1// SPDX-License-Identifier: GPL-2.0
2
3/*
4 * Copyright 2019, Nick Piggin, Gautham R. Shenoy, Aneesh Kumar K.V, IBM Corp.
5 */
6
7/*
8 *
9 * Test tlbie/mtpidr race. We have 4 threads doing flush/load/compare/store
10 * sequence in a loop. The same threads also rung a context switch task
11 * that does sched_yield() in loop.
12 *
13 * The snapshot thread mark the mmap area PROT_READ in between, make a copy
14 * and copy it back to the original area. This helps us to detect if any
15 * store continued to happen after we marked the memory PROT_READ.
16 */
17
18#define _GNU_SOURCE
19#include <stdio.h>
20#include <sys/mman.h>
21#include <sys/types.h>
22#include <sys/wait.h>
23#include <sys/ipc.h>
24#include <sys/shm.h>
25#include <sys/stat.h>
26#include <sys/time.h>
27#include <linux/futex.h>
28#include <unistd.h>
29#include <asm/unistd.h>
30#include <string.h>
31#include <stdlib.h>
32#include <fcntl.h>
33#include <sched.h>
34#include <time.h>
35#include <stdarg.h>
36#include <pthread.h>
37#include <signal.h>
38#include <sys/prctl.h>
39
40static inline void dcbf(volatile unsigned int *addr)
41{
42	__asm__ __volatile__ ("dcbf %y0; sync" : : "Z"(*(unsigned char *)addr) : "memory");
43}
44
45static void err_msg(char *msg)
46{
47
48	time_t now;
49	time(&now);
50	printf("=================================\n");
51	printf("    Error: %s\n", msg);
52	printf("    %s", ctime(&now));
53	printf("=================================\n");
54	exit(1);
55}
56
57static char *map1;
58static char *map2;
59static pid_t rim_process_pid;
60
61/*
62 * A "rim-sequence" is defined to be the sequence of the following
63 * operations performed on a memory word:
64 *	1) FLUSH the contents of that word.
65 *	2) LOAD the contents of that word.
66 *	3) COMPARE the contents of that word with the content that was
67 *	           previously stored at that word
68 *	4) STORE new content into that word.
69 *
70 * The threads in this test that perform the rim-sequence are termed
71 * as rim_threads.
72 */
73
74/*
75 * A "corruption" is defined to be the failed COMPARE operation in a
76 * rim-sequence.
77 *
78 * A rim_thread that detects a corruption informs about it to all the
79 * other rim_threads, and the mem_snapshot thread.
80 */
81static volatile unsigned int corruption_found;
82
83/*
84 * This defines the maximum number of rim_threads in this test.
85 *
86 * The THREAD_ID_BITS denote the number of bits required
87 * to represent the thread_ids [0..MAX_THREADS - 1].
88 * We are being a bit paranoid here and set it to 8 bits,
89 * though 6 bits suffice.
90 *
91 */
92#define MAX_THREADS 		64
93#define THREAD_ID_BITS		8
94#define THREAD_ID_MASK		((1 << THREAD_ID_BITS) - 1)
95static unsigned int rim_thread_ids[MAX_THREADS];
96static pthread_t rim_threads[MAX_THREADS];
97
98
99/*
100 * Each rim_thread works on an exclusive "chunk" of size
101 * RIM_CHUNK_SIZE.
102 *
103 * The ith rim_thread works on the ith chunk.
104 *
105 * The ith chunk begins at
106 * map1 + (i * RIM_CHUNK_SIZE)
107 */
108#define RIM_CHUNK_SIZE  	1024
109#define BITS_PER_BYTE 		8
110#define WORD_SIZE     		(sizeof(unsigned int))
111#define WORD_BITS		(WORD_SIZE * BITS_PER_BYTE)
112#define WORDS_PER_CHUNK		(RIM_CHUNK_SIZE/WORD_SIZE)
113
114static inline char *compute_chunk_start_addr(unsigned int thread_id)
115{
116	char *chunk_start;
117
118	chunk_start = (char *)((unsigned long)map1 +
119			       (thread_id * RIM_CHUNK_SIZE));
120
121	return chunk_start;
122}
123
124/*
125 * The "word-offset" of a word-aligned address inside a chunk, is
126 * defined to be the number of words that precede the address in that
127 * chunk.
128 *
129 * WORD_OFFSET_BITS denote the number of bits required to represent
130 * the word-offsets of all the word-aligned addresses of a chunk.
131 */
132#define WORD_OFFSET_BITS	(__builtin_ctz(WORDS_PER_CHUNK))
133#define WORD_OFFSET_MASK	((1 << WORD_OFFSET_BITS) - 1)
134
135static inline unsigned int compute_word_offset(char *start, unsigned int *addr)
136{
137	unsigned int delta_bytes, ret;
138	delta_bytes = (unsigned long)addr - (unsigned long)start;
139
140	ret = delta_bytes/WORD_SIZE;
141
142	return ret;
143}
144
145/*
146 * A "sweep" is defined to be the sequential execution of the
147 * rim-sequence by a rim_thread on its chunk one word at a time,
148 * starting from the first word of its chunk and ending with the last
149 * word of its chunk.
150 *
151 * Each sweep of a rim_thread is uniquely identified by a sweep_id.
152 * SWEEP_ID_BITS denote the number of bits required to represent
153 * the sweep_ids of rim_threads.
154 *
155 * As to why SWEEP_ID_BITS are computed as a function of THREAD_ID_BITS,
156 * WORD_OFFSET_BITS, and WORD_BITS, see the "store-pattern" below.
157 */
158#define SWEEP_ID_BITS		(WORD_BITS - (THREAD_ID_BITS + WORD_OFFSET_BITS))
159#define SWEEP_ID_MASK		((1 << SWEEP_ID_BITS) - 1)
160
161/*
162 * A "store-pattern" is the word-pattern that is stored into a word
163 * location in the 4)STORE step of the rim-sequence.
164 *
165 * In the store-pattern, we shall encode:
166 *
167 *      - The thread-id of the rim_thread performing the store
168 *        (The most significant THREAD_ID_BITS)
169 *
170 *      - The word-offset of the address into which the store is being
171 *        performed (The next WORD_OFFSET_BITS)
172 *
173 *      - The sweep_id of the current sweep in which the store is
174 *        being performed. (The lower SWEEP_ID_BITS)
175 *
176 * Store Pattern: 32 bits
177 * |------------------|--------------------|---------------------------------|
178 * |    Thread id     |  Word offset       |         sweep_id                |
179 * |------------------|--------------------|---------------------------------|
180 *    THREAD_ID_BITS     WORD_OFFSET_BITS          SWEEP_ID_BITS
181 *
182 * In the store pattern, the (Thread-id + Word-offset) uniquely identify the
183 * address to which the store is being performed i.e,
184 *    address == map1 +
185 *              (Thread-id * RIM_CHUNK_SIZE) + (Word-offset * WORD_SIZE)
186 *
187 * And the sweep_id in the store pattern identifies the time when the
188 * store was performed by the rim_thread.
189 *
190 * We shall use this property in the 3)COMPARE step of the
191 * rim-sequence.
192 */
193#define SWEEP_ID_SHIFT	0
194#define WORD_OFFSET_SHIFT	(SWEEP_ID_BITS)
195#define THREAD_ID_SHIFT		(WORD_OFFSET_BITS + SWEEP_ID_BITS)
196
197/*
198 * Compute the store pattern for a given thread with id @tid, at
199 * location @addr in the sweep identified by @sweep_id
200 */
201static inline unsigned int compute_store_pattern(unsigned int tid,
202						 unsigned int *addr,
203						 unsigned int sweep_id)
204{
205	unsigned int ret = 0;
206	char *start = compute_chunk_start_addr(tid);
207	unsigned int word_offset = compute_word_offset(start, addr);
208
209	ret += (tid & THREAD_ID_MASK) << THREAD_ID_SHIFT;
210	ret += (word_offset & WORD_OFFSET_MASK) << WORD_OFFSET_SHIFT;
211	ret += (sweep_id & SWEEP_ID_MASK) << SWEEP_ID_SHIFT;
212	return ret;
213}
214
215/* Extract the thread-id from the given store-pattern */
216static inline unsigned int extract_tid(unsigned int pattern)
217{
218	unsigned int ret;
219
220	ret = (pattern >> THREAD_ID_SHIFT) & THREAD_ID_MASK;
221	return ret;
222}
223
224/* Extract the word-offset from the given store-pattern */
225static inline unsigned int extract_word_offset(unsigned int pattern)
226{
227	unsigned int ret;
228
229	ret = (pattern >> WORD_OFFSET_SHIFT) & WORD_OFFSET_MASK;
230
231	return ret;
232}
233
234/* Extract the sweep-id from the given store-pattern */
235static inline unsigned int extract_sweep_id(unsigned int pattern)
236
237{
238	unsigned int ret;
239
240	ret = (pattern >> SWEEP_ID_SHIFT) & SWEEP_ID_MASK;
241
242	return ret;
243}
244
245/************************************************************
246 *                                                          *
247 *          Logging the output of the verification          *
248 *                                                          *
249 ************************************************************/
250#define LOGDIR_NAME_SIZE 100
251static char logdir[LOGDIR_NAME_SIZE];
252
253static FILE *fp[MAX_THREADS];
254static const char logfilename[] ="Thread-%02d-Chunk";
255
256static inline void start_verification_log(unsigned int tid,
257					  unsigned int *addr,
258					  unsigned int cur_sweep_id,
259					  unsigned int prev_sweep_id)
260{
261	FILE *f;
262	char logfile[30];
263	char path[LOGDIR_NAME_SIZE + 30];
264	char separator[2] = "/";
265	char *chunk_start = compute_chunk_start_addr(tid);
266	unsigned int size = RIM_CHUNK_SIZE;
267
268	sprintf(logfile, logfilename, tid);
269	strcpy(path, logdir);
270	strcat(path, separator);
271	strcat(path, logfile);
272	f = fopen(path, "w");
273
274	if (!f) {
275		err_msg("Unable to create logfile\n");
276	}
277
278	fp[tid] = f;
279
280	fprintf(f, "----------------------------------------------------------\n");
281	fprintf(f, "PID                = %d\n", rim_process_pid);
282	fprintf(f, "Thread id          = %02d\n", tid);
283	fprintf(f, "Chunk Start Addr   = 0x%016lx\n", (unsigned long)chunk_start);
284	fprintf(f, "Chunk Size         = %d\n", size);
285	fprintf(f, "Next Store Addr    = 0x%016lx\n", (unsigned long)addr);
286	fprintf(f, "Current sweep-id   = 0x%08x\n", cur_sweep_id);
287	fprintf(f, "Previous sweep-id  = 0x%08x\n", prev_sweep_id);
288	fprintf(f, "----------------------------------------------------------\n");
289}
290
291static inline void log_anamoly(unsigned int tid, unsigned int *addr,
292			       unsigned int expected, unsigned int observed)
293{
294	FILE *f = fp[tid];
295
296	fprintf(f, "Thread %02d: Addr 0x%lx: Expected 0x%x, Observed 0x%x\n",
297	        tid, (unsigned long)addr, expected, observed);
298	fprintf(f, "Thread %02d: Expected Thread id   = %02d\n", tid, extract_tid(expected));
299	fprintf(f, "Thread %02d: Observed Thread id   = %02d\n", tid, extract_tid(observed));
300	fprintf(f, "Thread %02d: Expected Word offset = %03d\n", tid, extract_word_offset(expected));
301	fprintf(f, "Thread %02d: Observed Word offset = %03d\n", tid, extract_word_offset(observed));
302	fprintf(f, "Thread %02d: Expected sweep-id    = 0x%x\n", tid, extract_sweep_id(expected));
303	fprintf(f, "Thread %02d: Observed sweep-id    = 0x%x\n", tid, extract_sweep_id(observed));
304	fprintf(f, "----------------------------------------------------------\n");
305}
306
307static inline void end_verification_log(unsigned int tid, unsigned nr_anamolies)
308{
309	FILE *f = fp[tid];
310	char logfile[30];
311	char path[LOGDIR_NAME_SIZE + 30];
312	char separator[] = "/";
313
314	fclose(f);
315
316	if (nr_anamolies == 0) {
317		remove(path);
318		return;
319	}
320
321	sprintf(logfile, logfilename, tid);
322	strcpy(path, logdir);
323	strcat(path, separator);
324	strcat(path, logfile);
325
326	printf("Thread %02d chunk has %d corrupted words. For details check %s\n",
327		tid, nr_anamolies, path);
328}
329
330/*
331 * When a COMPARE step of a rim-sequence fails, the rim_thread informs
332 * everyone else via the shared_memory pointed to by
333 * corruption_found variable. On seeing this, every thread verifies the
334 * content of its chunk as follows.
335 *
336 * Suppose a thread identified with @tid was about to store (but not
337 * yet stored) to @next_store_addr in its current sweep identified
338 * @cur_sweep_id. Let @prev_sweep_id indicate the previous sweep_id.
339 *
340 * This implies that for all the addresses @addr < @next_store_addr,
341 * Thread @tid has already performed a store as part of its current
342 * sweep. Hence we expect the content of such @addr to be:
343 *    |-------------------------------------------------|
344 *    | tid   | word_offset(addr) |    cur_sweep_id     |
345 *    |-------------------------------------------------|
346 *
347 * Since Thread @tid is yet to perform stores on address
348 * @next_store_addr and above, we expect the content of such an
349 * address @addr to be:
350 *    |-------------------------------------------------|
351 *    | tid   | word_offset(addr) |    prev_sweep_id    |
352 *    |-------------------------------------------------|
353 *
354 * The verifier function @verify_chunk does this verification and logs
355 * any anamolies that it finds.
356 */
357static void verify_chunk(unsigned int tid, unsigned int *next_store_addr,
358		  unsigned int cur_sweep_id,
359		  unsigned int prev_sweep_id)
360{
361	unsigned int *iter_ptr;
362	unsigned int size = RIM_CHUNK_SIZE;
363	unsigned int expected;
364	unsigned int observed;
365	char *chunk_start = compute_chunk_start_addr(tid);
366
367	int nr_anamolies = 0;
368
369	start_verification_log(tid, next_store_addr,
370			       cur_sweep_id, prev_sweep_id);
371
372	for (iter_ptr = (unsigned int *)chunk_start;
373	     (unsigned long)iter_ptr < (unsigned long)chunk_start + size;
374	     iter_ptr++) {
375		unsigned int expected_sweep_id;
376
377		if (iter_ptr < next_store_addr) {
378			expected_sweep_id = cur_sweep_id;
379		} else {
380			expected_sweep_id = prev_sweep_id;
381		}
382
383		expected = compute_store_pattern(tid, iter_ptr, expected_sweep_id);
384
385		dcbf((volatile unsigned int*)iter_ptr); //Flush before reading
386		observed = *iter_ptr;
387
388	        if (observed != expected) {
389			nr_anamolies++;
390			log_anamoly(tid, iter_ptr, expected, observed);
391		}
392	}
393
394	end_verification_log(tid, nr_anamolies);
395}
396
397static void set_pthread_cpu(pthread_t th, int cpu)
398{
399	cpu_set_t run_cpu_mask;
400	struct sched_param param;
401
402	CPU_ZERO(&run_cpu_mask);
403	CPU_SET(cpu, &run_cpu_mask);
404	pthread_setaffinity_np(th, sizeof(cpu_set_t), &run_cpu_mask);
405
406	param.sched_priority = 1;
407	if (0 && sched_setscheduler(0, SCHED_FIFO, &param) == -1) {
408		/* haven't reproduced with this setting, it kills random preemption which may be a factor */
409		fprintf(stderr, "could not set SCHED_FIFO, run as root?\n");
410	}
411}
412
413static void set_mycpu(int cpu)
414{
415	cpu_set_t run_cpu_mask;
416	struct sched_param param;
417
418	CPU_ZERO(&run_cpu_mask);
419	CPU_SET(cpu, &run_cpu_mask);
420	sched_setaffinity(0, sizeof(cpu_set_t), &run_cpu_mask);
421
422	param.sched_priority = 1;
423	if (0 && sched_setscheduler(0, SCHED_FIFO, &param) == -1) {
424		fprintf(stderr, "could not set SCHED_FIFO, run as root?\n");
425	}
426}
427
428static volatile int segv_wait;
429
430static void segv_handler(int signo, siginfo_t *info, void *extra)
431{
432	while (segv_wait) {
433		sched_yield();
434	}
435
436}
437
438static void set_segv_handler(void)
439{
440	struct sigaction sa;
441
442	sa.sa_flags = SA_SIGINFO;
443	sa.sa_sigaction = segv_handler;
444
445	if (sigaction(SIGSEGV, &sa, NULL) == -1) {
446		perror("sigaction");
447		exit(EXIT_FAILURE);
448	}
449}
450
451int timeout = 0;
452/*
453 * This function is executed by every rim_thread.
454 *
455 * This function performs sweeps over the exclusive chunks of the
456 * rim_threads executing the rim-sequence one word at a time.
457 */
458static void *rim_fn(void *arg)
459{
460	unsigned int tid = *((unsigned int *)arg);
461
462	int size = RIM_CHUNK_SIZE;
463	char *chunk_start = compute_chunk_start_addr(tid);
464
465	unsigned int prev_sweep_id;
466	unsigned int cur_sweep_id = 0;
467
468	/* word access */
469	unsigned int pattern = cur_sweep_id;
470	unsigned int *pattern_ptr = &pattern;
471	unsigned int *w_ptr, read_data;
472
473	set_segv_handler();
474
475	/*
476	 * Let us initialize the chunk:
477	 *
478	 * Each word-aligned address addr in the chunk,
479	 * is initialized to :
480	 *    |-------------------------------------------------|
481	 *    | tid   | word_offset(addr) |         0           |
482	 *    |-------------------------------------------------|
483	 */
484	for (w_ptr = (unsigned int *)chunk_start;
485	     (unsigned long)w_ptr < (unsigned long)(chunk_start) + size;
486	     w_ptr++) {
487
488		*pattern_ptr = compute_store_pattern(tid, w_ptr, cur_sweep_id);
489		*w_ptr = *pattern_ptr;
490	}
491
492	while (!corruption_found && !timeout) {
493		prev_sweep_id = cur_sweep_id;
494		cur_sweep_id = cur_sweep_id + 1;
495
496		for (w_ptr = (unsigned int *)chunk_start;
497		     (unsigned long)w_ptr < (unsigned long)(chunk_start) + size;
498		     w_ptr++)  {
499			unsigned int old_pattern;
500
501			/*
502			 * Compute the pattern that we would have
503			 * stored at this location in the previous
504			 * sweep.
505			 */
506			old_pattern = compute_store_pattern(tid, w_ptr, prev_sweep_id);
507
508			/*
509			 * FLUSH:Ensure that we flush the contents of
510			 *       the cache before loading
511			 */
512			dcbf((volatile unsigned int*)w_ptr); //Flush
513
514			/* LOAD: Read the value */
515			read_data = *w_ptr; //Load
516
517			/*
518			 * COMPARE: Is it the same as what we had stored
519			 *          in the previous sweep ? It better be!
520			 */
521			if (read_data != old_pattern) {
522				/* No it isn't! Tell everyone */
523				corruption_found = 1;
524			}
525
526			/*
527			 * Before performing a store, let us check if
528			 * any rim_thread has found a corruption.
529			 */
530			if (corruption_found || timeout) {
531				/*
532				 * Yes. Someone (including us!) has found
533				 * a corruption :(
534				 *
535				 * Let us verify that our chunk is
536				 * correct.
537				 */
538				/* But first, let us allow the dust to settle down! */
539				verify_chunk(tid, w_ptr, cur_sweep_id, prev_sweep_id);
540
541				return 0;
542			}
543
544			/*
545			 * Compute the new pattern that we are going
546			 * to write to this location
547			 */
548			*pattern_ptr = compute_store_pattern(tid, w_ptr, cur_sweep_id);
549
550			/*
551			 * STORE: Now let us write this pattern into
552			 *        the location
553			 */
554			*w_ptr = *pattern_ptr;
555		}
556	}
557
558	return NULL;
559}
560
561
562static unsigned long start_cpu = 0;
563static unsigned long nrthreads = 4;
564
565static pthread_t mem_snapshot_thread;
566
567static void *mem_snapshot_fn(void *arg)
568{
569	int page_size = getpagesize();
570	size_t size = page_size;
571	void *tmp = malloc(size);
572
573	while (!corruption_found && !timeout) {
574		/* Stop memory migration once corruption is found */
575		segv_wait = 1;
576
577		mprotect(map1, size, PROT_READ);
578
579		/*
580		 * Load from the working alias (map1). Loading from map2
581		 * also fails.
582		 */
583		memcpy(tmp, map1, size);
584
585		/*
586		 * Stores must go via map2 which has write permissions, but
587		 * the corrupted data tends to be seen in the snapshot buffer,
588		 * so corruption does not appear to be introduced at the
589		 * copy-back via map2 alias here.
590		 */
591		memcpy(map2, tmp, size);
592		/*
593		 * Before releasing other threads, must ensure the copy
594		 * back to
595		 */
596		asm volatile("sync" ::: "memory");
597		mprotect(map1, size, PROT_READ|PROT_WRITE);
598		asm volatile("sync" ::: "memory");
599		segv_wait = 0;
600
601		usleep(1); /* This value makes a big difference */
602	}
603
604	return 0;
605}
606
607void alrm_sighandler(int sig)
608{
609	timeout = 1;
610}
611
612int main(int argc, char *argv[])
613{
614	int c;
615	int page_size = getpagesize();
616	time_t now;
617	int i, dir_error;
618	pthread_attr_t attr;
619	key_t shm_key = (key_t) getpid();
620	int shmid, run_time = 20 * 60;
621	struct sigaction sa_alrm;
622
623	snprintf(logdir, LOGDIR_NAME_SIZE,
624		 "/tmp/logdir-%u", (unsigned int)getpid());
625	while ((c = getopt(argc, argv, "r:hn:l:t:")) != -1) {
626		switch(c) {
627		case 'r':
628			start_cpu = strtoul(optarg, NULL, 10);
629			break;
630		case 'h':
631			printf("%s [-r <start_cpu>] [-n <nrthreads>] [-l <logdir>] [-t <timeout>]\n", argv[0]);
632			exit(0);
633			break;
634		case 'n':
635			nrthreads = strtoul(optarg, NULL, 10);
636			break;
637		case 'l':
638			strncpy(logdir, optarg, LOGDIR_NAME_SIZE - 1);
639			break;
640		case 't':
641			run_time = strtoul(optarg, NULL, 10);
642			break;
643		default:
644			printf("invalid option\n");
645			exit(0);
646			break;
647		}
648	}
649
650	if (nrthreads > MAX_THREADS)
651		nrthreads = MAX_THREADS;
652
653	shmid = shmget(shm_key, page_size, IPC_CREAT|0666);
654	if (shmid < 0) {
655		err_msg("Failed shmget\n");
656	}
657
658	map1 = shmat(shmid, NULL, 0);
659	if (map1 == (void *) -1) {
660		err_msg("Failed shmat");
661	}
662
663	map2 = shmat(shmid, NULL, 0);
664	if (map2 == (void *) -1) {
665		err_msg("Failed shmat");
666	}
667
668	dir_error = mkdir(logdir, 0755);
669
670	if (dir_error) {
671		err_msg("Failed mkdir");
672	}
673
674	printf("start_cpu list:%lu\n", start_cpu);
675	printf("number of worker threads:%lu + 1 snapshot thread\n", nrthreads);
676	printf("Allocated address:0x%016lx + secondary map:0x%016lx\n", (unsigned long)map1, (unsigned long)map2);
677	printf("logdir at : %s\n", logdir);
678	printf("Timeout: %d seconds\n", run_time);
679
680	time(&now);
681	printf("=================================\n");
682	printf("     Starting Test\n");
683	printf("     %s", ctime(&now));
684	printf("=================================\n");
685
686	for (i = 0; i < nrthreads; i++) {
687		if (1 && !fork()) {
688			prctl(PR_SET_PDEATHSIG, SIGKILL);
689			set_mycpu(start_cpu + i);
690			for (;;)
691				sched_yield();
692			exit(0);
693		}
694	}
695
696
697	sa_alrm.sa_handler = &alrm_sighandler;
698	sigemptyset(&sa_alrm.sa_mask);
699	sa_alrm.sa_flags = 0;
700
701	if (sigaction(SIGALRM, &sa_alrm, 0) == -1) {
702		err_msg("Failed signal handler registration\n");
703	}
704
705	alarm(run_time);
706
707	pthread_attr_init(&attr);
708	for (i = 0; i < nrthreads; i++) {
709		rim_thread_ids[i] = i;
710		pthread_create(&rim_threads[i], &attr, rim_fn, &rim_thread_ids[i]);
711		set_pthread_cpu(rim_threads[i], start_cpu + i);
712	}
713
714	pthread_create(&mem_snapshot_thread, &attr, mem_snapshot_fn, map1);
715	set_pthread_cpu(mem_snapshot_thread, start_cpu + i);
716
717
718	pthread_join(mem_snapshot_thread, NULL);
719	for (i = 0; i < nrthreads; i++) {
720		pthread_join(rim_threads[i], NULL);
721	}
722
723	if (!timeout) {
724		time(&now);
725		printf("=================================\n");
726		printf("      Data Corruption Detected\n");
727		printf("      %s", ctime(&now));
728		printf("      See logfiles in %s\n", logdir);
729		printf("=================================\n");
730		return 1;
731	}
732	return 0;
733}
734