following implementations exploit
801 * the special domains to avoid overflow. The results are not guaranteed to
802 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
803 * patches any errant values.
804 */
805
806static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
807{
808    UINT32 key_hi = (UINT32)(key >> 32),
809           key_lo = (UINT32)key,
810           cur_hi = (UINT32)(cur >> 32),
811           cur_lo = (UINT32)cur,
812           x_lo,
813           x_hi;
814    UINT64 X,T,res;
815
816    X =  MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
817    x_lo = (UINT32)X;
818    x_hi = (UINT32)(X >> 32);
819
820    res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
821
822    T = ((UINT64)x_lo << 32);
823    res += T;
824    if (res < T)
825        res += 59;
826
827    res += data;
828    if (res < data)
829        res += 59;
830
831    return res;
832}
833
834
835/* Although UMAC is specified to use a ramped polynomial hash scheme, this
836 * implementation does not handle all ramp levels. Because we don't handle
837 * the ramp up to p128 modulus in this implementation, we are limited to
838 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
839 * bytes input to UMAC per tag, ie. 16MB).
840 */
841static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
842{
843    int i;
844    UINT64 *data=(UINT64*)data_in;
845
846    for (i = 0; i < STREAMS; i++) {
847        if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
848            hc->poly_accum[i] = poly64(hc->poly_accum[i],
849                                       hc->poly_key_8[i], p64 - 1);
850            hc->poly_accum[i] = poly64(hc->poly_accum[i],
851                                       hc->poly_key_8[i], (data[i] - 59));
852        } else {
853            hc->poly_accum[i] = poly64(hc->poly_accum[i],
854                                       hc->poly_key_8[i], data[i]);
855        }
856    }
857}
858
859
860/* ---------------------------------------------------------------------- */
861
862
863/* The final step in UHASH is an inner-product hash. The poly hash
864 * produces a result not neccesarily WORD_LEN bytes long. The inner-
865 * product hash breaks the polyhash output into 16-bit chunks and
866 * multiplies each with a 36 bit key.
867 */
868
869static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
870{
871    t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
872    t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
873    t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
874    t = t + ipkp[3] * (UINT64)(UINT16)(data);
875
876    return t;
877}
878
879static UINT32 ip_reduce_p36(UINT64 t)
880{
881/* Divisionless modular reduction */
882    UINT64 ret;
883
884    ret = (t & m36) + 5 * (t >> 36);
885    if (ret >= p36)
886        ret -= p36;
887
888    /* return least significant 32 bits */
889    return (UINT32)(ret);
890}
891
892
893/* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
894 * the polyhash stage is skipped and ip_short is applied directly to the
895 * NH output.
896 */
897static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
898{
899    UINT64 t;
900    UINT64 *nhp = (UINT64 *)nh_res;
901
902    t  = ip_aux(0,ahc->ip_keys, nhp[0]);
903    STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
904#if (UMAC_OUTPUT_LEN >= 8)
905    t  = ip_aux(0,ahc->ip_keys+4, nhp[1]);
906    STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
907#endif
908#if (UMAC_OUTPUT_LEN >= 12)
909    t  = ip_aux(0,ahc->ip_keys+8, nhp[2]);
910    STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
911#endif
912#if (UMAC_OUTPUT_LEN == 16)
913    t  = ip_aux(0,ahc->ip_keys+12, nhp[3]);
914    STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
915#endif
916}
917
918/* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
919 * the polyhash stage is not skipped and ip_long is applied to the
920 * polyhash output.
921 */
922static void ip_long(uhash_ctx_t ahc, u_char *res)
923{
924    int i;
925    UINT64 t;
926
927    for (i = 0; i < STREAMS; i++) {
928        /* fix polyhash output not in Z_p64 */
929        if (ahc->poly_accum[i] >= p64)
930            ahc->poly_accum[i] -= p64;
931        t  = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
932        STORE_UINT32_BIG((UINT32 *)res+i,
933                         ip_reduce_p36(t) ^ ahc->ip_trans[i]);
934    }
935}
936
937
938/* ---------------------------------------------------------------------- */
939
940/* ---------------------------------------------------------------------- */
941
942/* Reset uhash context for next hash session */
943static int uhash_reset(uhash_ctx_t pc)
944{
945    nh_reset(&pc->hash);
946    pc->msg_len = 0;
947    pc->poly_accum[0] = 1;
948#if (UMAC_OUTPUT_LEN >= 8)
949    pc->poly_accum[1] = 1;
950#endif
951#if (UMAC_OUTPUT_LEN >= 12)
952    pc->poly_accum[2] = 1;
953#endif
954#if (UMAC_OUTPUT_LEN == 16)
955    pc->poly_accum[3] = 1;
956#endif
957    return 1;
958}
959
960/* ---------------------------------------------------------------------- */
961
962/* Given a pointer to the internal key needed by kdf() and a uhash context,
963 * initialize the NH context and generate keys needed for poly and inner-
964 * product hashing. All keys are endian adjusted in memory so that native
965 * loads cause correct keys to be in registers during calculation.
966 */
967static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
968{
969    int i;
970    UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
971
972    /* Zero the entire uhash context */
973    memset(ahc, 0, sizeof(uhash_ctx));
974
975    /* Initialize the L1 hash */
976    nh_init(&ahc->hash, prf_key);
977
978    /* Setup L2 hash variables */
979    kdf(buf, prf_key, 2, sizeof(buf));    /* Fill buffer with index 1 key */
980    for (i = 0; i < STREAMS; i++) {
981        /* Fill keys from the buffer, skipping bytes in the buffer not
982         * used by this implementation. Endian reverse the keys if on a
983         * little-endian computer.
984         */
985        memcpy(ahc->poly_key_8+i, buf+24*i, 8);
986        endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
987        /* Mask the 64-bit keys to their special domain */
988        ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
989        ahc->poly_accum[i] = 1;  /* Our polyhash prepends a non-zero word */
990    }
991
992    /* Setup L3-1 hash variables */
993    kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
994    for (i = 0; i < STREAMS; i++)
995          memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
996                                                 4*sizeof(UINT64));
997    endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
998                                                  sizeof(ahc->ip_keys));
999    for (i = 0; i < STREAMS*4; i++)
1000        ahc->ip_keys[i] %= p36;  /* Bring into Z_p36 */
1001
1002    /* Setup L3-2 hash variables    */
1003    /* Fill buffer with index 4 key */
1004    kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
1005    endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
1006                         STREAMS * sizeof(UINT32));
1007}
1008
1009/* ---------------------------------------------------------------------- */
1010
1011#if 0
1012static uhash_ctx_t uhash_alloc(u_char key[])
1013{
1014/* Allocate memory and force to a 16-byte boundary. */
1015    uhash_ctx_t ctx;
1016    u_char bytes_to_add;
1017    aes_int_key prf_key;
1018
1019    ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
1020    if (ctx) {
1021        if (ALLOC_BOUNDARY) {
1022            bytes_to_add = ALLOC_BOUNDARY -
1023                              ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
1024            ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
1025            *((u_char *)ctx - 1) = bytes_to_add;
1026        }
1027        aes_key_setup(key,prf_key);
1028        uhash_init(ctx, prf_key);
1029    }
1030    return (ctx);
1031}
1032#endif
1033
1034/* ---------------------------------------------------------------------- */
1035
1036#if 0
1037static int uhash_free(uhash_ctx_t ctx)
1038{
1039/* Free memory allocated by uhash_alloc */
1040    u_char bytes_to_sub;
1041
1042    if (ctx) {
1043        if (ALLOC_BOUNDARY) {
1044            bytes_to_sub = *((u_char *)ctx - 1);
1045            ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
1046        }
1047        free(ctx);
1048    }
1049    return (1);
1050}
1051#endif
1052/* ---------------------------------------------------------------------- */
1053
1054static int uhash_update(uhash_ctx_t ctx, u_char *input, long len)
1055/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1056 * hash each one with NH, calling the polyhash on each NH output.
1057 */
1058{
1059    UWORD bytes_hashed, bytes_remaining;
1060    UINT64 result_buf[STREAMS];
1061    UINT8 *nh_result = (UINT8 *)&result_buf;
1062
1063    if (ctx->msg_len + len <= L1_KEY_LEN) {
1064        nh_update(&ctx->hash, (UINT8 *)input, len);
1065        ctx->msg_len += len;
1066    } else {
1067
1068         bytes_hashed = ctx->msg_len % L1_KEY_LEN;
1069         if (ctx->msg_len == L1_KEY_LEN)
1070             bytes_hashed = L1_KEY_LEN;
1071
1072         if (bytes_hashed + len >= L1_KEY_LEN) {
1073
1074             /* If some bytes have been passed to the hash function      */
1075             /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1076             /* bytes to complete the current nh_block.                  */
1077             if (bytes_hashed) {
1078                 bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1079                 nh_update(&ctx->hash, (UINT8 *)input, bytes_remaining);
1080                 nh_final(&ctx->hash, nh_result);
1081                 ctx->msg_len += bytes_remaining;
1082                 poly_hash(ctx,(UINT32 *)nh_result);
1083                 len -= bytes_remaining;
1084                 input += bytes_remaining;
1085             }
1086
1087             /* Hash directly from input stream if enough bytes */
1088             while (len >= L1_KEY_LEN) {
1089                 nh(&ctx->hash, (UINT8 *)input, L1_KEY_LEN,
1090                                   L1_KEY_LEN, nh_result);
1091                 ctx->msg_len += L1_KEY_LEN;
1092                 len -= L1_KEY_LEN;
1093                 input += L1_KEY_LEN;
1094                 poly_hash(ctx,(UINT32 *)nh_result);
1095             }
1096         }
1097
1098         /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1099         if (len) {
1100             nh_update(&ctx->hash, (UINT8 *)input, len);
1101             ctx->msg_len += len;
1102         }
1103     }
1104
1105    return (1);
1106}
1107
1108/* ---------------------------------------------------------------------- */
1109
1110static int uhash_final(uhash_ctx_t ctx, u_char *res)
1111/* Incorporate any pending data, pad, and generate tag */
1112{
1113    UINT64 result_buf[STREAMS];
1114    UINT8 *nh_result = (UINT8 *)&result_buf;
1115
1116    if (ctx->msg_len > L1_KEY_LEN) {
1117        if (ctx->msg_len % L1_KEY_LEN) {
1118            nh_final(&ctx->hash, nh_result);
1119            poly_hash(ctx,(UINT32 *)nh_result);
1120        }
1121        ip_long(ctx, res);
1122    } else {
1123        nh_final(&ctx->hash, nh_result);
1124        ip_short(ctx,nh_result, res);
1125    }
1126    uhash_reset(ctx);
1127    return (1);
1128}
1129
1130/* ---------------------------------------------------------------------- */
1131
1132#if 0
1133static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
1134/* assumes that msg is in a writable buffer of length divisible by */
1135/* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed.           */
1136{
1137    UINT8 nh_result[STREAMS*sizeof(UINT64)];
1138    UINT32 nh_len;
1139    int extra_zeroes_needed;
1140
1141    /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1142     * the polyhash.
1143     */
1144    if (len <= L1_KEY_LEN) {
1145    	if (len == 0)                  /* If zero length messages will not */
1146    		nh_len = L1_PAD_BOUNDARY;  /* be seen, comment out this case   */
1147    	else
1148        	nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1149        extra_zeroes_needed = nh_len - len;
1150        zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1151        nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1152        ip_short(ahc,nh_result, res);
1153    } else {
1154        /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1155         * output to poly_hash().
1156         */
1157        do {
1158            nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
1159            poly_hash(ahc,(UINT32 *)nh_result);
1160            len -= L1_KEY_LEN;
1161            msg += L1_KEY_LEN;
1162        } while (len >= L1_KEY_LEN);
1163        if (len) {
1164            nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1165            extra_zeroes_needed = nh_len - len;
1166            zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1167            nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1168            poly_hash(ahc,(UINT32 *)nh_result);
1169        }
1170
1171        ip_long(ahc, res);
1172    }
1173
1174    uhash_reset(ahc);
1175    return 1;
1176}
1177#endif
1178
1179/* ---------------------------------------------------------------------- */
1180/* ---------------------------------------------------------------------- */
1181/* ----- Begin UMAC Section --------------------------------------------- */
1182/* ---------------------------------------------------------------------- */
1183/* ---------------------------------------------------------------------- */
1184
1185/* The UMAC interface has two interfaces, an all-at-once interface where
1186 * the entire message to be authenticated is passed to UMAC in one buffer,
1187 * and a sequential interface where the message is presented a little at a
1188 * time. The all-at-once is more optimaized than the sequential version and
1189 * should be preferred when the sequential interface is not required.
1190 */
1191struct umac_ctx {
1192    uhash_ctx hash;          /* Hash function for message compression    */
1193    pdf_ctx pdf;             /* PDF for hashed output                    */
1194    void *free_ptr;          /* Address to free this struct via          */
1195} umac_ctx;
1196
1197/* ---------------------------------------------------------------------- */
1198
1199#if 0
1200int umac_reset(struct umac_ctx *ctx)
1201/* Reset the hash function to begin a new authentication.        */
1202{
1203    uhash_reset(&ctx->hash);
1204    return (1);
1205}
1206#endif
1207
1208/* ---------------------------------------------------------------------- */
1209
1210int umac_delete(struct umac_ctx *ctx)
1211/* Deallocate the ctx structure */
1212{
1213    if (ctx) {
1214#ifdef __APPLE_CRYPTO__
1215	AES_destroy_ctx(&ctx->pdf.prf_key);
1216#endif
1217        if (ALLOC_BOUNDARY)
1218            ctx = (struct umac_ctx *)ctx->free_ptr;
1219        xfree(ctx);
1220    }
1221    return (1);
1222}
1223
1224/* ---------------------------------------------------------------------- */
1225
1226struct umac_ctx *umac_new(u_char key[])
1227/* Dynamically allocate a umac_ctx struct, initialize variables,
1228 * generate subkeys from key. Align to 16-byte boundary.
1229 */
1230{
1231    struct umac_ctx *ctx, *octx;
1232    size_t bytes_to_add;
1233    aes_int_key prf_key;
1234
1235    octx = ctx = xmalloc(sizeof(*ctx) + ALLOC_BOUNDARY);
1236    if (ctx) {
1237        if (ALLOC_BOUNDARY) {
1238            bytes_to_add = ALLOC_BOUNDARY -
1239                              ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
1240            ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
1241        }
1242        ctx->free_ptr = octx;
1243        aes_key_setup(key,prf_key);
1244        pdf_init(&ctx->pdf, prf_key);
1245        uhash_init(&ctx->hash, prf_key);
1246    }
1247
1248    return (ctx);
1249}
1250
1251/* ---------------------------------------------------------------------- */
1252
1253int umac_final(struct umac_ctx *ctx, u_char tag[], u_char nonce[8])
1254/* Incorporate any pending data, pad, and generate tag */
1255{
1256    uhash_final(&ctx->hash, (u_char *)tag);
1257    pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1258
1259    return (1);
1260}
1261
1262/* ---------------------------------------------------------------------- */
1263
1264int umac_update(struct umac_ctx *ctx, u_char *input, long len)
1265/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and   */
1266/* hash each one, calling the PDF on the hashed output whenever the hash- */
1267/* output buffer is full.                                                 */
1268{
1269    uhash_update(&ctx->hash, input, len);
1270    return (1);
1271}
1272
1273/* ---------------------------------------------------------------------- */
1274
1275#if 0
1276int umac(struct umac_ctx *ctx, u_char *input,
1277         long len, u_char tag[],
1278         u_char nonce[8])
1279/* All-in-one version simply calls umac_update() and umac_final().        */
1280{
1281    uhash(&ctx->hash, input, len, (u_char *)tag);
1282    pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1283
1284    return (1);
1285}
1286#endif
1287
1288/* ---------------------------------------------------------------------- */
1289/* ---------------------------------------------------------------------- */
1290/* ----- End UMAC Section ----------------------------------------------- */
1291/* ---------------------------------------------------------------------- */
1292/* ---------------------------------------------------------------------- */
1293