1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * builtin-timechart.c - make an svg timechart of system activity
4 *
5 * (C) Copyright 2009 Intel Corporation
6 *
7 * Authors:
8 *     Arjan van de Ven <arjan@linux.intel.com>
9 */
10
11#include <errno.h>
12#include <inttypes.h>
13
14#include "builtin.h"
15#include "util/color.h"
16#include <linux/list.h>
17#include "util/evlist.h" // for struct evsel_str_handler
18#include "util/evsel.h"
19#include <linux/kernel.h>
20#include <linux/rbtree.h>
21#include <linux/time64.h>
22#include <linux/zalloc.h>
23#include "util/symbol.h"
24#include "util/thread.h"
25#include "util/callchain.h"
26
27#include "perf.h"
28#include "util/header.h"
29#include <subcmd/pager.h>
30#include <subcmd/parse-options.h>
31#include "util/parse-events.h"
32#include "util/event.h"
33#include "util/session.h"
34#include "util/svghelper.h"
35#include "util/tool.h"
36#include "util/data.h"
37#include "util/debug.h"
38#include "util/string2.h"
39#include <linux/err.h>
40
41#ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
42FILE *open_memstream(char **ptr, size_t *sizeloc);
43#endif
44
45#define SUPPORT_OLD_POWER_EVENTS 1
46#define PWR_EVENT_EXIT -1
47
48struct per_pid;
49struct power_event;
50struct wake_event;
51
52struct timechart {
53	struct perf_tool	tool;
54	struct per_pid		*all_data;
55	struct power_event	*power_events;
56	struct wake_event	*wake_events;
57	int			proc_num;
58	unsigned int		numcpus;
59	u64			min_freq,	/* Lowest CPU frequency seen */
60				max_freq,	/* Highest CPU frequency seen */
61				turbo_frequency,
62				first_time, last_time;
63	bool			power_only,
64				tasks_only,
65				with_backtrace,
66				topology;
67	bool			force;
68	/* IO related settings */
69	bool			io_only,
70				skip_eagain;
71	u64			io_events;
72	u64			min_time,
73				merge_dist;
74};
75
76struct per_pidcomm;
77struct cpu_sample;
78struct io_sample;
79
80/*
81 * Datastructure layout:
82 * We keep an list of "pid"s, matching the kernels notion of a task struct.
83 * Each "pid" entry, has a list of "comm"s.
84 *	this is because we want to track different programs different, while
85 *	exec will reuse the original pid (by design).
86 * Each comm has a list of samples that will be used to draw
87 * final graph.
88 */
89
90struct per_pid {
91	struct per_pid *next;
92
93	int		pid;
94	int		ppid;
95
96	u64		start_time;
97	u64		end_time;
98	u64		total_time;
99	u64		total_bytes;
100	int		display;
101
102	struct per_pidcomm *all;
103	struct per_pidcomm *current;
104};
105
106
107struct per_pidcomm {
108	struct per_pidcomm *next;
109
110	u64		start_time;
111	u64		end_time;
112	u64		total_time;
113	u64		max_bytes;
114	u64		total_bytes;
115
116	int		Y;
117	int		display;
118
119	long		state;
120	u64		state_since;
121
122	char		*comm;
123
124	struct cpu_sample *samples;
125	struct io_sample  *io_samples;
126};
127
128struct sample_wrapper {
129	struct sample_wrapper *next;
130
131	u64		timestamp;
132	unsigned char	data[];
133};
134
135#define TYPE_NONE	0
136#define TYPE_RUNNING	1
137#define TYPE_WAITING	2
138#define TYPE_BLOCKED	3
139
140struct cpu_sample {
141	struct cpu_sample *next;
142
143	u64 start_time;
144	u64 end_time;
145	int type;
146	int cpu;
147	const char *backtrace;
148};
149
150enum {
151	IOTYPE_READ,
152	IOTYPE_WRITE,
153	IOTYPE_SYNC,
154	IOTYPE_TX,
155	IOTYPE_RX,
156	IOTYPE_POLL,
157};
158
159struct io_sample {
160	struct io_sample *next;
161
162	u64 start_time;
163	u64 end_time;
164	u64 bytes;
165	int type;
166	int fd;
167	int err;
168	int merges;
169};
170
171#define CSTATE 1
172#define PSTATE 2
173
174struct power_event {
175	struct power_event *next;
176	int type;
177	int state;
178	u64 start_time;
179	u64 end_time;
180	int cpu;
181};
182
183struct wake_event {
184	struct wake_event *next;
185	int waker;
186	int wakee;
187	u64 time;
188	const char *backtrace;
189};
190
191struct process_filter {
192	char			*name;
193	int			pid;
194	struct process_filter	*next;
195};
196
197static struct process_filter *process_filter;
198
199
200static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
201{
202	struct per_pid *cursor = tchart->all_data;
203
204	while (cursor) {
205		if (cursor->pid == pid)
206			return cursor;
207		cursor = cursor->next;
208	}
209	cursor = zalloc(sizeof(*cursor));
210	assert(cursor != NULL);
211	cursor->pid = pid;
212	cursor->next = tchart->all_data;
213	tchart->all_data = cursor;
214	return cursor;
215}
216
217static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
218{
219	struct per_pid *p;
220	struct per_pidcomm *c;
221	p = find_create_pid(tchart, pid);
222	c = p->all;
223	while (c) {
224		if (c->comm && strcmp(c->comm, comm) == 0) {
225			p->current = c;
226			return;
227		}
228		if (!c->comm) {
229			c->comm = strdup(comm);
230			p->current = c;
231			return;
232		}
233		c = c->next;
234	}
235	c = zalloc(sizeof(*c));
236	assert(c != NULL);
237	c->comm = strdup(comm);
238	p->current = c;
239	c->next = p->all;
240	p->all = c;
241}
242
243static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
244{
245	struct per_pid *p, *pp;
246	p = find_create_pid(tchart, pid);
247	pp = find_create_pid(tchart, ppid);
248	p->ppid = ppid;
249	if (pp->current && pp->current->comm && !p->current)
250		pid_set_comm(tchart, pid, pp->current->comm);
251
252	p->start_time = timestamp;
253	if (p->current && !p->current->start_time) {
254		p->current->start_time = timestamp;
255		p->current->state_since = timestamp;
256	}
257}
258
259static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
260{
261	struct per_pid *p;
262	p = find_create_pid(tchart, pid);
263	p->end_time = timestamp;
264	if (p->current)
265		p->current->end_time = timestamp;
266}
267
268static void pid_put_sample(struct timechart *tchart, int pid, int type,
269			   unsigned int cpu, u64 start, u64 end,
270			   const char *backtrace)
271{
272	struct per_pid *p;
273	struct per_pidcomm *c;
274	struct cpu_sample *sample;
275
276	p = find_create_pid(tchart, pid);
277	c = p->current;
278	if (!c) {
279		c = zalloc(sizeof(*c));
280		assert(c != NULL);
281		p->current = c;
282		c->next = p->all;
283		p->all = c;
284	}
285
286	sample = zalloc(sizeof(*sample));
287	assert(sample != NULL);
288	sample->start_time = start;
289	sample->end_time = end;
290	sample->type = type;
291	sample->next = c->samples;
292	sample->cpu = cpu;
293	sample->backtrace = backtrace;
294	c->samples = sample;
295
296	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
297		c->total_time += (end-start);
298		p->total_time += (end-start);
299	}
300
301	if (c->start_time == 0 || c->start_time > start)
302		c->start_time = start;
303	if (p->start_time == 0 || p->start_time > start)
304		p->start_time = start;
305}
306
307#define MAX_CPUS 4096
308
309static u64 cpus_cstate_start_times[MAX_CPUS];
310static int cpus_cstate_state[MAX_CPUS];
311static u64 cpus_pstate_start_times[MAX_CPUS];
312static u64 cpus_pstate_state[MAX_CPUS];
313
314static int process_comm_event(struct perf_tool *tool,
315			      union perf_event *event,
316			      struct perf_sample *sample __maybe_unused,
317			      struct machine *machine __maybe_unused)
318{
319	struct timechart *tchart = container_of(tool, struct timechart, tool);
320	pid_set_comm(tchart, event->comm.tid, event->comm.comm);
321	return 0;
322}
323
324static int process_fork_event(struct perf_tool *tool,
325			      union perf_event *event,
326			      struct perf_sample *sample __maybe_unused,
327			      struct machine *machine __maybe_unused)
328{
329	struct timechart *tchart = container_of(tool, struct timechart, tool);
330	pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
331	return 0;
332}
333
334static int process_exit_event(struct perf_tool *tool,
335			      union perf_event *event,
336			      struct perf_sample *sample __maybe_unused,
337			      struct machine *machine __maybe_unused)
338{
339	struct timechart *tchart = container_of(tool, struct timechart, tool);
340	pid_exit(tchart, event->fork.pid, event->fork.time);
341	return 0;
342}
343
344#ifdef SUPPORT_OLD_POWER_EVENTS
345static int use_old_power_events;
346#endif
347
348static void c_state_start(int cpu, u64 timestamp, int state)
349{
350	cpus_cstate_start_times[cpu] = timestamp;
351	cpus_cstate_state[cpu] = state;
352}
353
354static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
355{
356	struct power_event *pwr = zalloc(sizeof(*pwr));
357
358	if (!pwr)
359		return;
360
361	pwr->state = cpus_cstate_state[cpu];
362	pwr->start_time = cpus_cstate_start_times[cpu];
363	pwr->end_time = timestamp;
364	pwr->cpu = cpu;
365	pwr->type = CSTATE;
366	pwr->next = tchart->power_events;
367
368	tchart->power_events = pwr;
369}
370
371static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
372{
373	struct power_event *pwr;
374
375	if (new_freq > 8000000) /* detect invalid data */
376		return;
377
378	pwr = zalloc(sizeof(*pwr));
379	if (!pwr)
380		return;
381
382	pwr->state = cpus_pstate_state[cpu];
383	pwr->start_time = cpus_pstate_start_times[cpu];
384	pwr->end_time = timestamp;
385	pwr->cpu = cpu;
386	pwr->type = PSTATE;
387	pwr->next = tchart->power_events;
388
389	if (!pwr->start_time)
390		pwr->start_time = tchart->first_time;
391
392	tchart->power_events = pwr;
393
394	cpus_pstate_state[cpu] = new_freq;
395	cpus_pstate_start_times[cpu] = timestamp;
396
397	if ((u64)new_freq > tchart->max_freq)
398		tchart->max_freq = new_freq;
399
400	if (new_freq < tchart->min_freq || tchart->min_freq == 0)
401		tchart->min_freq = new_freq;
402
403	if (new_freq == tchart->max_freq - 1000)
404		tchart->turbo_frequency = tchart->max_freq;
405}
406
407static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
408			 int waker, int wakee, u8 flags, const char *backtrace)
409{
410	struct per_pid *p;
411	struct wake_event *we = zalloc(sizeof(*we));
412
413	if (!we)
414		return;
415
416	we->time = timestamp;
417	we->waker = waker;
418	we->backtrace = backtrace;
419
420	if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
421		we->waker = -1;
422
423	we->wakee = wakee;
424	we->next = tchart->wake_events;
425	tchart->wake_events = we;
426	p = find_create_pid(tchart, we->wakee);
427
428	if (p && p->current && p->current->state == TYPE_NONE) {
429		p->current->state_since = timestamp;
430		p->current->state = TYPE_WAITING;
431	}
432	if (p && p->current && p->current->state == TYPE_BLOCKED) {
433		pid_put_sample(tchart, p->pid, p->current->state, cpu,
434			       p->current->state_since, timestamp, NULL);
435		p->current->state_since = timestamp;
436		p->current->state = TYPE_WAITING;
437	}
438}
439
440static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
441			 int prev_pid, int next_pid, u64 prev_state,
442			 const char *backtrace)
443{
444	struct per_pid *p = NULL, *prev_p;
445
446	prev_p = find_create_pid(tchart, prev_pid);
447
448	p = find_create_pid(tchart, next_pid);
449
450	if (prev_p->current && prev_p->current->state != TYPE_NONE)
451		pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
452			       prev_p->current->state_since, timestamp,
453			       backtrace);
454	if (p && p->current) {
455		if (p->current->state != TYPE_NONE)
456			pid_put_sample(tchart, next_pid, p->current->state, cpu,
457				       p->current->state_since, timestamp,
458				       backtrace);
459
460		p->current->state_since = timestamp;
461		p->current->state = TYPE_RUNNING;
462	}
463
464	if (prev_p->current) {
465		prev_p->current->state = TYPE_NONE;
466		prev_p->current->state_since = timestamp;
467		if (prev_state & 2)
468			prev_p->current->state = TYPE_BLOCKED;
469		if (prev_state == 0)
470			prev_p->current->state = TYPE_WAITING;
471	}
472}
473
474static const char *cat_backtrace(union perf_event *event,
475				 struct perf_sample *sample,
476				 struct machine *machine)
477{
478	struct addr_location al;
479	unsigned int i;
480	char *p = NULL;
481	size_t p_len;
482	u8 cpumode = PERF_RECORD_MISC_USER;
483	struct addr_location tal;
484	struct ip_callchain *chain = sample->callchain;
485	FILE *f = open_memstream(&p, &p_len);
486
487	if (!f) {
488		perror("open_memstream error");
489		return NULL;
490	}
491
492	if (!chain)
493		goto exit;
494
495	if (machine__resolve(machine, &al, sample) < 0) {
496		fprintf(stderr, "problem processing %d event, skipping it.\n",
497			event->header.type);
498		goto exit;
499	}
500
501	for (i = 0; i < chain->nr; i++) {
502		u64 ip;
503
504		if (callchain_param.order == ORDER_CALLEE)
505			ip = chain->ips[i];
506		else
507			ip = chain->ips[chain->nr - i - 1];
508
509		if (ip >= PERF_CONTEXT_MAX) {
510			switch (ip) {
511			case PERF_CONTEXT_HV:
512				cpumode = PERF_RECORD_MISC_HYPERVISOR;
513				break;
514			case PERF_CONTEXT_KERNEL:
515				cpumode = PERF_RECORD_MISC_KERNEL;
516				break;
517			case PERF_CONTEXT_USER:
518				cpumode = PERF_RECORD_MISC_USER;
519				break;
520			default:
521				pr_debug("invalid callchain context: "
522					 "%"PRId64"\n", (s64) ip);
523
524				/*
525				 * It seems the callchain is corrupted.
526				 * Discard all.
527				 */
528				zfree(&p);
529				goto exit_put;
530			}
531			continue;
532		}
533
534		tal.filtered = 0;
535		if (thread__find_symbol(al.thread, cpumode, ip, &tal))
536			fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
537		else
538			fprintf(f, "..... %016" PRIx64 "\n", ip);
539	}
540exit_put:
541	addr_location__put(&al);
542exit:
543	fclose(f);
544
545	return p;
546}
547
548typedef int (*tracepoint_handler)(struct timechart *tchart,
549				  struct evsel *evsel,
550				  struct perf_sample *sample,
551				  const char *backtrace);
552
553static int process_sample_event(struct perf_tool *tool,
554				union perf_event *event,
555				struct perf_sample *sample,
556				struct evsel *evsel,
557				struct machine *machine)
558{
559	struct timechart *tchart = container_of(tool, struct timechart, tool);
560
561	if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) {
562		if (!tchart->first_time || tchart->first_time > sample->time)
563			tchart->first_time = sample->time;
564		if (tchart->last_time < sample->time)
565			tchart->last_time = sample->time;
566	}
567
568	if (evsel->handler != NULL) {
569		tracepoint_handler f = evsel->handler;
570		return f(tchart, evsel, sample,
571			 cat_backtrace(event, sample, machine));
572	}
573
574	return 0;
575}
576
577static int
578process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
579			struct evsel *evsel,
580			struct perf_sample *sample,
581			const char *backtrace __maybe_unused)
582{
583	u32 state  = evsel__intval(evsel, sample, "state");
584	u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
585
586	if (state == (u32)PWR_EVENT_EXIT)
587		c_state_end(tchart, cpu_id, sample->time);
588	else
589		c_state_start(cpu_id, sample->time, state);
590	return 0;
591}
592
593static int
594process_sample_cpu_frequency(struct timechart *tchart,
595			     struct evsel *evsel,
596			     struct perf_sample *sample,
597			     const char *backtrace __maybe_unused)
598{
599	u32 state  = evsel__intval(evsel, sample, "state");
600	u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
601
602	p_state_change(tchart, cpu_id, sample->time, state);
603	return 0;
604}
605
606static int
607process_sample_sched_wakeup(struct timechart *tchart,
608			    struct evsel *evsel,
609			    struct perf_sample *sample,
610			    const char *backtrace)
611{
612	u8 flags  = evsel__intval(evsel, sample, "common_flags");
613	int waker = evsel__intval(evsel, sample, "common_pid");
614	int wakee = evsel__intval(evsel, sample, "pid");
615
616	sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
617	return 0;
618}
619
620static int
621process_sample_sched_switch(struct timechart *tchart,
622			    struct evsel *evsel,
623			    struct perf_sample *sample,
624			    const char *backtrace)
625{
626	int prev_pid   = evsel__intval(evsel, sample, "prev_pid");
627	int next_pid   = evsel__intval(evsel, sample, "next_pid");
628	u64 prev_state = evsel__intval(evsel, sample, "prev_state");
629
630	sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
631		     prev_state, backtrace);
632	return 0;
633}
634
635#ifdef SUPPORT_OLD_POWER_EVENTS
636static int
637process_sample_power_start(struct timechart *tchart __maybe_unused,
638			   struct evsel *evsel,
639			   struct perf_sample *sample,
640			   const char *backtrace __maybe_unused)
641{
642	u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
643	u64 value  = evsel__intval(evsel, sample, "value");
644
645	c_state_start(cpu_id, sample->time, value);
646	return 0;
647}
648
649static int
650process_sample_power_end(struct timechart *tchart,
651			 struct evsel *evsel __maybe_unused,
652			 struct perf_sample *sample,
653			 const char *backtrace __maybe_unused)
654{
655	c_state_end(tchart, sample->cpu, sample->time);
656	return 0;
657}
658
659static int
660process_sample_power_frequency(struct timechart *tchart,
661			       struct evsel *evsel,
662			       struct perf_sample *sample,
663			       const char *backtrace __maybe_unused)
664{
665	u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
666	u64 value  = evsel__intval(evsel, sample, "value");
667
668	p_state_change(tchart, cpu_id, sample->time, value);
669	return 0;
670}
671#endif /* SUPPORT_OLD_POWER_EVENTS */
672
673/*
674 * After the last sample we need to wrap up the current C/P state
675 * and close out each CPU for these.
676 */
677static void end_sample_processing(struct timechart *tchart)
678{
679	u64 cpu;
680	struct power_event *pwr;
681
682	for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
683		/* C state */
684#if 0
685		pwr = zalloc(sizeof(*pwr));
686		if (!pwr)
687			return;
688
689		pwr->state = cpus_cstate_state[cpu];
690		pwr->start_time = cpus_cstate_start_times[cpu];
691		pwr->end_time = tchart->last_time;
692		pwr->cpu = cpu;
693		pwr->type = CSTATE;
694		pwr->next = tchart->power_events;
695
696		tchart->power_events = pwr;
697#endif
698		/* P state */
699
700		pwr = zalloc(sizeof(*pwr));
701		if (!pwr)
702			return;
703
704		pwr->state = cpus_pstate_state[cpu];
705		pwr->start_time = cpus_pstate_start_times[cpu];
706		pwr->end_time = tchart->last_time;
707		pwr->cpu = cpu;
708		pwr->type = PSTATE;
709		pwr->next = tchart->power_events;
710
711		if (!pwr->start_time)
712			pwr->start_time = tchart->first_time;
713		if (!pwr->state)
714			pwr->state = tchart->min_freq;
715		tchart->power_events = pwr;
716	}
717}
718
719static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
720			       u64 start, int fd)
721{
722	struct per_pid *p = find_create_pid(tchart, pid);
723	struct per_pidcomm *c = p->current;
724	struct io_sample *sample;
725	struct io_sample *prev;
726
727	if (!c) {
728		c = zalloc(sizeof(*c));
729		if (!c)
730			return -ENOMEM;
731		p->current = c;
732		c->next = p->all;
733		p->all = c;
734	}
735
736	prev = c->io_samples;
737
738	if (prev && prev->start_time && !prev->end_time) {
739		pr_warning("Skip invalid start event: "
740			   "previous event already started!\n");
741
742		/* remove previous event that has been started,
743		 * we are not sure we will ever get an end for it */
744		c->io_samples = prev->next;
745		free(prev);
746		return 0;
747	}
748
749	sample = zalloc(sizeof(*sample));
750	if (!sample)
751		return -ENOMEM;
752	sample->start_time = start;
753	sample->type = type;
754	sample->fd = fd;
755	sample->next = c->io_samples;
756	c->io_samples = sample;
757
758	if (c->start_time == 0 || c->start_time > start)
759		c->start_time = start;
760
761	return 0;
762}
763
764static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
765			     u64 end, long ret)
766{
767	struct per_pid *p = find_create_pid(tchart, pid);
768	struct per_pidcomm *c = p->current;
769	struct io_sample *sample, *prev;
770
771	if (!c) {
772		pr_warning("Invalid pidcomm!\n");
773		return -1;
774	}
775
776	sample = c->io_samples;
777
778	if (!sample) /* skip partially captured events */
779		return 0;
780
781	if (sample->end_time) {
782		pr_warning("Skip invalid end event: "
783			   "previous event already ended!\n");
784		return 0;
785	}
786
787	if (sample->type != type) {
788		pr_warning("Skip invalid end event: invalid event type!\n");
789		return 0;
790	}
791
792	sample->end_time = end;
793	prev = sample->next;
794
795	/* we want to be able to see small and fast transfers, so make them
796	 * at least min_time long, but don't overlap them */
797	if (sample->end_time - sample->start_time < tchart->min_time)
798		sample->end_time = sample->start_time + tchart->min_time;
799	if (prev && sample->start_time < prev->end_time) {
800		if (prev->err) /* try to make errors more visible */
801			sample->start_time = prev->end_time;
802		else
803			prev->end_time = sample->start_time;
804	}
805
806	if (ret < 0) {
807		sample->err = ret;
808	} else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
809		   type == IOTYPE_TX || type == IOTYPE_RX) {
810
811		if ((u64)ret > c->max_bytes)
812			c->max_bytes = ret;
813
814		c->total_bytes += ret;
815		p->total_bytes += ret;
816		sample->bytes = ret;
817	}
818
819	/* merge two requests to make svg smaller and render-friendly */
820	if (prev &&
821	    prev->type == sample->type &&
822	    prev->err == sample->err &&
823	    prev->fd == sample->fd &&
824	    prev->end_time + tchart->merge_dist >= sample->start_time) {
825
826		sample->bytes += prev->bytes;
827		sample->merges += prev->merges + 1;
828
829		sample->start_time = prev->start_time;
830		sample->next = prev->next;
831		free(prev);
832
833		if (!sample->err && sample->bytes > c->max_bytes)
834			c->max_bytes = sample->bytes;
835	}
836
837	tchart->io_events++;
838
839	return 0;
840}
841
842static int
843process_enter_read(struct timechart *tchart,
844		   struct evsel *evsel,
845		   struct perf_sample *sample)
846{
847	long fd = evsel__intval(evsel, sample, "fd");
848	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
849				   sample->time, fd);
850}
851
852static int
853process_exit_read(struct timechart *tchart,
854		  struct evsel *evsel,
855		  struct perf_sample *sample)
856{
857	long ret = evsel__intval(evsel, sample, "ret");
858	return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
859				 sample->time, ret);
860}
861
862static int
863process_enter_write(struct timechart *tchart,
864		    struct evsel *evsel,
865		    struct perf_sample *sample)
866{
867	long fd = evsel__intval(evsel, sample, "fd");
868	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
869				   sample->time, fd);
870}
871
872static int
873process_exit_write(struct timechart *tchart,
874		   struct evsel *evsel,
875		   struct perf_sample *sample)
876{
877	long ret = evsel__intval(evsel, sample, "ret");
878	return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
879				 sample->time, ret);
880}
881
882static int
883process_enter_sync(struct timechart *tchart,
884		   struct evsel *evsel,
885		   struct perf_sample *sample)
886{
887	long fd = evsel__intval(evsel, sample, "fd");
888	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
889				   sample->time, fd);
890}
891
892static int
893process_exit_sync(struct timechart *tchart,
894		  struct evsel *evsel,
895		  struct perf_sample *sample)
896{
897	long ret = evsel__intval(evsel, sample, "ret");
898	return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
899				 sample->time, ret);
900}
901
902static int
903process_enter_tx(struct timechart *tchart,
904		 struct evsel *evsel,
905		 struct perf_sample *sample)
906{
907	long fd = evsel__intval(evsel, sample, "fd");
908	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
909				   sample->time, fd);
910}
911
912static int
913process_exit_tx(struct timechart *tchart,
914		struct evsel *evsel,
915		struct perf_sample *sample)
916{
917	long ret = evsel__intval(evsel, sample, "ret");
918	return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
919				 sample->time, ret);
920}
921
922static int
923process_enter_rx(struct timechart *tchart,
924		 struct evsel *evsel,
925		 struct perf_sample *sample)
926{
927	long fd = evsel__intval(evsel, sample, "fd");
928	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
929				   sample->time, fd);
930}
931
932static int
933process_exit_rx(struct timechart *tchart,
934		struct evsel *evsel,
935		struct perf_sample *sample)
936{
937	long ret = evsel__intval(evsel, sample, "ret");
938	return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
939				 sample->time, ret);
940}
941
942static int
943process_enter_poll(struct timechart *tchart,
944		   struct evsel *evsel,
945		   struct perf_sample *sample)
946{
947	long fd = evsel__intval(evsel, sample, "fd");
948	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
949				   sample->time, fd);
950}
951
952static int
953process_exit_poll(struct timechart *tchart,
954		  struct evsel *evsel,
955		  struct perf_sample *sample)
956{
957	long ret = evsel__intval(evsel, sample, "ret");
958	return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
959				 sample->time, ret);
960}
961
962/*
963 * Sort the pid datastructure
964 */
965static void sort_pids(struct timechart *tchart)
966{
967	struct per_pid *new_list, *p, *cursor, *prev;
968	/* sort by ppid first, then by pid, lowest to highest */
969
970	new_list = NULL;
971
972	while (tchart->all_data) {
973		p = tchart->all_data;
974		tchart->all_data = p->next;
975		p->next = NULL;
976
977		if (new_list == NULL) {
978			new_list = p;
979			p->next = NULL;
980			continue;
981		}
982		prev = NULL;
983		cursor = new_list;
984		while (cursor) {
985			if (cursor->ppid > p->ppid ||
986				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
987				/* must insert before */
988				if (prev) {
989					p->next = prev->next;
990					prev->next = p;
991					cursor = NULL;
992					continue;
993				} else {
994					p->next = new_list;
995					new_list = p;
996					cursor = NULL;
997					continue;
998				}
999			}
1000
1001			prev = cursor;
1002			cursor = cursor->next;
1003			if (!cursor)
1004				prev->next = p;
1005		}
1006	}
1007	tchart->all_data = new_list;
1008}
1009
1010
1011static void draw_c_p_states(struct timechart *tchart)
1012{
1013	struct power_event *pwr;
1014	pwr = tchart->power_events;
1015
1016	/*
1017	 * two pass drawing so that the P state bars are on top of the C state blocks
1018	 */
1019	while (pwr) {
1020		if (pwr->type == CSTATE)
1021			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1022		pwr = pwr->next;
1023	}
1024
1025	pwr = tchart->power_events;
1026	while (pwr) {
1027		if (pwr->type == PSTATE) {
1028			if (!pwr->state)
1029				pwr->state = tchart->min_freq;
1030			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1031		}
1032		pwr = pwr->next;
1033	}
1034}
1035
1036static void draw_wakeups(struct timechart *tchart)
1037{
1038	struct wake_event *we;
1039	struct per_pid *p;
1040	struct per_pidcomm *c;
1041
1042	we = tchart->wake_events;
1043	while (we) {
1044		int from = 0, to = 0;
1045		char *task_from = NULL, *task_to = NULL;
1046
1047		/* locate the column of the waker and wakee */
1048		p = tchart->all_data;
1049		while (p) {
1050			if (p->pid == we->waker || p->pid == we->wakee) {
1051				c = p->all;
1052				while (c) {
1053					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1054						if (p->pid == we->waker && !from) {
1055							from = c->Y;
1056							task_from = strdup(c->comm);
1057						}
1058						if (p->pid == we->wakee && !to) {
1059							to = c->Y;
1060							task_to = strdup(c->comm);
1061						}
1062					}
1063					c = c->next;
1064				}
1065				c = p->all;
1066				while (c) {
1067					if (p->pid == we->waker && !from) {
1068						from = c->Y;
1069						task_from = strdup(c->comm);
1070					}
1071					if (p->pid == we->wakee && !to) {
1072						to = c->Y;
1073						task_to = strdup(c->comm);
1074					}
1075					c = c->next;
1076				}
1077			}
1078			p = p->next;
1079		}
1080
1081		if (!task_from) {
1082			task_from = malloc(40);
1083			sprintf(task_from, "[%i]", we->waker);
1084		}
1085		if (!task_to) {
1086			task_to = malloc(40);
1087			sprintf(task_to, "[%i]", we->wakee);
1088		}
1089
1090		if (we->waker == -1)
1091			svg_interrupt(we->time, to, we->backtrace);
1092		else if (from && to && abs(from - to) == 1)
1093			svg_wakeline(we->time, from, to, we->backtrace);
1094		else
1095			svg_partial_wakeline(we->time, from, task_from, to,
1096					     task_to, we->backtrace);
1097		we = we->next;
1098
1099		free(task_from);
1100		free(task_to);
1101	}
1102}
1103
1104static void draw_cpu_usage(struct timechart *tchart)
1105{
1106	struct per_pid *p;
1107	struct per_pidcomm *c;
1108	struct cpu_sample *sample;
1109	p = tchart->all_data;
1110	while (p) {
1111		c = p->all;
1112		while (c) {
1113			sample = c->samples;
1114			while (sample) {
1115				if (sample->type == TYPE_RUNNING) {
1116					svg_process(sample->cpu,
1117						    sample->start_time,
1118						    sample->end_time,
1119						    p->pid,
1120						    c->comm,
1121						    sample->backtrace);
1122				}
1123
1124				sample = sample->next;
1125			}
1126			c = c->next;
1127		}
1128		p = p->next;
1129	}
1130}
1131
1132static void draw_io_bars(struct timechart *tchart)
1133{
1134	const char *suf;
1135	double bytes;
1136	char comm[256];
1137	struct per_pid *p;
1138	struct per_pidcomm *c;
1139	struct io_sample *sample;
1140	int Y = 1;
1141
1142	p = tchart->all_data;
1143	while (p) {
1144		c = p->all;
1145		while (c) {
1146			if (!c->display) {
1147				c->Y = 0;
1148				c = c->next;
1149				continue;
1150			}
1151
1152			svg_box(Y, c->start_time, c->end_time, "process3");
1153			sample = c->io_samples;
1154			for (sample = c->io_samples; sample; sample = sample->next) {
1155				double h = (double)sample->bytes / c->max_bytes;
1156
1157				if (tchart->skip_eagain &&
1158				    sample->err == -EAGAIN)
1159					continue;
1160
1161				if (sample->err)
1162					h = 1;
1163
1164				if (sample->type == IOTYPE_SYNC)
1165					svg_fbox(Y,
1166						sample->start_time,
1167						sample->end_time,
1168						1,
1169						sample->err ? "error" : "sync",
1170						sample->fd,
1171						sample->err,
1172						sample->merges);
1173				else if (sample->type == IOTYPE_POLL)
1174					svg_fbox(Y,
1175						sample->start_time,
1176						sample->end_time,
1177						1,
1178						sample->err ? "error" : "poll",
1179						sample->fd,
1180						sample->err,
1181						sample->merges);
1182				else if (sample->type == IOTYPE_READ)
1183					svg_ubox(Y,
1184						sample->start_time,
1185						sample->end_time,
1186						h,
1187						sample->err ? "error" : "disk",
1188						sample->fd,
1189						sample->err,
1190						sample->merges);
1191				else if (sample->type == IOTYPE_WRITE)
1192					svg_lbox(Y,
1193						sample->start_time,
1194						sample->end_time,
1195						h,
1196						sample->err ? "error" : "disk",
1197						sample->fd,
1198						sample->err,
1199						sample->merges);
1200				else if (sample->type == IOTYPE_RX)
1201					svg_ubox(Y,
1202						sample->start_time,
1203						sample->end_time,
1204						h,
1205						sample->err ? "error" : "net",
1206						sample->fd,
1207						sample->err,
1208						sample->merges);
1209				else if (sample->type == IOTYPE_TX)
1210					svg_lbox(Y,
1211						sample->start_time,
1212						sample->end_time,
1213						h,
1214						sample->err ? "error" : "net",
1215						sample->fd,
1216						sample->err,
1217						sample->merges);
1218			}
1219
1220			suf = "";
1221			bytes = c->total_bytes;
1222			if (bytes > 1024) {
1223				bytes = bytes / 1024;
1224				suf = "K";
1225			}
1226			if (bytes > 1024) {
1227				bytes = bytes / 1024;
1228				suf = "M";
1229			}
1230			if (bytes > 1024) {
1231				bytes = bytes / 1024;
1232				suf = "G";
1233			}
1234
1235
1236			sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1237			svg_text(Y, c->start_time, comm);
1238
1239			c->Y = Y;
1240			Y++;
1241			c = c->next;
1242		}
1243		p = p->next;
1244	}
1245}
1246
1247static void draw_process_bars(struct timechart *tchart)
1248{
1249	struct per_pid *p;
1250	struct per_pidcomm *c;
1251	struct cpu_sample *sample;
1252	int Y = 0;
1253
1254	Y = 2 * tchart->numcpus + 2;
1255
1256	p = tchart->all_data;
1257	while (p) {
1258		c = p->all;
1259		while (c) {
1260			if (!c->display) {
1261				c->Y = 0;
1262				c = c->next;
1263				continue;
1264			}
1265
1266			svg_box(Y, c->start_time, c->end_time, "process");
1267			sample = c->samples;
1268			while (sample) {
1269				if (sample->type == TYPE_RUNNING)
1270					svg_running(Y, sample->cpu,
1271						    sample->start_time,
1272						    sample->end_time,
1273						    sample->backtrace);
1274				if (sample->type == TYPE_BLOCKED)
1275					svg_blocked(Y, sample->cpu,
1276						    sample->start_time,
1277						    sample->end_time,
1278						    sample->backtrace);
1279				if (sample->type == TYPE_WAITING)
1280					svg_waiting(Y, sample->cpu,
1281						    sample->start_time,
1282						    sample->end_time,
1283						    sample->backtrace);
1284				sample = sample->next;
1285			}
1286
1287			if (c->comm) {
1288				char comm[256];
1289				if (c->total_time > 5000000000) /* 5 seconds */
1290					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1291				else
1292					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1293
1294				svg_text(Y, c->start_time, comm);
1295			}
1296			c->Y = Y;
1297			Y++;
1298			c = c->next;
1299		}
1300		p = p->next;
1301	}
1302}
1303
1304static void add_process_filter(const char *string)
1305{
1306	int pid = strtoull(string, NULL, 10);
1307	struct process_filter *filt = malloc(sizeof(*filt));
1308
1309	if (!filt)
1310		return;
1311
1312	filt->name = strdup(string);
1313	filt->pid  = pid;
1314	filt->next = process_filter;
1315
1316	process_filter = filt;
1317}
1318
1319static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1320{
1321	struct process_filter *filt;
1322	if (!process_filter)
1323		return 1;
1324
1325	filt = process_filter;
1326	while (filt) {
1327		if (filt->pid && p->pid == filt->pid)
1328			return 1;
1329		if (strcmp(filt->name, c->comm) == 0)
1330			return 1;
1331		filt = filt->next;
1332	}
1333	return 0;
1334}
1335
1336static int determine_display_tasks_filtered(struct timechart *tchart)
1337{
1338	struct per_pid *p;
1339	struct per_pidcomm *c;
1340	int count = 0;
1341
1342	p = tchart->all_data;
1343	while (p) {
1344		p->display = 0;
1345		if (p->start_time == 1)
1346			p->start_time = tchart->first_time;
1347
1348		/* no exit marker, task kept running to the end */
1349		if (p->end_time == 0)
1350			p->end_time = tchart->last_time;
1351
1352		c = p->all;
1353
1354		while (c) {
1355			c->display = 0;
1356
1357			if (c->start_time == 1)
1358				c->start_time = tchart->first_time;
1359
1360			if (passes_filter(p, c)) {
1361				c->display = 1;
1362				p->display = 1;
1363				count++;
1364			}
1365
1366			if (c->end_time == 0)
1367				c->end_time = tchart->last_time;
1368
1369			c = c->next;
1370		}
1371		p = p->next;
1372	}
1373	return count;
1374}
1375
1376static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1377{
1378	struct per_pid *p;
1379	struct per_pidcomm *c;
1380	int count = 0;
1381
1382	p = tchart->all_data;
1383	while (p) {
1384		p->display = 0;
1385		if (p->start_time == 1)
1386			p->start_time = tchart->first_time;
1387
1388		/* no exit marker, task kept running to the end */
1389		if (p->end_time == 0)
1390			p->end_time = tchart->last_time;
1391		if (p->total_time >= threshold)
1392			p->display = 1;
1393
1394		c = p->all;
1395
1396		while (c) {
1397			c->display = 0;
1398
1399			if (c->start_time == 1)
1400				c->start_time = tchart->first_time;
1401
1402			if (c->total_time >= threshold) {
1403				c->display = 1;
1404				count++;
1405			}
1406
1407			if (c->end_time == 0)
1408				c->end_time = tchart->last_time;
1409
1410			c = c->next;
1411		}
1412		p = p->next;
1413	}
1414	return count;
1415}
1416
1417static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1418{
1419	struct per_pid *p;
1420	struct per_pidcomm *c;
1421	int count = 0;
1422
1423	p = timechart->all_data;
1424	while (p) {
1425		/* no exit marker, task kept running to the end */
1426		if (p->end_time == 0)
1427			p->end_time = timechart->last_time;
1428
1429		c = p->all;
1430
1431		while (c) {
1432			c->display = 0;
1433
1434			if (c->total_bytes >= threshold) {
1435				c->display = 1;
1436				count++;
1437			}
1438
1439			if (c->end_time == 0)
1440				c->end_time = timechart->last_time;
1441
1442			c = c->next;
1443		}
1444		p = p->next;
1445	}
1446	return count;
1447}
1448
1449#define BYTES_THRESH (1 * 1024 * 1024)
1450#define TIME_THRESH 10000000
1451
1452static void write_svg_file(struct timechart *tchart, const char *filename)
1453{
1454	u64 i;
1455	int count;
1456	int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1457
1458	if (tchart->power_only)
1459		tchart->proc_num = 0;
1460
1461	/* We'd like to show at least proc_num tasks;
1462	 * be less picky if we have fewer */
1463	do {
1464		if (process_filter)
1465			count = determine_display_tasks_filtered(tchart);
1466		else if (tchart->io_events)
1467			count = determine_display_io_tasks(tchart, thresh);
1468		else
1469			count = determine_display_tasks(tchart, thresh);
1470		thresh /= 10;
1471	} while (!process_filter && thresh && count < tchart->proc_num);
1472
1473	if (!tchart->proc_num)
1474		count = 0;
1475
1476	if (tchart->io_events) {
1477		open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1478
1479		svg_time_grid(0.5);
1480		svg_io_legenda();
1481
1482		draw_io_bars(tchart);
1483	} else {
1484		open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1485
1486		svg_time_grid(0);
1487
1488		svg_legenda();
1489
1490		for (i = 0; i < tchart->numcpus; i++)
1491			svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1492
1493		draw_cpu_usage(tchart);
1494		if (tchart->proc_num)
1495			draw_process_bars(tchart);
1496		if (!tchart->tasks_only)
1497			draw_c_p_states(tchart);
1498		if (tchart->proc_num)
1499			draw_wakeups(tchart);
1500	}
1501
1502	svg_close();
1503}
1504
1505static int process_header(struct perf_file_section *section __maybe_unused,
1506			  struct perf_header *ph,
1507			  int feat,
1508			  int fd __maybe_unused,
1509			  void *data)
1510{
1511	struct timechart *tchart = data;
1512
1513	switch (feat) {
1514	case HEADER_NRCPUS:
1515		tchart->numcpus = ph->env.nr_cpus_avail;
1516		break;
1517
1518	case HEADER_CPU_TOPOLOGY:
1519		if (!tchart->topology)
1520			break;
1521
1522		if (svg_build_topology_map(&ph->env))
1523			fprintf(stderr, "problem building topology\n");
1524		break;
1525
1526	default:
1527		break;
1528	}
1529
1530	return 0;
1531}
1532
1533static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1534{
1535	const struct evsel_str_handler power_tracepoints[] = {
1536		{ "power:cpu_idle",		process_sample_cpu_idle },
1537		{ "power:cpu_frequency",	process_sample_cpu_frequency },
1538		{ "sched:sched_wakeup",		process_sample_sched_wakeup },
1539		{ "sched:sched_switch",		process_sample_sched_switch },
1540#ifdef SUPPORT_OLD_POWER_EVENTS
1541		{ "power:power_start",		process_sample_power_start },
1542		{ "power:power_end",		process_sample_power_end },
1543		{ "power:power_frequency",	process_sample_power_frequency },
1544#endif
1545
1546		{ "syscalls:sys_enter_read",		process_enter_read },
1547		{ "syscalls:sys_enter_pread64",		process_enter_read },
1548		{ "syscalls:sys_enter_readv",		process_enter_read },
1549		{ "syscalls:sys_enter_preadv",		process_enter_read },
1550		{ "syscalls:sys_enter_write",		process_enter_write },
1551		{ "syscalls:sys_enter_pwrite64",	process_enter_write },
1552		{ "syscalls:sys_enter_writev",		process_enter_write },
1553		{ "syscalls:sys_enter_pwritev",		process_enter_write },
1554		{ "syscalls:sys_enter_sync",		process_enter_sync },
1555		{ "syscalls:sys_enter_sync_file_range",	process_enter_sync },
1556		{ "syscalls:sys_enter_fsync",		process_enter_sync },
1557		{ "syscalls:sys_enter_msync",		process_enter_sync },
1558		{ "syscalls:sys_enter_recvfrom",	process_enter_rx },
1559		{ "syscalls:sys_enter_recvmmsg",	process_enter_rx },
1560		{ "syscalls:sys_enter_recvmsg",		process_enter_rx },
1561		{ "syscalls:sys_enter_sendto",		process_enter_tx },
1562		{ "syscalls:sys_enter_sendmsg",		process_enter_tx },
1563		{ "syscalls:sys_enter_sendmmsg",	process_enter_tx },
1564		{ "syscalls:sys_enter_epoll_pwait",	process_enter_poll },
1565		{ "syscalls:sys_enter_epoll_wait",	process_enter_poll },
1566		{ "syscalls:sys_enter_poll",		process_enter_poll },
1567		{ "syscalls:sys_enter_ppoll",		process_enter_poll },
1568		{ "syscalls:sys_enter_pselect6",	process_enter_poll },
1569		{ "syscalls:sys_enter_select",		process_enter_poll },
1570
1571		{ "syscalls:sys_exit_read",		process_exit_read },
1572		{ "syscalls:sys_exit_pread64",		process_exit_read },
1573		{ "syscalls:sys_exit_readv",		process_exit_read },
1574		{ "syscalls:sys_exit_preadv",		process_exit_read },
1575		{ "syscalls:sys_exit_write",		process_exit_write },
1576		{ "syscalls:sys_exit_pwrite64",		process_exit_write },
1577		{ "syscalls:sys_exit_writev",		process_exit_write },
1578		{ "syscalls:sys_exit_pwritev",		process_exit_write },
1579		{ "syscalls:sys_exit_sync",		process_exit_sync },
1580		{ "syscalls:sys_exit_sync_file_range",	process_exit_sync },
1581		{ "syscalls:sys_exit_fsync",		process_exit_sync },
1582		{ "syscalls:sys_exit_msync",		process_exit_sync },
1583		{ "syscalls:sys_exit_recvfrom",		process_exit_rx },
1584		{ "syscalls:sys_exit_recvmmsg",		process_exit_rx },
1585		{ "syscalls:sys_exit_recvmsg",		process_exit_rx },
1586		{ "syscalls:sys_exit_sendto",		process_exit_tx },
1587		{ "syscalls:sys_exit_sendmsg",		process_exit_tx },
1588		{ "syscalls:sys_exit_sendmmsg",		process_exit_tx },
1589		{ "syscalls:sys_exit_epoll_pwait",	process_exit_poll },
1590		{ "syscalls:sys_exit_epoll_wait",	process_exit_poll },
1591		{ "syscalls:sys_exit_poll",		process_exit_poll },
1592		{ "syscalls:sys_exit_ppoll",		process_exit_poll },
1593		{ "syscalls:sys_exit_pselect6",		process_exit_poll },
1594		{ "syscalls:sys_exit_select",		process_exit_poll },
1595	};
1596	struct perf_data data = {
1597		.path  = input_name,
1598		.mode  = PERF_DATA_MODE_READ,
1599		.force = tchart->force,
1600	};
1601
1602	struct perf_session *session = perf_session__new(&data, &tchart->tool);
1603	int ret = -EINVAL;
1604
1605	if (IS_ERR(session))
1606		return PTR_ERR(session);
1607
1608	symbol__init(&session->header.env);
1609
1610	(void)perf_header__process_sections(&session->header,
1611					    perf_data__fd(session->data),
1612					    tchart,
1613					    process_header);
1614
1615	if (!perf_session__has_traces(session, "timechart record"))
1616		goto out_delete;
1617
1618	if (perf_session__set_tracepoints_handlers(session,
1619						   power_tracepoints)) {
1620		pr_err("Initializing session tracepoint handlers failed\n");
1621		goto out_delete;
1622	}
1623
1624	ret = perf_session__process_events(session);
1625	if (ret)
1626		goto out_delete;
1627
1628	end_sample_processing(tchart);
1629
1630	sort_pids(tchart);
1631
1632	write_svg_file(tchart, output_name);
1633
1634	pr_info("Written %2.1f seconds of trace to %s.\n",
1635		(tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1636out_delete:
1637	perf_session__delete(session);
1638	return ret;
1639}
1640
1641static int timechart__io_record(int argc, const char **argv)
1642{
1643	unsigned int rec_argc, i;
1644	const char **rec_argv;
1645	const char **p;
1646	char *filter = NULL;
1647
1648	const char * const common_args[] = {
1649		"record", "-a", "-R", "-c", "1",
1650	};
1651	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1652
1653	const char * const disk_events[] = {
1654		"syscalls:sys_enter_read",
1655		"syscalls:sys_enter_pread64",
1656		"syscalls:sys_enter_readv",
1657		"syscalls:sys_enter_preadv",
1658		"syscalls:sys_enter_write",
1659		"syscalls:sys_enter_pwrite64",
1660		"syscalls:sys_enter_writev",
1661		"syscalls:sys_enter_pwritev",
1662		"syscalls:sys_enter_sync",
1663		"syscalls:sys_enter_sync_file_range",
1664		"syscalls:sys_enter_fsync",
1665		"syscalls:sys_enter_msync",
1666
1667		"syscalls:sys_exit_read",
1668		"syscalls:sys_exit_pread64",
1669		"syscalls:sys_exit_readv",
1670		"syscalls:sys_exit_preadv",
1671		"syscalls:sys_exit_write",
1672		"syscalls:sys_exit_pwrite64",
1673		"syscalls:sys_exit_writev",
1674		"syscalls:sys_exit_pwritev",
1675		"syscalls:sys_exit_sync",
1676		"syscalls:sys_exit_sync_file_range",
1677		"syscalls:sys_exit_fsync",
1678		"syscalls:sys_exit_msync",
1679	};
1680	unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1681
1682	const char * const net_events[] = {
1683		"syscalls:sys_enter_recvfrom",
1684		"syscalls:sys_enter_recvmmsg",
1685		"syscalls:sys_enter_recvmsg",
1686		"syscalls:sys_enter_sendto",
1687		"syscalls:sys_enter_sendmsg",
1688		"syscalls:sys_enter_sendmmsg",
1689
1690		"syscalls:sys_exit_recvfrom",
1691		"syscalls:sys_exit_recvmmsg",
1692		"syscalls:sys_exit_recvmsg",
1693		"syscalls:sys_exit_sendto",
1694		"syscalls:sys_exit_sendmsg",
1695		"syscalls:sys_exit_sendmmsg",
1696	};
1697	unsigned int net_events_nr = ARRAY_SIZE(net_events);
1698
1699	const char * const poll_events[] = {
1700		"syscalls:sys_enter_epoll_pwait",
1701		"syscalls:sys_enter_epoll_wait",
1702		"syscalls:sys_enter_poll",
1703		"syscalls:sys_enter_ppoll",
1704		"syscalls:sys_enter_pselect6",
1705		"syscalls:sys_enter_select",
1706
1707		"syscalls:sys_exit_epoll_pwait",
1708		"syscalls:sys_exit_epoll_wait",
1709		"syscalls:sys_exit_poll",
1710		"syscalls:sys_exit_ppoll",
1711		"syscalls:sys_exit_pselect6",
1712		"syscalls:sys_exit_select",
1713	};
1714	unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1715
1716	rec_argc = common_args_nr +
1717		disk_events_nr * 4 +
1718		net_events_nr * 4 +
1719		poll_events_nr * 4 +
1720		argc;
1721	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1722
1723	if (rec_argv == NULL)
1724		return -ENOMEM;
1725
1726	if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1727		free(rec_argv);
1728		return -ENOMEM;
1729	}
1730
1731	p = rec_argv;
1732	for (i = 0; i < common_args_nr; i++)
1733		*p++ = strdup(common_args[i]);
1734
1735	for (i = 0; i < disk_events_nr; i++) {
1736		if (!is_valid_tracepoint(disk_events[i])) {
1737			rec_argc -= 4;
1738			continue;
1739		}
1740
1741		*p++ = "-e";
1742		*p++ = strdup(disk_events[i]);
1743		*p++ = "--filter";
1744		*p++ = filter;
1745	}
1746	for (i = 0; i < net_events_nr; i++) {
1747		if (!is_valid_tracepoint(net_events[i])) {
1748			rec_argc -= 4;
1749			continue;
1750		}
1751
1752		*p++ = "-e";
1753		*p++ = strdup(net_events[i]);
1754		*p++ = "--filter";
1755		*p++ = filter;
1756	}
1757	for (i = 0; i < poll_events_nr; i++) {
1758		if (!is_valid_tracepoint(poll_events[i])) {
1759			rec_argc -= 4;
1760			continue;
1761		}
1762
1763		*p++ = "-e";
1764		*p++ = strdup(poll_events[i]);
1765		*p++ = "--filter";
1766		*p++ = filter;
1767	}
1768
1769	for (i = 0; i < (unsigned int)argc; i++)
1770		*p++ = argv[i];
1771
1772	return cmd_record(rec_argc, rec_argv);
1773}
1774
1775
1776static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1777{
1778	unsigned int rec_argc, i, j;
1779	const char **rec_argv;
1780	const char **p;
1781	unsigned int record_elems;
1782
1783	const char * const common_args[] = {
1784		"record", "-a", "-R", "-c", "1",
1785	};
1786	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1787
1788	const char * const backtrace_args[] = {
1789		"-g",
1790	};
1791	unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1792
1793	const char * const power_args[] = {
1794		"-e", "power:cpu_frequency",
1795		"-e", "power:cpu_idle",
1796	};
1797	unsigned int power_args_nr = ARRAY_SIZE(power_args);
1798
1799	const char * const old_power_args[] = {
1800#ifdef SUPPORT_OLD_POWER_EVENTS
1801		"-e", "power:power_start",
1802		"-e", "power:power_end",
1803		"-e", "power:power_frequency",
1804#endif
1805	};
1806	unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1807
1808	const char * const tasks_args[] = {
1809		"-e", "sched:sched_wakeup",
1810		"-e", "sched:sched_switch",
1811	};
1812	unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1813
1814#ifdef SUPPORT_OLD_POWER_EVENTS
1815	if (!is_valid_tracepoint("power:cpu_idle") &&
1816	    is_valid_tracepoint("power:power_start")) {
1817		use_old_power_events = 1;
1818		power_args_nr = 0;
1819	} else {
1820		old_power_args_nr = 0;
1821	}
1822#endif
1823
1824	if (tchart->power_only)
1825		tasks_args_nr = 0;
1826
1827	if (tchart->tasks_only) {
1828		power_args_nr = 0;
1829		old_power_args_nr = 0;
1830	}
1831
1832	if (!tchart->with_backtrace)
1833		backtrace_args_no = 0;
1834
1835	record_elems = common_args_nr + tasks_args_nr +
1836		power_args_nr + old_power_args_nr + backtrace_args_no;
1837
1838	rec_argc = record_elems + argc;
1839	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1840
1841	if (rec_argv == NULL)
1842		return -ENOMEM;
1843
1844	p = rec_argv;
1845	for (i = 0; i < common_args_nr; i++)
1846		*p++ = strdup(common_args[i]);
1847
1848	for (i = 0; i < backtrace_args_no; i++)
1849		*p++ = strdup(backtrace_args[i]);
1850
1851	for (i = 0; i < tasks_args_nr; i++)
1852		*p++ = strdup(tasks_args[i]);
1853
1854	for (i = 0; i < power_args_nr; i++)
1855		*p++ = strdup(power_args[i]);
1856
1857	for (i = 0; i < old_power_args_nr; i++)
1858		*p++ = strdup(old_power_args[i]);
1859
1860	for (j = 0; j < (unsigned int)argc; j++)
1861		*p++ = argv[j];
1862
1863	return cmd_record(rec_argc, rec_argv);
1864}
1865
1866static int
1867parse_process(const struct option *opt __maybe_unused, const char *arg,
1868	      int __maybe_unused unset)
1869{
1870	if (arg)
1871		add_process_filter(arg);
1872	return 0;
1873}
1874
1875static int
1876parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1877		int __maybe_unused unset)
1878{
1879	unsigned long duration = strtoul(arg, NULL, 0);
1880
1881	if (svg_highlight || svg_highlight_name)
1882		return -1;
1883
1884	if (duration)
1885		svg_highlight = duration;
1886	else
1887		svg_highlight_name = strdup(arg);
1888
1889	return 0;
1890}
1891
1892static int
1893parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1894{
1895	char unit = 'n';
1896	u64 *value = opt->value;
1897
1898	if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1899		switch (unit) {
1900		case 'm':
1901			*value *= NSEC_PER_MSEC;
1902			break;
1903		case 'u':
1904			*value *= NSEC_PER_USEC;
1905			break;
1906		case 'n':
1907			break;
1908		default:
1909			return -1;
1910		}
1911	}
1912
1913	return 0;
1914}
1915
1916int cmd_timechart(int argc, const char **argv)
1917{
1918	struct timechart tchart = {
1919		.tool = {
1920			.comm		 = process_comm_event,
1921			.fork		 = process_fork_event,
1922			.exit		 = process_exit_event,
1923			.sample		 = process_sample_event,
1924			.ordered_events	 = true,
1925		},
1926		.proc_num = 15,
1927		.min_time = NSEC_PER_MSEC,
1928		.merge_dist = 1000,
1929	};
1930	const char *output_name = "output.svg";
1931	const struct option timechart_common_options[] = {
1932	OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1933	OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1934	OPT_END()
1935	};
1936	const struct option timechart_options[] = {
1937	OPT_STRING('i', "input", &input_name, "file", "input file name"),
1938	OPT_STRING('o', "output", &output_name, "file", "output file name"),
1939	OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1940	OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1941		      "highlight tasks. Pass duration in ns or process name.",
1942		       parse_highlight),
1943	OPT_CALLBACK('p', "process", NULL, "process",
1944		      "process selector. Pass a pid or process name.",
1945		       parse_process),
1946	OPT_CALLBACK(0, "symfs", NULL, "directory",
1947		     "Look for files with symbols relative to this directory",
1948		     symbol__config_symfs),
1949	OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1950		    "min. number of tasks to print"),
1951	OPT_BOOLEAN('t', "topology", &tchart.topology,
1952		    "sort CPUs according to topology"),
1953	OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1954		    "skip EAGAIN errors"),
1955	OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1956		     "all IO faster than min-time will visually appear longer",
1957		     parse_time),
1958	OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1959		     "merge events that are merge-dist us apart",
1960		     parse_time),
1961	OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1962	OPT_PARENT(timechart_common_options),
1963	};
1964	const char * const timechart_subcommands[] = { "record", NULL };
1965	const char *timechart_usage[] = {
1966		"perf timechart [<options>] {record}",
1967		NULL
1968	};
1969	const struct option timechart_record_options[] = {
1970	OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1971		    "record only IO data"),
1972	OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1973	OPT_PARENT(timechart_common_options),
1974	};
1975	const char * const timechart_record_usage[] = {
1976		"perf timechart record [<options>]",
1977		NULL
1978	};
1979	argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1980			timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1981
1982	if (tchart.power_only && tchart.tasks_only) {
1983		pr_err("-P and -T options cannot be used at the same time.\n");
1984		return -1;
1985	}
1986
1987	if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
1988		argc = parse_options(argc, argv, timechart_record_options,
1989				     timechart_record_usage,
1990				     PARSE_OPT_STOP_AT_NON_OPTION);
1991
1992		if (tchart.power_only && tchart.tasks_only) {
1993			pr_err("-P and -T options cannot be used at the same time.\n");
1994			return -1;
1995		}
1996
1997		if (tchart.io_only)
1998			return timechart__io_record(argc, argv);
1999		else
2000			return timechart__record(&tchart, argc, argv);
2001	} else if (argc)
2002		usage_with_options(timechart_usage, timechart_options);
2003
2004	setup_pager();
2005
2006	return __cmd_timechart(&tchart, output_name);
2007}
2008