1// SPDX-License-Identifier: GPL-2.0
2/*
3 * KVM dirty page logging test
4 *
5 * Copyright (C) 2018, Red Hat, Inc.
6 */
7
8#define _GNU_SOURCE /* for program_invocation_name */
9
10#include <stdio.h>
11#include <stdlib.h>
12#include <pthread.h>
13#include <semaphore.h>
14#include <sys/types.h>
15#include <signal.h>
16#include <errno.h>
17#include <linux/bitmap.h>
18#include <linux/bitops.h>
19#include <linux/atomic.h>
20#include <asm/barrier.h>
21
22#include "kvm_util.h"
23#include "test_util.h"
24#include "guest_modes.h"
25#include "processor.h"
26
27#define DIRTY_MEM_BITS 30 /* 1G */
28#define PAGE_SHIFT_4K  12
29
30/* The memory slot index to track dirty pages */
31#define TEST_MEM_SLOT_INDEX		1
32
33/* Default guest test virtual memory offset */
34#define DEFAULT_GUEST_TEST_MEM		0xc0000000
35
36/* How many pages to dirty for each guest loop */
37#define TEST_PAGES_PER_LOOP		1024
38
39/* How many host loops to run (one KVM_GET_DIRTY_LOG for each loop) */
40#define TEST_HOST_LOOP_N		32UL
41
42/* Interval for each host loop (ms) */
43#define TEST_HOST_LOOP_INTERVAL		10UL
44
45/* Dirty bitmaps are always little endian, so we need to swap on big endian */
46#if defined(__s390x__)
47# define BITOP_LE_SWIZZLE	((BITS_PER_LONG-1) & ~0x7)
48# define test_bit_le(nr, addr) \
49	test_bit((nr) ^ BITOP_LE_SWIZZLE, addr)
50# define __set_bit_le(nr, addr) \
51	__set_bit((nr) ^ BITOP_LE_SWIZZLE, addr)
52# define __clear_bit_le(nr, addr) \
53	__clear_bit((nr) ^ BITOP_LE_SWIZZLE, addr)
54# define __test_and_set_bit_le(nr, addr) \
55	__test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, addr)
56# define __test_and_clear_bit_le(nr, addr) \
57	__test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, addr)
58#else
59# define test_bit_le			test_bit
60# define __set_bit_le			__set_bit
61# define __clear_bit_le			__clear_bit
62# define __test_and_set_bit_le		__test_and_set_bit
63# define __test_and_clear_bit_le	__test_and_clear_bit
64#endif
65
66#define TEST_DIRTY_RING_COUNT		65536
67
68#define SIG_IPI SIGUSR1
69
70/*
71 * Guest/Host shared variables. Ensure addr_gva2hva() and/or
72 * sync_global_to/from_guest() are used when accessing from
73 * the host. READ/WRITE_ONCE() should also be used with anything
74 * that may change.
75 */
76static uint64_t host_page_size;
77static uint64_t guest_page_size;
78static uint64_t guest_num_pages;
79static uint64_t random_array[TEST_PAGES_PER_LOOP];
80static uint64_t iteration;
81
82/*
83 * Guest physical memory offset of the testing memory slot.
84 * This will be set to the topmost valid physical address minus
85 * the test memory size.
86 */
87static uint64_t guest_test_phys_mem;
88
89/*
90 * Guest virtual memory offset of the testing memory slot.
91 * Must not conflict with identity mapped test code.
92 */
93static uint64_t guest_test_virt_mem = DEFAULT_GUEST_TEST_MEM;
94
95/*
96 * Continuously write to the first 8 bytes of a random pages within
97 * the testing memory region.
98 */
99static void guest_code(void)
100{
101	uint64_t addr;
102	int i;
103
104	/*
105	 * On s390x, all pages of a 1M segment are initially marked as dirty
106	 * when a page of the segment is written to for the very first time.
107	 * To compensate this specialty in this test, we need to touch all
108	 * pages during the first iteration.
109	 */
110	for (i = 0; i < guest_num_pages; i++) {
111		addr = guest_test_virt_mem + i * guest_page_size;
112		*(uint64_t *)addr = READ_ONCE(iteration);
113	}
114
115	while (true) {
116		for (i = 0; i < TEST_PAGES_PER_LOOP; i++) {
117			addr = guest_test_virt_mem;
118			addr += (READ_ONCE(random_array[i]) % guest_num_pages)
119				* guest_page_size;
120			addr = align_down(addr, host_page_size);
121			*(uint64_t *)addr = READ_ONCE(iteration);
122		}
123
124		/* Tell the host that we need more random numbers */
125		GUEST_SYNC(1);
126	}
127}
128
129/* Host variables */
130static bool host_quit;
131
132/* Points to the test VM memory region on which we track dirty logs */
133static void *host_test_mem;
134static uint64_t host_num_pages;
135
136/* For statistics only */
137static uint64_t host_dirty_count;
138static uint64_t host_clear_count;
139static uint64_t host_track_next_count;
140
141/* Whether dirty ring reset is requested, or finished */
142static sem_t sem_vcpu_stop;
143static sem_t sem_vcpu_cont;
144/*
145 * This is only set by main thread, and only cleared by vcpu thread.  It is
146 * used to request vcpu thread to stop at the next GUEST_SYNC, since GUEST_SYNC
147 * is the only place that we'll guarantee both "dirty bit" and "dirty data"
148 * will match.  E.g., SIG_IPI won't guarantee that if the vcpu is interrupted
149 * after setting dirty bit but before the data is written.
150 */
151static atomic_t vcpu_sync_stop_requested;
152/*
153 * This is updated by the vcpu thread to tell the host whether it's a
154 * ring-full event.  It should only be read until a sem_wait() of
155 * sem_vcpu_stop and before vcpu continues to run.
156 */
157static bool dirty_ring_vcpu_ring_full;
158/*
159 * This is only used for verifying the dirty pages.  Dirty ring has a very
160 * tricky case when the ring just got full, kvm will do userspace exit due to
161 * ring full.  When that happens, the very last PFN is set but actually the
162 * data is not changed (the guest WRITE is not really applied yet), because
163 * we found that the dirty ring is full, refused to continue the vcpu, and
164 * recorded the dirty gfn with the old contents.
165 *
166 * For this specific case, it's safe to skip checking this pfn for this
167 * bit, because it's a redundant bit, and when the write happens later the bit
168 * will be set again.  We use this variable to always keep track of the latest
169 * dirty gfn we've collected, so that if a mismatch of data found later in the
170 * verifying process, we let it pass.
171 */
172static uint64_t dirty_ring_last_page;
173
174enum log_mode_t {
175	/* Only use KVM_GET_DIRTY_LOG for logging */
176	LOG_MODE_DIRTY_LOG = 0,
177
178	/* Use both KVM_[GET|CLEAR]_DIRTY_LOG for logging */
179	LOG_MODE_CLEAR_LOG = 1,
180
181	/* Use dirty ring for logging */
182	LOG_MODE_DIRTY_RING = 2,
183
184	LOG_MODE_NUM,
185
186	/* Run all supported modes */
187	LOG_MODE_ALL = LOG_MODE_NUM,
188};
189
190/* Mode of logging to test.  Default is to run all supported modes */
191static enum log_mode_t host_log_mode_option = LOG_MODE_ALL;
192/* Logging mode for current run */
193static enum log_mode_t host_log_mode;
194static pthread_t vcpu_thread;
195static uint32_t test_dirty_ring_count = TEST_DIRTY_RING_COUNT;
196
197static void vcpu_kick(void)
198{
199	pthread_kill(vcpu_thread, SIG_IPI);
200}
201
202/*
203 * In our test we do signal tricks, let's use a better version of
204 * sem_wait to avoid signal interrupts
205 */
206static void sem_wait_until(sem_t *sem)
207{
208	int ret;
209
210	do
211		ret = sem_wait(sem);
212	while (ret == -1 && errno == EINTR);
213}
214
215static bool clear_log_supported(void)
216{
217	return kvm_has_cap(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
218}
219
220static void clear_log_create_vm_done(struct kvm_vm *vm)
221{
222	u64 manual_caps;
223
224	manual_caps = kvm_check_cap(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
225	TEST_ASSERT(manual_caps, "MANUAL_CAPS is zero!");
226	manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
227			KVM_DIRTY_LOG_INITIALLY_SET);
228	vm_enable_cap(vm, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, manual_caps);
229}
230
231static void dirty_log_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot,
232					  void *bitmap, uint32_t num_pages,
233					  uint32_t *unused)
234{
235	kvm_vm_get_dirty_log(vcpu->vm, slot, bitmap);
236}
237
238static void clear_log_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot,
239					  void *bitmap, uint32_t num_pages,
240					  uint32_t *unused)
241{
242	kvm_vm_get_dirty_log(vcpu->vm, slot, bitmap);
243	kvm_vm_clear_dirty_log(vcpu->vm, slot, bitmap, 0, num_pages);
244}
245
246/* Should only be called after a GUEST_SYNC */
247static void vcpu_handle_sync_stop(void)
248{
249	if (atomic_read(&vcpu_sync_stop_requested)) {
250		/* It means main thread is sleeping waiting */
251		atomic_set(&vcpu_sync_stop_requested, false);
252		sem_post(&sem_vcpu_stop);
253		sem_wait_until(&sem_vcpu_cont);
254	}
255}
256
257static void default_after_vcpu_run(struct kvm_vcpu *vcpu, int ret, int err)
258{
259	struct kvm_run *run = vcpu->run;
260
261	TEST_ASSERT(ret == 0 || (ret == -1 && err == EINTR),
262		    "vcpu run failed: errno=%d", err);
263
264	TEST_ASSERT(get_ucall(vcpu, NULL) == UCALL_SYNC,
265		    "Invalid guest sync status: exit_reason=%s",
266		    exit_reason_str(run->exit_reason));
267
268	vcpu_handle_sync_stop();
269}
270
271static bool dirty_ring_supported(void)
272{
273	return (kvm_has_cap(KVM_CAP_DIRTY_LOG_RING) ||
274		kvm_has_cap(KVM_CAP_DIRTY_LOG_RING_ACQ_REL));
275}
276
277static void dirty_ring_create_vm_done(struct kvm_vm *vm)
278{
279	uint64_t pages;
280	uint32_t limit;
281
282	/*
283	 * We rely on vcpu exit due to full dirty ring state. Adjust
284	 * the ring buffer size to ensure we're able to reach the
285	 * full dirty ring state.
286	 */
287	pages = (1ul << (DIRTY_MEM_BITS - vm->page_shift)) + 3;
288	pages = vm_adjust_num_guest_pages(vm->mode, pages);
289	if (vm->page_size < getpagesize())
290		pages = vm_num_host_pages(vm->mode, pages);
291
292	limit = 1 << (31 - __builtin_clz(pages));
293	test_dirty_ring_count = 1 << (31 - __builtin_clz(test_dirty_ring_count));
294	test_dirty_ring_count = min(limit, test_dirty_ring_count);
295	pr_info("dirty ring count: 0x%x\n", test_dirty_ring_count);
296
297	/*
298	 * Switch to dirty ring mode after VM creation but before any
299	 * of the vcpu creation.
300	 */
301	vm_enable_dirty_ring(vm, test_dirty_ring_count *
302			     sizeof(struct kvm_dirty_gfn));
303}
304
305static inline bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
306{
307	return smp_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
308}
309
310static inline void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
311{
312	smp_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
313}
314
315static uint32_t dirty_ring_collect_one(struct kvm_dirty_gfn *dirty_gfns,
316				       int slot, void *bitmap,
317				       uint32_t num_pages, uint32_t *fetch_index)
318{
319	struct kvm_dirty_gfn *cur;
320	uint32_t count = 0;
321
322	while (true) {
323		cur = &dirty_gfns[*fetch_index % test_dirty_ring_count];
324		if (!dirty_gfn_is_dirtied(cur))
325			break;
326		TEST_ASSERT(cur->slot == slot, "Slot number didn't match: "
327			    "%u != %u", cur->slot, slot);
328		TEST_ASSERT(cur->offset < num_pages, "Offset overflow: "
329			    "0x%llx >= 0x%x", cur->offset, num_pages);
330		//pr_info("fetch 0x%x page %llu\n", *fetch_index, cur->offset);
331		__set_bit_le(cur->offset, bitmap);
332		dirty_ring_last_page = cur->offset;
333		dirty_gfn_set_collected(cur);
334		(*fetch_index)++;
335		count++;
336	}
337
338	return count;
339}
340
341static void dirty_ring_wait_vcpu(void)
342{
343	/* This makes sure that hardware PML cache flushed */
344	vcpu_kick();
345	sem_wait_until(&sem_vcpu_stop);
346}
347
348static void dirty_ring_continue_vcpu(void)
349{
350	pr_info("Notifying vcpu to continue\n");
351	sem_post(&sem_vcpu_cont);
352}
353
354static void dirty_ring_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot,
355					   void *bitmap, uint32_t num_pages,
356					   uint32_t *ring_buf_idx)
357{
358	uint32_t count = 0, cleared;
359	bool continued_vcpu = false;
360
361	dirty_ring_wait_vcpu();
362
363	if (!dirty_ring_vcpu_ring_full) {
364		/*
365		 * This is not a ring-full event, it's safe to allow
366		 * vcpu to continue
367		 */
368		dirty_ring_continue_vcpu();
369		continued_vcpu = true;
370	}
371
372	/* Only have one vcpu */
373	count = dirty_ring_collect_one(vcpu_map_dirty_ring(vcpu),
374				       slot, bitmap, num_pages,
375				       ring_buf_idx);
376
377	cleared = kvm_vm_reset_dirty_ring(vcpu->vm);
378
379	/*
380	 * Cleared pages should be the same as collected, as KVM is supposed to
381	 * clear only the entries that have been harvested.
382	 */
383	TEST_ASSERT(cleared == count, "Reset dirty pages (%u) mismatch "
384		    "with collected (%u)", cleared, count);
385
386	if (!continued_vcpu) {
387		TEST_ASSERT(dirty_ring_vcpu_ring_full,
388			    "Didn't continue vcpu even without ring full");
389		dirty_ring_continue_vcpu();
390	}
391
392	pr_info("Iteration %ld collected %u pages\n", iteration, count);
393}
394
395static void dirty_ring_after_vcpu_run(struct kvm_vcpu *vcpu, int ret, int err)
396{
397	struct kvm_run *run = vcpu->run;
398
399	/* A ucall-sync or ring-full event is allowed */
400	if (get_ucall(vcpu, NULL) == UCALL_SYNC) {
401		/* We should allow this to continue */
402		;
403	} else if (run->exit_reason == KVM_EXIT_DIRTY_RING_FULL ||
404		   (ret == -1 && err == EINTR)) {
405		/* Update the flag first before pause */
406		WRITE_ONCE(dirty_ring_vcpu_ring_full,
407			   run->exit_reason == KVM_EXIT_DIRTY_RING_FULL);
408		sem_post(&sem_vcpu_stop);
409		pr_info("vcpu stops because %s...\n",
410			dirty_ring_vcpu_ring_full ?
411			"dirty ring is full" : "vcpu is kicked out");
412		sem_wait_until(&sem_vcpu_cont);
413		pr_info("vcpu continues now.\n");
414	} else {
415		TEST_ASSERT(false, "Invalid guest sync status: "
416			    "exit_reason=%s",
417			    exit_reason_str(run->exit_reason));
418	}
419}
420
421struct log_mode {
422	const char *name;
423	/* Return true if this mode is supported, otherwise false */
424	bool (*supported)(void);
425	/* Hook when the vm creation is done (before vcpu creation) */
426	void (*create_vm_done)(struct kvm_vm *vm);
427	/* Hook to collect the dirty pages into the bitmap provided */
428	void (*collect_dirty_pages) (struct kvm_vcpu *vcpu, int slot,
429				     void *bitmap, uint32_t num_pages,
430				     uint32_t *ring_buf_idx);
431	/* Hook to call when after each vcpu run */
432	void (*after_vcpu_run)(struct kvm_vcpu *vcpu, int ret, int err);
433} log_modes[LOG_MODE_NUM] = {
434	{
435		.name = "dirty-log",
436		.collect_dirty_pages = dirty_log_collect_dirty_pages,
437		.after_vcpu_run = default_after_vcpu_run,
438	},
439	{
440		.name = "clear-log",
441		.supported = clear_log_supported,
442		.create_vm_done = clear_log_create_vm_done,
443		.collect_dirty_pages = clear_log_collect_dirty_pages,
444		.after_vcpu_run = default_after_vcpu_run,
445	},
446	{
447		.name = "dirty-ring",
448		.supported = dirty_ring_supported,
449		.create_vm_done = dirty_ring_create_vm_done,
450		.collect_dirty_pages = dirty_ring_collect_dirty_pages,
451		.after_vcpu_run = dirty_ring_after_vcpu_run,
452	},
453};
454
455/*
456 * We use this bitmap to track some pages that should have its dirty
457 * bit set in the _next_ iteration.  For example, if we detected the
458 * page value changed to current iteration but at the same time the
459 * page bit is cleared in the latest bitmap, then the system must
460 * report that write in the next get dirty log call.
461 */
462static unsigned long *host_bmap_track;
463
464static void log_modes_dump(void)
465{
466	int i;
467
468	printf("all");
469	for (i = 0; i < LOG_MODE_NUM; i++)
470		printf(", %s", log_modes[i].name);
471	printf("\n");
472}
473
474static bool log_mode_supported(void)
475{
476	struct log_mode *mode = &log_modes[host_log_mode];
477
478	if (mode->supported)
479		return mode->supported();
480
481	return true;
482}
483
484static void log_mode_create_vm_done(struct kvm_vm *vm)
485{
486	struct log_mode *mode = &log_modes[host_log_mode];
487
488	if (mode->create_vm_done)
489		mode->create_vm_done(vm);
490}
491
492static void log_mode_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot,
493					 void *bitmap, uint32_t num_pages,
494					 uint32_t *ring_buf_idx)
495{
496	struct log_mode *mode = &log_modes[host_log_mode];
497
498	TEST_ASSERT(mode->collect_dirty_pages != NULL,
499		    "collect_dirty_pages() is required for any log mode!");
500	mode->collect_dirty_pages(vcpu, slot, bitmap, num_pages, ring_buf_idx);
501}
502
503static void log_mode_after_vcpu_run(struct kvm_vcpu *vcpu, int ret, int err)
504{
505	struct log_mode *mode = &log_modes[host_log_mode];
506
507	if (mode->after_vcpu_run)
508		mode->after_vcpu_run(vcpu, ret, err);
509}
510
511static void generate_random_array(uint64_t *guest_array, uint64_t size)
512{
513	uint64_t i;
514
515	for (i = 0; i < size; i++)
516		guest_array[i] = random();
517}
518
519static void *vcpu_worker(void *data)
520{
521	int ret;
522	struct kvm_vcpu *vcpu = data;
523	struct kvm_vm *vm = vcpu->vm;
524	uint64_t *guest_array;
525	uint64_t pages_count = 0;
526	struct kvm_signal_mask *sigmask = alloca(offsetof(struct kvm_signal_mask, sigset)
527						 + sizeof(sigset_t));
528	sigset_t *sigset = (sigset_t *) &sigmask->sigset;
529
530	/*
531	 * SIG_IPI is unblocked atomically while in KVM_RUN.  It causes the
532	 * ioctl to return with -EINTR, but it is still pending and we need
533	 * to accept it with the sigwait.
534	 */
535	sigmask->len = 8;
536	pthread_sigmask(0, NULL, sigset);
537	sigdelset(sigset, SIG_IPI);
538	vcpu_ioctl(vcpu, KVM_SET_SIGNAL_MASK, sigmask);
539
540	sigemptyset(sigset);
541	sigaddset(sigset, SIG_IPI);
542
543	guest_array = addr_gva2hva(vm, (vm_vaddr_t)random_array);
544
545	while (!READ_ONCE(host_quit)) {
546		/* Clear any existing kick signals */
547		generate_random_array(guest_array, TEST_PAGES_PER_LOOP);
548		pages_count += TEST_PAGES_PER_LOOP;
549		/* Let the guest dirty the random pages */
550		ret = __vcpu_run(vcpu);
551		if (ret == -1 && errno == EINTR) {
552			int sig = -1;
553			sigwait(sigset, &sig);
554			assert(sig == SIG_IPI);
555		}
556		log_mode_after_vcpu_run(vcpu, ret, errno);
557	}
558
559	pr_info("Dirtied %"PRIu64" pages\n", pages_count);
560
561	return NULL;
562}
563
564static void vm_dirty_log_verify(enum vm_guest_mode mode, unsigned long *bmap)
565{
566	uint64_t step = vm_num_host_pages(mode, 1);
567	uint64_t page;
568	uint64_t *value_ptr;
569	uint64_t min_iter = 0;
570
571	for (page = 0; page < host_num_pages; page += step) {
572		value_ptr = host_test_mem + page * host_page_size;
573
574		/* If this is a special page that we were tracking... */
575		if (__test_and_clear_bit_le(page, host_bmap_track)) {
576			host_track_next_count++;
577			TEST_ASSERT(test_bit_le(page, bmap),
578				    "Page %"PRIu64" should have its dirty bit "
579				    "set in this iteration but it is missing",
580				    page);
581		}
582
583		if (__test_and_clear_bit_le(page, bmap)) {
584			bool matched;
585
586			host_dirty_count++;
587
588			/*
589			 * If the bit is set, the value written onto
590			 * the corresponding page should be either the
591			 * previous iteration number or the current one.
592			 */
593			matched = (*value_ptr == iteration ||
594				   *value_ptr == iteration - 1);
595
596			if (host_log_mode == LOG_MODE_DIRTY_RING && !matched) {
597				if (*value_ptr == iteration - 2 && min_iter <= iteration - 2) {
598					/*
599					 * Short answer: this case is special
600					 * only for dirty ring test where the
601					 * page is the last page before a kvm
602					 * dirty ring full in iteration N-2.
603					 *
604					 * Long answer: Assuming ring size R,
605					 * one possible condition is:
606					 *
607					 *      main thr       vcpu thr
608					 *      --------       --------
609					 *    iter=1
610					 *                   write 1 to page 0~(R-1)
611					 *                   full, vmexit
612					 *    collect 0~(R-1)
613					 *    kick vcpu
614					 *                   write 1 to (R-1)~(2R-2)
615					 *                   full, vmexit
616					 *    iter=2
617					 *    collect (R-1)~(2R-2)
618					 *    kick vcpu
619					 *                   write 1 to (2R-2)
620					 *                   (NOTE!!! "1" cached in cpu reg)
621					 *                   write 2 to (2R-1)~(3R-3)
622					 *                   full, vmexit
623					 *    iter=3
624					 *    collect (2R-2)~(3R-3)
625					 *    (here if we read value on page
626					 *     "2R-2" is 1, while iter=3!!!)
627					 *
628					 * This however can only happen once per iteration.
629					 */
630					min_iter = iteration - 1;
631					continue;
632				} else if (page == dirty_ring_last_page) {
633					/*
634					 * Please refer to comments in
635					 * dirty_ring_last_page.
636					 */
637					continue;
638				}
639			}
640
641			TEST_ASSERT(matched,
642				    "Set page %"PRIu64" value %"PRIu64
643				    " incorrect (iteration=%"PRIu64")",
644				    page, *value_ptr, iteration);
645		} else {
646			host_clear_count++;
647			/*
648			 * If cleared, the value written can be any
649			 * value smaller or equals to the iteration
650			 * number.  Note that the value can be exactly
651			 * (iteration-1) if that write can happen
652			 * like this:
653			 *
654			 * (1) increase loop count to "iteration-1"
655			 * (2) write to page P happens (with value
656			 *     "iteration-1")
657			 * (3) get dirty log for "iteration-1"; we'll
658			 *     see that page P bit is set (dirtied),
659			 *     and not set the bit in host_bmap_track
660			 * (4) increase loop count to "iteration"
661			 *     (which is current iteration)
662			 * (5) get dirty log for current iteration,
663			 *     we'll see that page P is cleared, with
664			 *     value "iteration-1".
665			 */
666			TEST_ASSERT(*value_ptr <= iteration,
667				    "Clear page %"PRIu64" value %"PRIu64
668				    " incorrect (iteration=%"PRIu64")",
669				    page, *value_ptr, iteration);
670			if (*value_ptr == iteration) {
671				/*
672				 * This page is _just_ modified; it
673				 * should report its dirtyness in the
674				 * next run
675				 */
676				__set_bit_le(page, host_bmap_track);
677			}
678		}
679	}
680}
681
682static struct kvm_vm *create_vm(enum vm_guest_mode mode, struct kvm_vcpu **vcpu,
683				uint64_t extra_mem_pages, void *guest_code)
684{
685	struct kvm_vm *vm;
686
687	pr_info("Testing guest mode: %s\n", vm_guest_mode_string(mode));
688
689	vm = __vm_create(VM_SHAPE(mode), 1, extra_mem_pages);
690
691	log_mode_create_vm_done(vm);
692	*vcpu = vm_vcpu_add(vm, 0, guest_code);
693	return vm;
694}
695
696struct test_params {
697	unsigned long iterations;
698	unsigned long interval;
699	uint64_t phys_offset;
700};
701
702static void run_test(enum vm_guest_mode mode, void *arg)
703{
704	struct test_params *p = arg;
705	struct kvm_vcpu *vcpu;
706	struct kvm_vm *vm;
707	unsigned long *bmap;
708	uint32_t ring_buf_idx = 0;
709	int sem_val;
710
711	if (!log_mode_supported()) {
712		print_skip("Log mode '%s' not supported",
713			   log_modes[host_log_mode].name);
714		return;
715	}
716
717	/*
718	 * We reserve page table for 2 times of extra dirty mem which
719	 * will definitely cover the original (1G+) test range.  Here
720	 * we do the calculation with 4K page size which is the
721	 * smallest so the page number will be enough for all archs
722	 * (e.g., 64K page size guest will need even less memory for
723	 * page tables).
724	 */
725	vm = create_vm(mode, &vcpu,
726		       2ul << (DIRTY_MEM_BITS - PAGE_SHIFT_4K), guest_code);
727
728	guest_page_size = vm->page_size;
729	/*
730	 * A little more than 1G of guest page sized pages.  Cover the
731	 * case where the size is not aligned to 64 pages.
732	 */
733	guest_num_pages = (1ul << (DIRTY_MEM_BITS - vm->page_shift)) + 3;
734	guest_num_pages = vm_adjust_num_guest_pages(mode, guest_num_pages);
735
736	host_page_size = getpagesize();
737	host_num_pages = vm_num_host_pages(mode, guest_num_pages);
738
739	if (!p->phys_offset) {
740		guest_test_phys_mem = (vm->max_gfn - guest_num_pages) *
741				      guest_page_size;
742		guest_test_phys_mem = align_down(guest_test_phys_mem, host_page_size);
743	} else {
744		guest_test_phys_mem = p->phys_offset;
745	}
746
747#ifdef __s390x__
748	/* Align to 1M (segment size) */
749	guest_test_phys_mem = align_down(guest_test_phys_mem, 1 << 20);
750#endif
751
752	pr_info("guest physical test memory offset: 0x%lx\n", guest_test_phys_mem);
753
754	bmap = bitmap_zalloc(host_num_pages);
755	host_bmap_track = bitmap_zalloc(host_num_pages);
756
757	/* Add an extra memory slot for testing dirty logging */
758	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
759				    guest_test_phys_mem,
760				    TEST_MEM_SLOT_INDEX,
761				    guest_num_pages,
762				    KVM_MEM_LOG_DIRTY_PAGES);
763
764	/* Do mapping for the dirty track memory slot */
765	virt_map(vm, guest_test_virt_mem, guest_test_phys_mem, guest_num_pages);
766
767	/* Cache the HVA pointer of the region */
768	host_test_mem = addr_gpa2hva(vm, (vm_paddr_t)guest_test_phys_mem);
769
770	/* Export the shared variables to the guest */
771	sync_global_to_guest(vm, host_page_size);
772	sync_global_to_guest(vm, guest_page_size);
773	sync_global_to_guest(vm, guest_test_virt_mem);
774	sync_global_to_guest(vm, guest_num_pages);
775
776	/* Start the iterations */
777	iteration = 1;
778	sync_global_to_guest(vm, iteration);
779	WRITE_ONCE(host_quit, false);
780	host_dirty_count = 0;
781	host_clear_count = 0;
782	host_track_next_count = 0;
783	WRITE_ONCE(dirty_ring_vcpu_ring_full, false);
784
785	/*
786	 * Ensure the previous iteration didn't leave a dangling semaphore, i.e.
787	 * that the main task and vCPU worker were synchronized and completed
788	 * verification of all iterations.
789	 */
790	sem_getvalue(&sem_vcpu_stop, &sem_val);
791	TEST_ASSERT_EQ(sem_val, 0);
792	sem_getvalue(&sem_vcpu_cont, &sem_val);
793	TEST_ASSERT_EQ(sem_val, 0);
794
795	pthread_create(&vcpu_thread, NULL, vcpu_worker, vcpu);
796
797	while (iteration < p->iterations) {
798		/* Give the vcpu thread some time to dirty some pages */
799		usleep(p->interval * 1000);
800		log_mode_collect_dirty_pages(vcpu, TEST_MEM_SLOT_INDEX,
801					     bmap, host_num_pages,
802					     &ring_buf_idx);
803
804		/*
805		 * See vcpu_sync_stop_requested definition for details on why
806		 * we need to stop vcpu when verify data.
807		 */
808		atomic_set(&vcpu_sync_stop_requested, true);
809		sem_wait_until(&sem_vcpu_stop);
810		/*
811		 * NOTE: for dirty ring, it's possible that we didn't stop at
812		 * GUEST_SYNC but instead we stopped because ring is full;
813		 * that's okay too because ring full means we're only missing
814		 * the flush of the last page, and since we handle the last
815		 * page specially verification will succeed anyway.
816		 */
817		assert(host_log_mode == LOG_MODE_DIRTY_RING ||
818		       atomic_read(&vcpu_sync_stop_requested) == false);
819		vm_dirty_log_verify(mode, bmap);
820
821		/*
822		 * Set host_quit before sem_vcpu_cont in the final iteration to
823		 * ensure that the vCPU worker doesn't resume the guest.  As
824		 * above, the dirty ring test may stop and wait even when not
825		 * explicitly request to do so, i.e. would hang waiting for a
826		 * "continue" if it's allowed to resume the guest.
827		 */
828		if (++iteration == p->iterations)
829			WRITE_ONCE(host_quit, true);
830
831		sem_post(&sem_vcpu_cont);
832		sync_global_to_guest(vm, iteration);
833	}
834
835	pthread_join(vcpu_thread, NULL);
836
837	pr_info("Total bits checked: dirty (%"PRIu64"), clear (%"PRIu64"), "
838		"track_next (%"PRIu64")\n", host_dirty_count, host_clear_count,
839		host_track_next_count);
840
841	free(bmap);
842	free(host_bmap_track);
843	kvm_vm_free(vm);
844}
845
846static void help(char *name)
847{
848	puts("");
849	printf("usage: %s [-h] [-i iterations] [-I interval] "
850	       "[-p offset] [-m mode]\n", name);
851	puts("");
852	printf(" -c: hint to dirty ring size, in number of entries\n");
853	printf("     (only useful for dirty-ring test; default: %"PRIu32")\n",
854	       TEST_DIRTY_RING_COUNT);
855	printf(" -i: specify iteration counts (default: %"PRIu64")\n",
856	       TEST_HOST_LOOP_N);
857	printf(" -I: specify interval in ms (default: %"PRIu64" ms)\n",
858	       TEST_HOST_LOOP_INTERVAL);
859	printf(" -p: specify guest physical test memory offset\n"
860	       "     Warning: a low offset can conflict with the loaded test code.\n");
861	printf(" -M: specify the host logging mode "
862	       "(default: run all log modes).  Supported modes: \n\t");
863	log_modes_dump();
864	guest_modes_help();
865	puts("");
866	exit(0);
867}
868
869int main(int argc, char *argv[])
870{
871	struct test_params p = {
872		.iterations = TEST_HOST_LOOP_N,
873		.interval = TEST_HOST_LOOP_INTERVAL,
874	};
875	int opt, i;
876	sigset_t sigset;
877
878	sem_init(&sem_vcpu_stop, 0, 0);
879	sem_init(&sem_vcpu_cont, 0, 0);
880
881	guest_modes_append_default();
882
883	while ((opt = getopt(argc, argv, "c:hi:I:p:m:M:")) != -1) {
884		switch (opt) {
885		case 'c':
886			test_dirty_ring_count = strtol(optarg, NULL, 10);
887			break;
888		case 'i':
889			p.iterations = strtol(optarg, NULL, 10);
890			break;
891		case 'I':
892			p.interval = strtol(optarg, NULL, 10);
893			break;
894		case 'p':
895			p.phys_offset = strtoull(optarg, NULL, 0);
896			break;
897		case 'm':
898			guest_modes_cmdline(optarg);
899			break;
900		case 'M':
901			if (!strcmp(optarg, "all")) {
902				host_log_mode_option = LOG_MODE_ALL;
903				break;
904			}
905			for (i = 0; i < LOG_MODE_NUM; i++) {
906				if (!strcmp(optarg, log_modes[i].name)) {
907					pr_info("Setting log mode to: '%s'\n",
908						optarg);
909					host_log_mode_option = i;
910					break;
911				}
912			}
913			if (i == LOG_MODE_NUM) {
914				printf("Log mode '%s' invalid. Please choose "
915				       "from: ", optarg);
916				log_modes_dump();
917				exit(1);
918			}
919			break;
920		case 'h':
921		default:
922			help(argv[0]);
923			break;
924		}
925	}
926
927	TEST_ASSERT(p.iterations > 2, "Iterations must be greater than two");
928	TEST_ASSERT(p.interval > 0, "Interval must be greater than zero");
929
930	pr_info("Test iterations: %"PRIu64", interval: %"PRIu64" (ms)\n",
931		p.iterations, p.interval);
932
933	srandom(time(0));
934
935	/* Ensure that vCPU threads start with SIG_IPI blocked.  */
936	sigemptyset(&sigset);
937	sigaddset(&sigset, SIG_IPI);
938	pthread_sigmask(SIG_BLOCK, &sigset, NULL);
939
940	if (host_log_mode_option == LOG_MODE_ALL) {
941		/* Run each log mode */
942		for (i = 0; i < LOG_MODE_NUM; i++) {
943			pr_info("Testing Log Mode '%s'\n", log_modes[i].name);
944			host_log_mode = i;
945			for_each_guest_mode(run_test, &p);
946		}
947	} else {
948		host_log_mode = host_log_mode_option;
949		for_each_guest_mode(run_test, &p);
950	}
951
952	return 0;
953}
954