1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * tools/testing/selftests/kvm/lib/kvm_util.c
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7
8#define _GNU_SOURCE /* for program_invocation_name */
9#include "test_util.h"
10#include "kvm_util.h"
11#include "processor.h"
12
13#include <assert.h>
14#include <sched.h>
15#include <sys/mman.h>
16#include <sys/types.h>
17#include <sys/stat.h>
18#include <unistd.h>
19#include <linux/kernel.h>
20
21#define KVM_UTIL_MIN_PFN	2
22
23static int vcpu_mmap_sz(void);
24
25int open_path_or_exit(const char *path, int flags)
26{
27	int fd;
28
29	fd = open(path, flags);
30	__TEST_REQUIRE(fd >= 0 || errno != ENOENT, "Cannot open %s: %s", path, strerror(errno));
31	TEST_ASSERT(fd >= 0, "Failed to open '%s'", path);
32
33	return fd;
34}
35
36/*
37 * Open KVM_DEV_PATH if available, otherwise exit the entire program.
38 *
39 * Input Args:
40 *   flags - The flags to pass when opening KVM_DEV_PATH.
41 *
42 * Return:
43 *   The opened file descriptor of /dev/kvm.
44 */
45static int _open_kvm_dev_path_or_exit(int flags)
46{
47	return open_path_or_exit(KVM_DEV_PATH, flags);
48}
49
50int open_kvm_dev_path_or_exit(void)
51{
52	return _open_kvm_dev_path_or_exit(O_RDONLY);
53}
54
55static ssize_t get_module_param(const char *module_name, const char *param,
56				void *buffer, size_t buffer_size)
57{
58	const int path_size = 128;
59	char path[path_size];
60	ssize_t bytes_read;
61	int fd, r;
62
63	r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
64		     module_name, param);
65	TEST_ASSERT(r < path_size,
66		    "Failed to construct sysfs path in %d bytes.", path_size);
67
68	fd = open_path_or_exit(path, O_RDONLY);
69
70	bytes_read = read(fd, buffer, buffer_size);
71	TEST_ASSERT(bytes_read > 0, "read(%s) returned %ld, wanted %ld bytes",
72		    path, bytes_read, buffer_size);
73
74	r = close(fd);
75	TEST_ASSERT(!r, "close(%s) failed", path);
76	return bytes_read;
77}
78
79static int get_module_param_integer(const char *module_name, const char *param)
80{
81	/*
82	 * 16 bytes to hold a 64-bit value (1 byte per char), 1 byte for the
83	 * NUL char, and 1 byte because the kernel sucks and inserts a newline
84	 * at the end.
85	 */
86	char value[16 + 1 + 1];
87	ssize_t r;
88
89	memset(value, '\0', sizeof(value));
90
91	r = get_module_param(module_name, param, value, sizeof(value));
92	TEST_ASSERT(value[r - 1] == '\n',
93		    "Expected trailing newline, got char '%c'", value[r - 1]);
94
95	/*
96	 * Squash the newline, otherwise atoi_paranoid() will complain about
97	 * trailing non-NUL characters in the string.
98	 */
99	value[r - 1] = '\0';
100	return atoi_paranoid(value);
101}
102
103static bool get_module_param_bool(const char *module_name, const char *param)
104{
105	char value;
106	ssize_t r;
107
108	r = get_module_param(module_name, param, &value, sizeof(value));
109	TEST_ASSERT_EQ(r, 1);
110
111	if (value == 'Y')
112		return true;
113	else if (value == 'N')
114		return false;
115
116	TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
117}
118
119bool get_kvm_param_bool(const char *param)
120{
121	return get_module_param_bool("kvm", param);
122}
123
124bool get_kvm_intel_param_bool(const char *param)
125{
126	return get_module_param_bool("kvm_intel", param);
127}
128
129bool get_kvm_amd_param_bool(const char *param)
130{
131	return get_module_param_bool("kvm_amd", param);
132}
133
134int get_kvm_param_integer(const char *param)
135{
136	return get_module_param_integer("kvm", param);
137}
138
139int get_kvm_intel_param_integer(const char *param)
140{
141	return get_module_param_integer("kvm_intel", param);
142}
143
144int get_kvm_amd_param_integer(const char *param)
145{
146	return get_module_param_integer("kvm_amd", param);
147}
148
149/*
150 * Capability
151 *
152 * Input Args:
153 *   cap - Capability
154 *
155 * Output Args: None
156 *
157 * Return:
158 *   On success, the Value corresponding to the capability (KVM_CAP_*)
159 *   specified by the value of cap.  On failure a TEST_ASSERT failure
160 *   is produced.
161 *
162 * Looks up and returns the value corresponding to the capability
163 * (KVM_CAP_*) given by cap.
164 */
165unsigned int kvm_check_cap(long cap)
166{
167	int ret;
168	int kvm_fd;
169
170	kvm_fd = open_kvm_dev_path_or_exit();
171	ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
172	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
173
174	close(kvm_fd);
175
176	return (unsigned int)ret;
177}
178
179void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
180{
181	if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
182		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
183	else
184		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
185	vm->dirty_ring_size = ring_size;
186}
187
188static void vm_open(struct kvm_vm *vm)
189{
190	vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
191
192	TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
193
194	vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
195	TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
196}
197
198const char *vm_guest_mode_string(uint32_t i)
199{
200	static const char * const strings[] = {
201		[VM_MODE_P52V48_4K]	= "PA-bits:52,  VA-bits:48,  4K pages",
202		[VM_MODE_P52V48_16K]	= "PA-bits:52,  VA-bits:48, 16K pages",
203		[VM_MODE_P52V48_64K]	= "PA-bits:52,  VA-bits:48, 64K pages",
204		[VM_MODE_P48V48_4K]	= "PA-bits:48,  VA-bits:48,  4K pages",
205		[VM_MODE_P48V48_16K]	= "PA-bits:48,  VA-bits:48, 16K pages",
206		[VM_MODE_P48V48_64K]	= "PA-bits:48,  VA-bits:48, 64K pages",
207		[VM_MODE_P40V48_4K]	= "PA-bits:40,  VA-bits:48,  4K pages",
208		[VM_MODE_P40V48_16K]	= "PA-bits:40,  VA-bits:48, 16K pages",
209		[VM_MODE_P40V48_64K]	= "PA-bits:40,  VA-bits:48, 64K pages",
210		[VM_MODE_PXXV48_4K]	= "PA-bits:ANY, VA-bits:48,  4K pages",
211		[VM_MODE_P47V64_4K]	= "PA-bits:47,  VA-bits:64,  4K pages",
212		[VM_MODE_P44V64_4K]	= "PA-bits:44,  VA-bits:64,  4K pages",
213		[VM_MODE_P36V48_4K]	= "PA-bits:36,  VA-bits:48,  4K pages",
214		[VM_MODE_P36V48_16K]	= "PA-bits:36,  VA-bits:48, 16K pages",
215		[VM_MODE_P36V48_64K]	= "PA-bits:36,  VA-bits:48, 64K pages",
216		[VM_MODE_P36V47_16K]	= "PA-bits:36,  VA-bits:47, 16K pages",
217	};
218	_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
219		       "Missing new mode strings?");
220
221	TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
222
223	return strings[i];
224}
225
226const struct vm_guest_mode_params vm_guest_mode_params[] = {
227	[VM_MODE_P52V48_4K]	= { 52, 48,  0x1000, 12 },
228	[VM_MODE_P52V48_16K]	= { 52, 48,  0x4000, 14 },
229	[VM_MODE_P52V48_64K]	= { 52, 48, 0x10000, 16 },
230	[VM_MODE_P48V48_4K]	= { 48, 48,  0x1000, 12 },
231	[VM_MODE_P48V48_16K]	= { 48, 48,  0x4000, 14 },
232	[VM_MODE_P48V48_64K]	= { 48, 48, 0x10000, 16 },
233	[VM_MODE_P40V48_4K]	= { 40, 48,  0x1000, 12 },
234	[VM_MODE_P40V48_16K]	= { 40, 48,  0x4000, 14 },
235	[VM_MODE_P40V48_64K]	= { 40, 48, 0x10000, 16 },
236	[VM_MODE_PXXV48_4K]	= {  0,  0,  0x1000, 12 },
237	[VM_MODE_P47V64_4K]	= { 47, 64,  0x1000, 12 },
238	[VM_MODE_P44V64_4K]	= { 44, 64,  0x1000, 12 },
239	[VM_MODE_P36V48_4K]	= { 36, 48,  0x1000, 12 },
240	[VM_MODE_P36V48_16K]	= { 36, 48,  0x4000, 14 },
241	[VM_MODE_P36V48_64K]	= { 36, 48, 0x10000, 16 },
242	[VM_MODE_P36V47_16K]	= { 36, 47,  0x4000, 14 },
243};
244_Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
245	       "Missing new mode params?");
246
247/*
248 * Initializes vm->vpages_valid to match the canonical VA space of the
249 * architecture.
250 *
251 * The default implementation is valid for architectures which split the
252 * range addressed by a single page table into a low and high region
253 * based on the MSB of the VA. On architectures with this behavior
254 * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1].
255 */
256__weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
257{
258	sparsebit_set_num(vm->vpages_valid,
259		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
260	sparsebit_set_num(vm->vpages_valid,
261		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
262		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
263}
264
265struct kvm_vm *____vm_create(struct vm_shape shape)
266{
267	struct kvm_vm *vm;
268
269	vm = calloc(1, sizeof(*vm));
270	TEST_ASSERT(vm != NULL, "Insufficient Memory");
271
272	INIT_LIST_HEAD(&vm->vcpus);
273	vm->regions.gpa_tree = RB_ROOT;
274	vm->regions.hva_tree = RB_ROOT;
275	hash_init(vm->regions.slot_hash);
276
277	vm->mode = shape.mode;
278	vm->type = shape.type;
279	vm->subtype = shape.subtype;
280
281	vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits;
282	vm->va_bits = vm_guest_mode_params[vm->mode].va_bits;
283	vm->page_size = vm_guest_mode_params[vm->mode].page_size;
284	vm->page_shift = vm_guest_mode_params[vm->mode].page_shift;
285
286	/* Setup mode specific traits. */
287	switch (vm->mode) {
288	case VM_MODE_P52V48_4K:
289		vm->pgtable_levels = 4;
290		break;
291	case VM_MODE_P52V48_64K:
292		vm->pgtable_levels = 3;
293		break;
294	case VM_MODE_P48V48_4K:
295		vm->pgtable_levels = 4;
296		break;
297	case VM_MODE_P48V48_64K:
298		vm->pgtable_levels = 3;
299		break;
300	case VM_MODE_P40V48_4K:
301	case VM_MODE_P36V48_4K:
302		vm->pgtable_levels = 4;
303		break;
304	case VM_MODE_P40V48_64K:
305	case VM_MODE_P36V48_64K:
306		vm->pgtable_levels = 3;
307		break;
308	case VM_MODE_P52V48_16K:
309	case VM_MODE_P48V48_16K:
310	case VM_MODE_P40V48_16K:
311	case VM_MODE_P36V48_16K:
312		vm->pgtable_levels = 4;
313		break;
314	case VM_MODE_P36V47_16K:
315		vm->pgtable_levels = 3;
316		break;
317	case VM_MODE_PXXV48_4K:
318#ifdef __x86_64__
319		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
320		kvm_init_vm_address_properties(vm);
321		/*
322		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
323		 * it doesn't take effect unless a CR4.LA57 is set, which it
324		 * isn't for this mode (48-bit virtual address space).
325		 */
326		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
327			    "Linear address width (%d bits) not supported",
328			    vm->va_bits);
329		pr_debug("Guest physical address width detected: %d\n",
330			 vm->pa_bits);
331		vm->pgtable_levels = 4;
332		vm->va_bits = 48;
333#else
334		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
335#endif
336		break;
337	case VM_MODE_P47V64_4K:
338		vm->pgtable_levels = 5;
339		break;
340	case VM_MODE_P44V64_4K:
341		vm->pgtable_levels = 5;
342		break;
343	default:
344		TEST_FAIL("Unknown guest mode: 0x%x", vm->mode);
345	}
346
347#ifdef __aarch64__
348	TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types");
349	if (vm->pa_bits != 40)
350		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
351#endif
352
353	vm_open(vm);
354
355	/* Limit to VA-bit canonical virtual addresses. */
356	vm->vpages_valid = sparsebit_alloc();
357	vm_vaddr_populate_bitmap(vm);
358
359	/* Limit physical addresses to PA-bits. */
360	vm->max_gfn = vm_compute_max_gfn(vm);
361
362	/* Allocate and setup memory for guest. */
363	vm->vpages_mapped = sparsebit_alloc();
364
365	return vm;
366}
367
368static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
369				     uint32_t nr_runnable_vcpus,
370				     uint64_t extra_mem_pages)
371{
372	uint64_t page_size = vm_guest_mode_params[mode].page_size;
373	uint64_t nr_pages;
374
375	TEST_ASSERT(nr_runnable_vcpus,
376		    "Use vm_create_barebones() for VMs that _never_ have vCPUs");
377
378	TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
379		    "nr_vcpus = %d too large for host, max-vcpus = %d",
380		    nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
381
382	/*
383	 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
384	 * test code and other per-VM assets that will be loaded into memslot0.
385	 */
386	nr_pages = 512;
387
388	/* Account for the per-vCPU stacks on behalf of the test. */
389	nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
390
391	/*
392	 * Account for the number of pages needed for the page tables.  The
393	 * maximum page table size for a memory region will be when the
394	 * smallest page size is used. Considering each page contains x page
395	 * table descriptors, the total extra size for page tables (for extra
396	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
397	 * than N/x*2.
398	 */
399	nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
400
401	/* Account for the number of pages needed by ucall. */
402	nr_pages += ucall_nr_pages_required(page_size);
403
404	return vm_adjust_num_guest_pages(mode, nr_pages);
405}
406
407struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
408			   uint64_t nr_extra_pages)
409{
410	uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus,
411						 nr_extra_pages);
412	struct userspace_mem_region *slot0;
413	struct kvm_vm *vm;
414	int i;
415
416	pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__,
417		 vm_guest_mode_string(shape.mode), shape.type, nr_pages);
418
419	vm = ____vm_create(shape);
420
421	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, 0);
422	for (i = 0; i < NR_MEM_REGIONS; i++)
423		vm->memslots[i] = 0;
424
425	kvm_vm_elf_load(vm, program_invocation_name);
426
427	/*
428	 * TODO: Add proper defines to protect the library's memslots, and then
429	 * carve out memslot1 for the ucall MMIO address.  KVM treats writes to
430	 * read-only memslots as MMIO, and creating a read-only memslot for the
431	 * MMIO region would prevent silently clobbering the MMIO region.
432	 */
433	slot0 = memslot2region(vm, 0);
434	ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
435
436	kvm_arch_vm_post_create(vm);
437
438	return vm;
439}
440
441/*
442 * VM Create with customized parameters
443 *
444 * Input Args:
445 *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
446 *   nr_vcpus - VCPU count
447 *   extra_mem_pages - Non-slot0 physical memory total size
448 *   guest_code - Guest entry point
449 *   vcpuids - VCPU IDs
450 *
451 * Output Args: None
452 *
453 * Return:
454 *   Pointer to opaque structure that describes the created VM.
455 *
456 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
457 * extra_mem_pages is only used to calculate the maximum page table size,
458 * no real memory allocation for non-slot0 memory in this function.
459 */
460struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
461				      uint64_t extra_mem_pages,
462				      void *guest_code, struct kvm_vcpu *vcpus[])
463{
464	struct kvm_vm *vm;
465	int i;
466
467	TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
468
469	vm = __vm_create(shape, nr_vcpus, extra_mem_pages);
470
471	for (i = 0; i < nr_vcpus; ++i)
472		vcpus[i] = vm_vcpu_add(vm, i, guest_code);
473
474	return vm;
475}
476
477struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
478					       struct kvm_vcpu **vcpu,
479					       uint64_t extra_mem_pages,
480					       void *guest_code)
481{
482	struct kvm_vcpu *vcpus[1];
483	struct kvm_vm *vm;
484
485	vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus);
486
487	*vcpu = vcpus[0];
488	return vm;
489}
490
491/*
492 * VM Restart
493 *
494 * Input Args:
495 *   vm - VM that has been released before
496 *
497 * Output Args: None
498 *
499 * Reopens the file descriptors associated to the VM and reinstates the
500 * global state, such as the irqchip and the memory regions that are mapped
501 * into the guest.
502 */
503void kvm_vm_restart(struct kvm_vm *vmp)
504{
505	int ctr;
506	struct userspace_mem_region *region;
507
508	vm_open(vmp);
509	if (vmp->has_irqchip)
510		vm_create_irqchip(vmp);
511
512	hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
513		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, &region->region);
514
515		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
516			    "  rc: %i errno: %i\n"
517			    "  slot: %u flags: 0x%x\n"
518			    "  guest_phys_addr: 0x%llx size: 0x%llx",
519			    ret, errno, region->region.slot,
520			    region->region.flags,
521			    region->region.guest_phys_addr,
522			    region->region.memory_size);
523	}
524}
525
526__weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
527					      uint32_t vcpu_id)
528{
529	return __vm_vcpu_add(vm, vcpu_id);
530}
531
532struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
533{
534	kvm_vm_restart(vm);
535
536	return vm_vcpu_recreate(vm, 0);
537}
538
539void kvm_pin_this_task_to_pcpu(uint32_t pcpu)
540{
541	cpu_set_t mask;
542	int r;
543
544	CPU_ZERO(&mask);
545	CPU_SET(pcpu, &mask);
546	r = sched_setaffinity(0, sizeof(mask), &mask);
547	TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.", pcpu);
548}
549
550static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
551{
552	uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
553
554	TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
555		    "Not allowed to run on pCPU '%d', check cgroups?", pcpu);
556	return pcpu;
557}
558
559void kvm_print_vcpu_pinning_help(void)
560{
561	const char *name = program_invocation_name;
562
563	printf(" -c: Pin tasks to physical CPUs.  Takes a list of comma separated\n"
564	       "     values (target pCPU), one for each vCPU, plus an optional\n"
565	       "     entry for the main application task (specified via entry\n"
566	       "     <nr_vcpus + 1>).  If used, entries must be provided for all\n"
567	       "     vCPUs, i.e. pinning vCPUs is all or nothing.\n\n"
568	       "     E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n"
569	       "     vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n"
570	       "         %s -v 3 -c 22,23,24,50\n\n"
571	       "     To leave the application task unpinned, drop the final entry:\n\n"
572	       "         %s -v 3 -c 22,23,24\n\n"
573	       "     (default: no pinning)\n", name, name);
574}
575
576void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
577			    int nr_vcpus)
578{
579	cpu_set_t allowed_mask;
580	char *cpu, *cpu_list;
581	char delim[2] = ",";
582	int i, r;
583
584	cpu_list = strdup(pcpus_string);
585	TEST_ASSERT(cpu_list, "strdup() allocation failed.");
586
587	r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
588	TEST_ASSERT(!r, "sched_getaffinity() failed");
589
590	cpu = strtok(cpu_list, delim);
591
592	/* 1. Get all pcpus for vcpus. */
593	for (i = 0; i < nr_vcpus; i++) {
594		TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i);
595		vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
596		cpu = strtok(NULL, delim);
597	}
598
599	/* 2. Check if the main worker needs to be pinned. */
600	if (cpu) {
601		kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask));
602		cpu = strtok(NULL, delim);
603	}
604
605	TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
606	free(cpu_list);
607}
608
609/*
610 * Userspace Memory Region Find
611 *
612 * Input Args:
613 *   vm - Virtual Machine
614 *   start - Starting VM physical address
615 *   end - Ending VM physical address, inclusive.
616 *
617 * Output Args: None
618 *
619 * Return:
620 *   Pointer to overlapping region, NULL if no such region.
621 *
622 * Searches for a region with any physical memory that overlaps with
623 * any portion of the guest physical addresses from start to end
624 * inclusive.  If multiple overlapping regions exist, a pointer to any
625 * of the regions is returned.  Null is returned only when no overlapping
626 * region exists.
627 */
628static struct userspace_mem_region *
629userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
630{
631	struct rb_node *node;
632
633	for (node = vm->regions.gpa_tree.rb_node; node; ) {
634		struct userspace_mem_region *region =
635			container_of(node, struct userspace_mem_region, gpa_node);
636		uint64_t existing_start = region->region.guest_phys_addr;
637		uint64_t existing_end = region->region.guest_phys_addr
638			+ region->region.memory_size - 1;
639		if (start <= existing_end && end >= existing_start)
640			return region;
641
642		if (start < existing_start)
643			node = node->rb_left;
644		else
645			node = node->rb_right;
646	}
647
648	return NULL;
649}
650
651__weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
652{
653
654}
655
656/*
657 * VM VCPU Remove
658 *
659 * Input Args:
660 *   vcpu - VCPU to remove
661 *
662 * Output Args: None
663 *
664 * Return: None, TEST_ASSERT failures for all error conditions
665 *
666 * Removes a vCPU from a VM and frees its resources.
667 */
668static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
669{
670	int ret;
671
672	if (vcpu->dirty_gfns) {
673		ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
674		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
675		vcpu->dirty_gfns = NULL;
676	}
677
678	ret = munmap(vcpu->run, vcpu_mmap_sz());
679	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
680
681	ret = close(vcpu->fd);
682	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
683
684	list_del(&vcpu->list);
685
686	vcpu_arch_free(vcpu);
687	free(vcpu);
688}
689
690void kvm_vm_release(struct kvm_vm *vmp)
691{
692	struct kvm_vcpu *vcpu, *tmp;
693	int ret;
694
695	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
696		vm_vcpu_rm(vmp, vcpu);
697
698	ret = close(vmp->fd);
699	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
700
701	ret = close(vmp->kvm_fd);
702	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
703}
704
705static void __vm_mem_region_delete(struct kvm_vm *vm,
706				   struct userspace_mem_region *region,
707				   bool unlink)
708{
709	int ret;
710
711	if (unlink) {
712		rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
713		rb_erase(&region->hva_node, &vm->regions.hva_tree);
714		hash_del(&region->slot_node);
715	}
716
717	region->region.memory_size = 0;
718	vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
719
720	sparsebit_free(&region->unused_phy_pages);
721	sparsebit_free(&region->protected_phy_pages);
722	ret = munmap(region->mmap_start, region->mmap_size);
723	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
724	if (region->fd >= 0) {
725		/* There's an extra map when using shared memory. */
726		ret = munmap(region->mmap_alias, region->mmap_size);
727		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
728		close(region->fd);
729	}
730	if (region->region.guest_memfd >= 0)
731		close(region->region.guest_memfd);
732
733	free(region);
734}
735
736/*
737 * Destroys and frees the VM pointed to by vmp.
738 */
739void kvm_vm_free(struct kvm_vm *vmp)
740{
741	int ctr;
742	struct hlist_node *node;
743	struct userspace_mem_region *region;
744
745	if (vmp == NULL)
746		return;
747
748	/* Free cached stats metadata and close FD */
749	if (vmp->stats_fd) {
750		free(vmp->stats_desc);
751		close(vmp->stats_fd);
752	}
753
754	/* Free userspace_mem_regions. */
755	hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
756		__vm_mem_region_delete(vmp, region, false);
757
758	/* Free sparsebit arrays. */
759	sparsebit_free(&vmp->vpages_valid);
760	sparsebit_free(&vmp->vpages_mapped);
761
762	kvm_vm_release(vmp);
763
764	/* Free the structure describing the VM. */
765	free(vmp);
766}
767
768int kvm_memfd_alloc(size_t size, bool hugepages)
769{
770	int memfd_flags = MFD_CLOEXEC;
771	int fd, r;
772
773	if (hugepages)
774		memfd_flags |= MFD_HUGETLB;
775
776	fd = memfd_create("kvm_selftest", memfd_flags);
777	TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
778
779	r = ftruncate(fd, size);
780	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
781
782	r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
783	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
784
785	return fd;
786}
787
788/*
789 * Memory Compare, host virtual to guest virtual
790 *
791 * Input Args:
792 *   hva - Starting host virtual address
793 *   vm - Virtual Machine
794 *   gva - Starting guest virtual address
795 *   len - number of bytes to compare
796 *
797 * Output Args: None
798 *
799 * Input/Output Args: None
800 *
801 * Return:
802 *   Returns 0 if the bytes starting at hva for a length of len
803 *   are equal the guest virtual bytes starting at gva.  Returns
804 *   a value < 0, if bytes at hva are less than those at gva.
805 *   Otherwise a value > 0 is returned.
806 *
807 * Compares the bytes starting at the host virtual address hva, for
808 * a length of len, to the guest bytes starting at the guest virtual
809 * address given by gva.
810 */
811int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
812{
813	size_t amt;
814
815	/*
816	 * Compare a batch of bytes until either a match is found
817	 * or all the bytes have been compared.
818	 */
819	for (uintptr_t offset = 0; offset < len; offset += amt) {
820		uintptr_t ptr1 = (uintptr_t)hva + offset;
821
822		/*
823		 * Determine host address for guest virtual address
824		 * at offset.
825		 */
826		uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
827
828		/*
829		 * Determine amount to compare on this pass.
830		 * Don't allow the comparsion to cross a page boundary.
831		 */
832		amt = len - offset;
833		if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
834			amt = vm->page_size - (ptr1 % vm->page_size);
835		if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
836			amt = vm->page_size - (ptr2 % vm->page_size);
837
838		assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
839		assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
840
841		/*
842		 * Perform the comparison.  If there is a difference
843		 * return that result to the caller, otherwise need
844		 * to continue on looking for a mismatch.
845		 */
846		int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
847		if (ret != 0)
848			return ret;
849	}
850
851	/*
852	 * No mismatch found.  Let the caller know the two memory
853	 * areas are equal.
854	 */
855	return 0;
856}
857
858static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
859					       struct userspace_mem_region *region)
860{
861	struct rb_node **cur, *parent;
862
863	for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
864		struct userspace_mem_region *cregion;
865
866		cregion = container_of(*cur, typeof(*cregion), gpa_node);
867		parent = *cur;
868		if (region->region.guest_phys_addr <
869		    cregion->region.guest_phys_addr)
870			cur = &(*cur)->rb_left;
871		else {
872			TEST_ASSERT(region->region.guest_phys_addr !=
873				    cregion->region.guest_phys_addr,
874				    "Duplicate GPA in region tree");
875
876			cur = &(*cur)->rb_right;
877		}
878	}
879
880	rb_link_node(&region->gpa_node, parent, cur);
881	rb_insert_color(&region->gpa_node, gpa_tree);
882}
883
884static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
885					       struct userspace_mem_region *region)
886{
887	struct rb_node **cur, *parent;
888
889	for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
890		struct userspace_mem_region *cregion;
891
892		cregion = container_of(*cur, typeof(*cregion), hva_node);
893		parent = *cur;
894		if (region->host_mem < cregion->host_mem)
895			cur = &(*cur)->rb_left;
896		else {
897			TEST_ASSERT(region->host_mem !=
898				    cregion->host_mem,
899				    "Duplicate HVA in region tree");
900
901			cur = &(*cur)->rb_right;
902		}
903	}
904
905	rb_link_node(&region->hva_node, parent, cur);
906	rb_insert_color(&region->hva_node, hva_tree);
907}
908
909
910int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
911				uint64_t gpa, uint64_t size, void *hva)
912{
913	struct kvm_userspace_memory_region region = {
914		.slot = slot,
915		.flags = flags,
916		.guest_phys_addr = gpa,
917		.memory_size = size,
918		.userspace_addr = (uintptr_t)hva,
919	};
920
921	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
922}
923
924void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
925			       uint64_t gpa, uint64_t size, void *hva)
926{
927	int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
928
929	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
930		    errno, strerror(errno));
931}
932
933int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
934				 uint64_t gpa, uint64_t size, void *hva,
935				 uint32_t guest_memfd, uint64_t guest_memfd_offset)
936{
937	struct kvm_userspace_memory_region2 region = {
938		.slot = slot,
939		.flags = flags,
940		.guest_phys_addr = gpa,
941		.memory_size = size,
942		.userspace_addr = (uintptr_t)hva,
943		.guest_memfd = guest_memfd,
944		.guest_memfd_offset = guest_memfd_offset,
945	};
946
947	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, &region);
948}
949
950void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
951				uint64_t gpa, uint64_t size, void *hva,
952				uint32_t guest_memfd, uint64_t guest_memfd_offset)
953{
954	int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva,
955					       guest_memfd, guest_memfd_offset);
956
957	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)",
958		    errno, strerror(errno));
959}
960
961
962/* FIXME: This thing needs to be ripped apart and rewritten. */
963void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
964		uint64_t guest_paddr, uint32_t slot, uint64_t npages,
965		uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset)
966{
967	int ret;
968	struct userspace_mem_region *region;
969	size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
970	size_t mem_size = npages * vm->page_size;
971	size_t alignment;
972
973	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
974		"Number of guest pages is not compatible with the host. "
975		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
976
977	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
978		"address not on a page boundary.\n"
979		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
980		guest_paddr, vm->page_size);
981	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
982		<= vm->max_gfn, "Physical range beyond maximum "
983		"supported physical address,\n"
984		"  guest_paddr: 0x%lx npages: 0x%lx\n"
985		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
986		guest_paddr, npages, vm->max_gfn, vm->page_size);
987
988	/*
989	 * Confirm a mem region with an overlapping address doesn't
990	 * already exist.
991	 */
992	region = (struct userspace_mem_region *) userspace_mem_region_find(
993		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
994	if (region != NULL)
995		TEST_FAIL("overlapping userspace_mem_region already "
996			"exists\n"
997			"  requested guest_paddr: 0x%lx npages: 0x%lx "
998			"page_size: 0x%x\n"
999			"  existing guest_paddr: 0x%lx size: 0x%lx",
1000			guest_paddr, npages, vm->page_size,
1001			(uint64_t) region->region.guest_phys_addr,
1002			(uint64_t) region->region.memory_size);
1003
1004	/* Confirm no region with the requested slot already exists. */
1005	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1006			       slot) {
1007		if (region->region.slot != slot)
1008			continue;
1009
1010		TEST_FAIL("A mem region with the requested slot "
1011			"already exists.\n"
1012			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
1013			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
1014			slot, guest_paddr, npages,
1015			region->region.slot,
1016			(uint64_t) region->region.guest_phys_addr,
1017			(uint64_t) region->region.memory_size);
1018	}
1019
1020	/* Allocate and initialize new mem region structure. */
1021	region = calloc(1, sizeof(*region));
1022	TEST_ASSERT(region != NULL, "Insufficient Memory");
1023	region->mmap_size = mem_size;
1024
1025#ifdef __s390x__
1026	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
1027	alignment = 0x100000;
1028#else
1029	alignment = 1;
1030#endif
1031
1032	/*
1033	 * When using THP mmap is not guaranteed to returned a hugepage aligned
1034	 * address so we have to pad the mmap. Padding is not needed for HugeTLB
1035	 * because mmap will always return an address aligned to the HugeTLB
1036	 * page size.
1037	 */
1038	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
1039		alignment = max(backing_src_pagesz, alignment);
1040
1041	TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
1042
1043	/* Add enough memory to align up if necessary */
1044	if (alignment > 1)
1045		region->mmap_size += alignment;
1046
1047	region->fd = -1;
1048	if (backing_src_is_shared(src_type))
1049		region->fd = kvm_memfd_alloc(region->mmap_size,
1050					     src_type == VM_MEM_SRC_SHARED_HUGETLB);
1051
1052	region->mmap_start = mmap(NULL, region->mmap_size,
1053				  PROT_READ | PROT_WRITE,
1054				  vm_mem_backing_src_alias(src_type)->flag,
1055				  region->fd, 0);
1056	TEST_ASSERT(region->mmap_start != MAP_FAILED,
1057		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1058
1059	TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
1060		    region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1061		    "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1062		    region->mmap_start, backing_src_pagesz);
1063
1064	/* Align host address */
1065	region->host_mem = align_ptr_up(region->mmap_start, alignment);
1066
1067	/* As needed perform madvise */
1068	if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1069	     src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1070		ret = madvise(region->host_mem, mem_size,
1071			      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1072		TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1073			    region->host_mem, mem_size,
1074			    vm_mem_backing_src_alias(src_type)->name);
1075	}
1076
1077	region->backing_src_type = src_type;
1078
1079	if (flags & KVM_MEM_GUEST_MEMFD) {
1080		if (guest_memfd < 0) {
1081			uint32_t guest_memfd_flags = 0;
1082			TEST_ASSERT(!guest_memfd_offset,
1083				    "Offset must be zero when creating new guest_memfd");
1084			guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags);
1085		} else {
1086			/*
1087			 * Install a unique fd for each memslot so that the fd
1088			 * can be closed when the region is deleted without
1089			 * needing to track if the fd is owned by the framework
1090			 * or by the caller.
1091			 */
1092			guest_memfd = dup(guest_memfd);
1093			TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd));
1094		}
1095
1096		region->region.guest_memfd = guest_memfd;
1097		region->region.guest_memfd_offset = guest_memfd_offset;
1098	} else {
1099		region->region.guest_memfd = -1;
1100	}
1101
1102	region->unused_phy_pages = sparsebit_alloc();
1103	if (vm_arch_has_protected_memory(vm))
1104		region->protected_phy_pages = sparsebit_alloc();
1105	sparsebit_set_num(region->unused_phy_pages,
1106		guest_paddr >> vm->page_shift, npages);
1107	region->region.slot = slot;
1108	region->region.flags = flags;
1109	region->region.guest_phys_addr = guest_paddr;
1110	region->region.memory_size = npages * vm->page_size;
1111	region->region.userspace_addr = (uintptr_t) region->host_mem;
1112	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1113	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1114		"  rc: %i errno: %i\n"
1115		"  slot: %u flags: 0x%x\n"
1116		"  guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d",
1117		ret, errno, slot, flags,
1118		guest_paddr, (uint64_t) region->region.memory_size,
1119		region->region.guest_memfd);
1120
1121	/* Add to quick lookup data structures */
1122	vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1123	vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1124	hash_add(vm->regions.slot_hash, &region->slot_node, slot);
1125
1126	/* If shared memory, create an alias. */
1127	if (region->fd >= 0) {
1128		region->mmap_alias = mmap(NULL, region->mmap_size,
1129					  PROT_READ | PROT_WRITE,
1130					  vm_mem_backing_src_alias(src_type)->flag,
1131					  region->fd, 0);
1132		TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1133			    __KVM_SYSCALL_ERROR("mmap()",  (int)(unsigned long)MAP_FAILED));
1134
1135		/* Align host alias address */
1136		region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1137	}
1138}
1139
1140void vm_userspace_mem_region_add(struct kvm_vm *vm,
1141				 enum vm_mem_backing_src_type src_type,
1142				 uint64_t guest_paddr, uint32_t slot,
1143				 uint64_t npages, uint32_t flags)
1144{
1145	vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0);
1146}
1147
1148/*
1149 * Memslot to region
1150 *
1151 * Input Args:
1152 *   vm - Virtual Machine
1153 *   memslot - KVM memory slot ID
1154 *
1155 * Output Args: None
1156 *
1157 * Return:
1158 *   Pointer to memory region structure that describe memory region
1159 *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
1160 *   on error (e.g. currently no memory region using memslot as a KVM
1161 *   memory slot ID).
1162 */
1163struct userspace_mem_region *
1164memslot2region(struct kvm_vm *vm, uint32_t memslot)
1165{
1166	struct userspace_mem_region *region;
1167
1168	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1169			       memslot)
1170		if (region->region.slot == memslot)
1171			return region;
1172
1173	fprintf(stderr, "No mem region with the requested slot found,\n"
1174		"  requested slot: %u\n", memslot);
1175	fputs("---- vm dump ----\n", stderr);
1176	vm_dump(stderr, vm, 2);
1177	TEST_FAIL("Mem region not found");
1178	return NULL;
1179}
1180
1181/*
1182 * VM Memory Region Flags Set
1183 *
1184 * Input Args:
1185 *   vm - Virtual Machine
1186 *   flags - Starting guest physical address
1187 *
1188 * Output Args: None
1189 *
1190 * Return: None
1191 *
1192 * Sets the flags of the memory region specified by the value of slot,
1193 * to the values given by flags.
1194 */
1195void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1196{
1197	int ret;
1198	struct userspace_mem_region *region;
1199
1200	region = memslot2region(vm, slot);
1201
1202	region->region.flags = flags;
1203
1204	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1205
1206	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1207		"  rc: %i errno: %i slot: %u flags: 0x%x",
1208		ret, errno, slot, flags);
1209}
1210
1211/*
1212 * VM Memory Region Move
1213 *
1214 * Input Args:
1215 *   vm - Virtual Machine
1216 *   slot - Slot of the memory region to move
1217 *   new_gpa - Starting guest physical address
1218 *
1219 * Output Args: None
1220 *
1221 * Return: None
1222 *
1223 * Change the gpa of a memory region.
1224 */
1225void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1226{
1227	struct userspace_mem_region *region;
1228	int ret;
1229
1230	region = memslot2region(vm, slot);
1231
1232	region->region.guest_phys_addr = new_gpa;
1233
1234	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1235
1236	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n"
1237		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1238		    ret, errno, slot, new_gpa);
1239}
1240
1241/*
1242 * VM Memory Region Delete
1243 *
1244 * Input Args:
1245 *   vm - Virtual Machine
1246 *   slot - Slot of the memory region to delete
1247 *
1248 * Output Args: None
1249 *
1250 * Return: None
1251 *
1252 * Delete a memory region.
1253 */
1254void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1255{
1256	__vm_mem_region_delete(vm, memslot2region(vm, slot), true);
1257}
1258
1259void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size,
1260			    bool punch_hole)
1261{
1262	const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0);
1263	struct userspace_mem_region *region;
1264	uint64_t end = base + size;
1265	uint64_t gpa, len;
1266	off_t fd_offset;
1267	int ret;
1268
1269	for (gpa = base; gpa < end; gpa += len) {
1270		uint64_t offset;
1271
1272		region = userspace_mem_region_find(vm, gpa, gpa);
1273		TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD,
1274			    "Private memory region not found for GPA 0x%lx", gpa);
1275
1276		offset = gpa - region->region.guest_phys_addr;
1277		fd_offset = region->region.guest_memfd_offset + offset;
1278		len = min_t(uint64_t, end - gpa, region->region.memory_size - offset);
1279
1280		ret = fallocate(region->region.guest_memfd, mode, fd_offset, len);
1281		TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx",
1282			    punch_hole ? "punch hole" : "allocate", gpa, len,
1283			    region->region.guest_memfd, mode, fd_offset);
1284	}
1285}
1286
1287/* Returns the size of a vCPU's kvm_run structure. */
1288static int vcpu_mmap_sz(void)
1289{
1290	int dev_fd, ret;
1291
1292	dev_fd = open_kvm_dev_path_or_exit();
1293
1294	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1295	TEST_ASSERT(ret >= sizeof(struct kvm_run),
1296		    KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1297
1298	close(dev_fd);
1299
1300	return ret;
1301}
1302
1303static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1304{
1305	struct kvm_vcpu *vcpu;
1306
1307	list_for_each_entry(vcpu, &vm->vcpus, list) {
1308		if (vcpu->id == vcpu_id)
1309			return true;
1310	}
1311
1312	return false;
1313}
1314
1315/*
1316 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1317 * No additional vCPU setup is done.  Returns the vCPU.
1318 */
1319struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1320{
1321	struct kvm_vcpu *vcpu;
1322
1323	/* Confirm a vcpu with the specified id doesn't already exist. */
1324	TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id);
1325
1326	/* Allocate and initialize new vcpu structure. */
1327	vcpu = calloc(1, sizeof(*vcpu));
1328	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1329
1330	vcpu->vm = vm;
1331	vcpu->id = vcpu_id;
1332	vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1333	TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm);
1334
1335	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1336		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1337		vcpu_mmap_sz(), sizeof(*vcpu->run));
1338	vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1339		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1340	TEST_ASSERT(vcpu->run != MAP_FAILED,
1341		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1342
1343	/* Add to linked-list of VCPUs. */
1344	list_add(&vcpu->list, &vm->vcpus);
1345
1346	return vcpu;
1347}
1348
1349/*
1350 * VM Virtual Address Unused Gap
1351 *
1352 * Input Args:
1353 *   vm - Virtual Machine
1354 *   sz - Size (bytes)
1355 *   vaddr_min - Minimum Virtual Address
1356 *
1357 * Output Args: None
1358 *
1359 * Return:
1360 *   Lowest virtual address at or below vaddr_min, with at least
1361 *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1362 *   size sz is available.
1363 *
1364 * Within the VM specified by vm, locates the lowest starting virtual
1365 * address >= vaddr_min, that has at least sz unallocated bytes.  A
1366 * TEST_ASSERT failure occurs for invalid input or no area of at least
1367 * sz unallocated bytes >= vaddr_min is available.
1368 */
1369vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1370			       vm_vaddr_t vaddr_min)
1371{
1372	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1373
1374	/* Determine lowest permitted virtual page index. */
1375	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1376	if ((pgidx_start * vm->page_size) < vaddr_min)
1377		goto no_va_found;
1378
1379	/* Loop over section with enough valid virtual page indexes. */
1380	if (!sparsebit_is_set_num(vm->vpages_valid,
1381		pgidx_start, pages))
1382		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1383			pgidx_start, pages);
1384	do {
1385		/*
1386		 * Are there enough unused virtual pages available at
1387		 * the currently proposed starting virtual page index.
1388		 * If not, adjust proposed starting index to next
1389		 * possible.
1390		 */
1391		if (sparsebit_is_clear_num(vm->vpages_mapped,
1392			pgidx_start, pages))
1393			goto va_found;
1394		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1395			pgidx_start, pages);
1396		if (pgidx_start == 0)
1397			goto no_va_found;
1398
1399		/*
1400		 * If needed, adjust proposed starting virtual address,
1401		 * to next range of valid virtual addresses.
1402		 */
1403		if (!sparsebit_is_set_num(vm->vpages_valid,
1404			pgidx_start, pages)) {
1405			pgidx_start = sparsebit_next_set_num(
1406				vm->vpages_valid, pgidx_start, pages);
1407			if (pgidx_start == 0)
1408				goto no_va_found;
1409		}
1410	} while (pgidx_start != 0);
1411
1412no_va_found:
1413	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1414
1415	/* NOT REACHED */
1416	return -1;
1417
1418va_found:
1419	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1420		pgidx_start, pages),
1421		"Unexpected, invalid virtual page index range,\n"
1422		"  pgidx_start: 0x%lx\n"
1423		"  pages: 0x%lx",
1424		pgidx_start, pages);
1425	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1426		pgidx_start, pages),
1427		"Unexpected, pages already mapped,\n"
1428		"  pgidx_start: 0x%lx\n"
1429		"  pages: 0x%lx",
1430		pgidx_start, pages);
1431
1432	return pgidx_start * vm->page_size;
1433}
1434
1435static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
1436				     vm_vaddr_t vaddr_min,
1437				     enum kvm_mem_region_type type,
1438				     bool protected)
1439{
1440	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1441
1442	virt_pgd_alloc(vm);
1443	vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages,
1444						KVM_UTIL_MIN_PFN * vm->page_size,
1445						vm->memslots[type], protected);
1446
1447	/*
1448	 * Find an unused range of virtual page addresses of at least
1449	 * pages in length.
1450	 */
1451	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1452
1453	/* Map the virtual pages. */
1454	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1455		pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1456
1457		virt_pg_map(vm, vaddr, paddr);
1458
1459		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1460	}
1461
1462	return vaddr_start;
1463}
1464
1465vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1466			    enum kvm_mem_region_type type)
1467{
1468	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type,
1469				  vm_arch_has_protected_memory(vm));
1470}
1471
1472vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
1473				 vm_vaddr_t vaddr_min,
1474				 enum kvm_mem_region_type type)
1475{
1476	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false);
1477}
1478
1479/*
1480 * VM Virtual Address Allocate
1481 *
1482 * Input Args:
1483 *   vm - Virtual Machine
1484 *   sz - Size in bytes
1485 *   vaddr_min - Minimum starting virtual address
1486 *
1487 * Output Args: None
1488 *
1489 * Return:
1490 *   Starting guest virtual address
1491 *
1492 * Allocates at least sz bytes within the virtual address space of the vm
1493 * given by vm.  The allocated bytes are mapped to a virtual address >=
1494 * the address given by vaddr_min.  Note that each allocation uses a
1495 * a unique set of pages, with the minimum real allocation being at least
1496 * a page. The allocated physical space comes from the TEST_DATA memory region.
1497 */
1498vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1499{
1500	return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1501}
1502
1503/*
1504 * VM Virtual Address Allocate Pages
1505 *
1506 * Input Args:
1507 *   vm - Virtual Machine
1508 *
1509 * Output Args: None
1510 *
1511 * Return:
1512 *   Starting guest virtual address
1513 *
1514 * Allocates at least N system pages worth of bytes within the virtual address
1515 * space of the vm.
1516 */
1517vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1518{
1519	return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1520}
1521
1522vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1523{
1524	return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1525}
1526
1527/*
1528 * VM Virtual Address Allocate Page
1529 *
1530 * Input Args:
1531 *   vm - Virtual Machine
1532 *
1533 * Output Args: None
1534 *
1535 * Return:
1536 *   Starting guest virtual address
1537 *
1538 * Allocates at least one system page worth of bytes within the virtual address
1539 * space of the vm.
1540 */
1541vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1542{
1543	return vm_vaddr_alloc_pages(vm, 1);
1544}
1545
1546/*
1547 * Map a range of VM virtual address to the VM's physical address
1548 *
1549 * Input Args:
1550 *   vm - Virtual Machine
1551 *   vaddr - Virtuall address to map
1552 *   paddr - VM Physical Address
1553 *   npages - The number of pages to map
1554 *
1555 * Output Args: None
1556 *
1557 * Return: None
1558 *
1559 * Within the VM given by @vm, creates a virtual translation for
1560 * @npages starting at @vaddr to the page range starting at @paddr.
1561 */
1562void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1563	      unsigned int npages)
1564{
1565	size_t page_size = vm->page_size;
1566	size_t size = npages * page_size;
1567
1568	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1569	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1570
1571	while (npages--) {
1572		virt_pg_map(vm, vaddr, paddr);
1573		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1574
1575		vaddr += page_size;
1576		paddr += page_size;
1577	}
1578}
1579
1580/*
1581 * Address VM Physical to Host Virtual
1582 *
1583 * Input Args:
1584 *   vm - Virtual Machine
1585 *   gpa - VM physical address
1586 *
1587 * Output Args: None
1588 *
1589 * Return:
1590 *   Equivalent host virtual address
1591 *
1592 * Locates the memory region containing the VM physical address given
1593 * by gpa, within the VM given by vm.  When found, the host virtual
1594 * address providing the memory to the vm physical address is returned.
1595 * A TEST_ASSERT failure occurs if no region containing gpa exists.
1596 */
1597void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1598{
1599	struct userspace_mem_region *region;
1600
1601	gpa = vm_untag_gpa(vm, gpa);
1602
1603	region = userspace_mem_region_find(vm, gpa, gpa);
1604	if (!region) {
1605		TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1606		return NULL;
1607	}
1608
1609	return (void *)((uintptr_t)region->host_mem
1610		+ (gpa - region->region.guest_phys_addr));
1611}
1612
1613/*
1614 * Address Host Virtual to VM Physical
1615 *
1616 * Input Args:
1617 *   vm - Virtual Machine
1618 *   hva - Host virtual address
1619 *
1620 * Output Args: None
1621 *
1622 * Return:
1623 *   Equivalent VM physical address
1624 *
1625 * Locates the memory region containing the host virtual address given
1626 * by hva, within the VM given by vm.  When found, the equivalent
1627 * VM physical address is returned. A TEST_ASSERT failure occurs if no
1628 * region containing hva exists.
1629 */
1630vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1631{
1632	struct rb_node *node;
1633
1634	for (node = vm->regions.hva_tree.rb_node; node; ) {
1635		struct userspace_mem_region *region =
1636			container_of(node, struct userspace_mem_region, hva_node);
1637
1638		if (hva >= region->host_mem) {
1639			if (hva <= (region->host_mem
1640				+ region->region.memory_size - 1))
1641				return (vm_paddr_t)((uintptr_t)
1642					region->region.guest_phys_addr
1643					+ (hva - (uintptr_t)region->host_mem));
1644
1645			node = node->rb_right;
1646		} else
1647			node = node->rb_left;
1648	}
1649
1650	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1651	return -1;
1652}
1653
1654/*
1655 * Address VM physical to Host Virtual *alias*.
1656 *
1657 * Input Args:
1658 *   vm - Virtual Machine
1659 *   gpa - VM physical address
1660 *
1661 * Output Args: None
1662 *
1663 * Return:
1664 *   Equivalent address within the host virtual *alias* area, or NULL
1665 *   (without failing the test) if the guest memory is not shared (so
1666 *   no alias exists).
1667 *
1668 * Create a writable, shared virtual=>physical alias for the specific GPA.
1669 * The primary use case is to allow the host selftest to manipulate guest
1670 * memory without mapping said memory in the guest's address space. And, for
1671 * userfaultfd-based demand paging, to do so without triggering userfaults.
1672 */
1673void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1674{
1675	struct userspace_mem_region *region;
1676	uintptr_t offset;
1677
1678	region = userspace_mem_region_find(vm, gpa, gpa);
1679	if (!region)
1680		return NULL;
1681
1682	if (!region->host_alias)
1683		return NULL;
1684
1685	offset = gpa - region->region.guest_phys_addr;
1686	return (void *) ((uintptr_t) region->host_alias + offset);
1687}
1688
1689/* Create an interrupt controller chip for the specified VM. */
1690void vm_create_irqchip(struct kvm_vm *vm)
1691{
1692	vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1693
1694	vm->has_irqchip = true;
1695}
1696
1697int _vcpu_run(struct kvm_vcpu *vcpu)
1698{
1699	int rc;
1700
1701	do {
1702		rc = __vcpu_run(vcpu);
1703	} while (rc == -1 && errno == EINTR);
1704
1705	assert_on_unhandled_exception(vcpu);
1706
1707	return rc;
1708}
1709
1710/*
1711 * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1712 * Assert if the KVM returns an error (other than -EINTR).
1713 */
1714void vcpu_run(struct kvm_vcpu *vcpu)
1715{
1716	int ret = _vcpu_run(vcpu);
1717
1718	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1719}
1720
1721void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1722{
1723	int ret;
1724
1725	vcpu->run->immediate_exit = 1;
1726	ret = __vcpu_run(vcpu);
1727	vcpu->run->immediate_exit = 0;
1728
1729	TEST_ASSERT(ret == -1 && errno == EINTR,
1730		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1731		    ret, errno);
1732}
1733
1734/*
1735 * Get the list of guest registers which are supported for
1736 * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls.  Returns a kvm_reg_list pointer,
1737 * it is the caller's responsibility to free the list.
1738 */
1739struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1740{
1741	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1742	int ret;
1743
1744	ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, &reg_list_n);
1745	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1746
1747	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1748	reg_list->n = reg_list_n.n;
1749	vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1750	return reg_list;
1751}
1752
1753void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1754{
1755	uint32_t page_size = getpagesize();
1756	uint32_t size = vcpu->vm->dirty_ring_size;
1757
1758	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1759
1760	if (!vcpu->dirty_gfns) {
1761		void *addr;
1762
1763		addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1764			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1765		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1766
1767		addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1768			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1769		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1770
1771		addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1772			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1773		TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1774
1775		vcpu->dirty_gfns = addr;
1776		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1777	}
1778
1779	return vcpu->dirty_gfns;
1780}
1781
1782/*
1783 * Device Ioctl
1784 */
1785
1786int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1787{
1788	struct kvm_device_attr attribute = {
1789		.group = group,
1790		.attr = attr,
1791		.flags = 0,
1792	};
1793
1794	return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1795}
1796
1797int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1798{
1799	struct kvm_create_device create_dev = {
1800		.type = type,
1801		.flags = KVM_CREATE_DEVICE_TEST,
1802	};
1803
1804	return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1805}
1806
1807int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1808{
1809	struct kvm_create_device create_dev = {
1810		.type = type,
1811		.fd = -1,
1812		.flags = 0,
1813	};
1814	int err;
1815
1816	err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1817	TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1818	return err ? : create_dev.fd;
1819}
1820
1821int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1822{
1823	struct kvm_device_attr kvmattr = {
1824		.group = group,
1825		.attr = attr,
1826		.flags = 0,
1827		.addr = (uintptr_t)val,
1828	};
1829
1830	return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1831}
1832
1833int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1834{
1835	struct kvm_device_attr kvmattr = {
1836		.group = group,
1837		.attr = attr,
1838		.flags = 0,
1839		.addr = (uintptr_t)val,
1840	};
1841
1842	return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1843}
1844
1845/*
1846 * IRQ related functions.
1847 */
1848
1849int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1850{
1851	struct kvm_irq_level irq_level = {
1852		.irq    = irq,
1853		.level  = level,
1854	};
1855
1856	return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1857}
1858
1859void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1860{
1861	int ret = _kvm_irq_line(vm, irq, level);
1862
1863	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1864}
1865
1866struct kvm_irq_routing *kvm_gsi_routing_create(void)
1867{
1868	struct kvm_irq_routing *routing;
1869	size_t size;
1870
1871	size = sizeof(struct kvm_irq_routing);
1872	/* Allocate space for the max number of entries: this wastes 196 KBs. */
1873	size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1874	routing = calloc(1, size);
1875	assert(routing);
1876
1877	return routing;
1878}
1879
1880void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1881		uint32_t gsi, uint32_t pin)
1882{
1883	int i;
1884
1885	assert(routing);
1886	assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1887
1888	i = routing->nr;
1889	routing->entries[i].gsi = gsi;
1890	routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1891	routing->entries[i].flags = 0;
1892	routing->entries[i].u.irqchip.irqchip = 0;
1893	routing->entries[i].u.irqchip.pin = pin;
1894	routing->nr++;
1895}
1896
1897int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1898{
1899	int ret;
1900
1901	assert(routing);
1902	ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1903	free(routing);
1904
1905	return ret;
1906}
1907
1908void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1909{
1910	int ret;
1911
1912	ret = _kvm_gsi_routing_write(vm, routing);
1913	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1914}
1915
1916/*
1917 * VM Dump
1918 *
1919 * Input Args:
1920 *   vm - Virtual Machine
1921 *   indent - Left margin indent amount
1922 *
1923 * Output Args:
1924 *   stream - Output FILE stream
1925 *
1926 * Return: None
1927 *
1928 * Dumps the current state of the VM given by vm, to the FILE stream
1929 * given by stream.
1930 */
1931void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1932{
1933	int ctr;
1934	struct userspace_mem_region *region;
1935	struct kvm_vcpu *vcpu;
1936
1937	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1938	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1939	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1940	fprintf(stream, "%*sMem Regions:\n", indent, "");
1941	hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1942		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1943			"host_virt: %p\n", indent + 2, "",
1944			(uint64_t) region->region.guest_phys_addr,
1945			(uint64_t) region->region.memory_size,
1946			region->host_mem);
1947		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1948		sparsebit_dump(stream, region->unused_phy_pages, 0);
1949		if (region->protected_phy_pages) {
1950			fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, "");
1951			sparsebit_dump(stream, region->protected_phy_pages, 0);
1952		}
1953	}
1954	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1955	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1956	fprintf(stream, "%*spgd_created: %u\n", indent, "",
1957		vm->pgd_created);
1958	if (vm->pgd_created) {
1959		fprintf(stream, "%*sVirtual Translation Tables:\n",
1960			indent + 2, "");
1961		virt_dump(stream, vm, indent + 4);
1962	}
1963	fprintf(stream, "%*sVCPUs:\n", indent, "");
1964
1965	list_for_each_entry(vcpu, &vm->vcpus, list)
1966		vcpu_dump(stream, vcpu, indent + 2);
1967}
1968
1969#define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x}
1970
1971/* Known KVM exit reasons */
1972static struct exit_reason {
1973	unsigned int reason;
1974	const char *name;
1975} exit_reasons_known[] = {
1976	KVM_EXIT_STRING(UNKNOWN),
1977	KVM_EXIT_STRING(EXCEPTION),
1978	KVM_EXIT_STRING(IO),
1979	KVM_EXIT_STRING(HYPERCALL),
1980	KVM_EXIT_STRING(DEBUG),
1981	KVM_EXIT_STRING(HLT),
1982	KVM_EXIT_STRING(MMIO),
1983	KVM_EXIT_STRING(IRQ_WINDOW_OPEN),
1984	KVM_EXIT_STRING(SHUTDOWN),
1985	KVM_EXIT_STRING(FAIL_ENTRY),
1986	KVM_EXIT_STRING(INTR),
1987	KVM_EXIT_STRING(SET_TPR),
1988	KVM_EXIT_STRING(TPR_ACCESS),
1989	KVM_EXIT_STRING(S390_SIEIC),
1990	KVM_EXIT_STRING(S390_RESET),
1991	KVM_EXIT_STRING(DCR),
1992	KVM_EXIT_STRING(NMI),
1993	KVM_EXIT_STRING(INTERNAL_ERROR),
1994	KVM_EXIT_STRING(OSI),
1995	KVM_EXIT_STRING(PAPR_HCALL),
1996	KVM_EXIT_STRING(S390_UCONTROL),
1997	KVM_EXIT_STRING(WATCHDOG),
1998	KVM_EXIT_STRING(S390_TSCH),
1999	KVM_EXIT_STRING(EPR),
2000	KVM_EXIT_STRING(SYSTEM_EVENT),
2001	KVM_EXIT_STRING(S390_STSI),
2002	KVM_EXIT_STRING(IOAPIC_EOI),
2003	KVM_EXIT_STRING(HYPERV),
2004	KVM_EXIT_STRING(ARM_NISV),
2005	KVM_EXIT_STRING(X86_RDMSR),
2006	KVM_EXIT_STRING(X86_WRMSR),
2007	KVM_EXIT_STRING(DIRTY_RING_FULL),
2008	KVM_EXIT_STRING(AP_RESET_HOLD),
2009	KVM_EXIT_STRING(X86_BUS_LOCK),
2010	KVM_EXIT_STRING(XEN),
2011	KVM_EXIT_STRING(RISCV_SBI),
2012	KVM_EXIT_STRING(RISCV_CSR),
2013	KVM_EXIT_STRING(NOTIFY),
2014#ifdef KVM_EXIT_MEMORY_NOT_PRESENT
2015	KVM_EXIT_STRING(MEMORY_NOT_PRESENT),
2016#endif
2017};
2018
2019/*
2020 * Exit Reason String
2021 *
2022 * Input Args:
2023 *   exit_reason - Exit reason
2024 *
2025 * Output Args: None
2026 *
2027 * Return:
2028 *   Constant string pointer describing the exit reason.
2029 *
2030 * Locates and returns a constant string that describes the KVM exit
2031 * reason given by exit_reason.  If no such string is found, a constant
2032 * string of "Unknown" is returned.
2033 */
2034const char *exit_reason_str(unsigned int exit_reason)
2035{
2036	unsigned int n1;
2037
2038	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
2039		if (exit_reason == exit_reasons_known[n1].reason)
2040			return exit_reasons_known[n1].name;
2041	}
2042
2043	return "Unknown";
2044}
2045
2046/*
2047 * Physical Contiguous Page Allocator
2048 *
2049 * Input Args:
2050 *   vm - Virtual Machine
2051 *   num - number of pages
2052 *   paddr_min - Physical address minimum
2053 *   memslot - Memory region to allocate page from
2054 *   protected - True if the pages will be used as protected/private memory
2055 *
2056 * Output Args: None
2057 *
2058 * Return:
2059 *   Starting physical address
2060 *
2061 * Within the VM specified by vm, locates a range of available physical
2062 * pages at or above paddr_min. If found, the pages are marked as in use
2063 * and their base address is returned. A TEST_ASSERT failure occurs if
2064 * not enough pages are available at or above paddr_min.
2065 */
2066vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2067				vm_paddr_t paddr_min, uint32_t memslot,
2068				bool protected)
2069{
2070	struct userspace_mem_region *region;
2071	sparsebit_idx_t pg, base;
2072
2073	TEST_ASSERT(num > 0, "Must allocate at least one page");
2074
2075	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2076		"not divisible by page size.\n"
2077		"  paddr_min: 0x%lx page_size: 0x%x",
2078		paddr_min, vm->page_size);
2079
2080	region = memslot2region(vm, memslot);
2081	TEST_ASSERT(!protected || region->protected_phy_pages,
2082		    "Region doesn't support protected memory");
2083
2084	base = pg = paddr_min >> vm->page_shift;
2085	do {
2086		for (; pg < base + num; ++pg) {
2087			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2088				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2089				break;
2090			}
2091		}
2092	} while (pg && pg != base + num);
2093
2094	if (pg == 0) {
2095		fprintf(stderr, "No guest physical page available, "
2096			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2097			paddr_min, vm->page_size, memslot);
2098		fputs("---- vm dump ----\n", stderr);
2099		vm_dump(stderr, vm, 2);
2100		abort();
2101	}
2102
2103	for (pg = base; pg < base + num; ++pg) {
2104		sparsebit_clear(region->unused_phy_pages, pg);
2105		if (protected)
2106			sparsebit_set(region->protected_phy_pages, pg);
2107	}
2108
2109	return base * vm->page_size;
2110}
2111
2112vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2113			     uint32_t memslot)
2114{
2115	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2116}
2117
2118vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2119{
2120	return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
2121				 vm->memslots[MEM_REGION_PT]);
2122}
2123
2124/*
2125 * Address Guest Virtual to Host Virtual
2126 *
2127 * Input Args:
2128 *   vm - Virtual Machine
2129 *   gva - VM virtual address
2130 *
2131 * Output Args: None
2132 *
2133 * Return:
2134 *   Equivalent host virtual address
2135 */
2136void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2137{
2138	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2139}
2140
2141unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
2142{
2143	return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2144}
2145
2146static unsigned int vm_calc_num_pages(unsigned int num_pages,
2147				      unsigned int page_shift,
2148				      unsigned int new_page_shift,
2149				      bool ceil)
2150{
2151	unsigned int n = 1 << (new_page_shift - page_shift);
2152
2153	if (page_shift >= new_page_shift)
2154		return num_pages * (1 << (page_shift - new_page_shift));
2155
2156	return num_pages / n + !!(ceil && num_pages % n);
2157}
2158
2159static inline int getpageshift(void)
2160{
2161	return __builtin_ffs(getpagesize()) - 1;
2162}
2163
2164unsigned int
2165vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2166{
2167	return vm_calc_num_pages(num_guest_pages,
2168				 vm_guest_mode_params[mode].page_shift,
2169				 getpageshift(), true);
2170}
2171
2172unsigned int
2173vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2174{
2175	return vm_calc_num_pages(num_host_pages, getpageshift(),
2176				 vm_guest_mode_params[mode].page_shift, false);
2177}
2178
2179unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2180{
2181	unsigned int n;
2182	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2183	return vm_adjust_num_guest_pages(mode, n);
2184}
2185
2186/*
2187 * Read binary stats descriptors
2188 *
2189 * Input Args:
2190 *   stats_fd - the file descriptor for the binary stats file from which to read
2191 *   header - the binary stats metadata header corresponding to the given FD
2192 *
2193 * Output Args: None
2194 *
2195 * Return:
2196 *   A pointer to a newly allocated series of stat descriptors.
2197 *   Caller is responsible for freeing the returned kvm_stats_desc.
2198 *
2199 * Read the stats descriptors from the binary stats interface.
2200 */
2201struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
2202					      struct kvm_stats_header *header)
2203{
2204	struct kvm_stats_desc *stats_desc;
2205	ssize_t desc_size, total_size, ret;
2206
2207	desc_size = get_stats_descriptor_size(header);
2208	total_size = header->num_desc * desc_size;
2209
2210	stats_desc = calloc(header->num_desc, desc_size);
2211	TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
2212
2213	ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
2214	TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
2215
2216	return stats_desc;
2217}
2218
2219/*
2220 * Read stat data for a particular stat
2221 *
2222 * Input Args:
2223 *   stats_fd - the file descriptor for the binary stats file from which to read
2224 *   header - the binary stats metadata header corresponding to the given FD
2225 *   desc - the binary stat metadata for the particular stat to be read
2226 *   max_elements - the maximum number of 8-byte values to read into data
2227 *
2228 * Output Args:
2229 *   data - the buffer into which stat data should be read
2230 *
2231 * Read the data values of a specified stat from the binary stats interface.
2232 */
2233void read_stat_data(int stats_fd, struct kvm_stats_header *header,
2234		    struct kvm_stats_desc *desc, uint64_t *data,
2235		    size_t max_elements)
2236{
2237	size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
2238	size_t size = nr_elements * sizeof(*data);
2239	ssize_t ret;
2240
2241	TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
2242	TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
2243
2244	ret = pread(stats_fd, data, size,
2245		    header->data_offset + desc->offset);
2246
2247	TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
2248		    desc->name, errno, strerror(errno));
2249	TEST_ASSERT(ret == size,
2250		    "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2251		    desc->name, size, ret);
2252}
2253
2254/*
2255 * Read the data of the named stat
2256 *
2257 * Input Args:
2258 *   vm - the VM for which the stat should be read
2259 *   stat_name - the name of the stat to read
2260 *   max_elements - the maximum number of 8-byte values to read into data
2261 *
2262 * Output Args:
2263 *   data - the buffer into which stat data should be read
2264 *
2265 * Read the data values of a specified stat from the binary stats interface.
2266 */
2267void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
2268		   size_t max_elements)
2269{
2270	struct kvm_stats_desc *desc;
2271	size_t size_desc;
2272	int i;
2273
2274	if (!vm->stats_fd) {
2275		vm->stats_fd = vm_get_stats_fd(vm);
2276		read_stats_header(vm->stats_fd, &vm->stats_header);
2277		vm->stats_desc = read_stats_descriptors(vm->stats_fd,
2278							&vm->stats_header);
2279	}
2280
2281	size_desc = get_stats_descriptor_size(&vm->stats_header);
2282
2283	for (i = 0; i < vm->stats_header.num_desc; ++i) {
2284		desc = (void *)vm->stats_desc + (i * size_desc);
2285
2286		if (strcmp(desc->name, stat_name))
2287			continue;
2288
2289		read_stat_data(vm->stats_fd, &vm->stats_header, desc,
2290			       data, max_elements);
2291
2292		break;
2293	}
2294}
2295
2296__weak void kvm_arch_vm_post_create(struct kvm_vm *vm)
2297{
2298}
2299
2300__weak void kvm_selftest_arch_init(void)
2301{
2302}
2303
2304void __attribute((constructor)) kvm_selftest_init(void)
2305{
2306	/* Tell stdout not to buffer its content. */
2307	setbuf(stdout, NULL);
2308
2309	kvm_selftest_arch_init();
2310}
2311
2312bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr)
2313{
2314	sparsebit_idx_t pg = 0;
2315	struct userspace_mem_region *region;
2316
2317	if (!vm_arch_has_protected_memory(vm))
2318		return false;
2319
2320	region = userspace_mem_region_find(vm, paddr, paddr);
2321	TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr);
2322
2323	pg = paddr >> vm->page_shift;
2324	return sparsebit_is_set(region->protected_phy_pages, pg);
2325}
2326