1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2// Copyright (c) 2019, 2020 Cloudflare
3
4#include <stdbool.h>
5#include <stddef.h>
6#include <stdint.h>
7#include <string.h>
8
9#include <linux/bpf.h>
10#include <linux/icmp.h>
11#include <linux/icmpv6.h>
12#include <linux/if_ether.h>
13#include <linux/in.h>
14#include <linux/ip.h>
15#include <linux/ipv6.h>
16#include <linux/pkt_cls.h>
17#include <linux/tcp.h>
18#include <linux/udp.h>
19
20#include <bpf/bpf_helpers.h>
21#include <bpf/bpf_endian.h>
22
23#include "bpf_compiler.h"
24#include "test_cls_redirect.h"
25
26#pragma GCC diagnostic ignored "-Waddress-of-packed-member"
27
28#ifdef SUBPROGS
29#define INLINING __noinline
30#else
31#define INLINING __always_inline
32#endif
33
34#define offsetofend(TYPE, MEMBER) \
35	(offsetof(TYPE, MEMBER) + sizeof((((TYPE *)0)->MEMBER)))
36
37#define IP_OFFSET_MASK (0x1FFF)
38#define IP_MF (0x2000)
39
40char _license[] SEC("license") = "Dual BSD/GPL";
41
42/**
43 * Destination port and IP used for UDP encapsulation.
44 */
45volatile const __be16 ENCAPSULATION_PORT;
46volatile const __be32 ENCAPSULATION_IP;
47
48typedef struct {
49	uint64_t processed_packets_total;
50	uint64_t l3_protocol_packets_total_ipv4;
51	uint64_t l3_protocol_packets_total_ipv6;
52	uint64_t l4_protocol_packets_total_tcp;
53	uint64_t l4_protocol_packets_total_udp;
54	uint64_t accepted_packets_total_syn;
55	uint64_t accepted_packets_total_syn_cookies;
56	uint64_t accepted_packets_total_last_hop;
57	uint64_t accepted_packets_total_icmp_echo_request;
58	uint64_t accepted_packets_total_established;
59	uint64_t forwarded_packets_total_gue;
60	uint64_t forwarded_packets_total_gre;
61
62	uint64_t errors_total_unknown_l3_proto;
63	uint64_t errors_total_unknown_l4_proto;
64	uint64_t errors_total_malformed_ip;
65	uint64_t errors_total_fragmented_ip;
66	uint64_t errors_total_malformed_icmp;
67	uint64_t errors_total_unwanted_icmp;
68	uint64_t errors_total_malformed_icmp_pkt_too_big;
69	uint64_t errors_total_malformed_tcp;
70	uint64_t errors_total_malformed_udp;
71	uint64_t errors_total_icmp_echo_replies;
72	uint64_t errors_total_malformed_encapsulation;
73	uint64_t errors_total_encap_adjust_failed;
74	uint64_t errors_total_encap_buffer_too_small;
75	uint64_t errors_total_redirect_loop;
76	uint64_t errors_total_encap_mtu_violate;
77} metrics_t;
78
79typedef enum {
80	INVALID = 0,
81	UNKNOWN,
82	ECHO_REQUEST,
83	SYN,
84	SYN_COOKIE,
85	ESTABLISHED,
86} verdict_t;
87
88typedef struct {
89	uint16_t src, dst;
90} flow_ports_t;
91
92_Static_assert(
93	sizeof(flow_ports_t) !=
94		offsetofend(struct bpf_sock_tuple, ipv4.dport) -
95			offsetof(struct bpf_sock_tuple, ipv4.sport) - 1,
96	"flow_ports_t must match sport and dport in struct bpf_sock_tuple");
97_Static_assert(
98	sizeof(flow_ports_t) !=
99		offsetofend(struct bpf_sock_tuple, ipv6.dport) -
100			offsetof(struct bpf_sock_tuple, ipv6.sport) - 1,
101	"flow_ports_t must match sport and dport in struct bpf_sock_tuple");
102
103typedef int ret_t;
104
105/* This is a bit of a hack. We need a return value which allows us to
106 * indicate that the regular flow of the program should continue,
107 * while allowing functions to use XDP_PASS and XDP_DROP, etc.
108 */
109static const ret_t CONTINUE_PROCESSING = -1;
110
111/* Convenience macro to call functions which return ret_t.
112 */
113#define MAYBE_RETURN(x)                           \
114	do {                                      \
115		ret_t __ret = x;                  \
116		if (__ret != CONTINUE_PROCESSING) \
117			return __ret;             \
118	} while (0)
119
120/* Linux packet pointers are either aligned to NET_IP_ALIGN (aka 2 bytes),
121 * or not aligned if the arch supports efficient unaligned access.
122 *
123 * Since the verifier ensures that eBPF packet accesses follow these rules,
124 * we can tell LLVM to emit code as if we always had a larger alignment.
125 * It will yell at us if we end up on a platform where this is not valid.
126 */
127typedef uint8_t *net_ptr __attribute__((align_value(8)));
128
129typedef struct buf {
130	struct __sk_buff *skb;
131	net_ptr head;
132	/* NB: tail musn't have alignment other than 1, otherwise
133	* LLVM will go and eliminate code, e.g. when checking packet lengths.
134	*/
135	uint8_t *const tail;
136} buf_t;
137
138static __always_inline size_t buf_off(const buf_t *buf)
139{
140	/* Clang seems to optimize constructs like
141	 *    a - b + c
142	 * if c is known:
143	 *    r? = c
144	 *    r? -= b
145	 *    r? += a
146	 *
147	 * This is a problem if a and b are packet pointers,
148	 * since the verifier allows subtracting two pointers to
149	 * get a scalar, but not a scalar and a pointer.
150	 *
151	 * Use inline asm to break this optimization.
152	 */
153	size_t off = (size_t)buf->head;
154	asm("%0 -= %1" : "+r"(off) : "r"(buf->skb->data));
155	return off;
156}
157
158static __always_inline bool buf_copy(buf_t *buf, void *dst, size_t len)
159{
160	if (bpf_skb_load_bytes(buf->skb, buf_off(buf), dst, len)) {
161		return false;
162	}
163
164	buf->head += len;
165	return true;
166}
167
168static __always_inline bool buf_skip(buf_t *buf, const size_t len)
169{
170	/* Check whether off + len is valid in the non-linear part. */
171	if (buf_off(buf) + len > buf->skb->len) {
172		return false;
173	}
174
175	buf->head += len;
176	return true;
177}
178
179/* Returns a pointer to the start of buf, or NULL if len is
180 * larger than the remaining data. Consumes len bytes on a successful
181 * call.
182 *
183 * If scratch is not NULL, the function will attempt to load non-linear
184 * data via bpf_skb_load_bytes. On success, scratch is returned.
185 */
186static __always_inline void *buf_assign(buf_t *buf, const size_t len, void *scratch)
187{
188	if (buf->head + len > buf->tail) {
189		if (scratch == NULL) {
190			return NULL;
191		}
192
193		return buf_copy(buf, scratch, len) ? scratch : NULL;
194	}
195
196	void *ptr = buf->head;
197	buf->head += len;
198	return ptr;
199}
200
201static INLINING bool pkt_skip_ipv4_options(buf_t *buf, const struct iphdr *ipv4)
202{
203	if (ipv4->ihl <= 5) {
204		return true;
205	}
206
207	return buf_skip(buf, (ipv4->ihl - 5) * 4);
208}
209
210static INLINING bool ipv4_is_fragment(const struct iphdr *ip)
211{
212	uint16_t frag_off = ip->frag_off & bpf_htons(IP_OFFSET_MASK);
213	return (ip->frag_off & bpf_htons(IP_MF)) != 0 || frag_off > 0;
214}
215
216static __always_inline struct iphdr *pkt_parse_ipv4(buf_t *pkt, struct iphdr *scratch)
217{
218	struct iphdr *ipv4 = buf_assign(pkt, sizeof(*ipv4), scratch);
219	if (ipv4 == NULL) {
220		return NULL;
221	}
222
223	if (ipv4->ihl < 5) {
224		return NULL;
225	}
226
227	if (!pkt_skip_ipv4_options(pkt, ipv4)) {
228		return NULL;
229	}
230
231	return ipv4;
232}
233
234/* Parse the L4 ports from a packet, assuming a layout like TCP or UDP. */
235static INLINING bool pkt_parse_icmp_l4_ports(buf_t *pkt, flow_ports_t *ports)
236{
237	if (!buf_copy(pkt, ports, sizeof(*ports))) {
238		return false;
239	}
240
241	/* Ports in the L4 headers are reversed, since we are parsing an ICMP
242	 * payload which is going towards the eyeball.
243	 */
244	uint16_t dst = ports->src;
245	ports->src = ports->dst;
246	ports->dst = dst;
247	return true;
248}
249
250static INLINING uint16_t pkt_checksum_fold(uint32_t csum)
251{
252	/* The highest reasonable value for an IPv4 header
253	 * checksum requires two folds, so we just do that always.
254	 */
255	csum = (csum & 0xffff) + (csum >> 16);
256	csum = (csum & 0xffff) + (csum >> 16);
257	return (uint16_t)~csum;
258}
259
260static INLINING void pkt_ipv4_checksum(struct iphdr *iph)
261{
262	iph->check = 0;
263
264	/* An IP header without options is 20 bytes. Two of those
265	 * are the checksum, which we always set to zero. Hence,
266	 * the maximum accumulated value is 18 / 2 * 0xffff = 0x8fff7,
267	 * which fits in 32 bit.
268	 */
269	_Static_assert(sizeof(struct iphdr) == 20, "iphdr must be 20 bytes");
270	uint32_t acc = 0;
271	uint16_t *ipw = (uint16_t *)iph;
272
273	__pragma_loop_unroll_full
274	for (size_t i = 0; i < sizeof(struct iphdr) / 2; i++) {
275		acc += ipw[i];
276	}
277
278	iph->check = pkt_checksum_fold(acc);
279}
280
281static INLINING
282bool pkt_skip_ipv6_extension_headers(buf_t *pkt,
283				     const struct ipv6hdr *ipv6,
284				     uint8_t *upper_proto,
285				     bool *is_fragment)
286{
287	/* We understand five extension headers.
288	 * https://tools.ietf.org/html/rfc8200#section-4.1 states that all
289	 * headers should occur once, except Destination Options, which may
290	 * occur twice. Hence we give up after 6 headers.
291	 */
292	struct {
293		uint8_t next;
294		uint8_t len;
295	} exthdr = {
296		.next = ipv6->nexthdr,
297	};
298	*is_fragment = false;
299
300	__pragma_loop_unroll_full
301	for (int i = 0; i < 6; i++) {
302		switch (exthdr.next) {
303		case IPPROTO_FRAGMENT:
304			*is_fragment = true;
305			/* NB: We don't check that hdrlen == 0 as per spec. */
306			/* fallthrough; */
307
308		case IPPROTO_HOPOPTS:
309		case IPPROTO_ROUTING:
310		case IPPROTO_DSTOPTS:
311		case IPPROTO_MH:
312			if (!buf_copy(pkt, &exthdr, sizeof(exthdr))) {
313				return false;
314			}
315
316			/* hdrlen is in 8-octet units, and excludes the first 8 octets. */
317			if (!buf_skip(pkt,
318				      (exthdr.len + 1) * 8 - sizeof(exthdr))) {
319				return false;
320			}
321
322			/* Decode next header */
323			break;
324
325		default:
326			/* The next header is not one of the known extension
327			 * headers, treat it as the upper layer header.
328			 *
329			 * This handles IPPROTO_NONE.
330			 *
331			 * Encapsulating Security Payload (50) and Authentication
332			 * Header (51) also end up here (and will trigger an
333			 * unknown proto error later). They have a custom header
334			 * format and seem too esoteric to care about.
335			 */
336			*upper_proto = exthdr.next;
337			return true;
338		}
339	}
340
341	/* We never found an upper layer header. */
342	return false;
343}
344
345/* This function has to be inlined, because the verifier otherwise rejects it
346 * due to returning a pointer to the stack. This is technically correct, since
347 * scratch is allocated on the stack. However, this usage should be safe since
348 * it's the callers stack after all.
349 */
350static __always_inline struct ipv6hdr *
351pkt_parse_ipv6(buf_t *pkt, struct ipv6hdr *scratch, uint8_t *proto,
352	       bool *is_fragment)
353{
354	struct ipv6hdr *ipv6 = buf_assign(pkt, sizeof(*ipv6), scratch);
355	if (ipv6 == NULL) {
356		return NULL;
357	}
358
359	if (!pkt_skip_ipv6_extension_headers(pkt, ipv6, proto, is_fragment)) {
360		return NULL;
361	}
362
363	return ipv6;
364}
365
366/* Global metrics, per CPU
367 */
368struct {
369	__uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
370	__uint(max_entries, 1);
371	__type(key, unsigned int);
372	__type(value, metrics_t);
373} metrics_map SEC(".maps");
374
375static INLINING metrics_t *get_global_metrics(void)
376{
377	uint64_t key = 0;
378	return bpf_map_lookup_elem(&metrics_map, &key);
379}
380
381static INLINING ret_t accept_locally(struct __sk_buff *skb, encap_headers_t *encap)
382{
383	const int payload_off =
384		sizeof(*encap) +
385		sizeof(struct in_addr) * encap->unigue.hop_count;
386	int32_t encap_overhead = payload_off - sizeof(struct ethhdr);
387
388	// Changing the ethertype if the encapsulated packet is ipv6
389	if (encap->gue.proto_ctype == IPPROTO_IPV6) {
390		encap->eth.h_proto = bpf_htons(ETH_P_IPV6);
391	}
392
393	if (bpf_skb_adjust_room(skb, -encap_overhead, BPF_ADJ_ROOM_MAC,
394				BPF_F_ADJ_ROOM_FIXED_GSO |
395				BPF_F_ADJ_ROOM_NO_CSUM_RESET) ||
396	    bpf_csum_level(skb, BPF_CSUM_LEVEL_DEC))
397		return TC_ACT_SHOT;
398
399	return bpf_redirect(skb->ifindex, BPF_F_INGRESS);
400}
401
402static INLINING ret_t forward_with_gre(struct __sk_buff *skb, encap_headers_t *encap,
403				       struct in_addr *next_hop, metrics_t *metrics)
404{
405	metrics->forwarded_packets_total_gre++;
406
407	const int payload_off =
408		sizeof(*encap) +
409		sizeof(struct in_addr) * encap->unigue.hop_count;
410	int32_t encap_overhead =
411		payload_off - sizeof(struct ethhdr) - sizeof(struct iphdr);
412	int32_t delta = sizeof(struct gre_base_hdr) - encap_overhead;
413	uint16_t proto = ETH_P_IP;
414	uint32_t mtu_len = 0;
415
416	/* Loop protection: the inner packet's TTL is decremented as a safeguard
417	 * against any forwarding loop. As the only interesting field is the TTL
418	 * hop limit for IPv6, it is easier to use bpf_skb_load_bytes/bpf_skb_store_bytes
419	 * as they handle the split packets if needed (no need for the data to be
420	 * in the linear section).
421	 */
422	if (encap->gue.proto_ctype == IPPROTO_IPV6) {
423		proto = ETH_P_IPV6;
424		uint8_t ttl;
425		int rc;
426
427		rc = bpf_skb_load_bytes(
428			skb, payload_off + offsetof(struct ipv6hdr, hop_limit),
429			&ttl, 1);
430		if (rc != 0) {
431			metrics->errors_total_malformed_encapsulation++;
432			return TC_ACT_SHOT;
433		}
434
435		if (ttl == 0) {
436			metrics->errors_total_redirect_loop++;
437			return TC_ACT_SHOT;
438		}
439
440		ttl--;
441		rc = bpf_skb_store_bytes(
442			skb, payload_off + offsetof(struct ipv6hdr, hop_limit),
443			&ttl, 1, 0);
444		if (rc != 0) {
445			metrics->errors_total_malformed_encapsulation++;
446			return TC_ACT_SHOT;
447		}
448	} else {
449		uint8_t ttl;
450		int rc;
451
452		rc = bpf_skb_load_bytes(
453			skb, payload_off + offsetof(struct iphdr, ttl), &ttl,
454			1);
455		if (rc != 0) {
456			metrics->errors_total_malformed_encapsulation++;
457			return TC_ACT_SHOT;
458		}
459
460		if (ttl == 0) {
461			metrics->errors_total_redirect_loop++;
462			return TC_ACT_SHOT;
463		}
464
465		/* IPv4 also has a checksum to patch. While the TTL is only one byte,
466		 * this function only works for 2 and 4 bytes arguments (the result is
467		 * the same).
468		 */
469		rc = bpf_l3_csum_replace(
470			skb, payload_off + offsetof(struct iphdr, check), ttl,
471			ttl - 1, 2);
472		if (rc != 0) {
473			metrics->errors_total_malformed_encapsulation++;
474			return TC_ACT_SHOT;
475		}
476
477		ttl--;
478		rc = bpf_skb_store_bytes(
479			skb, payload_off + offsetof(struct iphdr, ttl), &ttl, 1,
480			0);
481		if (rc != 0) {
482			metrics->errors_total_malformed_encapsulation++;
483			return TC_ACT_SHOT;
484		}
485	}
486
487	if (bpf_check_mtu(skb, skb->ifindex, &mtu_len, delta, 0)) {
488		metrics->errors_total_encap_mtu_violate++;
489		return TC_ACT_SHOT;
490	}
491
492	if (bpf_skb_adjust_room(skb, delta, BPF_ADJ_ROOM_NET,
493				BPF_F_ADJ_ROOM_FIXED_GSO |
494				BPF_F_ADJ_ROOM_NO_CSUM_RESET) ||
495	    bpf_csum_level(skb, BPF_CSUM_LEVEL_INC)) {
496		metrics->errors_total_encap_adjust_failed++;
497		return TC_ACT_SHOT;
498	}
499
500	if (bpf_skb_pull_data(skb, sizeof(encap_gre_t))) {
501		metrics->errors_total_encap_buffer_too_small++;
502		return TC_ACT_SHOT;
503	}
504
505	buf_t pkt = {
506		.skb = skb,
507		.head = (uint8_t *)(long)skb->data,
508		.tail = (uint8_t *)(long)skb->data_end,
509	};
510
511	encap_gre_t *encap_gre = buf_assign(&pkt, sizeof(encap_gre_t), NULL);
512	if (encap_gre == NULL) {
513		metrics->errors_total_encap_buffer_too_small++;
514		return TC_ACT_SHOT;
515	}
516
517	encap_gre->ip.protocol = IPPROTO_GRE;
518	encap_gre->ip.daddr = next_hop->s_addr;
519	encap_gre->ip.saddr = ENCAPSULATION_IP;
520	encap_gre->ip.tot_len =
521		bpf_htons(bpf_ntohs(encap_gre->ip.tot_len) + delta);
522	encap_gre->gre.flags = 0;
523	encap_gre->gre.protocol = bpf_htons(proto);
524	pkt_ipv4_checksum((void *)&encap_gre->ip);
525
526	return bpf_redirect(skb->ifindex, 0);
527}
528
529static INLINING ret_t forward_to_next_hop(struct __sk_buff *skb, encap_headers_t *encap,
530					  struct in_addr *next_hop, metrics_t *metrics)
531{
532	/* swap L2 addresses */
533	/* This assumes that packets are received from a router.
534	 * So just swapping the MAC addresses here will make the packet go back to
535	 * the router, which will send it to the appropriate machine.
536	 */
537	unsigned char temp[ETH_ALEN];
538	memcpy(temp, encap->eth.h_dest, sizeof(temp));
539	memcpy(encap->eth.h_dest, encap->eth.h_source,
540	       sizeof(encap->eth.h_dest));
541	memcpy(encap->eth.h_source, temp, sizeof(encap->eth.h_source));
542
543	if (encap->unigue.next_hop == encap->unigue.hop_count - 1 &&
544	    encap->unigue.last_hop_gre) {
545		return forward_with_gre(skb, encap, next_hop, metrics);
546	}
547
548	metrics->forwarded_packets_total_gue++;
549	uint32_t old_saddr = encap->ip.saddr;
550	encap->ip.saddr = encap->ip.daddr;
551	encap->ip.daddr = next_hop->s_addr;
552	if (encap->unigue.next_hop < encap->unigue.hop_count) {
553		encap->unigue.next_hop++;
554	}
555
556	/* Remove ip->saddr, add next_hop->s_addr */
557	const uint64_t off = offsetof(typeof(*encap), ip.check);
558	int ret = bpf_l3_csum_replace(skb, off, old_saddr, next_hop->s_addr, 4);
559	if (ret < 0) {
560		return TC_ACT_SHOT;
561	}
562
563	return bpf_redirect(skb->ifindex, 0);
564}
565
566static INLINING ret_t skip_next_hops(buf_t *pkt, int n)
567{
568	switch (n) {
569	case 1:
570		if (!buf_skip(pkt, sizeof(struct in_addr)))
571			return TC_ACT_SHOT;
572	case 0:
573		return CONTINUE_PROCESSING;
574
575	default:
576		return TC_ACT_SHOT;
577	}
578}
579
580/* Get the next hop from the GLB header.
581 *
582 * Sets next_hop->s_addr to 0 if there are no more hops left.
583 * pkt is positioned just after the variable length GLB header
584 * iff the call is successful.
585 */
586static INLINING ret_t get_next_hop(buf_t *pkt, encap_headers_t *encap,
587				   struct in_addr *next_hop)
588{
589	if (encap->unigue.next_hop > encap->unigue.hop_count) {
590		return TC_ACT_SHOT;
591	}
592
593	/* Skip "used" next hops. */
594	MAYBE_RETURN(skip_next_hops(pkt, encap->unigue.next_hop));
595
596	if (encap->unigue.next_hop == encap->unigue.hop_count) {
597		/* No more next hops, we are at the end of the GLB header. */
598		next_hop->s_addr = 0;
599		return CONTINUE_PROCESSING;
600	}
601
602	if (!buf_copy(pkt, next_hop, sizeof(*next_hop))) {
603		return TC_ACT_SHOT;
604	}
605
606	/* Skip the remaining next hops (may be zero). */
607	return skip_next_hops(pkt, encap->unigue.hop_count -
608					   encap->unigue.next_hop - 1);
609}
610
611/* Fill a bpf_sock_tuple to be used with the socket lookup functions.
612 * This is a kludge that let's us work around verifier limitations:
613 *
614 *    fill_tuple(&t, foo, sizeof(struct iphdr), 123, 321)
615 *
616 * clang will substitute a constant for sizeof, which allows the verifier
617 * to track its value. Based on this, it can figure out the constant
618 * return value, and calling code works while still being "generic" to
619 * IPv4 and IPv6.
620 */
621static INLINING uint64_t fill_tuple(struct bpf_sock_tuple *tuple, void *iph,
622				    uint64_t iphlen, uint16_t sport, uint16_t dport)
623{
624	switch (iphlen) {
625	case sizeof(struct iphdr): {
626		struct iphdr *ipv4 = (struct iphdr *)iph;
627		tuple->ipv4.daddr = ipv4->daddr;
628		tuple->ipv4.saddr = ipv4->saddr;
629		tuple->ipv4.sport = sport;
630		tuple->ipv4.dport = dport;
631		return sizeof(tuple->ipv4);
632	}
633
634	case sizeof(struct ipv6hdr): {
635		struct ipv6hdr *ipv6 = (struct ipv6hdr *)iph;
636		memcpy(&tuple->ipv6.daddr, &ipv6->daddr,
637		       sizeof(tuple->ipv6.daddr));
638		memcpy(&tuple->ipv6.saddr, &ipv6->saddr,
639		       sizeof(tuple->ipv6.saddr));
640		tuple->ipv6.sport = sport;
641		tuple->ipv6.dport = dport;
642		return sizeof(tuple->ipv6);
643	}
644
645	default:
646		return 0;
647	}
648}
649
650static INLINING verdict_t classify_tcp(struct __sk_buff *skb,
651				       struct bpf_sock_tuple *tuple, uint64_t tuplen,
652				       void *iph, struct tcphdr *tcp)
653{
654	struct bpf_sock *sk =
655		bpf_skc_lookup_tcp(skb, tuple, tuplen, BPF_F_CURRENT_NETNS, 0);
656	if (sk == NULL) {
657		return UNKNOWN;
658	}
659
660	if (sk->state != BPF_TCP_LISTEN) {
661		bpf_sk_release(sk);
662		return ESTABLISHED;
663	}
664
665	if (iph != NULL && tcp != NULL) {
666		/* Kludge: we've run out of arguments, but need the length of the ip header. */
667		uint64_t iphlen = sizeof(struct iphdr);
668		if (tuplen == sizeof(tuple->ipv6)) {
669			iphlen = sizeof(struct ipv6hdr);
670		}
671
672		if (bpf_tcp_check_syncookie(sk, iph, iphlen, tcp,
673					    sizeof(*tcp)) == 0) {
674			bpf_sk_release(sk);
675			return SYN_COOKIE;
676		}
677	}
678
679	bpf_sk_release(sk);
680	return UNKNOWN;
681}
682
683static INLINING verdict_t classify_udp(struct __sk_buff *skb,
684				       struct bpf_sock_tuple *tuple, uint64_t tuplen)
685{
686	struct bpf_sock *sk =
687		bpf_sk_lookup_udp(skb, tuple, tuplen, BPF_F_CURRENT_NETNS, 0);
688	if (sk == NULL) {
689		return UNKNOWN;
690	}
691
692	if (sk->state == BPF_TCP_ESTABLISHED) {
693		bpf_sk_release(sk);
694		return ESTABLISHED;
695	}
696
697	bpf_sk_release(sk);
698	return UNKNOWN;
699}
700
701static INLINING verdict_t classify_icmp(struct __sk_buff *skb, uint8_t proto,
702					struct bpf_sock_tuple *tuple, uint64_t tuplen,
703					metrics_t *metrics)
704{
705	switch (proto) {
706	case IPPROTO_TCP:
707		return classify_tcp(skb, tuple, tuplen, NULL, NULL);
708
709	case IPPROTO_UDP:
710		return classify_udp(skb, tuple, tuplen);
711
712	default:
713		metrics->errors_total_malformed_icmp++;
714		return INVALID;
715	}
716}
717
718static INLINING verdict_t process_icmpv4(buf_t *pkt, metrics_t *metrics)
719{
720	struct icmphdr icmp;
721	if (!buf_copy(pkt, &icmp, sizeof(icmp))) {
722		metrics->errors_total_malformed_icmp++;
723		return INVALID;
724	}
725
726	/* We should never receive encapsulated echo replies. */
727	if (icmp.type == ICMP_ECHOREPLY) {
728		metrics->errors_total_icmp_echo_replies++;
729		return INVALID;
730	}
731
732	if (icmp.type == ICMP_ECHO) {
733		return ECHO_REQUEST;
734	}
735
736	if (icmp.type != ICMP_DEST_UNREACH || icmp.code != ICMP_FRAG_NEEDED) {
737		metrics->errors_total_unwanted_icmp++;
738		return INVALID;
739	}
740
741	struct iphdr _ip4;
742	const struct iphdr *ipv4 = pkt_parse_ipv4(pkt, &_ip4);
743	if (ipv4 == NULL) {
744		metrics->errors_total_malformed_icmp_pkt_too_big++;
745		return INVALID;
746	}
747
748	/* The source address in the outer IP header is from the entity that
749	 * originated the ICMP message. Use the original IP header to restore
750	 * the correct flow tuple.
751	 */
752	struct bpf_sock_tuple tuple;
753	tuple.ipv4.saddr = ipv4->daddr;
754	tuple.ipv4.daddr = ipv4->saddr;
755
756	if (!pkt_parse_icmp_l4_ports(pkt, (flow_ports_t *)&tuple.ipv4.sport)) {
757		metrics->errors_total_malformed_icmp_pkt_too_big++;
758		return INVALID;
759	}
760
761	return classify_icmp(pkt->skb, ipv4->protocol, &tuple,
762			     sizeof(tuple.ipv4), metrics);
763}
764
765static INLINING verdict_t process_icmpv6(buf_t *pkt, metrics_t *metrics)
766{
767	struct icmp6hdr icmp6;
768	if (!buf_copy(pkt, &icmp6, sizeof(icmp6))) {
769		metrics->errors_total_malformed_icmp++;
770		return INVALID;
771	}
772
773	/* We should never receive encapsulated echo replies. */
774	if (icmp6.icmp6_type == ICMPV6_ECHO_REPLY) {
775		metrics->errors_total_icmp_echo_replies++;
776		return INVALID;
777	}
778
779	if (icmp6.icmp6_type == ICMPV6_ECHO_REQUEST) {
780		return ECHO_REQUEST;
781	}
782
783	if (icmp6.icmp6_type != ICMPV6_PKT_TOOBIG) {
784		metrics->errors_total_unwanted_icmp++;
785		return INVALID;
786	}
787
788	bool is_fragment;
789	uint8_t l4_proto;
790	struct ipv6hdr _ipv6;
791	const struct ipv6hdr *ipv6 =
792		pkt_parse_ipv6(pkt, &_ipv6, &l4_proto, &is_fragment);
793	if (ipv6 == NULL) {
794		metrics->errors_total_malformed_icmp_pkt_too_big++;
795		return INVALID;
796	}
797
798	if (is_fragment) {
799		metrics->errors_total_fragmented_ip++;
800		return INVALID;
801	}
802
803	/* Swap source and dest addresses. */
804	struct bpf_sock_tuple tuple;
805	memcpy(&tuple.ipv6.saddr, &ipv6->daddr, sizeof(tuple.ipv6.saddr));
806	memcpy(&tuple.ipv6.daddr, &ipv6->saddr, sizeof(tuple.ipv6.daddr));
807
808	if (!pkt_parse_icmp_l4_ports(pkt, (flow_ports_t *)&tuple.ipv6.sport)) {
809		metrics->errors_total_malformed_icmp_pkt_too_big++;
810		return INVALID;
811	}
812
813	return classify_icmp(pkt->skb, l4_proto, &tuple, sizeof(tuple.ipv6),
814			     metrics);
815}
816
817static INLINING verdict_t process_tcp(buf_t *pkt, void *iph, uint64_t iphlen,
818				      metrics_t *metrics)
819{
820	metrics->l4_protocol_packets_total_tcp++;
821
822	struct tcphdr _tcp;
823	struct tcphdr *tcp = buf_assign(pkt, sizeof(_tcp), &_tcp);
824	if (tcp == NULL) {
825		metrics->errors_total_malformed_tcp++;
826		return INVALID;
827	}
828
829	if (tcp->syn) {
830		return SYN;
831	}
832
833	struct bpf_sock_tuple tuple;
834	uint64_t tuplen =
835		fill_tuple(&tuple, iph, iphlen, tcp->source, tcp->dest);
836	return classify_tcp(pkt->skb, &tuple, tuplen, iph, tcp);
837}
838
839static INLINING verdict_t process_udp(buf_t *pkt, void *iph, uint64_t iphlen,
840				      metrics_t *metrics)
841{
842	metrics->l4_protocol_packets_total_udp++;
843
844	struct udphdr _udp;
845	struct udphdr *udph = buf_assign(pkt, sizeof(_udp), &_udp);
846	if (udph == NULL) {
847		metrics->errors_total_malformed_udp++;
848		return INVALID;
849	}
850
851	struct bpf_sock_tuple tuple;
852	uint64_t tuplen =
853		fill_tuple(&tuple, iph, iphlen, udph->source, udph->dest);
854	return classify_udp(pkt->skb, &tuple, tuplen);
855}
856
857static INLINING verdict_t process_ipv4(buf_t *pkt, metrics_t *metrics)
858{
859	metrics->l3_protocol_packets_total_ipv4++;
860
861	struct iphdr _ip4;
862	struct iphdr *ipv4 = pkt_parse_ipv4(pkt, &_ip4);
863	if (ipv4 == NULL) {
864		metrics->errors_total_malformed_ip++;
865		return INVALID;
866	}
867
868	if (ipv4->version != 4) {
869		metrics->errors_total_malformed_ip++;
870		return INVALID;
871	}
872
873	if (ipv4_is_fragment(ipv4)) {
874		metrics->errors_total_fragmented_ip++;
875		return INVALID;
876	}
877
878	switch (ipv4->protocol) {
879	case IPPROTO_ICMP:
880		return process_icmpv4(pkt, metrics);
881
882	case IPPROTO_TCP:
883		return process_tcp(pkt, ipv4, sizeof(*ipv4), metrics);
884
885	case IPPROTO_UDP:
886		return process_udp(pkt, ipv4, sizeof(*ipv4), metrics);
887
888	default:
889		metrics->errors_total_unknown_l4_proto++;
890		return INVALID;
891	}
892}
893
894static INLINING verdict_t process_ipv6(buf_t *pkt, metrics_t *metrics)
895{
896	metrics->l3_protocol_packets_total_ipv6++;
897
898	uint8_t l4_proto;
899	bool is_fragment;
900	struct ipv6hdr _ipv6;
901	struct ipv6hdr *ipv6 =
902		pkt_parse_ipv6(pkt, &_ipv6, &l4_proto, &is_fragment);
903	if (ipv6 == NULL) {
904		metrics->errors_total_malformed_ip++;
905		return INVALID;
906	}
907
908	if (ipv6->version != 6) {
909		metrics->errors_total_malformed_ip++;
910		return INVALID;
911	}
912
913	if (is_fragment) {
914		metrics->errors_total_fragmented_ip++;
915		return INVALID;
916	}
917
918	switch (l4_proto) {
919	case IPPROTO_ICMPV6:
920		return process_icmpv6(pkt, metrics);
921
922	case IPPROTO_TCP:
923		return process_tcp(pkt, ipv6, sizeof(*ipv6), metrics);
924
925	case IPPROTO_UDP:
926		return process_udp(pkt, ipv6, sizeof(*ipv6), metrics);
927
928	default:
929		metrics->errors_total_unknown_l4_proto++;
930		return INVALID;
931	}
932}
933
934SEC("tc")
935int cls_redirect(struct __sk_buff *skb)
936{
937	metrics_t *metrics = get_global_metrics();
938	if (metrics == NULL) {
939		return TC_ACT_SHOT;
940	}
941
942	metrics->processed_packets_total++;
943
944	/* Pass bogus packets as long as we're not sure they're
945	 * destined for us.
946	 */
947	if (skb->protocol != bpf_htons(ETH_P_IP)) {
948		return TC_ACT_OK;
949	}
950
951	encap_headers_t *encap;
952
953	/* Make sure that all encapsulation headers are available in
954	 * the linear portion of the skb. This makes it easy to manipulate them.
955	 */
956	if (bpf_skb_pull_data(skb, sizeof(*encap))) {
957		return TC_ACT_OK;
958	}
959
960	buf_t pkt = {
961		.skb = skb,
962		.head = (uint8_t *)(long)skb->data,
963		.tail = (uint8_t *)(long)skb->data_end,
964	};
965
966	encap = buf_assign(&pkt, sizeof(*encap), NULL);
967	if (encap == NULL) {
968		return TC_ACT_OK;
969	}
970
971	if (encap->ip.ihl != 5) {
972		/* We never have any options. */
973		return TC_ACT_OK;
974	}
975
976	if (encap->ip.daddr != ENCAPSULATION_IP ||
977	    encap->ip.protocol != IPPROTO_UDP) {
978		return TC_ACT_OK;
979	}
980
981	/* TODO Check UDP length? */
982	if (encap->udp.dest != ENCAPSULATION_PORT) {
983		return TC_ACT_OK;
984	}
985
986	/* We now know that the packet is destined to us, we can
987	 * drop bogus ones.
988	 */
989	if (ipv4_is_fragment((void *)&encap->ip)) {
990		metrics->errors_total_fragmented_ip++;
991		return TC_ACT_SHOT;
992	}
993
994	if (encap->gue.variant != 0) {
995		metrics->errors_total_malformed_encapsulation++;
996		return TC_ACT_SHOT;
997	}
998
999	if (encap->gue.control != 0) {
1000		metrics->errors_total_malformed_encapsulation++;
1001		return TC_ACT_SHOT;
1002	}
1003
1004	if (encap->gue.flags != 0) {
1005		metrics->errors_total_malformed_encapsulation++;
1006		return TC_ACT_SHOT;
1007	}
1008
1009	if (encap->gue.hlen !=
1010	    sizeof(encap->unigue) / 4 + encap->unigue.hop_count) {
1011		metrics->errors_total_malformed_encapsulation++;
1012		return TC_ACT_SHOT;
1013	}
1014
1015	if (encap->unigue.version != 0) {
1016		metrics->errors_total_malformed_encapsulation++;
1017		return TC_ACT_SHOT;
1018	}
1019
1020	if (encap->unigue.reserved != 0) {
1021		return TC_ACT_SHOT;
1022	}
1023
1024	struct in_addr next_hop;
1025	MAYBE_RETURN(get_next_hop(&pkt, encap, &next_hop));
1026
1027	if (next_hop.s_addr == 0) {
1028		metrics->accepted_packets_total_last_hop++;
1029		return accept_locally(skb, encap);
1030	}
1031
1032	verdict_t verdict;
1033	switch (encap->gue.proto_ctype) {
1034	case IPPROTO_IPIP:
1035		verdict = process_ipv4(&pkt, metrics);
1036		break;
1037
1038	case IPPROTO_IPV6:
1039		verdict = process_ipv6(&pkt, metrics);
1040		break;
1041
1042	default:
1043		metrics->errors_total_unknown_l3_proto++;
1044		return TC_ACT_SHOT;
1045	}
1046
1047	switch (verdict) {
1048	case INVALID:
1049		/* metrics have already been bumped */
1050		return TC_ACT_SHOT;
1051
1052	case UNKNOWN:
1053		return forward_to_next_hop(skb, encap, &next_hop, metrics);
1054
1055	case ECHO_REQUEST:
1056		metrics->accepted_packets_total_icmp_echo_request++;
1057		break;
1058
1059	case SYN:
1060		if (encap->unigue.forward_syn) {
1061			return forward_to_next_hop(skb, encap, &next_hop,
1062						   metrics);
1063		}
1064
1065		metrics->accepted_packets_total_syn++;
1066		break;
1067
1068	case SYN_COOKIE:
1069		metrics->accepted_packets_total_syn_cookies++;
1070		break;
1071
1072	case ESTABLISHED:
1073		metrics->accepted_packets_total_established++;
1074		break;
1075	}
1076
1077	return accept_locally(skb, encap);
1078}
1079