1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * tools/testing/selftests/kvm/lib/x86_64/processor.c
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7
8#include "linux/bitmap.h"
9#include "test_util.h"
10#include "kvm_util.h"
11#include "processor.h"
12#include "sev.h"
13
14#ifndef NUM_INTERRUPTS
15#define NUM_INTERRUPTS 256
16#endif
17
18#define DEFAULT_CODE_SELECTOR 0x8
19#define DEFAULT_DATA_SELECTOR 0x10
20
21#define MAX_NR_CPUID_ENTRIES 100
22
23vm_vaddr_t exception_handlers;
24bool host_cpu_is_amd;
25bool host_cpu_is_intel;
26
27static void regs_dump(FILE *stream, struct kvm_regs *regs, uint8_t indent)
28{
29	fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
30		"rcx: 0x%.16llx rdx: 0x%.16llx\n",
31		indent, "",
32		regs->rax, regs->rbx, regs->rcx, regs->rdx);
33	fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
34		"rsp: 0x%.16llx rbp: 0x%.16llx\n",
35		indent, "",
36		regs->rsi, regs->rdi, regs->rsp, regs->rbp);
37	fprintf(stream, "%*sr8:  0x%.16llx r9:  0x%.16llx "
38		"r10: 0x%.16llx r11: 0x%.16llx\n",
39		indent, "",
40		regs->r8, regs->r9, regs->r10, regs->r11);
41	fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
42		"r14: 0x%.16llx r15: 0x%.16llx\n",
43		indent, "",
44		regs->r12, regs->r13, regs->r14, regs->r15);
45	fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
46		indent, "",
47		regs->rip, regs->rflags);
48}
49
50static void segment_dump(FILE *stream, struct kvm_segment *segment,
51			 uint8_t indent)
52{
53	fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
54		"selector: 0x%.4x type: 0x%.2x\n",
55		indent, "", segment->base, segment->limit,
56		segment->selector, segment->type);
57	fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
58		"db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
59		indent, "", segment->present, segment->dpl,
60		segment->db, segment->s, segment->l);
61	fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
62		"unusable: 0x%.2x padding: 0x%.2x\n",
63		indent, "", segment->g, segment->avl,
64		segment->unusable, segment->padding);
65}
66
67static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
68			uint8_t indent)
69{
70	fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
71		"padding: 0x%.4x 0x%.4x 0x%.4x\n",
72		indent, "", dtable->base, dtable->limit,
73		dtable->padding[0], dtable->padding[1], dtable->padding[2]);
74}
75
76static void sregs_dump(FILE *stream, struct kvm_sregs *sregs, uint8_t indent)
77{
78	unsigned int i;
79
80	fprintf(stream, "%*scs:\n", indent, "");
81	segment_dump(stream, &sregs->cs, indent + 2);
82	fprintf(stream, "%*sds:\n", indent, "");
83	segment_dump(stream, &sregs->ds, indent + 2);
84	fprintf(stream, "%*ses:\n", indent, "");
85	segment_dump(stream, &sregs->es, indent + 2);
86	fprintf(stream, "%*sfs:\n", indent, "");
87	segment_dump(stream, &sregs->fs, indent + 2);
88	fprintf(stream, "%*sgs:\n", indent, "");
89	segment_dump(stream, &sregs->gs, indent + 2);
90	fprintf(stream, "%*sss:\n", indent, "");
91	segment_dump(stream, &sregs->ss, indent + 2);
92	fprintf(stream, "%*str:\n", indent, "");
93	segment_dump(stream, &sregs->tr, indent + 2);
94	fprintf(stream, "%*sldt:\n", indent, "");
95	segment_dump(stream, &sregs->ldt, indent + 2);
96
97	fprintf(stream, "%*sgdt:\n", indent, "");
98	dtable_dump(stream, &sregs->gdt, indent + 2);
99	fprintf(stream, "%*sidt:\n", indent, "");
100	dtable_dump(stream, &sregs->idt, indent + 2);
101
102	fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
103		"cr3: 0x%.16llx cr4: 0x%.16llx\n",
104		indent, "",
105		sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
106	fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
107		"apic_base: 0x%.16llx\n",
108		indent, "",
109		sregs->cr8, sregs->efer, sregs->apic_base);
110
111	fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
112	for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
113		fprintf(stream, "%*s%.16llx\n", indent + 2, "",
114			sregs->interrupt_bitmap[i]);
115	}
116}
117
118bool kvm_is_tdp_enabled(void)
119{
120	if (host_cpu_is_intel)
121		return get_kvm_intel_param_bool("ept");
122	else
123		return get_kvm_amd_param_bool("npt");
124}
125
126void virt_arch_pgd_alloc(struct kvm_vm *vm)
127{
128	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
129		"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
130
131	/* If needed, create page map l4 table. */
132	if (!vm->pgd_created) {
133		vm->pgd = vm_alloc_page_table(vm);
134		vm->pgd_created = true;
135	}
136}
137
138static void *virt_get_pte(struct kvm_vm *vm, uint64_t *parent_pte,
139			  uint64_t vaddr, int level)
140{
141	uint64_t pt_gpa = PTE_GET_PA(*parent_pte);
142	uint64_t *page_table = addr_gpa2hva(vm, pt_gpa);
143	int index = (vaddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu;
144
145	TEST_ASSERT((*parent_pte & PTE_PRESENT_MASK) || parent_pte == &vm->pgd,
146		    "Parent PTE (level %d) not PRESENT for gva: 0x%08lx",
147		    level + 1, vaddr);
148
149	return &page_table[index];
150}
151
152static uint64_t *virt_create_upper_pte(struct kvm_vm *vm,
153				       uint64_t *parent_pte,
154				       uint64_t vaddr,
155				       uint64_t paddr,
156				       int current_level,
157				       int target_level)
158{
159	uint64_t *pte = virt_get_pte(vm, parent_pte, vaddr, current_level);
160
161	paddr = vm_untag_gpa(vm, paddr);
162
163	if (!(*pte & PTE_PRESENT_MASK)) {
164		*pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK;
165		if (current_level == target_level)
166			*pte |= PTE_LARGE_MASK | (paddr & PHYSICAL_PAGE_MASK);
167		else
168			*pte |= vm_alloc_page_table(vm) & PHYSICAL_PAGE_MASK;
169	} else {
170		/*
171		 * Entry already present.  Assert that the caller doesn't want
172		 * a hugepage at this level, and that there isn't a hugepage at
173		 * this level.
174		 */
175		TEST_ASSERT(current_level != target_level,
176			    "Cannot create hugepage at level: %u, vaddr: 0x%lx",
177			    current_level, vaddr);
178		TEST_ASSERT(!(*pte & PTE_LARGE_MASK),
179			    "Cannot create page table at level: %u, vaddr: 0x%lx",
180			    current_level, vaddr);
181	}
182	return pte;
183}
184
185void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level)
186{
187	const uint64_t pg_size = PG_LEVEL_SIZE(level);
188	uint64_t *pml4e, *pdpe, *pde;
189	uint64_t *pte;
190
191	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K,
192		    "Unknown or unsupported guest mode, mode: 0x%x", vm->mode);
193
194	TEST_ASSERT((vaddr % pg_size) == 0,
195		    "Virtual address not aligned,\n"
196		    "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size);
197	TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)),
198		    "Invalid virtual address, vaddr: 0x%lx", vaddr);
199	TEST_ASSERT((paddr % pg_size) == 0,
200		    "Physical address not aligned,\n"
201		    "  paddr: 0x%lx page size: 0x%lx", paddr, pg_size);
202	TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
203		    "Physical address beyond maximum supported,\n"
204		    "  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
205		    paddr, vm->max_gfn, vm->page_size);
206	TEST_ASSERT(vm_untag_gpa(vm, paddr) == paddr,
207		    "Unexpected bits in paddr: %lx", paddr);
208
209	/*
210	 * Allocate upper level page tables, if not already present.  Return
211	 * early if a hugepage was created.
212	 */
213	pml4e = virt_create_upper_pte(vm, &vm->pgd, vaddr, paddr, PG_LEVEL_512G, level);
214	if (*pml4e & PTE_LARGE_MASK)
215		return;
216
217	pdpe = virt_create_upper_pte(vm, pml4e, vaddr, paddr, PG_LEVEL_1G, level);
218	if (*pdpe & PTE_LARGE_MASK)
219		return;
220
221	pde = virt_create_upper_pte(vm, pdpe, vaddr, paddr, PG_LEVEL_2M, level);
222	if (*pde & PTE_LARGE_MASK)
223		return;
224
225	/* Fill in page table entry. */
226	pte = virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K);
227	TEST_ASSERT(!(*pte & PTE_PRESENT_MASK),
228		    "PTE already present for 4k page at vaddr: 0x%lx", vaddr);
229	*pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK | (paddr & PHYSICAL_PAGE_MASK);
230
231	/*
232	 * Neither SEV nor TDX supports shared page tables, so only the final
233	 * leaf PTE needs manually set the C/S-bit.
234	 */
235	if (vm_is_gpa_protected(vm, paddr))
236		*pte |= vm->arch.c_bit;
237	else
238		*pte |= vm->arch.s_bit;
239}
240
241void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
242{
243	__virt_pg_map(vm, vaddr, paddr, PG_LEVEL_4K);
244}
245
246void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
247		    uint64_t nr_bytes, int level)
248{
249	uint64_t pg_size = PG_LEVEL_SIZE(level);
250	uint64_t nr_pages = nr_bytes / pg_size;
251	int i;
252
253	TEST_ASSERT(nr_bytes % pg_size == 0,
254		    "Region size not aligned: nr_bytes: 0x%lx, page size: 0x%lx",
255		    nr_bytes, pg_size);
256
257	for (i = 0; i < nr_pages; i++) {
258		__virt_pg_map(vm, vaddr, paddr, level);
259
260		vaddr += pg_size;
261		paddr += pg_size;
262	}
263}
264
265static bool vm_is_target_pte(uint64_t *pte, int *level, int current_level)
266{
267	if (*pte & PTE_LARGE_MASK) {
268		TEST_ASSERT(*level == PG_LEVEL_NONE ||
269			    *level == current_level,
270			    "Unexpected hugepage at level %d", current_level);
271		*level = current_level;
272	}
273
274	return *level == current_level;
275}
276
277uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
278				    int *level)
279{
280	uint64_t *pml4e, *pdpe, *pde;
281
282	TEST_ASSERT(!vm->arch.is_pt_protected,
283		    "Walking page tables of protected guests is impossible");
284
285	TEST_ASSERT(*level >= PG_LEVEL_NONE && *level < PG_LEVEL_NUM,
286		    "Invalid PG_LEVEL_* '%d'", *level);
287
288	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
289		"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
290	TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
291		(vaddr >> vm->page_shift)),
292		"Invalid virtual address, vaddr: 0x%lx",
293		vaddr);
294	/*
295	 * Based on the mode check above there are 48 bits in the vaddr, so
296	 * shift 16 to sign extend the last bit (bit-47),
297	 */
298	TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16),
299		"Canonical check failed.  The virtual address is invalid.");
300
301	pml4e = virt_get_pte(vm, &vm->pgd, vaddr, PG_LEVEL_512G);
302	if (vm_is_target_pte(pml4e, level, PG_LEVEL_512G))
303		return pml4e;
304
305	pdpe = virt_get_pte(vm, pml4e, vaddr, PG_LEVEL_1G);
306	if (vm_is_target_pte(pdpe, level, PG_LEVEL_1G))
307		return pdpe;
308
309	pde = virt_get_pte(vm, pdpe, vaddr, PG_LEVEL_2M);
310	if (vm_is_target_pte(pde, level, PG_LEVEL_2M))
311		return pde;
312
313	return virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K);
314}
315
316uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr)
317{
318	int level = PG_LEVEL_4K;
319
320	return __vm_get_page_table_entry(vm, vaddr, &level);
321}
322
323void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
324{
325	uint64_t *pml4e, *pml4e_start;
326	uint64_t *pdpe, *pdpe_start;
327	uint64_t *pde, *pde_start;
328	uint64_t *pte, *pte_start;
329
330	if (!vm->pgd_created)
331		return;
332
333	fprintf(stream, "%*s                                          "
334		"                no\n", indent, "");
335	fprintf(stream, "%*s      index hvaddr         gpaddr         "
336		"addr         w exec dirty\n",
337		indent, "");
338	pml4e_start = (uint64_t *) addr_gpa2hva(vm, vm->pgd);
339	for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
340		pml4e = &pml4e_start[n1];
341		if (!(*pml4e & PTE_PRESENT_MASK))
342			continue;
343		fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10llx %u "
344			" %u\n",
345			indent, "",
346			pml4e - pml4e_start, pml4e,
347			addr_hva2gpa(vm, pml4e), PTE_GET_PFN(*pml4e),
348			!!(*pml4e & PTE_WRITABLE_MASK), !!(*pml4e & PTE_NX_MASK));
349
350		pdpe_start = addr_gpa2hva(vm, *pml4e & PHYSICAL_PAGE_MASK);
351		for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
352			pdpe = &pdpe_start[n2];
353			if (!(*pdpe & PTE_PRESENT_MASK))
354				continue;
355			fprintf(stream, "%*spdpe  0x%-3zx %p 0x%-12lx 0x%-10llx "
356				"%u  %u\n",
357				indent, "",
358				pdpe - pdpe_start, pdpe,
359				addr_hva2gpa(vm, pdpe),
360				PTE_GET_PFN(*pdpe), !!(*pdpe & PTE_WRITABLE_MASK),
361				!!(*pdpe & PTE_NX_MASK));
362
363			pde_start = addr_gpa2hva(vm, *pdpe & PHYSICAL_PAGE_MASK);
364			for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
365				pde = &pde_start[n3];
366				if (!(*pde & PTE_PRESENT_MASK))
367					continue;
368				fprintf(stream, "%*spde   0x%-3zx %p "
369					"0x%-12lx 0x%-10llx %u  %u\n",
370					indent, "", pde - pde_start, pde,
371					addr_hva2gpa(vm, pde),
372					PTE_GET_PFN(*pde), !!(*pde & PTE_WRITABLE_MASK),
373					!!(*pde & PTE_NX_MASK));
374
375				pte_start = addr_gpa2hva(vm, *pde & PHYSICAL_PAGE_MASK);
376				for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
377					pte = &pte_start[n4];
378					if (!(*pte & PTE_PRESENT_MASK))
379						continue;
380					fprintf(stream, "%*spte   0x%-3zx %p "
381						"0x%-12lx 0x%-10llx %u  %u "
382						"    %u    0x%-10lx\n",
383						indent, "",
384						pte - pte_start, pte,
385						addr_hva2gpa(vm, pte),
386						PTE_GET_PFN(*pte),
387						!!(*pte & PTE_WRITABLE_MASK),
388						!!(*pte & PTE_NX_MASK),
389						!!(*pte & PTE_DIRTY_MASK),
390						((uint64_t) n1 << 27)
391							| ((uint64_t) n2 << 18)
392							| ((uint64_t) n3 << 9)
393							| ((uint64_t) n4));
394				}
395			}
396		}
397	}
398}
399
400/*
401 * Set Unusable Segment
402 *
403 * Input Args: None
404 *
405 * Output Args:
406 *   segp - Pointer to segment register
407 *
408 * Return: None
409 *
410 * Sets the segment register pointed to by @segp to an unusable state.
411 */
412static void kvm_seg_set_unusable(struct kvm_segment *segp)
413{
414	memset(segp, 0, sizeof(*segp));
415	segp->unusable = true;
416}
417
418static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
419{
420	void *gdt = addr_gva2hva(vm, vm->gdt);
421	struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
422
423	desc->limit0 = segp->limit & 0xFFFF;
424	desc->base0 = segp->base & 0xFFFF;
425	desc->base1 = segp->base >> 16;
426	desc->type = segp->type;
427	desc->s = segp->s;
428	desc->dpl = segp->dpl;
429	desc->p = segp->present;
430	desc->limit1 = segp->limit >> 16;
431	desc->avl = segp->avl;
432	desc->l = segp->l;
433	desc->db = segp->db;
434	desc->g = segp->g;
435	desc->base2 = segp->base >> 24;
436	if (!segp->s)
437		desc->base3 = segp->base >> 32;
438}
439
440
441/*
442 * Set Long Mode Flat Kernel Code Segment
443 *
444 * Input Args:
445 *   vm - VM whose GDT is being filled, or NULL to only write segp
446 *   selector - selector value
447 *
448 * Output Args:
449 *   segp - Pointer to KVM segment
450 *
451 * Return: None
452 *
453 * Sets up the KVM segment pointed to by @segp, to be a code segment
454 * with the selector value given by @selector.
455 */
456static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector,
457	struct kvm_segment *segp)
458{
459	memset(segp, 0, sizeof(*segp));
460	segp->selector = selector;
461	segp->limit = 0xFFFFFFFFu;
462	segp->s = 0x1; /* kTypeCodeData */
463	segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
464					  * | kFlagCodeReadable
465					  */
466	segp->g = true;
467	segp->l = true;
468	segp->present = 1;
469	if (vm)
470		kvm_seg_fill_gdt_64bit(vm, segp);
471}
472
473/*
474 * Set Long Mode Flat Kernel Data Segment
475 *
476 * Input Args:
477 *   vm - VM whose GDT is being filled, or NULL to only write segp
478 *   selector - selector value
479 *
480 * Output Args:
481 *   segp - Pointer to KVM segment
482 *
483 * Return: None
484 *
485 * Sets up the KVM segment pointed to by @segp, to be a data segment
486 * with the selector value given by @selector.
487 */
488static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector,
489	struct kvm_segment *segp)
490{
491	memset(segp, 0, sizeof(*segp));
492	segp->selector = selector;
493	segp->limit = 0xFFFFFFFFu;
494	segp->s = 0x1; /* kTypeCodeData */
495	segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
496					  * | kFlagDataWritable
497					  */
498	segp->g = true;
499	segp->present = true;
500	if (vm)
501		kvm_seg_fill_gdt_64bit(vm, segp);
502}
503
504vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
505{
506	int level = PG_LEVEL_NONE;
507	uint64_t *pte = __vm_get_page_table_entry(vm, gva, &level);
508
509	TEST_ASSERT(*pte & PTE_PRESENT_MASK,
510		    "Leaf PTE not PRESENT for gva: 0x%08lx", gva);
511
512	/*
513	 * No need for a hugepage mask on the PTE, x86-64 requires the "unused"
514	 * address bits to be zero.
515	 */
516	return vm_untag_gpa(vm, PTE_GET_PA(*pte)) | (gva & ~HUGEPAGE_MASK(level));
517}
518
519static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt)
520{
521	if (!vm->gdt)
522		vm->gdt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
523
524	dt->base = vm->gdt;
525	dt->limit = getpagesize();
526}
527
528static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp,
529				int selector)
530{
531	if (!vm->tss)
532		vm->tss = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
533
534	memset(segp, 0, sizeof(*segp));
535	segp->base = vm->tss;
536	segp->limit = 0x67;
537	segp->selector = selector;
538	segp->type = 0xb;
539	segp->present = 1;
540	kvm_seg_fill_gdt_64bit(vm, segp);
541}
542
543static void vcpu_setup(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
544{
545	struct kvm_sregs sregs;
546
547	/* Set mode specific system register values. */
548	vcpu_sregs_get(vcpu, &sregs);
549
550	sregs.idt.limit = 0;
551
552	kvm_setup_gdt(vm, &sregs.gdt);
553
554	switch (vm->mode) {
555	case VM_MODE_PXXV48_4K:
556		sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
557		sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
558		sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
559
560		kvm_seg_set_unusable(&sregs.ldt);
561		kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs);
562		kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds);
563		kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es);
564		kvm_setup_tss_64bit(vm, &sregs.tr, 0x18);
565		break;
566
567	default:
568		TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
569	}
570
571	sregs.cr3 = vm->pgd;
572	vcpu_sregs_set(vcpu, &sregs);
573}
574
575void kvm_arch_vm_post_create(struct kvm_vm *vm)
576{
577	vm_create_irqchip(vm);
578	sync_global_to_guest(vm, host_cpu_is_intel);
579	sync_global_to_guest(vm, host_cpu_is_amd);
580
581	if (vm->subtype == VM_SUBTYPE_SEV)
582		sev_vm_init(vm);
583	else if (vm->subtype == VM_SUBTYPE_SEV_ES)
584		sev_es_vm_init(vm);
585}
586
587void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code)
588{
589	struct kvm_regs regs;
590
591	vcpu_regs_get(vcpu, &regs);
592	regs.rip = (unsigned long) guest_code;
593	vcpu_regs_set(vcpu, &regs);
594}
595
596struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
597{
598	struct kvm_mp_state mp_state;
599	struct kvm_regs regs;
600	vm_vaddr_t stack_vaddr;
601	struct kvm_vcpu *vcpu;
602
603	stack_vaddr = __vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
604				       DEFAULT_GUEST_STACK_VADDR_MIN,
605				       MEM_REGION_DATA);
606
607	stack_vaddr += DEFAULT_STACK_PGS * getpagesize();
608
609	/*
610	 * Align stack to match calling sequence requirements in section "The
611	 * Stack Frame" of the System V ABI AMD64 Architecture Processor
612	 * Supplement, which requires the value (%rsp + 8) to be a multiple of
613	 * 16 when control is transferred to the function entry point.
614	 *
615	 * If this code is ever used to launch a vCPU with 32-bit entry point it
616	 * may need to subtract 4 bytes instead of 8 bytes.
617	 */
618	TEST_ASSERT(IS_ALIGNED(stack_vaddr, PAGE_SIZE),
619		    "__vm_vaddr_alloc() did not provide a page-aligned address");
620	stack_vaddr -= 8;
621
622	vcpu = __vm_vcpu_add(vm, vcpu_id);
623	vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
624	vcpu_setup(vm, vcpu);
625
626	/* Setup guest general purpose registers */
627	vcpu_regs_get(vcpu, &regs);
628	regs.rflags = regs.rflags | 0x2;
629	regs.rsp = stack_vaddr;
630	vcpu_regs_set(vcpu, &regs);
631
632	/* Setup the MP state */
633	mp_state.mp_state = 0;
634	vcpu_mp_state_set(vcpu, &mp_state);
635
636	return vcpu;
637}
638
639struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id)
640{
641	struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id);
642
643	vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
644
645	return vcpu;
646}
647
648void vcpu_arch_free(struct kvm_vcpu *vcpu)
649{
650	if (vcpu->cpuid)
651		free(vcpu->cpuid);
652}
653
654/* Do not use kvm_supported_cpuid directly except for validity checks. */
655static void *kvm_supported_cpuid;
656
657const struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
658{
659	int kvm_fd;
660
661	if (kvm_supported_cpuid)
662		return kvm_supported_cpuid;
663
664	kvm_supported_cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
665	kvm_fd = open_kvm_dev_path_or_exit();
666
667	kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID,
668		  (struct kvm_cpuid2 *)kvm_supported_cpuid);
669
670	close(kvm_fd);
671	return kvm_supported_cpuid;
672}
673
674static uint32_t __kvm_cpu_has(const struct kvm_cpuid2 *cpuid,
675			      uint32_t function, uint32_t index,
676			      uint8_t reg, uint8_t lo, uint8_t hi)
677{
678	const struct kvm_cpuid_entry2 *entry;
679	int i;
680
681	for (i = 0; i < cpuid->nent; i++) {
682		entry = &cpuid->entries[i];
683
684		/*
685		 * The output registers in kvm_cpuid_entry2 are in alphabetical
686		 * order, but kvm_x86_cpu_feature matches that mess, so yay
687		 * pointer shenanigans!
688		 */
689		if (entry->function == function && entry->index == index)
690			return ((&entry->eax)[reg] & GENMASK(hi, lo)) >> lo;
691	}
692
693	return 0;
694}
695
696bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
697		   struct kvm_x86_cpu_feature feature)
698{
699	return __kvm_cpu_has(cpuid, feature.function, feature.index,
700			     feature.reg, feature.bit, feature.bit);
701}
702
703uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
704			    struct kvm_x86_cpu_property property)
705{
706	return __kvm_cpu_has(cpuid, property.function, property.index,
707			     property.reg, property.lo_bit, property.hi_bit);
708}
709
710uint64_t kvm_get_feature_msr(uint64_t msr_index)
711{
712	struct {
713		struct kvm_msrs header;
714		struct kvm_msr_entry entry;
715	} buffer = {};
716	int r, kvm_fd;
717
718	buffer.header.nmsrs = 1;
719	buffer.entry.index = msr_index;
720	kvm_fd = open_kvm_dev_path_or_exit();
721
722	r = __kvm_ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header);
723	TEST_ASSERT(r == 1, KVM_IOCTL_ERROR(KVM_GET_MSRS, r));
724
725	close(kvm_fd);
726	return buffer.entry.data;
727}
728
729void __vm_xsave_require_permission(uint64_t xfeature, const char *name)
730{
731	int kvm_fd;
732	u64 bitmask;
733	long rc;
734	struct kvm_device_attr attr = {
735		.group = 0,
736		.attr = KVM_X86_XCOMP_GUEST_SUPP,
737		.addr = (unsigned long) &bitmask,
738	};
739
740	TEST_ASSERT(!kvm_supported_cpuid,
741		    "kvm_get_supported_cpuid() cannot be used before ARCH_REQ_XCOMP_GUEST_PERM");
742
743	TEST_ASSERT(is_power_of_2(xfeature),
744		    "Dynamic XFeatures must be enabled one at a time");
745
746	kvm_fd = open_kvm_dev_path_or_exit();
747	rc = __kvm_ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr);
748	close(kvm_fd);
749
750	if (rc == -1 && (errno == ENXIO || errno == EINVAL))
751		__TEST_REQUIRE(0, "KVM_X86_XCOMP_GUEST_SUPP not supported");
752
753	TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc);
754
755	__TEST_REQUIRE(bitmask & xfeature,
756		       "Required XSAVE feature '%s' not supported", name);
757
758	TEST_REQUIRE(!syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, ilog2(xfeature)));
759
760	rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask);
761	TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc);
762	TEST_ASSERT(bitmask & xfeature,
763		    "'%s' (0x%lx) not permitted after prctl(ARCH_REQ_XCOMP_GUEST_PERM) permitted=0x%lx",
764		    name, xfeature, bitmask);
765}
766
767void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid)
768{
769	TEST_ASSERT(cpuid != vcpu->cpuid, "@cpuid can't be the vCPU's CPUID");
770
771	/* Allow overriding the default CPUID. */
772	if (vcpu->cpuid && vcpu->cpuid->nent < cpuid->nent) {
773		free(vcpu->cpuid);
774		vcpu->cpuid = NULL;
775	}
776
777	if (!vcpu->cpuid)
778		vcpu->cpuid = allocate_kvm_cpuid2(cpuid->nent);
779
780	memcpy(vcpu->cpuid, cpuid, kvm_cpuid2_size(cpuid->nent));
781	vcpu_set_cpuid(vcpu);
782}
783
784void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu,
785			     struct kvm_x86_cpu_property property,
786			     uint32_t value)
787{
788	struct kvm_cpuid_entry2 *entry;
789
790	entry = __vcpu_get_cpuid_entry(vcpu, property.function, property.index);
791
792	(&entry->eax)[property.reg] &= ~GENMASK(property.hi_bit, property.lo_bit);
793	(&entry->eax)[property.reg] |= value << property.lo_bit;
794
795	vcpu_set_cpuid(vcpu);
796
797	/* Sanity check that @value doesn't exceed the bounds in any way. */
798	TEST_ASSERT_EQ(kvm_cpuid_property(vcpu->cpuid, property), value);
799}
800
801void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function)
802{
803	struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, function);
804
805	entry->eax = 0;
806	entry->ebx = 0;
807	entry->ecx = 0;
808	entry->edx = 0;
809	vcpu_set_cpuid(vcpu);
810}
811
812void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
813				     struct kvm_x86_cpu_feature feature,
814				     bool set)
815{
816	struct kvm_cpuid_entry2 *entry;
817	u32 *reg;
818
819	entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
820	reg = (&entry->eax) + feature.reg;
821
822	if (set)
823		*reg |= BIT(feature.bit);
824	else
825		*reg &= ~BIT(feature.bit);
826
827	vcpu_set_cpuid(vcpu);
828}
829
830uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index)
831{
832	struct {
833		struct kvm_msrs header;
834		struct kvm_msr_entry entry;
835	} buffer = {};
836
837	buffer.header.nmsrs = 1;
838	buffer.entry.index = msr_index;
839
840	vcpu_msrs_get(vcpu, &buffer.header);
841
842	return buffer.entry.data;
843}
844
845int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value)
846{
847	struct {
848		struct kvm_msrs header;
849		struct kvm_msr_entry entry;
850	} buffer = {};
851
852	memset(&buffer, 0, sizeof(buffer));
853	buffer.header.nmsrs = 1;
854	buffer.entry.index = msr_index;
855	buffer.entry.data = msr_value;
856
857	return __vcpu_ioctl(vcpu, KVM_SET_MSRS, &buffer.header);
858}
859
860void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
861{
862	va_list ap;
863	struct kvm_regs regs;
864
865	TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
866		    "  num: %u",
867		    num);
868
869	va_start(ap, num);
870	vcpu_regs_get(vcpu, &regs);
871
872	if (num >= 1)
873		regs.rdi = va_arg(ap, uint64_t);
874
875	if (num >= 2)
876		regs.rsi = va_arg(ap, uint64_t);
877
878	if (num >= 3)
879		regs.rdx = va_arg(ap, uint64_t);
880
881	if (num >= 4)
882		regs.rcx = va_arg(ap, uint64_t);
883
884	if (num >= 5)
885		regs.r8 = va_arg(ap, uint64_t);
886
887	if (num >= 6)
888		regs.r9 = va_arg(ap, uint64_t);
889
890	vcpu_regs_set(vcpu, &regs);
891	va_end(ap);
892}
893
894void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
895{
896	struct kvm_regs regs;
897	struct kvm_sregs sregs;
898
899	fprintf(stream, "%*svCPU ID: %u\n", indent, "", vcpu->id);
900
901	fprintf(stream, "%*sregs:\n", indent + 2, "");
902	vcpu_regs_get(vcpu, &regs);
903	regs_dump(stream, &regs, indent + 4);
904
905	fprintf(stream, "%*ssregs:\n", indent + 2, "");
906	vcpu_sregs_get(vcpu, &sregs);
907	sregs_dump(stream, &sregs, indent + 4);
908}
909
910static struct kvm_msr_list *__kvm_get_msr_index_list(bool feature_msrs)
911{
912	struct kvm_msr_list *list;
913	struct kvm_msr_list nmsrs;
914	int kvm_fd, r;
915
916	kvm_fd = open_kvm_dev_path_or_exit();
917
918	nmsrs.nmsrs = 0;
919	if (!feature_msrs)
920		r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
921	else
922		r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, &nmsrs);
923
924	TEST_ASSERT(r == -1 && errno == E2BIG,
925		    "Expected -E2BIG, got rc: %i errno: %i (%s)",
926		    r, errno, strerror(errno));
927
928	list = malloc(sizeof(*list) + nmsrs.nmsrs * sizeof(list->indices[0]));
929	TEST_ASSERT(list, "-ENOMEM when allocating MSR index list");
930	list->nmsrs = nmsrs.nmsrs;
931
932	if (!feature_msrs)
933		kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
934	else
935		kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, list);
936	close(kvm_fd);
937
938	TEST_ASSERT(list->nmsrs == nmsrs.nmsrs,
939		    "Number of MSRs in list changed, was %d, now %d",
940		    nmsrs.nmsrs, list->nmsrs);
941	return list;
942}
943
944const struct kvm_msr_list *kvm_get_msr_index_list(void)
945{
946	static const struct kvm_msr_list *list;
947
948	if (!list)
949		list = __kvm_get_msr_index_list(false);
950	return list;
951}
952
953
954const struct kvm_msr_list *kvm_get_feature_msr_index_list(void)
955{
956	static const struct kvm_msr_list *list;
957
958	if (!list)
959		list = __kvm_get_msr_index_list(true);
960	return list;
961}
962
963bool kvm_msr_is_in_save_restore_list(uint32_t msr_index)
964{
965	const struct kvm_msr_list *list = kvm_get_msr_index_list();
966	int i;
967
968	for (i = 0; i < list->nmsrs; ++i) {
969		if (list->indices[i] == msr_index)
970			return true;
971	}
972
973	return false;
974}
975
976static void vcpu_save_xsave_state(struct kvm_vcpu *vcpu,
977				  struct kvm_x86_state *state)
978{
979	int size = vm_check_cap(vcpu->vm, KVM_CAP_XSAVE2);
980
981	if (size) {
982		state->xsave = malloc(size);
983		vcpu_xsave2_get(vcpu, state->xsave);
984	} else {
985		state->xsave = malloc(sizeof(struct kvm_xsave));
986		vcpu_xsave_get(vcpu, state->xsave);
987	}
988}
989
990struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu)
991{
992	const struct kvm_msr_list *msr_list = kvm_get_msr_index_list();
993	struct kvm_x86_state *state;
994	int i;
995
996	static int nested_size = -1;
997
998	if (nested_size == -1) {
999		nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
1000		TEST_ASSERT(nested_size <= sizeof(state->nested_),
1001			    "Nested state size too big, %i > %zi",
1002			    nested_size, sizeof(state->nested_));
1003	}
1004
1005	/*
1006	 * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
1007	 * guest state is consistent only after userspace re-enters the
1008	 * kernel with KVM_RUN.  Complete IO prior to migrating state
1009	 * to a new VM.
1010	 */
1011	vcpu_run_complete_io(vcpu);
1012
1013	state = malloc(sizeof(*state) + msr_list->nmsrs * sizeof(state->msrs.entries[0]));
1014	TEST_ASSERT(state, "-ENOMEM when allocating kvm state");
1015
1016	vcpu_events_get(vcpu, &state->events);
1017	vcpu_mp_state_get(vcpu, &state->mp_state);
1018	vcpu_regs_get(vcpu, &state->regs);
1019	vcpu_save_xsave_state(vcpu, state);
1020
1021	if (kvm_has_cap(KVM_CAP_XCRS))
1022		vcpu_xcrs_get(vcpu, &state->xcrs);
1023
1024	vcpu_sregs_get(vcpu, &state->sregs);
1025
1026	if (nested_size) {
1027		state->nested.size = sizeof(state->nested_);
1028
1029		vcpu_nested_state_get(vcpu, &state->nested);
1030		TEST_ASSERT(state->nested.size <= nested_size,
1031			    "Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
1032			    state->nested.size, nested_size);
1033	} else {
1034		state->nested.size = 0;
1035	}
1036
1037	state->msrs.nmsrs = msr_list->nmsrs;
1038	for (i = 0; i < msr_list->nmsrs; i++)
1039		state->msrs.entries[i].index = msr_list->indices[i];
1040	vcpu_msrs_get(vcpu, &state->msrs);
1041
1042	vcpu_debugregs_get(vcpu, &state->debugregs);
1043
1044	return state;
1045}
1046
1047void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state)
1048{
1049	vcpu_sregs_set(vcpu, &state->sregs);
1050	vcpu_msrs_set(vcpu, &state->msrs);
1051
1052	if (kvm_has_cap(KVM_CAP_XCRS))
1053		vcpu_xcrs_set(vcpu, &state->xcrs);
1054
1055	vcpu_xsave_set(vcpu,  state->xsave);
1056	vcpu_events_set(vcpu, &state->events);
1057	vcpu_mp_state_set(vcpu, &state->mp_state);
1058	vcpu_debugregs_set(vcpu, &state->debugregs);
1059	vcpu_regs_set(vcpu, &state->regs);
1060
1061	if (state->nested.size)
1062		vcpu_nested_state_set(vcpu, &state->nested);
1063}
1064
1065void kvm_x86_state_cleanup(struct kvm_x86_state *state)
1066{
1067	free(state->xsave);
1068	free(state);
1069}
1070
1071void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
1072{
1073	if (!kvm_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR)) {
1074		*pa_bits = kvm_cpu_has(X86_FEATURE_PAE) ? 36 : 32;
1075		*va_bits = 32;
1076	} else {
1077		*pa_bits = kvm_cpu_property(X86_PROPERTY_MAX_PHY_ADDR);
1078		*va_bits = kvm_cpu_property(X86_PROPERTY_MAX_VIRT_ADDR);
1079	}
1080}
1081
1082void kvm_init_vm_address_properties(struct kvm_vm *vm)
1083{
1084	if (vm->subtype == VM_SUBTYPE_SEV || vm->subtype == VM_SUBTYPE_SEV_ES) {
1085		vm->arch.c_bit = BIT_ULL(this_cpu_property(X86_PROPERTY_SEV_C_BIT));
1086		vm->gpa_tag_mask = vm->arch.c_bit;
1087	}
1088}
1089
1090static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr,
1091			  int dpl, unsigned short selector)
1092{
1093	struct idt_entry *base =
1094		(struct idt_entry *)addr_gva2hva(vm, vm->idt);
1095	struct idt_entry *e = &base[vector];
1096
1097	memset(e, 0, sizeof(*e));
1098	e->offset0 = addr;
1099	e->selector = selector;
1100	e->ist = 0;
1101	e->type = 14;
1102	e->dpl = dpl;
1103	e->p = 1;
1104	e->offset1 = addr >> 16;
1105	e->offset2 = addr >> 32;
1106}
1107
1108
1109static bool kvm_fixup_exception(struct ex_regs *regs)
1110{
1111	if (regs->r9 != KVM_EXCEPTION_MAGIC || regs->rip != regs->r10)
1112		return false;
1113
1114	if (regs->vector == DE_VECTOR)
1115		return false;
1116
1117	regs->rip = regs->r11;
1118	regs->r9 = regs->vector;
1119	regs->r10 = regs->error_code;
1120	return true;
1121}
1122
1123void route_exception(struct ex_regs *regs)
1124{
1125	typedef void(*handler)(struct ex_regs *);
1126	handler *handlers = (handler *)exception_handlers;
1127
1128	if (handlers && handlers[regs->vector]) {
1129		handlers[regs->vector](regs);
1130		return;
1131	}
1132
1133	if (kvm_fixup_exception(regs))
1134		return;
1135
1136	ucall_assert(UCALL_UNHANDLED,
1137		     "Unhandled exception in guest", __FILE__, __LINE__,
1138		     "Unhandled exception '0x%lx' at guest RIP '0x%lx'",
1139		     regs->vector, regs->rip);
1140}
1141
1142void vm_init_descriptor_tables(struct kvm_vm *vm)
1143{
1144	extern void *idt_handlers;
1145	int i;
1146
1147	vm->idt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
1148	vm->handlers = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
1149	/* Handlers have the same address in both address spaces.*/
1150	for (i = 0; i < NUM_INTERRUPTS; i++)
1151		set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0,
1152			DEFAULT_CODE_SELECTOR);
1153}
1154
1155void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu)
1156{
1157	struct kvm_vm *vm = vcpu->vm;
1158	struct kvm_sregs sregs;
1159
1160	vcpu_sregs_get(vcpu, &sregs);
1161	sregs.idt.base = vm->idt;
1162	sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1;
1163	sregs.gdt.base = vm->gdt;
1164	sregs.gdt.limit = getpagesize() - 1;
1165	kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs);
1166	vcpu_sregs_set(vcpu, &sregs);
1167	*(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
1168}
1169
1170void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1171			       void (*handler)(struct ex_regs *))
1172{
1173	vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers);
1174
1175	handlers[vector] = (vm_vaddr_t)handler;
1176}
1177
1178void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
1179{
1180	struct ucall uc;
1181
1182	if (get_ucall(vcpu, &uc) == UCALL_UNHANDLED)
1183		REPORT_GUEST_ASSERT(uc);
1184}
1185
1186const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
1187					       uint32_t function, uint32_t index)
1188{
1189	int i;
1190
1191	for (i = 0; i < cpuid->nent; i++) {
1192		if (cpuid->entries[i].function == function &&
1193		    cpuid->entries[i].index == index)
1194			return &cpuid->entries[i];
1195	}
1196
1197	TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index);
1198
1199	return NULL;
1200}
1201
1202#define X86_HYPERCALL(inputs...)					\
1203({									\
1204	uint64_t r;							\
1205									\
1206	asm volatile("test %[use_vmmcall], %[use_vmmcall]\n\t"		\
1207		     "jnz 1f\n\t"					\
1208		     "vmcall\n\t"					\
1209		     "jmp 2f\n\t"					\
1210		     "1: vmmcall\n\t"					\
1211		     "2:"						\
1212		     : "=a"(r)						\
1213		     : [use_vmmcall] "r" (host_cpu_is_amd), inputs);	\
1214									\
1215	r;								\
1216})
1217
1218uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1219		       uint64_t a3)
1220{
1221	return X86_HYPERCALL("a"(nr), "b"(a0), "c"(a1), "d"(a2), "S"(a3));
1222}
1223
1224uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1)
1225{
1226	return X86_HYPERCALL("a"(nr), "D"(a0), "S"(a1));
1227}
1228
1229void xen_hypercall(uint64_t nr, uint64_t a0, void *a1)
1230{
1231	GUEST_ASSERT(!__xen_hypercall(nr, a0, a1));
1232}
1233
1234const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void)
1235{
1236	static struct kvm_cpuid2 *cpuid;
1237	int kvm_fd;
1238
1239	if (cpuid)
1240		return cpuid;
1241
1242	cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
1243	kvm_fd = open_kvm_dev_path_or_exit();
1244
1245	kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1246
1247	close(kvm_fd);
1248	return cpuid;
1249}
1250
1251void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu)
1252{
1253	static struct kvm_cpuid2 *cpuid_full;
1254	const struct kvm_cpuid2 *cpuid_sys, *cpuid_hv;
1255	int i, nent = 0;
1256
1257	if (!cpuid_full) {
1258		cpuid_sys = kvm_get_supported_cpuid();
1259		cpuid_hv = kvm_get_supported_hv_cpuid();
1260
1261		cpuid_full = allocate_kvm_cpuid2(cpuid_sys->nent + cpuid_hv->nent);
1262		if (!cpuid_full) {
1263			perror("malloc");
1264			abort();
1265		}
1266
1267		/* Need to skip KVM CPUID leaves 0x400000xx */
1268		for (i = 0; i < cpuid_sys->nent; i++) {
1269			if (cpuid_sys->entries[i].function >= 0x40000000 &&
1270			    cpuid_sys->entries[i].function < 0x40000100)
1271				continue;
1272			cpuid_full->entries[nent] = cpuid_sys->entries[i];
1273			nent++;
1274		}
1275
1276		memcpy(&cpuid_full->entries[nent], cpuid_hv->entries,
1277		       cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2));
1278		cpuid_full->nent = nent + cpuid_hv->nent;
1279	}
1280
1281	vcpu_init_cpuid(vcpu, cpuid_full);
1282}
1283
1284const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu)
1285{
1286	struct kvm_cpuid2 *cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
1287
1288	vcpu_ioctl(vcpu, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1289
1290	return cpuid;
1291}
1292
1293unsigned long vm_compute_max_gfn(struct kvm_vm *vm)
1294{
1295	const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */
1296	unsigned long ht_gfn, max_gfn, max_pfn;
1297	uint8_t maxphyaddr;
1298
1299	max_gfn = (1ULL << (vm->pa_bits - vm->page_shift)) - 1;
1300
1301	/* Avoid reserved HyperTransport region on AMD processors.  */
1302	if (!host_cpu_is_amd)
1303		return max_gfn;
1304
1305	/* On parts with <40 physical address bits, the area is fully hidden */
1306	if (vm->pa_bits < 40)
1307		return max_gfn;
1308
1309	/* Before family 17h, the HyperTransport area is just below 1T.  */
1310	ht_gfn = (1 << 28) - num_ht_pages;
1311	if (this_cpu_family() < 0x17)
1312		goto done;
1313
1314	/*
1315	 * Otherwise it's at the top of the physical address space, possibly
1316	 * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX.  Use
1317	 * the old conservative value if MAXPHYADDR is not enumerated.
1318	 */
1319	if (!this_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR))
1320		goto done;
1321
1322	maxphyaddr = this_cpu_property(X86_PROPERTY_MAX_PHY_ADDR);
1323	max_pfn = (1ULL << (maxphyaddr - vm->page_shift)) - 1;
1324
1325	if (this_cpu_has_p(X86_PROPERTY_PHYS_ADDR_REDUCTION))
1326		max_pfn >>= this_cpu_property(X86_PROPERTY_PHYS_ADDR_REDUCTION);
1327
1328	ht_gfn = max_pfn - num_ht_pages;
1329done:
1330	return min(max_gfn, ht_gfn - 1);
1331}
1332
1333/* Returns true if kvm_intel was loaded with unrestricted_guest=1. */
1334bool vm_is_unrestricted_guest(struct kvm_vm *vm)
1335{
1336	/* Ensure that a KVM vendor-specific module is loaded. */
1337	if (vm == NULL)
1338		close(open_kvm_dev_path_or_exit());
1339
1340	return get_kvm_intel_param_bool("unrestricted_guest");
1341}
1342
1343void kvm_selftest_arch_init(void)
1344{
1345	host_cpu_is_intel = this_cpu_is_intel();
1346	host_cpu_is_amd = this_cpu_is_amd();
1347}
1348
1349bool sys_clocksource_is_based_on_tsc(void)
1350{
1351	char *clk_name = sys_get_cur_clocksource();
1352	bool ret = !strcmp(clk_name, "tsc\n") ||
1353		   !strcmp(clk_name, "hyperv_clocksource_tsc_page\n");
1354
1355	free(clk_name);
1356
1357	return ret;
1358}
1359