1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * thread-stack.c: Synthesize a thread's stack using call / return events
4 * Copyright (c) 2014, Intel Corporation.
5 */
6
7#include <linux/rbtree.h>
8#include <linux/list.h>
9#include <linux/log2.h>
10#include <linux/zalloc.h>
11#include <errno.h>
12#include <stdlib.h>
13#include <string.h>
14#include "thread.h"
15#include "event.h"
16#include "machine.h"
17#include "env.h"
18#include "debug.h"
19#include "symbol.h"
20#include "comm.h"
21#include "call-path.h"
22#include "thread-stack.h"
23
24#define STACK_GROWTH 2048
25
26/*
27 * State of retpoline detection.
28 *
29 * RETPOLINE_NONE: no retpoline detection
30 * X86_RETPOLINE_POSSIBLE: x86 retpoline possible
31 * X86_RETPOLINE_DETECTED: x86 retpoline detected
32 */
33enum retpoline_state_t {
34	RETPOLINE_NONE,
35	X86_RETPOLINE_POSSIBLE,
36	X86_RETPOLINE_DETECTED,
37};
38
39/**
40 * struct thread_stack_entry - thread stack entry.
41 * @ret_addr: return address
42 * @timestamp: timestamp (if known)
43 * @ref: external reference (e.g. db_id of sample)
44 * @branch_count: the branch count when the entry was created
45 * @insn_count: the instruction count when the entry was created
46 * @cyc_count the cycle count when the entry was created
47 * @db_id: id used for db-export
48 * @cp: call path
49 * @no_call: a 'call' was not seen
50 * @trace_end: a 'call' but trace ended
51 * @non_call: a branch but not a 'call' to the start of a different symbol
52 */
53struct thread_stack_entry {
54	u64 ret_addr;
55	u64 timestamp;
56	u64 ref;
57	u64 branch_count;
58	u64 insn_count;
59	u64 cyc_count;
60	u64 db_id;
61	struct call_path *cp;
62	bool no_call;
63	bool trace_end;
64	bool non_call;
65};
66
67/**
68 * struct thread_stack - thread stack constructed from 'call' and 'return'
69 *                       branch samples.
70 * @stack: array that holds the stack
71 * @cnt: number of entries in the stack
72 * @sz: current maximum stack size
73 * @trace_nr: current trace number
74 * @branch_count: running branch count
75 * @insn_count: running  instruction count
76 * @cyc_count running  cycle count
77 * @kernel_start: kernel start address
78 * @last_time: last timestamp
79 * @crp: call/return processor
80 * @comm: current comm
81 * @arr_sz: size of array if this is the first element of an array
82 * @rstate: used to detect retpolines
83 * @br_stack_rb: branch stack (ring buffer)
84 * @br_stack_sz: maximum branch stack size
85 * @br_stack_pos: current position in @br_stack_rb
86 * @mispred_all: mark all branches as mispredicted
87 */
88struct thread_stack {
89	struct thread_stack_entry *stack;
90	size_t cnt;
91	size_t sz;
92	u64 trace_nr;
93	u64 branch_count;
94	u64 insn_count;
95	u64 cyc_count;
96	u64 kernel_start;
97	u64 last_time;
98	struct call_return_processor *crp;
99	struct comm *comm;
100	unsigned int arr_sz;
101	enum retpoline_state_t rstate;
102	struct branch_stack *br_stack_rb;
103	unsigned int br_stack_sz;
104	unsigned int br_stack_pos;
105	bool mispred_all;
106};
107
108/*
109 * Assume pid == tid == 0 identifies the idle task as defined by
110 * perf_session__register_idle_thread(). The idle task is really 1 task per cpu,
111 * and therefore requires a stack for each cpu.
112 */
113static inline bool thread_stack__per_cpu(struct thread *thread)
114{
115	return !(thread__tid(thread) || thread__pid(thread));
116}
117
118static int thread_stack__grow(struct thread_stack *ts)
119{
120	struct thread_stack_entry *new_stack;
121	size_t sz, new_sz;
122
123	new_sz = ts->sz + STACK_GROWTH;
124	sz = new_sz * sizeof(struct thread_stack_entry);
125
126	new_stack = realloc(ts->stack, sz);
127	if (!new_stack)
128		return -ENOMEM;
129
130	ts->stack = new_stack;
131	ts->sz = new_sz;
132
133	return 0;
134}
135
136static int thread_stack__init(struct thread_stack *ts, struct thread *thread,
137			      struct call_return_processor *crp,
138			      bool callstack, unsigned int br_stack_sz)
139{
140	int err;
141
142	if (callstack) {
143		err = thread_stack__grow(ts);
144		if (err)
145			return err;
146	}
147
148	if (br_stack_sz) {
149		size_t sz = sizeof(struct branch_stack);
150
151		sz += br_stack_sz * sizeof(struct branch_entry);
152		ts->br_stack_rb = zalloc(sz);
153		if (!ts->br_stack_rb)
154			return -ENOMEM;
155		ts->br_stack_sz = br_stack_sz;
156	}
157
158	if (thread__maps(thread) && maps__machine(thread__maps(thread))) {
159		struct machine *machine = maps__machine(thread__maps(thread));
160		const char *arch = perf_env__arch(machine->env);
161
162		ts->kernel_start = machine__kernel_start(machine);
163		if (!strcmp(arch, "x86"))
164			ts->rstate = X86_RETPOLINE_POSSIBLE;
165	} else {
166		ts->kernel_start = 1ULL << 63;
167	}
168	ts->crp = crp;
169
170	return 0;
171}
172
173static struct thread_stack *thread_stack__new(struct thread *thread, int cpu,
174					      struct call_return_processor *crp,
175					      bool callstack,
176					      unsigned int br_stack_sz)
177{
178	struct thread_stack *ts = thread__ts(thread), *new_ts;
179	unsigned int old_sz = ts ? ts->arr_sz : 0;
180	unsigned int new_sz = 1;
181
182	if (thread_stack__per_cpu(thread) && cpu > 0)
183		new_sz = roundup_pow_of_two(cpu + 1);
184
185	if (!ts || new_sz > old_sz) {
186		new_ts = calloc(new_sz, sizeof(*ts));
187		if (!new_ts)
188			return NULL;
189		if (ts)
190			memcpy(new_ts, ts, old_sz * sizeof(*ts));
191		new_ts->arr_sz = new_sz;
192		free(thread__ts(thread));
193		thread__set_ts(thread, new_ts);
194		ts = new_ts;
195	}
196
197	if (thread_stack__per_cpu(thread) && cpu > 0 &&
198	    (unsigned int)cpu < ts->arr_sz)
199		ts += cpu;
200
201	if (!ts->stack &&
202	    thread_stack__init(ts, thread, crp, callstack, br_stack_sz))
203		return NULL;
204
205	return ts;
206}
207
208static struct thread_stack *thread__cpu_stack(struct thread *thread, int cpu)
209{
210	struct thread_stack *ts = thread__ts(thread);
211
212	if (cpu < 0)
213		cpu = 0;
214
215	if (!ts || (unsigned int)cpu >= ts->arr_sz)
216		return NULL;
217
218	ts += cpu;
219
220	if (!ts->stack)
221		return NULL;
222
223	return ts;
224}
225
226static inline struct thread_stack *thread__stack(struct thread *thread,
227						    int cpu)
228{
229	if (!thread)
230		return NULL;
231
232	if (thread_stack__per_cpu(thread))
233		return thread__cpu_stack(thread, cpu);
234
235	return thread__ts(thread);
236}
237
238static int thread_stack__push(struct thread_stack *ts, u64 ret_addr,
239			      bool trace_end)
240{
241	int err = 0;
242
243	if (ts->cnt == ts->sz) {
244		err = thread_stack__grow(ts);
245		if (err) {
246			pr_warning("Out of memory: discarding thread stack\n");
247			ts->cnt = 0;
248		}
249	}
250
251	ts->stack[ts->cnt].trace_end = trace_end;
252	ts->stack[ts->cnt++].ret_addr = ret_addr;
253
254	return err;
255}
256
257static void thread_stack__pop(struct thread_stack *ts, u64 ret_addr)
258{
259	size_t i;
260
261	/*
262	 * In some cases there may be functions which are not seen to return.
263	 * For example when setjmp / longjmp has been used.  Or the perf context
264	 * switch in the kernel which doesn't stop and start tracing in exactly
265	 * the same code path.  When that happens the return address will be
266	 * further down the stack.  If the return address is not found at all,
267	 * we assume the opposite (i.e. this is a return for a call that wasn't
268	 * seen for some reason) and leave the stack alone.
269	 */
270	for (i = ts->cnt; i; ) {
271		if (ts->stack[--i].ret_addr == ret_addr) {
272			ts->cnt = i;
273			return;
274		}
275	}
276}
277
278static void thread_stack__pop_trace_end(struct thread_stack *ts)
279{
280	size_t i;
281
282	for (i = ts->cnt; i; ) {
283		if (ts->stack[--i].trace_end)
284			ts->cnt = i;
285		else
286			return;
287	}
288}
289
290static bool thread_stack__in_kernel(struct thread_stack *ts)
291{
292	if (!ts->cnt)
293		return false;
294
295	return ts->stack[ts->cnt - 1].cp->in_kernel;
296}
297
298static int thread_stack__call_return(struct thread *thread,
299				     struct thread_stack *ts, size_t idx,
300				     u64 timestamp, u64 ref, bool no_return)
301{
302	struct call_return_processor *crp = ts->crp;
303	struct thread_stack_entry *tse;
304	struct call_return cr = {
305		.thread = thread,
306		.comm = ts->comm,
307		.db_id = 0,
308	};
309	u64 *parent_db_id;
310
311	tse = &ts->stack[idx];
312	cr.cp = tse->cp;
313	cr.call_time = tse->timestamp;
314	cr.return_time = timestamp;
315	cr.branch_count = ts->branch_count - tse->branch_count;
316	cr.insn_count = ts->insn_count - tse->insn_count;
317	cr.cyc_count = ts->cyc_count - tse->cyc_count;
318	cr.db_id = tse->db_id;
319	cr.call_ref = tse->ref;
320	cr.return_ref = ref;
321	if (tse->no_call)
322		cr.flags |= CALL_RETURN_NO_CALL;
323	if (no_return)
324		cr.flags |= CALL_RETURN_NO_RETURN;
325	if (tse->non_call)
326		cr.flags |= CALL_RETURN_NON_CALL;
327
328	/*
329	 * The parent db_id must be assigned before exporting the child. Note
330	 * it is not possible to export the parent first because its information
331	 * is not yet complete because its 'return' has not yet been processed.
332	 */
333	parent_db_id = idx ? &(tse - 1)->db_id : NULL;
334
335	return crp->process(&cr, parent_db_id, crp->data);
336}
337
338static int __thread_stack__flush(struct thread *thread, struct thread_stack *ts)
339{
340	struct call_return_processor *crp = ts->crp;
341	int err;
342
343	if (!crp) {
344		ts->cnt = 0;
345		ts->br_stack_pos = 0;
346		if (ts->br_stack_rb)
347			ts->br_stack_rb->nr = 0;
348		return 0;
349	}
350
351	while (ts->cnt) {
352		err = thread_stack__call_return(thread, ts, --ts->cnt,
353						ts->last_time, 0, true);
354		if (err) {
355			pr_err("Error flushing thread stack!\n");
356			ts->cnt = 0;
357			return err;
358		}
359	}
360
361	return 0;
362}
363
364int thread_stack__flush(struct thread *thread)
365{
366	struct thread_stack *ts = thread__ts(thread);
367	unsigned int pos;
368	int err = 0;
369
370	if (ts) {
371		for (pos = 0; pos < ts->arr_sz; pos++) {
372			int ret = __thread_stack__flush(thread, ts + pos);
373
374			if (ret)
375				err = ret;
376		}
377	}
378
379	return err;
380}
381
382static void thread_stack__update_br_stack(struct thread_stack *ts, u32 flags,
383					  u64 from_ip, u64 to_ip)
384{
385	struct branch_stack *bs = ts->br_stack_rb;
386	struct branch_entry *be;
387
388	if (!ts->br_stack_pos)
389		ts->br_stack_pos = ts->br_stack_sz;
390
391	ts->br_stack_pos -= 1;
392
393	be              = &bs->entries[ts->br_stack_pos];
394	be->from        = from_ip;
395	be->to          = to_ip;
396	be->flags.value = 0;
397	be->flags.abort = !!(flags & PERF_IP_FLAG_TX_ABORT);
398	be->flags.in_tx = !!(flags & PERF_IP_FLAG_IN_TX);
399	/* No support for mispredict */
400	be->flags.mispred = ts->mispred_all;
401
402	if (bs->nr < ts->br_stack_sz)
403		bs->nr += 1;
404}
405
406int thread_stack__event(struct thread *thread, int cpu, u32 flags, u64 from_ip,
407			u64 to_ip, u16 insn_len, u64 trace_nr, bool callstack,
408			unsigned int br_stack_sz, bool mispred_all)
409{
410	struct thread_stack *ts = thread__stack(thread, cpu);
411
412	if (!thread)
413		return -EINVAL;
414
415	if (!ts) {
416		ts = thread_stack__new(thread, cpu, NULL, callstack, br_stack_sz);
417		if (!ts) {
418			pr_warning("Out of memory: no thread stack\n");
419			return -ENOMEM;
420		}
421		ts->trace_nr = trace_nr;
422		ts->mispred_all = mispred_all;
423	}
424
425	/*
426	 * When the trace is discontinuous, the trace_nr changes.  In that case
427	 * the stack might be completely invalid.  Better to report nothing than
428	 * to report something misleading, so flush the stack.
429	 */
430	if (trace_nr != ts->trace_nr) {
431		if (ts->trace_nr)
432			__thread_stack__flush(thread, ts);
433		ts->trace_nr = trace_nr;
434	}
435
436	if (br_stack_sz)
437		thread_stack__update_br_stack(ts, flags, from_ip, to_ip);
438
439	/*
440	 * Stop here if thread_stack__process() is in use, or not recording call
441	 * stack.
442	 */
443	if (ts->crp || !callstack)
444		return 0;
445
446	if (flags & PERF_IP_FLAG_CALL) {
447		u64 ret_addr;
448
449		if (!to_ip)
450			return 0;
451		ret_addr = from_ip + insn_len;
452		if (ret_addr == to_ip)
453			return 0; /* Zero-length calls are excluded */
454		return thread_stack__push(ts, ret_addr,
455					  flags & PERF_IP_FLAG_TRACE_END);
456	} else if (flags & PERF_IP_FLAG_TRACE_BEGIN) {
457		/*
458		 * If the caller did not change the trace number (which would
459		 * have flushed the stack) then try to make sense of the stack.
460		 * Possibly, tracing began after returning to the current
461		 * address, so try to pop that. Also, do not expect a call made
462		 * when the trace ended, to return, so pop that.
463		 */
464		thread_stack__pop(ts, to_ip);
465		thread_stack__pop_trace_end(ts);
466	} else if ((flags & PERF_IP_FLAG_RETURN) && from_ip) {
467		thread_stack__pop(ts, to_ip);
468	}
469
470	return 0;
471}
472
473void thread_stack__set_trace_nr(struct thread *thread, int cpu, u64 trace_nr)
474{
475	struct thread_stack *ts = thread__stack(thread, cpu);
476
477	if (!ts)
478		return;
479
480	if (trace_nr != ts->trace_nr) {
481		if (ts->trace_nr)
482			__thread_stack__flush(thread, ts);
483		ts->trace_nr = trace_nr;
484	}
485}
486
487static void __thread_stack__free(struct thread *thread, struct thread_stack *ts)
488{
489	__thread_stack__flush(thread, ts);
490	zfree(&ts->stack);
491	zfree(&ts->br_stack_rb);
492}
493
494static void thread_stack__reset(struct thread *thread, struct thread_stack *ts)
495{
496	unsigned int arr_sz = ts->arr_sz;
497
498	__thread_stack__free(thread, ts);
499	memset(ts, 0, sizeof(*ts));
500	ts->arr_sz = arr_sz;
501}
502
503void thread_stack__free(struct thread *thread)
504{
505	struct thread_stack *ts = thread__ts(thread);
506	unsigned int pos;
507
508	if (ts) {
509		for (pos = 0; pos < ts->arr_sz; pos++)
510			__thread_stack__free(thread, ts + pos);
511		free(thread__ts(thread));
512		thread__set_ts(thread, NULL);
513	}
514}
515
516static inline u64 callchain_context(u64 ip, u64 kernel_start)
517{
518	return ip < kernel_start ? PERF_CONTEXT_USER : PERF_CONTEXT_KERNEL;
519}
520
521void thread_stack__sample(struct thread *thread, int cpu,
522			  struct ip_callchain *chain,
523			  size_t sz, u64 ip, u64 kernel_start)
524{
525	struct thread_stack *ts = thread__stack(thread, cpu);
526	u64 context = callchain_context(ip, kernel_start);
527	u64 last_context;
528	size_t i, j;
529
530	if (sz < 2) {
531		chain->nr = 0;
532		return;
533	}
534
535	chain->ips[0] = context;
536	chain->ips[1] = ip;
537
538	if (!ts) {
539		chain->nr = 2;
540		return;
541	}
542
543	last_context = context;
544
545	for (i = 2, j = 1; i < sz && j <= ts->cnt; i++, j++) {
546		ip = ts->stack[ts->cnt - j].ret_addr;
547		context = callchain_context(ip, kernel_start);
548		if (context != last_context) {
549			if (i >= sz - 1)
550				break;
551			chain->ips[i++] = context;
552			last_context = context;
553		}
554		chain->ips[i] = ip;
555	}
556
557	chain->nr = i;
558}
559
560/*
561 * Hardware sample records, created some time after the event occurred, need to
562 * have subsequent addresses removed from the call chain.
563 */
564void thread_stack__sample_late(struct thread *thread, int cpu,
565			       struct ip_callchain *chain, size_t sz,
566			       u64 sample_ip, u64 kernel_start)
567{
568	struct thread_stack *ts = thread__stack(thread, cpu);
569	u64 sample_context = callchain_context(sample_ip, kernel_start);
570	u64 last_context, context, ip;
571	size_t nr = 0, j;
572
573	if (sz < 2) {
574		chain->nr = 0;
575		return;
576	}
577
578	if (!ts)
579		goto out;
580
581	/*
582	 * When tracing kernel space, kernel addresses occur at the top of the
583	 * call chain after the event occurred but before tracing stopped.
584	 * Skip them.
585	 */
586	for (j = 1; j <= ts->cnt; j++) {
587		ip = ts->stack[ts->cnt - j].ret_addr;
588		context = callchain_context(ip, kernel_start);
589		if (context == PERF_CONTEXT_USER ||
590		    (context == sample_context && ip == sample_ip))
591			break;
592	}
593
594	last_context = sample_ip; /* Use sample_ip as an invalid context */
595
596	for (; nr < sz && j <= ts->cnt; nr++, j++) {
597		ip = ts->stack[ts->cnt - j].ret_addr;
598		context = callchain_context(ip, kernel_start);
599		if (context != last_context) {
600			if (nr >= sz - 1)
601				break;
602			chain->ips[nr++] = context;
603			last_context = context;
604		}
605		chain->ips[nr] = ip;
606	}
607out:
608	if (nr) {
609		chain->nr = nr;
610	} else {
611		chain->ips[0] = sample_context;
612		chain->ips[1] = sample_ip;
613		chain->nr = 2;
614	}
615}
616
617void thread_stack__br_sample(struct thread *thread, int cpu,
618			     struct branch_stack *dst, unsigned int sz)
619{
620	struct thread_stack *ts = thread__stack(thread, cpu);
621	const size_t bsz = sizeof(struct branch_entry);
622	struct branch_stack *src;
623	struct branch_entry *be;
624	unsigned int nr;
625
626	dst->nr = 0;
627
628	if (!ts)
629		return;
630
631	src = ts->br_stack_rb;
632	if (!src->nr)
633		return;
634
635	dst->nr = min((unsigned int)src->nr, sz);
636
637	be = &dst->entries[0];
638	nr = min(ts->br_stack_sz - ts->br_stack_pos, (unsigned int)dst->nr);
639	memcpy(be, &src->entries[ts->br_stack_pos], bsz * nr);
640
641	if (src->nr >= ts->br_stack_sz) {
642		sz -= nr;
643		be = &dst->entries[nr];
644		nr = min(ts->br_stack_pos, sz);
645		memcpy(be, &src->entries[0], bsz * ts->br_stack_pos);
646	}
647}
648
649/* Start of user space branch entries */
650static bool us_start(struct branch_entry *be, u64 kernel_start, bool *start)
651{
652	if (!*start)
653		*start = be->to && be->to < kernel_start;
654
655	return *start;
656}
657
658/*
659 * Start of branch entries after the ip fell in between 2 branches, or user
660 * space branch entries.
661 */
662static bool ks_start(struct branch_entry *be, u64 sample_ip, u64 kernel_start,
663		     bool *start, struct branch_entry *nb)
664{
665	if (!*start) {
666		*start = (nb && sample_ip >= be->to && sample_ip <= nb->from) ||
667			 be->from < kernel_start ||
668			 (be->to && be->to < kernel_start);
669	}
670
671	return *start;
672}
673
674/*
675 * Hardware sample records, created some time after the event occurred, need to
676 * have subsequent addresses removed from the branch stack.
677 */
678void thread_stack__br_sample_late(struct thread *thread, int cpu,
679				  struct branch_stack *dst, unsigned int sz,
680				  u64 ip, u64 kernel_start)
681{
682	struct thread_stack *ts = thread__stack(thread, cpu);
683	struct branch_entry *d, *s, *spos, *ssz;
684	struct branch_stack *src;
685	unsigned int nr = 0;
686	bool start = false;
687
688	dst->nr = 0;
689
690	if (!ts)
691		return;
692
693	src = ts->br_stack_rb;
694	if (!src->nr)
695		return;
696
697	spos = &src->entries[ts->br_stack_pos];
698	ssz  = &src->entries[ts->br_stack_sz];
699
700	d = &dst->entries[0];
701	s = spos;
702
703	if (ip < kernel_start) {
704		/*
705		 * User space sample: start copying branch entries when the
706		 * branch is in user space.
707		 */
708		for (s = spos; s < ssz && nr < sz; s++) {
709			if (us_start(s, kernel_start, &start)) {
710				*d++ = *s;
711				nr += 1;
712			}
713		}
714
715		if (src->nr >= ts->br_stack_sz) {
716			for (s = &src->entries[0]; s < spos && nr < sz; s++) {
717				if (us_start(s, kernel_start, &start)) {
718					*d++ = *s;
719					nr += 1;
720				}
721			}
722		}
723	} else {
724		struct branch_entry *nb = NULL;
725
726		/*
727		 * Kernel space sample: start copying branch entries when the ip
728		 * falls in between 2 branches (or the branch is in user space
729		 * because then the start must have been missed).
730		 */
731		for (s = spos; s < ssz && nr < sz; s++) {
732			if (ks_start(s, ip, kernel_start, &start, nb)) {
733				*d++ = *s;
734				nr += 1;
735			}
736			nb = s;
737		}
738
739		if (src->nr >= ts->br_stack_sz) {
740			for (s = &src->entries[0]; s < spos && nr < sz; s++) {
741				if (ks_start(s, ip, kernel_start, &start, nb)) {
742					*d++ = *s;
743					nr += 1;
744				}
745				nb = s;
746			}
747		}
748	}
749
750	dst->nr = nr;
751}
752
753struct call_return_processor *
754call_return_processor__new(int (*process)(struct call_return *cr, u64 *parent_db_id, void *data),
755			   void *data)
756{
757	struct call_return_processor *crp;
758
759	crp = zalloc(sizeof(struct call_return_processor));
760	if (!crp)
761		return NULL;
762	crp->cpr = call_path_root__new();
763	if (!crp->cpr)
764		goto out_free;
765	crp->process = process;
766	crp->data = data;
767	return crp;
768
769out_free:
770	free(crp);
771	return NULL;
772}
773
774void call_return_processor__free(struct call_return_processor *crp)
775{
776	if (crp) {
777		call_path_root__free(crp->cpr);
778		free(crp);
779	}
780}
781
782static int thread_stack__push_cp(struct thread_stack *ts, u64 ret_addr,
783				 u64 timestamp, u64 ref, struct call_path *cp,
784				 bool no_call, bool trace_end)
785{
786	struct thread_stack_entry *tse;
787	int err;
788
789	if (!cp)
790		return -ENOMEM;
791
792	if (ts->cnt == ts->sz) {
793		err = thread_stack__grow(ts);
794		if (err)
795			return err;
796	}
797
798	tse = &ts->stack[ts->cnt++];
799	tse->ret_addr = ret_addr;
800	tse->timestamp = timestamp;
801	tse->ref = ref;
802	tse->branch_count = ts->branch_count;
803	tse->insn_count = ts->insn_count;
804	tse->cyc_count = ts->cyc_count;
805	tse->cp = cp;
806	tse->no_call = no_call;
807	tse->trace_end = trace_end;
808	tse->non_call = false;
809	tse->db_id = 0;
810
811	return 0;
812}
813
814static int thread_stack__pop_cp(struct thread *thread, struct thread_stack *ts,
815				u64 ret_addr, u64 timestamp, u64 ref,
816				struct symbol *sym)
817{
818	int err;
819
820	if (!ts->cnt)
821		return 1;
822
823	if (ts->cnt == 1) {
824		struct thread_stack_entry *tse = &ts->stack[0];
825
826		if (tse->cp->sym == sym)
827			return thread_stack__call_return(thread, ts, --ts->cnt,
828							 timestamp, ref, false);
829	}
830
831	if (ts->stack[ts->cnt - 1].ret_addr == ret_addr &&
832	    !ts->stack[ts->cnt - 1].non_call) {
833		return thread_stack__call_return(thread, ts, --ts->cnt,
834						 timestamp, ref, false);
835	} else {
836		size_t i = ts->cnt - 1;
837
838		while (i--) {
839			if (ts->stack[i].ret_addr != ret_addr ||
840			    ts->stack[i].non_call)
841				continue;
842			i += 1;
843			while (ts->cnt > i) {
844				err = thread_stack__call_return(thread, ts,
845								--ts->cnt,
846								timestamp, ref,
847								true);
848				if (err)
849					return err;
850			}
851			return thread_stack__call_return(thread, ts, --ts->cnt,
852							 timestamp, ref, false);
853		}
854	}
855
856	return 1;
857}
858
859static int thread_stack__bottom(struct thread_stack *ts,
860				struct perf_sample *sample,
861				struct addr_location *from_al,
862				struct addr_location *to_al, u64 ref)
863{
864	struct call_path_root *cpr = ts->crp->cpr;
865	struct call_path *cp;
866	struct symbol *sym;
867	u64 ip;
868
869	if (sample->ip) {
870		ip = sample->ip;
871		sym = from_al->sym;
872	} else if (sample->addr) {
873		ip = sample->addr;
874		sym = to_al->sym;
875	} else {
876		return 0;
877	}
878
879	cp = call_path__findnew(cpr, &cpr->call_path, sym, ip,
880				ts->kernel_start);
881
882	return thread_stack__push_cp(ts, ip, sample->time, ref, cp,
883				     true, false);
884}
885
886static int thread_stack__pop_ks(struct thread *thread, struct thread_stack *ts,
887				struct perf_sample *sample, u64 ref)
888{
889	u64 tm = sample->time;
890	int err;
891
892	/* Return to userspace, so pop all kernel addresses */
893	while (thread_stack__in_kernel(ts)) {
894		err = thread_stack__call_return(thread, ts, --ts->cnt,
895						tm, ref, true);
896		if (err)
897			return err;
898	}
899
900	return 0;
901}
902
903static int thread_stack__no_call_return(struct thread *thread,
904					struct thread_stack *ts,
905					struct perf_sample *sample,
906					struct addr_location *from_al,
907					struct addr_location *to_al, u64 ref)
908{
909	struct call_path_root *cpr = ts->crp->cpr;
910	struct call_path *root = &cpr->call_path;
911	struct symbol *fsym = from_al->sym;
912	struct symbol *tsym = to_al->sym;
913	struct call_path *cp, *parent;
914	u64 ks = ts->kernel_start;
915	u64 addr = sample->addr;
916	u64 tm = sample->time;
917	u64 ip = sample->ip;
918	int err;
919
920	if (ip >= ks && addr < ks) {
921		/* Return to userspace, so pop all kernel addresses */
922		err = thread_stack__pop_ks(thread, ts, sample, ref);
923		if (err)
924			return err;
925
926		/* If the stack is empty, push the userspace address */
927		if (!ts->cnt) {
928			cp = call_path__findnew(cpr, root, tsym, addr, ks);
929			return thread_stack__push_cp(ts, 0, tm, ref, cp, true,
930						     false);
931		}
932	} else if (thread_stack__in_kernel(ts) && ip < ks) {
933		/* Return to userspace, so pop all kernel addresses */
934		err = thread_stack__pop_ks(thread, ts, sample, ref);
935		if (err)
936			return err;
937	}
938
939	if (ts->cnt)
940		parent = ts->stack[ts->cnt - 1].cp;
941	else
942		parent = root;
943
944	if (parent->sym == from_al->sym) {
945		/*
946		 * At the bottom of the stack, assume the missing 'call' was
947		 * before the trace started. So, pop the current symbol and push
948		 * the 'to' symbol.
949		 */
950		if (ts->cnt == 1) {
951			err = thread_stack__call_return(thread, ts, --ts->cnt,
952							tm, ref, false);
953			if (err)
954				return err;
955		}
956
957		if (!ts->cnt) {
958			cp = call_path__findnew(cpr, root, tsym, addr, ks);
959
960			return thread_stack__push_cp(ts, addr, tm, ref, cp,
961						     true, false);
962		}
963
964		/*
965		 * Otherwise assume the 'return' is being used as a jump (e.g.
966		 * retpoline) and just push the 'to' symbol.
967		 */
968		cp = call_path__findnew(cpr, parent, tsym, addr, ks);
969
970		err = thread_stack__push_cp(ts, 0, tm, ref, cp, true, false);
971		if (!err)
972			ts->stack[ts->cnt - 1].non_call = true;
973
974		return err;
975	}
976
977	/*
978	 * Assume 'parent' has not yet returned, so push 'to', and then push and
979	 * pop 'from'.
980	 */
981
982	cp = call_path__findnew(cpr, parent, tsym, addr, ks);
983
984	err = thread_stack__push_cp(ts, addr, tm, ref, cp, true, false);
985	if (err)
986		return err;
987
988	cp = call_path__findnew(cpr, cp, fsym, ip, ks);
989
990	err = thread_stack__push_cp(ts, ip, tm, ref, cp, true, false);
991	if (err)
992		return err;
993
994	return thread_stack__call_return(thread, ts, --ts->cnt, tm, ref, false);
995}
996
997static int thread_stack__trace_begin(struct thread *thread,
998				     struct thread_stack *ts, u64 timestamp,
999				     u64 ref)
1000{
1001	struct thread_stack_entry *tse;
1002	int err;
1003
1004	if (!ts->cnt)
1005		return 0;
1006
1007	/* Pop trace end */
1008	tse = &ts->stack[ts->cnt - 1];
1009	if (tse->trace_end) {
1010		err = thread_stack__call_return(thread, ts, --ts->cnt,
1011						timestamp, ref, false);
1012		if (err)
1013			return err;
1014	}
1015
1016	return 0;
1017}
1018
1019static int thread_stack__trace_end(struct thread_stack *ts,
1020				   struct perf_sample *sample, u64 ref)
1021{
1022	struct call_path_root *cpr = ts->crp->cpr;
1023	struct call_path *cp;
1024	u64 ret_addr;
1025
1026	/* No point having 'trace end' on the bottom of the stack */
1027	if (!ts->cnt || (ts->cnt == 1 && ts->stack[0].ref == ref))
1028		return 0;
1029
1030	cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp, NULL, 0,
1031				ts->kernel_start);
1032
1033	ret_addr = sample->ip + sample->insn_len;
1034
1035	return thread_stack__push_cp(ts, ret_addr, sample->time, ref, cp,
1036				     false, true);
1037}
1038
1039static bool is_x86_retpoline(const char *name)
1040{
1041	return strstr(name, "__x86_indirect_thunk_") == name;
1042}
1043
1044/*
1045 * x86 retpoline functions pollute the call graph. This function removes them.
1046 * This does not handle function return thunks, nor is there any improvement
1047 * for the handling of inline thunks or extern thunks.
1048 */
1049static int thread_stack__x86_retpoline(struct thread_stack *ts,
1050				       struct perf_sample *sample,
1051				       struct addr_location *to_al)
1052{
1053	struct thread_stack_entry *tse = &ts->stack[ts->cnt - 1];
1054	struct call_path_root *cpr = ts->crp->cpr;
1055	struct symbol *sym = tse->cp->sym;
1056	struct symbol *tsym = to_al->sym;
1057	struct call_path *cp;
1058
1059	if (sym && is_x86_retpoline(sym->name)) {
1060		/*
1061		 * This is a x86 retpoline fn. It pollutes the call graph by
1062		 * showing up everywhere there is an indirect branch, but does
1063		 * not itself mean anything. Here the top-of-stack is removed,
1064		 * by decrementing the stack count, and then further down, the
1065		 * resulting top-of-stack is replaced with the actual target.
1066		 * The result is that the retpoline functions will no longer
1067		 * appear in the call graph. Note this only affects the call
1068		 * graph, since all the original branches are left unchanged.
1069		 */
1070		ts->cnt -= 1;
1071		sym = ts->stack[ts->cnt - 2].cp->sym;
1072		if (sym && sym == tsym && to_al->addr != tsym->start) {
1073			/*
1074			 * Target is back to the middle of the symbol we came
1075			 * from so assume it is an indirect jmp and forget it
1076			 * altogether.
1077			 */
1078			ts->cnt -= 1;
1079			return 0;
1080		}
1081	} else if (sym && sym == tsym) {
1082		/*
1083		 * Target is back to the symbol we came from so assume it is an
1084		 * indirect jmp and forget it altogether.
1085		 */
1086		ts->cnt -= 1;
1087		return 0;
1088	}
1089
1090	cp = call_path__findnew(cpr, ts->stack[ts->cnt - 2].cp, tsym,
1091				sample->addr, ts->kernel_start);
1092	if (!cp)
1093		return -ENOMEM;
1094
1095	/* Replace the top-of-stack with the actual target */
1096	ts->stack[ts->cnt - 1].cp = cp;
1097
1098	return 0;
1099}
1100
1101int thread_stack__process(struct thread *thread, struct comm *comm,
1102			  struct perf_sample *sample,
1103			  struct addr_location *from_al,
1104			  struct addr_location *to_al, u64 ref,
1105			  struct call_return_processor *crp)
1106{
1107	struct thread_stack *ts = thread__stack(thread, sample->cpu);
1108	enum retpoline_state_t rstate;
1109	int err = 0;
1110
1111	if (ts && !ts->crp) {
1112		/* Supersede thread_stack__event() */
1113		thread_stack__reset(thread, ts);
1114		ts = NULL;
1115	}
1116
1117	if (!ts) {
1118		ts = thread_stack__new(thread, sample->cpu, crp, true, 0);
1119		if (!ts)
1120			return -ENOMEM;
1121		ts->comm = comm;
1122	}
1123
1124	rstate = ts->rstate;
1125	if (rstate == X86_RETPOLINE_DETECTED)
1126		ts->rstate = X86_RETPOLINE_POSSIBLE;
1127
1128	/* Flush stack on exec */
1129	if (ts->comm != comm && thread__pid(thread) == thread__tid(thread)) {
1130		err = __thread_stack__flush(thread, ts);
1131		if (err)
1132			return err;
1133		ts->comm = comm;
1134	}
1135
1136	/* If the stack is empty, put the current symbol on the stack */
1137	if (!ts->cnt) {
1138		err = thread_stack__bottom(ts, sample, from_al, to_al, ref);
1139		if (err)
1140			return err;
1141	}
1142
1143	ts->branch_count += 1;
1144	ts->insn_count += sample->insn_cnt;
1145	ts->cyc_count += sample->cyc_cnt;
1146	ts->last_time = sample->time;
1147
1148	if (sample->flags & PERF_IP_FLAG_CALL) {
1149		bool trace_end = sample->flags & PERF_IP_FLAG_TRACE_END;
1150		struct call_path_root *cpr = ts->crp->cpr;
1151		struct call_path *cp;
1152		u64 ret_addr;
1153
1154		if (!sample->ip || !sample->addr)
1155			return 0;
1156
1157		ret_addr = sample->ip + sample->insn_len;
1158		if (ret_addr == sample->addr)
1159			return 0; /* Zero-length calls are excluded */
1160
1161		cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp,
1162					to_al->sym, sample->addr,
1163					ts->kernel_start);
1164		err = thread_stack__push_cp(ts, ret_addr, sample->time, ref,
1165					    cp, false, trace_end);
1166
1167		/*
1168		 * A call to the same symbol but not the start of the symbol,
1169		 * may be the start of a x86 retpoline.
1170		 */
1171		if (!err && rstate == X86_RETPOLINE_POSSIBLE && to_al->sym &&
1172		    from_al->sym == to_al->sym &&
1173		    to_al->addr != to_al->sym->start)
1174			ts->rstate = X86_RETPOLINE_DETECTED;
1175
1176	} else if (sample->flags & PERF_IP_FLAG_RETURN) {
1177		if (!sample->addr) {
1178			u32 return_from_kernel = PERF_IP_FLAG_SYSCALLRET |
1179						 PERF_IP_FLAG_INTERRUPT;
1180
1181			if (!(sample->flags & return_from_kernel))
1182				return 0;
1183
1184			/* Pop kernel stack */
1185			return thread_stack__pop_ks(thread, ts, sample, ref);
1186		}
1187
1188		if (!sample->ip)
1189			return 0;
1190
1191		/* x86 retpoline 'return' doesn't match the stack */
1192		if (rstate == X86_RETPOLINE_DETECTED && ts->cnt > 2 &&
1193		    ts->stack[ts->cnt - 1].ret_addr != sample->addr)
1194			return thread_stack__x86_retpoline(ts, sample, to_al);
1195
1196		err = thread_stack__pop_cp(thread, ts, sample->addr,
1197					   sample->time, ref, from_al->sym);
1198		if (err) {
1199			if (err < 0)
1200				return err;
1201			err = thread_stack__no_call_return(thread, ts, sample,
1202							   from_al, to_al, ref);
1203		}
1204	} else if (sample->flags & PERF_IP_FLAG_TRACE_BEGIN) {
1205		err = thread_stack__trace_begin(thread, ts, sample->time, ref);
1206	} else if (sample->flags & PERF_IP_FLAG_TRACE_END) {
1207		err = thread_stack__trace_end(ts, sample, ref);
1208	} else if (sample->flags & PERF_IP_FLAG_BRANCH &&
1209		   from_al->sym != to_al->sym && to_al->sym &&
1210		   to_al->addr == to_al->sym->start) {
1211		struct call_path_root *cpr = ts->crp->cpr;
1212		struct call_path *cp;
1213
1214		/*
1215		 * The compiler might optimize a call/ret combination by making
1216		 * it a jmp. Make that visible by recording on the stack a
1217		 * branch to the start of a different symbol. Note, that means
1218		 * when a ret pops the stack, all jmps must be popped off first.
1219		 */
1220		cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp,
1221					to_al->sym, sample->addr,
1222					ts->kernel_start);
1223		err = thread_stack__push_cp(ts, 0, sample->time, ref, cp, false,
1224					    false);
1225		if (!err)
1226			ts->stack[ts->cnt - 1].non_call = true;
1227	}
1228
1229	return err;
1230}
1231
1232size_t thread_stack__depth(struct thread *thread, int cpu)
1233{
1234	struct thread_stack *ts = thread__stack(thread, cpu);
1235
1236	if (!ts)
1237		return 0;
1238	return ts->cnt;
1239}
1240