1/*-
2 * Copyright (c) 1991, 1993, 1994
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Mike Olson.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)btree.h	8.11 (Berkeley) 8/17/94
33 * $FreeBSD: src/lib/libc/db/btree/btree.h,v 1.5 2009/03/04 00:58:04 delphij Exp $
34 */
35
36/* Macros to set/clear/test flags. */
37#define	F_SET(p, f)	(p)->flags |= (f)
38#define	F_CLR(p, f)	(p)->flags &= ~(f)
39#define	F_ISSET(p, f)	((p)->flags & (f))
40
41#include <mpool.h>
42
43#define	DEFMINKEYPAGE	(2)		/* Minimum keys per page */
44#define	MINCACHE	(5)		/* Minimum cached pages */
45#define	MINPSIZE	(512)		/* Minimum page size */
46
47/*
48 * Page 0 of a btree file contains a copy of the meta-data.  This page is also
49 * used as an out-of-band page, i.e. page pointers that point to nowhere point
50 * to page 0.  Page 1 is the root of the btree.
51 */
52#define	P_INVALID	 0		/* Invalid tree page number. */
53#define	P_META		 0		/* Tree metadata page number. */
54#define	P_ROOT		 1		/* Tree root page number. */
55
56/*
57 * There are five page layouts in the btree: btree internal pages (BINTERNAL),
58 * btree leaf pages (BLEAF), recno internal pages (RINTERNAL), recno leaf pages
59 * (RLEAF) and overflow pages.  All five page types have a page header (PAGE).
60 * This implementation requires that values within structures NOT be padded.
61 * (ANSI C permits random padding.)  If your compiler pads randomly you'll have
62 * to do some work to get this package to run.
63 */
64typedef struct _page {
65	pgno_t	pgno;			/* this page's page number */
66	pgno_t	prevpg;			/* left sibling */
67	pgno_t	nextpg;			/* right sibling */
68
69#define	P_BINTERNAL	0x01		/* btree internal page */
70#define	P_BLEAF		0x02		/* leaf page */
71#define	P_OVERFLOW	0x04		/* overflow page */
72#define	P_RINTERNAL	0x08		/* recno internal page */
73#define	P_RLEAF		0x10		/* leaf page */
74#define P_TYPE		0x1f		/* type mask */
75#define	P_PRESERVE	0x20		/* never delete this chain of pages */
76	u_int32_t flags;
77
78	indx_t	lower;			/* lower bound of free space on page */
79	indx_t	upper;			/* upper bound of free space on page */
80	indx_t	linp[1];		/* indx_t-aligned VAR. LENGTH DATA */
81} PAGE;
82
83/* First and next index. */
84#define	BTDATAOFF							\
85	(sizeof(pgno_t) + sizeof(pgno_t) + sizeof(pgno_t) +		\
86	    sizeof(u_int32_t) + sizeof(indx_t) + sizeof(indx_t))
87#define	NEXTINDEX(p)	(((p)->lower - BTDATAOFF) / sizeof(indx_t))
88
89/*
90 * For pages other than overflow pages, there is an array of offsets into the
91 * rest of the page immediately following the page header.  Each offset is to
92 * an item which is unique to the type of page.  The h_lower offset is just
93 * past the last filled-in index.  The h_upper offset is the first item on the
94 * page.  Offsets are from the beginning of the page.
95 *
96 * If an item is too big to store on a single page, a flag is set and the item
97 * is a { page, size } pair such that the page is the first page of an overflow
98 * chain with size bytes of item.  Overflow pages are simply bytes without any
99 * external structure.
100 *
101 * The page number and size fields in the items are pgno_t-aligned so they can
102 * be manipulated without copying.  (This presumes that 32 bit items can be
103 * manipulated on this system.)
104 */
105#define	LALIGN(n)	(((n) + sizeof(pgno_t) - 1) & ~(sizeof(pgno_t) - 1))
106#define	NOVFLSIZE	(sizeof(pgno_t) + sizeof(u_int32_t))
107
108/*
109 * For the btree internal pages, the item is a key.  BINTERNALs are {key, pgno}
110 * pairs, such that the key compares less than or equal to all of the records
111 * on that page.  For a tree without duplicate keys, an internal page with two
112 * consecutive keys, a and b, will have all records greater than or equal to a
113 * and less than b stored on the page associated with a.  Duplicate keys are
114 * somewhat special and can cause duplicate internal and leaf page records and
115 * some minor modifications of the above rule.
116 */
117typedef struct _binternal {
118	u_int32_t ksize;		/* key size */
119	pgno_t	pgno;			/* page number stored on */
120#define	P_BIGDATA	0x01		/* overflow data */
121#define	P_BIGKEY	0x02		/* overflow key */
122	u_char	flags;
123	char	bytes[1];		/* data */
124} BINTERNAL;
125
126/* Get the page's BINTERNAL structure at index indx. */
127#define	GETBINTERNAL(pg, indx)						\
128	((BINTERNAL *)((char *)(pg) + (pg)->linp[indx]))
129
130/* Get the number of bytes in the entry. */
131#define NBINTERNAL(len)							\
132	LALIGN(sizeof(u_int32_t) + sizeof(pgno_t) + sizeof(u_char) + (len))
133
134/* Copy a BINTERNAL entry to the page. */
135#define	WR_BINTERNAL(p, size, pgno, flags) {				\
136	*(u_int32_t *)p = size;						\
137	p += sizeof(u_int32_t);						\
138	*(pgno_t *)p = pgno;						\
139	p += sizeof(pgno_t);						\
140	*(u_char *)p = flags;						\
141	p += sizeof(u_char);						\
142}
143
144/*
145 * For the recno internal pages, the item is a page number with the number of
146 * keys found on that page and below.
147 */
148typedef struct _rinternal {
149	recno_t	nrecs;			/* number of records */
150	pgno_t	pgno;			/* page number stored below */
151} RINTERNAL;
152
153/* Get the page's RINTERNAL structure at index indx. */
154#define	GETRINTERNAL(pg, indx)						\
155	((RINTERNAL *)((char *)(pg) + (pg)->linp[indx]))
156
157/* Get the number of bytes in the entry. */
158#define NRINTERNAL							\
159	LALIGN(sizeof(recno_t) + sizeof(pgno_t))
160
161/* Copy a RINTERAL entry to the page. */
162#define	WR_RINTERNAL(p, nrecs, pgno) {					\
163	*(recno_t *)p = nrecs;						\
164	p += sizeof(recno_t);						\
165	*(pgno_t *)p = pgno;						\
166}
167
168/* For the btree leaf pages, the item is a key and data pair. */
169typedef struct _bleaf {
170	u_int32_t	ksize;		/* size of key */
171	u_int32_t	dsize;		/* size of data */
172	u_char	flags;			/* P_BIGDATA, P_BIGKEY */
173	char	bytes[1];		/* data */
174} BLEAF;
175
176/* Get the page's BLEAF structure at index indx. */
177#define	GETBLEAF(pg, indx)						\
178	((BLEAF *)((char *)(pg) + (pg)->linp[indx]))
179
180/* Get the number of bytes in the entry. */
181#define NBLEAF(p)	NBLEAFDBT((p)->ksize, (p)->dsize)
182
183/* Get the number of bytes in the user's key/data pair. */
184#define NBLEAFDBT(ksize, dsize)						\
185	LALIGN(sizeof(u_int32_t) + sizeof(u_int32_t) + sizeof(u_char) +	\
186	    (ksize) + (dsize))
187
188/* Copy a BLEAF entry to the page. */
189#define	WR_BLEAF(p, key, data, flags) {					\
190	*(u_int32_t *)p = key->size;					\
191	p += sizeof(u_int32_t);						\
192	*(u_int32_t *)p = data->size;					\
193	p += sizeof(u_int32_t);						\
194	*(u_char *)p = flags;						\
195	p += sizeof(u_char);						\
196	memmove(p, key->data, key->size);				\
197	p += key->size;							\
198	memmove(p, data->data, data->size);				\
199}
200
201/* For the recno leaf pages, the item is a data entry. */
202typedef struct _rleaf {
203	u_int32_t	dsize;		/* size of data */
204	u_char	flags;			/* P_BIGDATA */
205	char	bytes[1];
206} RLEAF;
207
208/* Get the page's RLEAF structure at index indx. */
209#define	GETRLEAF(pg, indx)						\
210	((RLEAF *)((char *)(pg) + (pg)->linp[indx]))
211
212/* Get the number of bytes in the entry. */
213#define NRLEAF(p)	NRLEAFDBT((p)->dsize)
214
215/* Get the number of bytes from the user's data. */
216#define	NRLEAFDBT(dsize)						\
217	LALIGN(sizeof(u_int32_t) + sizeof(u_char) + (dsize))
218
219/* Copy a RLEAF entry to the page. */
220#define	WR_RLEAF(p, data, flags) {					\
221	*(u_int32_t *)p = data->size;					\
222	p += sizeof(u_int32_t);						\
223	*(u_char *)p = flags;						\
224	p += sizeof(u_char);						\
225	memmove(p, data->data, data->size);				\
226}
227
228/*
229 * A record in the tree is either a pointer to a page and an index in the page
230 * or a page number and an index.  These structures are used as a cursor, stack
231 * entry and search returns as well as to pass records to other routines.
232 *
233 * One comment about searches.  Internal page searches must find the largest
234 * record less than key in the tree so that descents work.  Leaf page searches
235 * must find the smallest record greater than key so that the returned index
236 * is the record's correct position for insertion.
237 */
238typedef struct _epgno {
239	pgno_t	pgno;			/* the page number */
240	indx_t	index;			/* the index on the page */
241} EPGNO;
242
243typedef struct _epg {
244	PAGE	*page;			/* the (pinned) page */
245	indx_t	 index;			/* the index on the page */
246} EPG;
247
248/*
249 * About cursors.  The cursor (and the page that contained the key/data pair
250 * that it referenced) can be deleted, which makes things a bit tricky.  If
251 * there are no duplicates of the cursor key in the tree (i.e. B_NODUPS is set
252 * or there simply aren't any duplicates of the key) we copy the key that it
253 * referenced when it's deleted, and reacquire a new cursor key if the cursor
254 * is used again.  If there are duplicates keys, we move to the next/previous
255 * key, and set a flag so that we know what happened.  NOTE: if duplicate (to
256 * the cursor) keys are added to the tree during this process, it is undefined
257 * if they will be returned or not in a cursor scan.
258 *
259 * The flags determine the possible states of the cursor:
260 *
261 * CURS_INIT	The cursor references *something*.
262 * CURS_ACQUIRE	The cursor was deleted, and a key has been saved so that
263 *		we can reacquire the right position in the tree.
264 * CURS_AFTER, CURS_BEFORE
265 *		The cursor was deleted, and now references a key/data pair
266 *		that has not yet been returned, either before or after the
267 *		deleted key/data pair.
268 * XXX
269 * This structure is broken out so that we can eventually offer multiple
270 * cursors as part of the DB interface.
271 */
272typedef struct _cursor {
273	EPGNO	 pg;			/* B: Saved tree reference. */
274	DBT	 key;			/* B: Saved key, or key.data == NULL. */
275	recno_t	 rcursor;		/* R: recno cursor (1-based) */
276
277#define	CURS_ACQUIRE	0x01		/*  B: Cursor needs to be reacquired. */
278#define	CURS_AFTER	0x02		/*  B: Unreturned cursor after key. */
279#define	CURS_BEFORE	0x04		/*  B: Unreturned cursor before key. */
280#define	CURS_INIT	0x08		/* RB: Cursor initialized. */
281	u_int8_t flags;
282} CURSOR;
283
284/*
285 * The metadata of the tree.  The nrecs field is used only by the RECNO code.
286 * This is because the btree doesn't really need it and it requires that every
287 * put or delete call modify the metadata.
288 */
289typedef struct _btmeta {
290	u_int32_t	magic;		/* magic number */
291	u_int32_t	version;	/* version */
292	u_int32_t	psize;		/* page size */
293	u_int32_t	free;		/* page number of first free page */
294	u_int32_t	nrecs;		/* R: number of records */
295
296#define	SAVEMETA	(B_NODUPS | R_RECNO)
297	u_int32_t	flags;		/* bt_flags & SAVEMETA */
298} BTMETA;
299
300/* The in-memory btree/recno data structure. */
301typedef struct _btree {
302	MPOOL	 *bt_mp;		/* memory pool cookie */
303
304	DB	 *bt_dbp;		/* pointer to enclosing DB */
305
306	EPG	  bt_cur;		/* current (pinned) page */
307	PAGE	 *bt_pinned;		/* page pinned across calls */
308
309	CURSOR	  bt_cursor;		/* cursor */
310
311#define	BT_PUSH(t, p, i) {						\
312	t->bt_sp->pgno = p;						\
313	t->bt_sp->index = i;						\
314	++t->bt_sp;							\
315}
316#define	BT_POP(t)	(t->bt_sp == t->bt_stack ? NULL : --t->bt_sp)
317#define	BT_CLR(t)	(t->bt_sp = t->bt_stack)
318	EPGNO	  bt_stack[50];		/* stack of parent pages */
319	EPGNO	 *bt_sp;		/* current stack pointer */
320
321	DBT	  bt_rkey;		/* returned key */
322	DBT	  bt_rdata;		/* returned data */
323
324	int	  bt_fd;		/* tree file descriptor */
325
326	pgno_t	  bt_free;		/* next free page */
327	u_int32_t bt_psize;		/* page size */
328	indx_t	  bt_ovflsize;		/* cut-off for key/data overflow */
329	int	  bt_lorder;		/* byte order */
330					/* sorted order */
331	enum { NOT, BACK, FORWARD } bt_order;
332	EPGNO	  bt_last;		/* last insert */
333
334					/* B: key comparison function */
335	int	(*bt_cmp)(const DBT *, const DBT *);
336					/* B: prefix comparison function */
337	size_t	(*bt_pfx)(const DBT *, const DBT *);
338					/* R: recno input function */
339	int	(*bt_irec)(struct _btree *, recno_t);
340
341	FILE	 *bt_rfp;		/* R: record FILE pointer */
342	int	  bt_rfd;		/* R: record file descriptor */
343
344	caddr_t	  bt_cmap;		/* R: current point in mapped space */
345	caddr_t	  bt_smap;		/* R: start of mapped space */
346	caddr_t   bt_emap;		/* R: end of mapped space */
347	size_t	  bt_msize;		/* R: size of mapped region. */
348
349	recno_t	  bt_nrecs;		/* R: number of records */
350	size_t	  bt_reclen;		/* R: fixed record length */
351	u_char	  bt_bval;		/* R: delimiting byte/pad character */
352
353/*
354 * NB:
355 * B_NODUPS and R_RECNO are stored on disk, and may not be changed.
356 */
357#define	B_INMEM		0x00001		/* in-memory tree */
358#define	B_METADIRTY	0x00002		/* need to write metadata */
359#define	B_MODIFIED	0x00004		/* tree modified */
360#define	B_NEEDSWAP	0x00008		/* if byte order requires swapping */
361#define	B_RDONLY	0x00010		/* read-only tree */
362
363#define	B_NODUPS	0x00020		/* no duplicate keys permitted */
364#define	R_RECNO		0x00080		/* record oriented tree */
365
366#define	R_CLOSEFP	0x00040		/* opened a file pointer */
367#define	R_EOF		0x00100		/* end of input file reached. */
368#define	R_FIXLEN	0x00200		/* fixed length records */
369#define	R_MEMMAPPED	0x00400		/* memory mapped file. */
370#define	R_INMEM		0x00800		/* in-memory file */
371#define	R_MODIFIED	0x01000		/* modified file */
372#define	R_RDONLY	0x02000		/* read-only file */
373
374#define	B_DB_LOCK	0x04000		/* DB_LOCK specified. */
375#define	B_DB_SHMEM	0x08000		/* DB_SHMEM specified. */
376#define	B_DB_TXN	0x10000		/* DB_TXN specified. */
377	u_int32_t flags;
378} BTREE;
379
380#include "bt_extern.h"
381