1// SPDX-License-Identifier: LGPL-2.1
2#define _GNU_SOURCE
3#include <assert.h>
4#include <linux/membarrier.h>
5#include <pthread.h>
6#include <sched.h>
7#include <stdatomic.h>
8#include <stdint.h>
9#include <stdio.h>
10#include <stdlib.h>
11#include <string.h>
12#include <syscall.h>
13#include <unistd.h>
14#include <poll.h>
15#include <sys/types.h>
16#include <signal.h>
17#include <errno.h>
18#include <stddef.h>
19#include <stdbool.h>
20
21static inline pid_t rseq_gettid(void)
22{
23	return syscall(__NR_gettid);
24}
25
26#define NR_INJECT	9
27static int loop_cnt[NR_INJECT + 1];
28
29static int loop_cnt_1 asm("asm_loop_cnt_1") __attribute__((used));
30static int loop_cnt_2 asm("asm_loop_cnt_2") __attribute__((used));
31static int loop_cnt_3 asm("asm_loop_cnt_3") __attribute__((used));
32static int loop_cnt_4 asm("asm_loop_cnt_4") __attribute__((used));
33static int loop_cnt_5 asm("asm_loop_cnt_5") __attribute__((used));
34static int loop_cnt_6 asm("asm_loop_cnt_6") __attribute__((used));
35
36static int opt_modulo, verbose;
37
38static int opt_yield, opt_signal, opt_sleep,
39		opt_disable_rseq, opt_threads = 200,
40		opt_disable_mod = 0, opt_test = 's';
41
42static long long opt_reps = 5000;
43
44static __thread __attribute__((tls_model("initial-exec")))
45unsigned int signals_delivered;
46
47#ifndef BENCHMARK
48
49static __thread __attribute__((tls_model("initial-exec"), unused))
50unsigned int yield_mod_cnt, nr_abort;
51
52#define printf_verbose(fmt, ...)			\
53	do {						\
54		if (verbose)				\
55			printf(fmt, ## __VA_ARGS__);	\
56	} while (0)
57
58#ifdef __i386__
59
60#define INJECT_ASM_REG	"eax"
61
62#define RSEQ_INJECT_CLOBBER \
63	, INJECT_ASM_REG
64
65#define RSEQ_INJECT_ASM(n) \
66	"mov asm_loop_cnt_" #n ", %%" INJECT_ASM_REG "\n\t" \
67	"test %%" INJECT_ASM_REG ",%%" INJECT_ASM_REG "\n\t" \
68	"jz 333f\n\t" \
69	"222:\n\t" \
70	"dec %%" INJECT_ASM_REG "\n\t" \
71	"jnz 222b\n\t" \
72	"333:\n\t"
73
74#elif defined(__x86_64__)
75
76#define INJECT_ASM_REG_P	"rax"
77#define INJECT_ASM_REG		"eax"
78
79#define RSEQ_INJECT_CLOBBER \
80	, INJECT_ASM_REG_P \
81	, INJECT_ASM_REG
82
83#define RSEQ_INJECT_ASM(n) \
84	"lea asm_loop_cnt_" #n "(%%rip), %%" INJECT_ASM_REG_P "\n\t" \
85	"mov (%%" INJECT_ASM_REG_P "), %%" INJECT_ASM_REG "\n\t" \
86	"test %%" INJECT_ASM_REG ",%%" INJECT_ASM_REG "\n\t" \
87	"jz 333f\n\t" \
88	"222:\n\t" \
89	"dec %%" INJECT_ASM_REG "\n\t" \
90	"jnz 222b\n\t" \
91	"333:\n\t"
92
93#elif defined(__s390__)
94
95#define RSEQ_INJECT_INPUT \
96	, [loop_cnt_1]"m"(loop_cnt[1]) \
97	, [loop_cnt_2]"m"(loop_cnt[2]) \
98	, [loop_cnt_3]"m"(loop_cnt[3]) \
99	, [loop_cnt_4]"m"(loop_cnt[4]) \
100	, [loop_cnt_5]"m"(loop_cnt[5]) \
101	, [loop_cnt_6]"m"(loop_cnt[6])
102
103#define INJECT_ASM_REG	"r12"
104
105#define RSEQ_INJECT_CLOBBER \
106	, INJECT_ASM_REG
107
108#define RSEQ_INJECT_ASM(n) \
109	"l %%" INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
110	"ltr %%" INJECT_ASM_REG ", %%" INJECT_ASM_REG "\n\t" \
111	"je 333f\n\t" \
112	"222:\n\t" \
113	"ahi %%" INJECT_ASM_REG ", -1\n\t" \
114	"jnz 222b\n\t" \
115	"333:\n\t"
116
117#elif defined(__ARMEL__)
118
119#define RSEQ_INJECT_INPUT \
120	, [loop_cnt_1]"m"(loop_cnt[1]) \
121	, [loop_cnt_2]"m"(loop_cnt[2]) \
122	, [loop_cnt_3]"m"(loop_cnt[3]) \
123	, [loop_cnt_4]"m"(loop_cnt[4]) \
124	, [loop_cnt_5]"m"(loop_cnt[5]) \
125	, [loop_cnt_6]"m"(loop_cnt[6])
126
127#define INJECT_ASM_REG	"r4"
128
129#define RSEQ_INJECT_CLOBBER \
130	, INJECT_ASM_REG
131
132#define RSEQ_INJECT_ASM(n) \
133	"ldr " INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
134	"cmp " INJECT_ASM_REG ", #0\n\t" \
135	"beq 333f\n\t" \
136	"222:\n\t" \
137	"subs " INJECT_ASM_REG ", #1\n\t" \
138	"bne 222b\n\t" \
139	"333:\n\t"
140
141#elif defined(__AARCH64EL__)
142
143#define RSEQ_INJECT_INPUT \
144	, [loop_cnt_1] "Qo" (loop_cnt[1]) \
145	, [loop_cnt_2] "Qo" (loop_cnt[2]) \
146	, [loop_cnt_3] "Qo" (loop_cnt[3]) \
147	, [loop_cnt_4] "Qo" (loop_cnt[4]) \
148	, [loop_cnt_5] "Qo" (loop_cnt[5]) \
149	, [loop_cnt_6] "Qo" (loop_cnt[6])
150
151#define INJECT_ASM_REG	RSEQ_ASM_TMP_REG32
152
153#define RSEQ_INJECT_ASM(n) \
154	"	ldr	" INJECT_ASM_REG ", %[loop_cnt_" #n "]\n"	\
155	"	cbz	" INJECT_ASM_REG ", 333f\n"			\
156	"222:\n"							\
157	"	sub	" INJECT_ASM_REG ", " INJECT_ASM_REG ", #1\n"	\
158	"	cbnz	" INJECT_ASM_REG ", 222b\n"			\
159	"333:\n"
160
161#elif defined(__PPC__)
162
163#define RSEQ_INJECT_INPUT \
164	, [loop_cnt_1]"m"(loop_cnt[1]) \
165	, [loop_cnt_2]"m"(loop_cnt[2]) \
166	, [loop_cnt_3]"m"(loop_cnt[3]) \
167	, [loop_cnt_4]"m"(loop_cnt[4]) \
168	, [loop_cnt_5]"m"(loop_cnt[5]) \
169	, [loop_cnt_6]"m"(loop_cnt[6])
170
171#define INJECT_ASM_REG	"r18"
172
173#define RSEQ_INJECT_CLOBBER \
174	, INJECT_ASM_REG
175
176#define RSEQ_INJECT_ASM(n) \
177	"lwz %%" INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
178	"cmpwi %%" INJECT_ASM_REG ", 0\n\t" \
179	"beq 333f\n\t" \
180	"222:\n\t" \
181	"subic. %%" INJECT_ASM_REG ", %%" INJECT_ASM_REG ", 1\n\t" \
182	"bne 222b\n\t" \
183	"333:\n\t"
184
185#elif defined(__mips__)
186
187#define RSEQ_INJECT_INPUT \
188	, [loop_cnt_1]"m"(loop_cnt[1]) \
189	, [loop_cnt_2]"m"(loop_cnt[2]) \
190	, [loop_cnt_3]"m"(loop_cnt[3]) \
191	, [loop_cnt_4]"m"(loop_cnt[4]) \
192	, [loop_cnt_5]"m"(loop_cnt[5]) \
193	, [loop_cnt_6]"m"(loop_cnt[6])
194
195#define INJECT_ASM_REG	"$5"
196
197#define RSEQ_INJECT_CLOBBER \
198	, INJECT_ASM_REG
199
200#define RSEQ_INJECT_ASM(n) \
201	"lw " INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
202	"beqz " INJECT_ASM_REG ", 333f\n\t" \
203	"222:\n\t" \
204	"addiu " INJECT_ASM_REG ", -1\n\t" \
205	"bnez " INJECT_ASM_REG ", 222b\n\t" \
206	"333:\n\t"
207#elif defined(__riscv)
208
209#define RSEQ_INJECT_INPUT \
210	, [loop_cnt_1]"m"(loop_cnt[1]) \
211	, [loop_cnt_2]"m"(loop_cnt[2]) \
212	, [loop_cnt_3]"m"(loop_cnt[3]) \
213	, [loop_cnt_4]"m"(loop_cnt[4]) \
214	, [loop_cnt_5]"m"(loop_cnt[5]) \
215	, [loop_cnt_6]"m"(loop_cnt[6])
216
217#define INJECT_ASM_REG	"t1"
218
219#define RSEQ_INJECT_CLOBBER \
220	, INJECT_ASM_REG
221
222#define RSEQ_INJECT_ASM(n)					\
223	"lw " INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t"		\
224	"beqz " INJECT_ASM_REG ", 333f\n\t"			\
225	"222:\n\t"						\
226	"addi  " INJECT_ASM_REG "," INJECT_ASM_REG ", -1\n\t"	\
227	"bnez " INJECT_ASM_REG ", 222b\n\t"			\
228	"333:\n\t"
229
230
231#else
232#error unsupported target
233#endif
234
235#define RSEQ_INJECT_FAILED \
236	nr_abort++;
237
238#define RSEQ_INJECT_C(n) \
239{ \
240	int loc_i, loc_nr_loops = loop_cnt[n]; \
241	\
242	for (loc_i = 0; loc_i < loc_nr_loops; loc_i++) { \
243		rseq_barrier(); \
244	} \
245	if (loc_nr_loops == -1 && opt_modulo) { \
246		if (yield_mod_cnt == opt_modulo - 1) { \
247			if (opt_sleep > 0) \
248				poll(NULL, 0, opt_sleep); \
249			if (opt_yield) \
250				sched_yield(); \
251			if (opt_signal) \
252				raise(SIGUSR1); \
253			yield_mod_cnt = 0; \
254		} else { \
255			yield_mod_cnt++; \
256		} \
257	} \
258}
259
260#else
261
262#define printf_verbose(fmt, ...)
263
264#endif /* BENCHMARK */
265
266#include "rseq.h"
267
268static enum rseq_mo opt_mo = RSEQ_MO_RELAXED;
269
270#ifdef RSEQ_ARCH_HAS_OFFSET_DEREF_ADDV
271#define TEST_MEMBARRIER
272
273static int sys_membarrier(int cmd, int flags, int cpu_id)
274{
275	return syscall(__NR_membarrier, cmd, flags, cpu_id);
276}
277#endif
278
279#ifdef BUILDOPT_RSEQ_PERCPU_MM_CID
280# define RSEQ_PERCPU	RSEQ_PERCPU_MM_CID
281static
282int get_current_cpu_id(void)
283{
284	return rseq_current_mm_cid();
285}
286static
287bool rseq_validate_cpu_id(void)
288{
289	return rseq_mm_cid_available();
290}
291static
292bool rseq_use_cpu_index(void)
293{
294	return false;	/* Use mm_cid */
295}
296# ifdef TEST_MEMBARRIER
297/*
298 * Membarrier does not currently support targeting a mm_cid, so
299 * issue the barrier on all cpus.
300 */
301static
302int rseq_membarrier_expedited(int cpu)
303{
304	return sys_membarrier(MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ,
305			      0, 0);
306}
307# endif /* TEST_MEMBARRIER */
308#else
309# define RSEQ_PERCPU	RSEQ_PERCPU_CPU_ID
310static
311int get_current_cpu_id(void)
312{
313	return rseq_cpu_start();
314}
315static
316bool rseq_validate_cpu_id(void)
317{
318	return rseq_current_cpu_raw() >= 0;
319}
320static
321bool rseq_use_cpu_index(void)
322{
323	return true;	/* Use cpu_id as index. */
324}
325# ifdef TEST_MEMBARRIER
326static
327int rseq_membarrier_expedited(int cpu)
328{
329	return sys_membarrier(MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ,
330			      MEMBARRIER_CMD_FLAG_CPU, cpu);
331}
332# endif /* TEST_MEMBARRIER */
333#endif
334
335struct percpu_lock_entry {
336	intptr_t v;
337} __attribute__((aligned(128)));
338
339struct percpu_lock {
340	struct percpu_lock_entry c[CPU_SETSIZE];
341};
342
343struct test_data_entry {
344	intptr_t count;
345} __attribute__((aligned(128)));
346
347struct spinlock_test_data {
348	struct percpu_lock lock;
349	struct test_data_entry c[CPU_SETSIZE];
350};
351
352struct spinlock_thread_test_data {
353	struct spinlock_test_data *data;
354	long long reps;
355	int reg;
356};
357
358struct inc_test_data {
359	struct test_data_entry c[CPU_SETSIZE];
360};
361
362struct inc_thread_test_data {
363	struct inc_test_data *data;
364	long long reps;
365	int reg;
366};
367
368struct percpu_list_node {
369	intptr_t data;
370	struct percpu_list_node *next;
371};
372
373struct percpu_list_entry {
374	struct percpu_list_node *head;
375} __attribute__((aligned(128)));
376
377struct percpu_list {
378	struct percpu_list_entry c[CPU_SETSIZE];
379};
380
381#define BUFFER_ITEM_PER_CPU	100
382
383struct percpu_buffer_node {
384	intptr_t data;
385};
386
387struct percpu_buffer_entry {
388	intptr_t offset;
389	intptr_t buflen;
390	struct percpu_buffer_node **array;
391} __attribute__((aligned(128)));
392
393struct percpu_buffer {
394	struct percpu_buffer_entry c[CPU_SETSIZE];
395};
396
397#define MEMCPY_BUFFER_ITEM_PER_CPU	100
398
399struct percpu_memcpy_buffer_node {
400	intptr_t data1;
401	uint64_t data2;
402};
403
404struct percpu_memcpy_buffer_entry {
405	intptr_t offset;
406	intptr_t buflen;
407	struct percpu_memcpy_buffer_node *array;
408} __attribute__((aligned(128)));
409
410struct percpu_memcpy_buffer {
411	struct percpu_memcpy_buffer_entry c[CPU_SETSIZE];
412};
413
414/* A simple percpu spinlock. Grabs lock on current cpu. */
415static int rseq_this_cpu_lock(struct percpu_lock *lock)
416{
417	int cpu;
418
419	for (;;) {
420		int ret;
421
422		cpu = get_current_cpu_id();
423		if (cpu < 0) {
424			fprintf(stderr, "pid: %d: tid: %d, cpu: %d: cid: %d\n",
425					getpid(), (int) rseq_gettid(), rseq_current_cpu_raw(), cpu);
426			abort();
427		}
428		ret = rseq_cmpeqv_storev(RSEQ_MO_RELAXED, RSEQ_PERCPU,
429					 &lock->c[cpu].v,
430					 0, 1, cpu);
431		if (rseq_likely(!ret))
432			break;
433		/* Retry if comparison fails or rseq aborts. */
434	}
435	/*
436	 * Acquire semantic when taking lock after control dependency.
437	 * Matches rseq_smp_store_release().
438	 */
439	rseq_smp_acquire__after_ctrl_dep();
440	return cpu;
441}
442
443static void rseq_percpu_unlock(struct percpu_lock *lock, int cpu)
444{
445	assert(lock->c[cpu].v == 1);
446	/*
447	 * Release lock, with release semantic. Matches
448	 * rseq_smp_acquire__after_ctrl_dep().
449	 */
450	rseq_smp_store_release(&lock->c[cpu].v, 0);
451}
452
453void *test_percpu_spinlock_thread(void *arg)
454{
455	struct spinlock_thread_test_data *thread_data = arg;
456	struct spinlock_test_data *data = thread_data->data;
457	long long i, reps;
458
459	if (!opt_disable_rseq && thread_data->reg &&
460	    rseq_register_current_thread())
461		abort();
462	reps = thread_data->reps;
463	for (i = 0; i < reps; i++) {
464		int cpu = rseq_this_cpu_lock(&data->lock);
465		data->c[cpu].count++;
466		rseq_percpu_unlock(&data->lock, cpu);
467#ifndef BENCHMARK
468		if (i != 0 && !(i % (reps / 10)))
469			printf_verbose("tid %d: count %lld\n",
470				       (int) rseq_gettid(), i);
471#endif
472	}
473	printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
474		       (int) rseq_gettid(), nr_abort, signals_delivered);
475	if (!opt_disable_rseq && thread_data->reg &&
476	    rseq_unregister_current_thread())
477		abort();
478	return NULL;
479}
480
481/*
482 * A simple test which implements a sharded counter using a per-cpu
483 * lock.  Obviously real applications might prefer to simply use a
484 * per-cpu increment; however, this is reasonable for a test and the
485 * lock can be extended to synchronize more complicated operations.
486 */
487void test_percpu_spinlock(void)
488{
489	const int num_threads = opt_threads;
490	int i, ret;
491	uint64_t sum;
492	pthread_t test_threads[num_threads];
493	struct spinlock_test_data data;
494	struct spinlock_thread_test_data thread_data[num_threads];
495
496	memset(&data, 0, sizeof(data));
497	for (i = 0; i < num_threads; i++) {
498		thread_data[i].reps = opt_reps;
499		if (opt_disable_mod <= 0 || (i % opt_disable_mod))
500			thread_data[i].reg = 1;
501		else
502			thread_data[i].reg = 0;
503		thread_data[i].data = &data;
504		ret = pthread_create(&test_threads[i], NULL,
505				     test_percpu_spinlock_thread,
506				     &thread_data[i]);
507		if (ret) {
508			errno = ret;
509			perror("pthread_create");
510			abort();
511		}
512	}
513
514	for (i = 0; i < num_threads; i++) {
515		ret = pthread_join(test_threads[i], NULL);
516		if (ret) {
517			errno = ret;
518			perror("pthread_join");
519			abort();
520		}
521	}
522
523	sum = 0;
524	for (i = 0; i < CPU_SETSIZE; i++)
525		sum += data.c[i].count;
526
527	assert(sum == (uint64_t)opt_reps * num_threads);
528}
529
530void *test_percpu_inc_thread(void *arg)
531{
532	struct inc_thread_test_data *thread_data = arg;
533	struct inc_test_data *data = thread_data->data;
534	long long i, reps;
535
536	if (!opt_disable_rseq && thread_data->reg &&
537	    rseq_register_current_thread())
538		abort();
539	reps = thread_data->reps;
540	for (i = 0; i < reps; i++) {
541		int ret;
542
543		do {
544			int cpu;
545
546			cpu = get_current_cpu_id();
547			ret = rseq_addv(RSEQ_MO_RELAXED, RSEQ_PERCPU,
548					&data->c[cpu].count, 1, cpu);
549		} while (rseq_unlikely(ret));
550#ifndef BENCHMARK
551		if (i != 0 && !(i % (reps / 10)))
552			printf_verbose("tid %d: count %lld\n",
553				       (int) rseq_gettid(), i);
554#endif
555	}
556	printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
557		       (int) rseq_gettid(), nr_abort, signals_delivered);
558	if (!opt_disable_rseq && thread_data->reg &&
559	    rseq_unregister_current_thread())
560		abort();
561	return NULL;
562}
563
564void test_percpu_inc(void)
565{
566	const int num_threads = opt_threads;
567	int i, ret;
568	uint64_t sum;
569	pthread_t test_threads[num_threads];
570	struct inc_test_data data;
571	struct inc_thread_test_data thread_data[num_threads];
572
573	memset(&data, 0, sizeof(data));
574	for (i = 0; i < num_threads; i++) {
575		thread_data[i].reps = opt_reps;
576		if (opt_disable_mod <= 0 || (i % opt_disable_mod))
577			thread_data[i].reg = 1;
578		else
579			thread_data[i].reg = 0;
580		thread_data[i].data = &data;
581		ret = pthread_create(&test_threads[i], NULL,
582				     test_percpu_inc_thread,
583				     &thread_data[i]);
584		if (ret) {
585			errno = ret;
586			perror("pthread_create");
587			abort();
588		}
589	}
590
591	for (i = 0; i < num_threads; i++) {
592		ret = pthread_join(test_threads[i], NULL);
593		if (ret) {
594			errno = ret;
595			perror("pthread_join");
596			abort();
597		}
598	}
599
600	sum = 0;
601	for (i = 0; i < CPU_SETSIZE; i++)
602		sum += data.c[i].count;
603
604	assert(sum == (uint64_t)opt_reps * num_threads);
605}
606
607void this_cpu_list_push(struct percpu_list *list,
608			struct percpu_list_node *node,
609			int *_cpu)
610{
611	int cpu;
612
613	for (;;) {
614		intptr_t *targetptr, newval, expect;
615		int ret;
616
617		cpu = get_current_cpu_id();
618		/* Load list->c[cpu].head with single-copy atomicity. */
619		expect = (intptr_t)RSEQ_READ_ONCE(list->c[cpu].head);
620		newval = (intptr_t)node;
621		targetptr = (intptr_t *)&list->c[cpu].head;
622		node->next = (struct percpu_list_node *)expect;
623		ret = rseq_cmpeqv_storev(RSEQ_MO_RELAXED, RSEQ_PERCPU,
624					 targetptr, expect, newval, cpu);
625		if (rseq_likely(!ret))
626			break;
627		/* Retry if comparison fails or rseq aborts. */
628	}
629	if (_cpu)
630		*_cpu = cpu;
631}
632
633/*
634 * Unlike a traditional lock-less linked list; the availability of a
635 * rseq primitive allows us to implement pop without concerns over
636 * ABA-type races.
637 */
638struct percpu_list_node *this_cpu_list_pop(struct percpu_list *list,
639					   int *_cpu)
640{
641	struct percpu_list_node *node = NULL;
642	int cpu;
643
644	for (;;) {
645		struct percpu_list_node *head;
646		intptr_t *targetptr, expectnot, *load;
647		long offset;
648		int ret;
649
650		cpu = get_current_cpu_id();
651		targetptr = (intptr_t *)&list->c[cpu].head;
652		expectnot = (intptr_t)NULL;
653		offset = offsetof(struct percpu_list_node, next);
654		load = (intptr_t *)&head;
655		ret = rseq_cmpnev_storeoffp_load(RSEQ_MO_RELAXED, RSEQ_PERCPU,
656						 targetptr, expectnot,
657						 offset, load, cpu);
658		if (rseq_likely(!ret)) {
659			node = head;
660			break;
661		}
662		if (ret > 0)
663			break;
664		/* Retry if rseq aborts. */
665	}
666	if (_cpu)
667		*_cpu = cpu;
668	return node;
669}
670
671/*
672 * __percpu_list_pop is not safe against concurrent accesses. Should
673 * only be used on lists that are not concurrently modified.
674 */
675struct percpu_list_node *__percpu_list_pop(struct percpu_list *list, int cpu)
676{
677	struct percpu_list_node *node;
678
679	node = list->c[cpu].head;
680	if (!node)
681		return NULL;
682	list->c[cpu].head = node->next;
683	return node;
684}
685
686void *test_percpu_list_thread(void *arg)
687{
688	long long i, reps;
689	struct percpu_list *list = (struct percpu_list *)arg;
690
691	if (!opt_disable_rseq && rseq_register_current_thread())
692		abort();
693
694	reps = opt_reps;
695	for (i = 0; i < reps; i++) {
696		struct percpu_list_node *node;
697
698		node = this_cpu_list_pop(list, NULL);
699		if (opt_yield)
700			sched_yield();  /* encourage shuffling */
701		if (node)
702			this_cpu_list_push(list, node, NULL);
703	}
704
705	printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
706		       (int) rseq_gettid(), nr_abort, signals_delivered);
707	if (!opt_disable_rseq && rseq_unregister_current_thread())
708		abort();
709
710	return NULL;
711}
712
713/* Simultaneous modification to a per-cpu linked list from many threads.  */
714void test_percpu_list(void)
715{
716	const int num_threads = opt_threads;
717	int i, j, ret;
718	uint64_t sum = 0, expected_sum = 0;
719	struct percpu_list list;
720	pthread_t test_threads[num_threads];
721	cpu_set_t allowed_cpus;
722
723	memset(&list, 0, sizeof(list));
724
725	/* Generate list entries for every usable cpu. */
726	sched_getaffinity(0, sizeof(allowed_cpus), &allowed_cpus);
727	for (i = 0; i < CPU_SETSIZE; i++) {
728		if (rseq_use_cpu_index() && !CPU_ISSET(i, &allowed_cpus))
729			continue;
730		for (j = 1; j <= 100; j++) {
731			struct percpu_list_node *node;
732
733			expected_sum += j;
734
735			node = malloc(sizeof(*node));
736			assert(node);
737			node->data = j;
738			node->next = list.c[i].head;
739			list.c[i].head = node;
740		}
741	}
742
743	for (i = 0; i < num_threads; i++) {
744		ret = pthread_create(&test_threads[i], NULL,
745				     test_percpu_list_thread, &list);
746		if (ret) {
747			errno = ret;
748			perror("pthread_create");
749			abort();
750		}
751	}
752
753	for (i = 0; i < num_threads; i++) {
754		ret = pthread_join(test_threads[i], NULL);
755		if (ret) {
756			errno = ret;
757			perror("pthread_join");
758			abort();
759		}
760	}
761
762	for (i = 0; i < CPU_SETSIZE; i++) {
763		struct percpu_list_node *node;
764
765		if (rseq_use_cpu_index() && !CPU_ISSET(i, &allowed_cpus))
766			continue;
767
768		while ((node = __percpu_list_pop(&list, i))) {
769			sum += node->data;
770			free(node);
771		}
772	}
773
774	/*
775	 * All entries should now be accounted for (unless some external
776	 * actor is interfering with our allowed affinity while this
777	 * test is running).
778	 */
779	assert(sum == expected_sum);
780}
781
782bool this_cpu_buffer_push(struct percpu_buffer *buffer,
783			  struct percpu_buffer_node *node,
784			  int *_cpu)
785{
786	bool result = false;
787	int cpu;
788
789	for (;;) {
790		intptr_t *targetptr_spec, newval_spec;
791		intptr_t *targetptr_final, newval_final;
792		intptr_t offset;
793		int ret;
794
795		cpu = get_current_cpu_id();
796		offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
797		if (offset == buffer->c[cpu].buflen)
798			break;
799		newval_spec = (intptr_t)node;
800		targetptr_spec = (intptr_t *)&buffer->c[cpu].array[offset];
801		newval_final = offset + 1;
802		targetptr_final = &buffer->c[cpu].offset;
803		ret = rseq_cmpeqv_trystorev_storev(opt_mo, RSEQ_PERCPU,
804			targetptr_final, offset, targetptr_spec,
805			newval_spec, newval_final, cpu);
806		if (rseq_likely(!ret)) {
807			result = true;
808			break;
809		}
810		/* Retry if comparison fails or rseq aborts. */
811	}
812	if (_cpu)
813		*_cpu = cpu;
814	return result;
815}
816
817struct percpu_buffer_node *this_cpu_buffer_pop(struct percpu_buffer *buffer,
818					       int *_cpu)
819{
820	struct percpu_buffer_node *head;
821	int cpu;
822
823	for (;;) {
824		intptr_t *targetptr, newval;
825		intptr_t offset;
826		int ret;
827
828		cpu = get_current_cpu_id();
829		/* Load offset with single-copy atomicity. */
830		offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
831		if (offset == 0) {
832			head = NULL;
833			break;
834		}
835		head = RSEQ_READ_ONCE(buffer->c[cpu].array[offset - 1]);
836		newval = offset - 1;
837		targetptr = (intptr_t *)&buffer->c[cpu].offset;
838		ret = rseq_cmpeqv_cmpeqv_storev(RSEQ_MO_RELAXED, RSEQ_PERCPU,
839			targetptr, offset,
840			(intptr_t *)&buffer->c[cpu].array[offset - 1],
841			(intptr_t)head, newval, cpu);
842		if (rseq_likely(!ret))
843			break;
844		/* Retry if comparison fails or rseq aborts. */
845	}
846	if (_cpu)
847		*_cpu = cpu;
848	return head;
849}
850
851/*
852 * __percpu_buffer_pop is not safe against concurrent accesses. Should
853 * only be used on buffers that are not concurrently modified.
854 */
855struct percpu_buffer_node *__percpu_buffer_pop(struct percpu_buffer *buffer,
856					       int cpu)
857{
858	struct percpu_buffer_node *head;
859	intptr_t offset;
860
861	offset = buffer->c[cpu].offset;
862	if (offset == 0)
863		return NULL;
864	head = buffer->c[cpu].array[offset - 1];
865	buffer->c[cpu].offset = offset - 1;
866	return head;
867}
868
869void *test_percpu_buffer_thread(void *arg)
870{
871	long long i, reps;
872	struct percpu_buffer *buffer = (struct percpu_buffer *)arg;
873
874	if (!opt_disable_rseq && rseq_register_current_thread())
875		abort();
876
877	reps = opt_reps;
878	for (i = 0; i < reps; i++) {
879		struct percpu_buffer_node *node;
880
881		node = this_cpu_buffer_pop(buffer, NULL);
882		if (opt_yield)
883			sched_yield();  /* encourage shuffling */
884		if (node) {
885			if (!this_cpu_buffer_push(buffer, node, NULL)) {
886				/* Should increase buffer size. */
887				abort();
888			}
889		}
890	}
891
892	printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
893		       (int) rseq_gettid(), nr_abort, signals_delivered);
894	if (!opt_disable_rseq && rseq_unregister_current_thread())
895		abort();
896
897	return NULL;
898}
899
900/* Simultaneous modification to a per-cpu buffer from many threads.  */
901void test_percpu_buffer(void)
902{
903	const int num_threads = opt_threads;
904	int i, j, ret;
905	uint64_t sum = 0, expected_sum = 0;
906	struct percpu_buffer buffer;
907	pthread_t test_threads[num_threads];
908	cpu_set_t allowed_cpus;
909
910	memset(&buffer, 0, sizeof(buffer));
911
912	/* Generate list entries for every usable cpu. */
913	sched_getaffinity(0, sizeof(allowed_cpus), &allowed_cpus);
914	for (i = 0; i < CPU_SETSIZE; i++) {
915		if (rseq_use_cpu_index() && !CPU_ISSET(i, &allowed_cpus))
916			continue;
917		/* Worse-case is every item in same CPU. */
918		buffer.c[i].array =
919			malloc(sizeof(*buffer.c[i].array) * CPU_SETSIZE *
920			       BUFFER_ITEM_PER_CPU);
921		assert(buffer.c[i].array);
922		buffer.c[i].buflen = CPU_SETSIZE * BUFFER_ITEM_PER_CPU;
923		for (j = 1; j <= BUFFER_ITEM_PER_CPU; j++) {
924			struct percpu_buffer_node *node;
925
926			expected_sum += j;
927
928			/*
929			 * We could theoretically put the word-sized
930			 * "data" directly in the buffer. However, we
931			 * want to model objects that would not fit
932			 * within a single word, so allocate an object
933			 * for each node.
934			 */
935			node = malloc(sizeof(*node));
936			assert(node);
937			node->data = j;
938			buffer.c[i].array[j - 1] = node;
939			buffer.c[i].offset++;
940		}
941	}
942
943	for (i = 0; i < num_threads; i++) {
944		ret = pthread_create(&test_threads[i], NULL,
945				     test_percpu_buffer_thread, &buffer);
946		if (ret) {
947			errno = ret;
948			perror("pthread_create");
949			abort();
950		}
951	}
952
953	for (i = 0; i < num_threads; i++) {
954		ret = pthread_join(test_threads[i], NULL);
955		if (ret) {
956			errno = ret;
957			perror("pthread_join");
958			abort();
959		}
960	}
961
962	for (i = 0; i < CPU_SETSIZE; i++) {
963		struct percpu_buffer_node *node;
964
965		if (rseq_use_cpu_index() && !CPU_ISSET(i, &allowed_cpus))
966			continue;
967
968		while ((node = __percpu_buffer_pop(&buffer, i))) {
969			sum += node->data;
970			free(node);
971		}
972		free(buffer.c[i].array);
973	}
974
975	/*
976	 * All entries should now be accounted for (unless some external
977	 * actor is interfering with our allowed affinity while this
978	 * test is running).
979	 */
980	assert(sum == expected_sum);
981}
982
983bool this_cpu_memcpy_buffer_push(struct percpu_memcpy_buffer *buffer,
984				 struct percpu_memcpy_buffer_node item,
985				 int *_cpu)
986{
987	bool result = false;
988	int cpu;
989
990	for (;;) {
991		intptr_t *targetptr_final, newval_final, offset;
992		char *destptr, *srcptr;
993		size_t copylen;
994		int ret;
995
996		cpu = get_current_cpu_id();
997		/* Load offset with single-copy atomicity. */
998		offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
999		if (offset == buffer->c[cpu].buflen)
1000			break;
1001		destptr = (char *)&buffer->c[cpu].array[offset];
1002		srcptr = (char *)&item;
1003		/* copylen must be <= 4kB. */
1004		copylen = sizeof(item);
1005		newval_final = offset + 1;
1006		targetptr_final = &buffer->c[cpu].offset;
1007		ret = rseq_cmpeqv_trymemcpy_storev(
1008			opt_mo, RSEQ_PERCPU,
1009			targetptr_final, offset,
1010			destptr, srcptr, copylen,
1011			newval_final, cpu);
1012		if (rseq_likely(!ret)) {
1013			result = true;
1014			break;
1015		}
1016		/* Retry if comparison fails or rseq aborts. */
1017	}
1018	if (_cpu)
1019		*_cpu = cpu;
1020	return result;
1021}
1022
1023bool this_cpu_memcpy_buffer_pop(struct percpu_memcpy_buffer *buffer,
1024				struct percpu_memcpy_buffer_node *item,
1025				int *_cpu)
1026{
1027	bool result = false;
1028	int cpu;
1029
1030	for (;;) {
1031		intptr_t *targetptr_final, newval_final, offset;
1032		char *destptr, *srcptr;
1033		size_t copylen;
1034		int ret;
1035
1036		cpu = get_current_cpu_id();
1037		/* Load offset with single-copy atomicity. */
1038		offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
1039		if (offset == 0)
1040			break;
1041		destptr = (char *)item;
1042		srcptr = (char *)&buffer->c[cpu].array[offset - 1];
1043		/* copylen must be <= 4kB. */
1044		copylen = sizeof(*item);
1045		newval_final = offset - 1;
1046		targetptr_final = &buffer->c[cpu].offset;
1047		ret = rseq_cmpeqv_trymemcpy_storev(RSEQ_MO_RELAXED, RSEQ_PERCPU,
1048			targetptr_final, offset, destptr, srcptr, copylen,
1049			newval_final, cpu);
1050		if (rseq_likely(!ret)) {
1051			result = true;
1052			break;
1053		}
1054		/* Retry if comparison fails or rseq aborts. */
1055	}
1056	if (_cpu)
1057		*_cpu = cpu;
1058	return result;
1059}
1060
1061/*
1062 * __percpu_memcpy_buffer_pop is not safe against concurrent accesses. Should
1063 * only be used on buffers that are not concurrently modified.
1064 */
1065bool __percpu_memcpy_buffer_pop(struct percpu_memcpy_buffer *buffer,
1066				struct percpu_memcpy_buffer_node *item,
1067				int cpu)
1068{
1069	intptr_t offset;
1070
1071	offset = buffer->c[cpu].offset;
1072	if (offset == 0)
1073		return false;
1074	memcpy(item, &buffer->c[cpu].array[offset - 1], sizeof(*item));
1075	buffer->c[cpu].offset = offset - 1;
1076	return true;
1077}
1078
1079void *test_percpu_memcpy_buffer_thread(void *arg)
1080{
1081	long long i, reps;
1082	struct percpu_memcpy_buffer *buffer = (struct percpu_memcpy_buffer *)arg;
1083
1084	if (!opt_disable_rseq && rseq_register_current_thread())
1085		abort();
1086
1087	reps = opt_reps;
1088	for (i = 0; i < reps; i++) {
1089		struct percpu_memcpy_buffer_node item;
1090		bool result;
1091
1092		result = this_cpu_memcpy_buffer_pop(buffer, &item, NULL);
1093		if (opt_yield)
1094			sched_yield();  /* encourage shuffling */
1095		if (result) {
1096			if (!this_cpu_memcpy_buffer_push(buffer, item, NULL)) {
1097				/* Should increase buffer size. */
1098				abort();
1099			}
1100		}
1101	}
1102
1103	printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
1104		       (int) rseq_gettid(), nr_abort, signals_delivered);
1105	if (!opt_disable_rseq && rseq_unregister_current_thread())
1106		abort();
1107
1108	return NULL;
1109}
1110
1111/* Simultaneous modification to a per-cpu buffer from many threads.  */
1112void test_percpu_memcpy_buffer(void)
1113{
1114	const int num_threads = opt_threads;
1115	int i, j, ret;
1116	uint64_t sum = 0, expected_sum = 0;
1117	struct percpu_memcpy_buffer buffer;
1118	pthread_t test_threads[num_threads];
1119	cpu_set_t allowed_cpus;
1120
1121	memset(&buffer, 0, sizeof(buffer));
1122
1123	/* Generate list entries for every usable cpu. */
1124	sched_getaffinity(0, sizeof(allowed_cpus), &allowed_cpus);
1125	for (i = 0; i < CPU_SETSIZE; i++) {
1126		if (rseq_use_cpu_index() && !CPU_ISSET(i, &allowed_cpus))
1127			continue;
1128		/* Worse-case is every item in same CPU. */
1129		buffer.c[i].array =
1130			malloc(sizeof(*buffer.c[i].array) * CPU_SETSIZE *
1131			       MEMCPY_BUFFER_ITEM_PER_CPU);
1132		assert(buffer.c[i].array);
1133		buffer.c[i].buflen = CPU_SETSIZE * MEMCPY_BUFFER_ITEM_PER_CPU;
1134		for (j = 1; j <= MEMCPY_BUFFER_ITEM_PER_CPU; j++) {
1135			expected_sum += 2 * j + 1;
1136
1137			/*
1138			 * We could theoretically put the word-sized
1139			 * "data" directly in the buffer. However, we
1140			 * want to model objects that would not fit
1141			 * within a single word, so allocate an object
1142			 * for each node.
1143			 */
1144			buffer.c[i].array[j - 1].data1 = j;
1145			buffer.c[i].array[j - 1].data2 = j + 1;
1146			buffer.c[i].offset++;
1147		}
1148	}
1149
1150	for (i = 0; i < num_threads; i++) {
1151		ret = pthread_create(&test_threads[i], NULL,
1152				     test_percpu_memcpy_buffer_thread,
1153				     &buffer);
1154		if (ret) {
1155			errno = ret;
1156			perror("pthread_create");
1157			abort();
1158		}
1159	}
1160
1161	for (i = 0; i < num_threads; i++) {
1162		ret = pthread_join(test_threads[i], NULL);
1163		if (ret) {
1164			errno = ret;
1165			perror("pthread_join");
1166			abort();
1167		}
1168	}
1169
1170	for (i = 0; i < CPU_SETSIZE; i++) {
1171		struct percpu_memcpy_buffer_node item;
1172
1173		if (rseq_use_cpu_index() && !CPU_ISSET(i, &allowed_cpus))
1174			continue;
1175
1176		while (__percpu_memcpy_buffer_pop(&buffer, &item, i)) {
1177			sum += item.data1;
1178			sum += item.data2;
1179		}
1180		free(buffer.c[i].array);
1181	}
1182
1183	/*
1184	 * All entries should now be accounted for (unless some external
1185	 * actor is interfering with our allowed affinity while this
1186	 * test is running).
1187	 */
1188	assert(sum == expected_sum);
1189}
1190
1191static void test_signal_interrupt_handler(int signo)
1192{
1193	signals_delivered++;
1194}
1195
1196static int set_signal_handler(void)
1197{
1198	int ret = 0;
1199	struct sigaction sa;
1200	sigset_t sigset;
1201
1202	ret = sigemptyset(&sigset);
1203	if (ret < 0) {
1204		perror("sigemptyset");
1205		return ret;
1206	}
1207
1208	sa.sa_handler = test_signal_interrupt_handler;
1209	sa.sa_mask = sigset;
1210	sa.sa_flags = 0;
1211	ret = sigaction(SIGUSR1, &sa, NULL);
1212	if (ret < 0) {
1213		perror("sigaction");
1214		return ret;
1215	}
1216
1217	printf_verbose("Signal handler set for SIGUSR1\n");
1218
1219	return ret;
1220}
1221
1222/* Test MEMBARRIER_CMD_PRIVATE_RESTART_RSEQ_ON_CPU membarrier command. */
1223#ifdef TEST_MEMBARRIER
1224struct test_membarrier_thread_args {
1225	int stop;
1226	intptr_t percpu_list_ptr;
1227};
1228
1229/* Worker threads modify data in their "active" percpu lists. */
1230void *test_membarrier_worker_thread(void *arg)
1231{
1232	struct test_membarrier_thread_args *args =
1233		(struct test_membarrier_thread_args *)arg;
1234	const int iters = opt_reps;
1235	int i;
1236
1237	if (rseq_register_current_thread()) {
1238		fprintf(stderr, "Error: rseq_register_current_thread(...) failed(%d): %s\n",
1239			errno, strerror(errno));
1240		abort();
1241	}
1242
1243	/* Wait for initialization. */
1244	while (!__atomic_load_n(&args->percpu_list_ptr, __ATOMIC_ACQUIRE)) {}
1245
1246	for (i = 0; i < iters; ++i) {
1247		int ret;
1248
1249		do {
1250			int cpu = get_current_cpu_id();
1251
1252			ret = rseq_offset_deref_addv(RSEQ_MO_RELAXED, RSEQ_PERCPU,
1253				&args->percpu_list_ptr,
1254				sizeof(struct percpu_list_entry) * cpu, 1, cpu);
1255		} while (rseq_unlikely(ret));
1256	}
1257
1258	if (rseq_unregister_current_thread()) {
1259		fprintf(stderr, "Error: rseq_unregister_current_thread(...) failed(%d): %s\n",
1260			errno, strerror(errno));
1261		abort();
1262	}
1263	return NULL;
1264}
1265
1266void test_membarrier_init_percpu_list(struct percpu_list *list)
1267{
1268	int i;
1269
1270	memset(list, 0, sizeof(*list));
1271	for (i = 0; i < CPU_SETSIZE; i++) {
1272		struct percpu_list_node *node;
1273
1274		node = malloc(sizeof(*node));
1275		assert(node);
1276		node->data = 0;
1277		node->next = NULL;
1278		list->c[i].head = node;
1279	}
1280}
1281
1282void test_membarrier_free_percpu_list(struct percpu_list *list)
1283{
1284	int i;
1285
1286	for (i = 0; i < CPU_SETSIZE; i++)
1287		free(list->c[i].head);
1288}
1289
1290/*
1291 * The manager thread swaps per-cpu lists that worker threads see,
1292 * and validates that there are no unexpected modifications.
1293 */
1294void *test_membarrier_manager_thread(void *arg)
1295{
1296	struct test_membarrier_thread_args *args =
1297		(struct test_membarrier_thread_args *)arg;
1298	struct percpu_list list_a, list_b;
1299	intptr_t expect_a = 0, expect_b = 0;
1300	int cpu_a = 0, cpu_b = 0;
1301
1302	if (rseq_register_current_thread()) {
1303		fprintf(stderr, "Error: rseq_register_current_thread(...) failed(%d): %s\n",
1304			errno, strerror(errno));
1305		abort();
1306	}
1307
1308	/* Init lists. */
1309	test_membarrier_init_percpu_list(&list_a);
1310	test_membarrier_init_percpu_list(&list_b);
1311
1312	__atomic_store_n(&args->percpu_list_ptr, (intptr_t)&list_a, __ATOMIC_RELEASE);
1313
1314	while (!__atomic_load_n(&args->stop, __ATOMIC_ACQUIRE)) {
1315		/* list_a is "active". */
1316		cpu_a = rand() % CPU_SETSIZE;
1317		/*
1318		 * As list_b is "inactive", we should never see changes
1319		 * to list_b.
1320		 */
1321		if (expect_b != __atomic_load_n(&list_b.c[cpu_b].head->data, __ATOMIC_ACQUIRE)) {
1322			fprintf(stderr, "Membarrier test failed\n");
1323			abort();
1324		}
1325
1326		/* Make list_b "active". */
1327		__atomic_store_n(&args->percpu_list_ptr, (intptr_t)&list_b, __ATOMIC_RELEASE);
1328		if (rseq_membarrier_expedited(cpu_a) &&
1329				errno != ENXIO /* missing CPU */) {
1330			perror("sys_membarrier");
1331			abort();
1332		}
1333		/*
1334		 * Cpu A should now only modify list_b, so the values
1335		 * in list_a should be stable.
1336		 */
1337		expect_a = __atomic_load_n(&list_a.c[cpu_a].head->data, __ATOMIC_ACQUIRE);
1338
1339		cpu_b = rand() % CPU_SETSIZE;
1340		/*
1341		 * As list_a is "inactive", we should never see changes
1342		 * to list_a.
1343		 */
1344		if (expect_a != __atomic_load_n(&list_a.c[cpu_a].head->data, __ATOMIC_ACQUIRE)) {
1345			fprintf(stderr, "Membarrier test failed\n");
1346			abort();
1347		}
1348
1349		/* Make list_a "active". */
1350		__atomic_store_n(&args->percpu_list_ptr, (intptr_t)&list_a, __ATOMIC_RELEASE);
1351		if (rseq_membarrier_expedited(cpu_b) &&
1352				errno != ENXIO /* missing CPU*/) {
1353			perror("sys_membarrier");
1354			abort();
1355		}
1356		/* Remember a value from list_b. */
1357		expect_b = __atomic_load_n(&list_b.c[cpu_b].head->data, __ATOMIC_ACQUIRE);
1358	}
1359
1360	test_membarrier_free_percpu_list(&list_a);
1361	test_membarrier_free_percpu_list(&list_b);
1362
1363	if (rseq_unregister_current_thread()) {
1364		fprintf(stderr, "Error: rseq_unregister_current_thread(...) failed(%d): %s\n",
1365			errno, strerror(errno));
1366		abort();
1367	}
1368	return NULL;
1369}
1370
1371void test_membarrier(void)
1372{
1373	const int num_threads = opt_threads;
1374	struct test_membarrier_thread_args thread_args;
1375	pthread_t worker_threads[num_threads];
1376	pthread_t manager_thread;
1377	int i, ret;
1378
1379	if (sys_membarrier(MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ, 0, 0)) {
1380		perror("sys_membarrier");
1381		abort();
1382	}
1383
1384	thread_args.stop = 0;
1385	thread_args.percpu_list_ptr = 0;
1386	ret = pthread_create(&manager_thread, NULL,
1387			test_membarrier_manager_thread, &thread_args);
1388	if (ret) {
1389		errno = ret;
1390		perror("pthread_create");
1391		abort();
1392	}
1393
1394	for (i = 0; i < num_threads; i++) {
1395		ret = pthread_create(&worker_threads[i], NULL,
1396				test_membarrier_worker_thread, &thread_args);
1397		if (ret) {
1398			errno = ret;
1399			perror("pthread_create");
1400			abort();
1401		}
1402	}
1403
1404
1405	for (i = 0; i < num_threads; i++) {
1406		ret = pthread_join(worker_threads[i], NULL);
1407		if (ret) {
1408			errno = ret;
1409			perror("pthread_join");
1410			abort();
1411		}
1412	}
1413
1414	__atomic_store_n(&thread_args.stop, 1, __ATOMIC_RELEASE);
1415	ret = pthread_join(manager_thread, NULL);
1416	if (ret) {
1417		errno = ret;
1418		perror("pthread_join");
1419		abort();
1420	}
1421}
1422#else /* TEST_MEMBARRIER */
1423void test_membarrier(void)
1424{
1425	fprintf(stderr, "rseq_offset_deref_addv is not implemented on this architecture. "
1426			"Skipping membarrier test.\n");
1427}
1428#endif
1429
1430static void show_usage(int argc, char **argv)
1431{
1432	printf("Usage : %s <OPTIONS>\n",
1433		argv[0]);
1434	printf("OPTIONS:\n");
1435	printf("	[-1 loops] Number of loops for delay injection 1\n");
1436	printf("	[-2 loops] Number of loops for delay injection 2\n");
1437	printf("	[-3 loops] Number of loops for delay injection 3\n");
1438	printf("	[-4 loops] Number of loops for delay injection 4\n");
1439	printf("	[-5 loops] Number of loops for delay injection 5\n");
1440	printf("	[-6 loops] Number of loops for delay injection 6\n");
1441	printf("	[-7 loops] Number of loops for delay injection 7 (-1 to enable -m)\n");
1442	printf("	[-8 loops] Number of loops for delay injection 8 (-1 to enable -m)\n");
1443	printf("	[-9 loops] Number of loops for delay injection 9 (-1 to enable -m)\n");
1444	printf("	[-m N] Yield/sleep/kill every modulo N (default 0: disabled) (>= 0)\n");
1445	printf("	[-y] Yield\n");
1446	printf("	[-k] Kill thread with signal\n");
1447	printf("	[-s S] S: =0: disabled (default), >0: sleep time (ms)\n");
1448	printf("	[-t N] Number of threads (default 200)\n");
1449	printf("	[-r N] Number of repetitions per thread (default 5000)\n");
1450	printf("	[-d] Disable rseq system call (no initialization)\n");
1451	printf("	[-D M] Disable rseq for each M threads\n");
1452	printf("	[-T test] Choose test: (s)pinlock, (l)ist, (b)uffer, (m)emcpy, (i)ncrement, membarrie(r)\n");
1453	printf("	[-M] Push into buffer and memcpy buffer with memory barriers.\n");
1454	printf("	[-v] Verbose output.\n");
1455	printf("	[-h] Show this help.\n");
1456	printf("\n");
1457}
1458
1459int main(int argc, char **argv)
1460{
1461	int i;
1462
1463	for (i = 1; i < argc; i++) {
1464		if (argv[i][0] != '-')
1465			continue;
1466		switch (argv[i][1]) {
1467		case '1':
1468		case '2':
1469		case '3':
1470		case '4':
1471		case '5':
1472		case '6':
1473		case '7':
1474		case '8':
1475		case '9':
1476			if (argc < i + 2) {
1477				show_usage(argc, argv);
1478				goto error;
1479			}
1480			loop_cnt[argv[i][1] - '0'] = atol(argv[i + 1]);
1481			i++;
1482			break;
1483		case 'm':
1484			if (argc < i + 2) {
1485				show_usage(argc, argv);
1486				goto error;
1487			}
1488			opt_modulo = atol(argv[i + 1]);
1489			if (opt_modulo < 0) {
1490				show_usage(argc, argv);
1491				goto error;
1492			}
1493			i++;
1494			break;
1495		case 's':
1496			if (argc < i + 2) {
1497				show_usage(argc, argv);
1498				goto error;
1499			}
1500			opt_sleep = atol(argv[i + 1]);
1501			if (opt_sleep < 0) {
1502				show_usage(argc, argv);
1503				goto error;
1504			}
1505			i++;
1506			break;
1507		case 'y':
1508			opt_yield = 1;
1509			break;
1510		case 'k':
1511			opt_signal = 1;
1512			break;
1513		case 'd':
1514			opt_disable_rseq = 1;
1515			break;
1516		case 'D':
1517			if (argc < i + 2) {
1518				show_usage(argc, argv);
1519				goto error;
1520			}
1521			opt_disable_mod = atol(argv[i + 1]);
1522			if (opt_disable_mod < 0) {
1523				show_usage(argc, argv);
1524				goto error;
1525			}
1526			i++;
1527			break;
1528		case 't':
1529			if (argc < i + 2) {
1530				show_usage(argc, argv);
1531				goto error;
1532			}
1533			opt_threads = atol(argv[i + 1]);
1534			if (opt_threads < 0) {
1535				show_usage(argc, argv);
1536				goto error;
1537			}
1538			i++;
1539			break;
1540		case 'r':
1541			if (argc < i + 2) {
1542				show_usage(argc, argv);
1543				goto error;
1544			}
1545			opt_reps = atoll(argv[i + 1]);
1546			if (opt_reps < 0) {
1547				show_usage(argc, argv);
1548				goto error;
1549			}
1550			i++;
1551			break;
1552		case 'h':
1553			show_usage(argc, argv);
1554			goto end;
1555		case 'T':
1556			if (argc < i + 2) {
1557				show_usage(argc, argv);
1558				goto error;
1559			}
1560			opt_test = *argv[i + 1];
1561			switch (opt_test) {
1562			case 's':
1563			case 'l':
1564			case 'i':
1565			case 'b':
1566			case 'm':
1567			case 'r':
1568				break;
1569			default:
1570				show_usage(argc, argv);
1571				goto error;
1572			}
1573			i++;
1574			break;
1575		case 'v':
1576			verbose = 1;
1577			break;
1578		case 'M':
1579			opt_mo = RSEQ_MO_RELEASE;
1580			break;
1581		default:
1582			show_usage(argc, argv);
1583			goto error;
1584		}
1585	}
1586
1587	loop_cnt_1 = loop_cnt[1];
1588	loop_cnt_2 = loop_cnt[2];
1589	loop_cnt_3 = loop_cnt[3];
1590	loop_cnt_4 = loop_cnt[4];
1591	loop_cnt_5 = loop_cnt[5];
1592	loop_cnt_6 = loop_cnt[6];
1593
1594	if (set_signal_handler())
1595		goto error;
1596
1597	if (!opt_disable_rseq && rseq_register_current_thread())
1598		goto error;
1599	if (!opt_disable_rseq && !rseq_validate_cpu_id()) {
1600		fprintf(stderr, "Error: cpu id getter unavailable\n");
1601		goto error;
1602	}
1603	switch (opt_test) {
1604	case 's':
1605		printf_verbose("spinlock\n");
1606		test_percpu_spinlock();
1607		break;
1608	case 'l':
1609		printf_verbose("linked list\n");
1610		test_percpu_list();
1611		break;
1612	case 'b':
1613		printf_verbose("buffer\n");
1614		test_percpu_buffer();
1615		break;
1616	case 'm':
1617		printf_verbose("memcpy buffer\n");
1618		test_percpu_memcpy_buffer();
1619		break;
1620	case 'i':
1621		printf_verbose("counter increment\n");
1622		test_percpu_inc();
1623		break;
1624	case 'r':
1625		printf_verbose("membarrier\n");
1626		test_membarrier();
1627		break;
1628	}
1629	if (!opt_disable_rseq && rseq_unregister_current_thread())
1630		abort();
1631end:
1632	return 0;
1633
1634error:
1635	return -1;
1636}
1637