1// SPDX-License-Identifier: GPL-2.0
2#include "builtin.h"
3#include "perf-sys.h"
4
5#include "util/cpumap.h"
6#include "util/evlist.h"
7#include "util/evsel.h"
8#include "util/evsel_fprintf.h"
9#include "util/mutex.h"
10#include "util/symbol.h"
11#include "util/thread.h"
12#include "util/header.h"
13#include "util/session.h"
14#include "util/tool.h"
15#include "util/cloexec.h"
16#include "util/thread_map.h"
17#include "util/color.h"
18#include "util/stat.h"
19#include "util/string2.h"
20#include "util/callchain.h"
21#include "util/time-utils.h"
22
23#include <subcmd/pager.h>
24#include <subcmd/parse-options.h>
25#include "util/trace-event.h"
26
27#include "util/debug.h"
28#include "util/event.h"
29#include "util/util.h"
30
31#include <linux/kernel.h>
32#include <linux/log2.h>
33#include <linux/zalloc.h>
34#include <sys/prctl.h>
35#include <sys/resource.h>
36#include <inttypes.h>
37
38#include <errno.h>
39#include <semaphore.h>
40#include <pthread.h>
41#include <math.h>
42#include <api/fs/fs.h>
43#include <perf/cpumap.h>
44#include <linux/time64.h>
45#include <linux/err.h>
46
47#include <linux/ctype.h>
48
49#define PR_SET_NAME		15               /* Set process name */
50#define MAX_CPUS		4096
51#define COMM_LEN		20
52#define SYM_LEN			129
53#define MAX_PID			1024000
54
55static const char *cpu_list;
56static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
57
58struct sched_atom;
59
60struct task_desc {
61	unsigned long		nr;
62	unsigned long		pid;
63	char			comm[COMM_LEN];
64
65	unsigned long		nr_events;
66	unsigned long		curr_event;
67	struct sched_atom	**atoms;
68
69	pthread_t		thread;
70	sem_t			sleep_sem;
71
72	sem_t			ready_for_work;
73	sem_t			work_done_sem;
74
75	u64			cpu_usage;
76};
77
78enum sched_event_type {
79	SCHED_EVENT_RUN,
80	SCHED_EVENT_SLEEP,
81	SCHED_EVENT_WAKEUP,
82	SCHED_EVENT_MIGRATION,
83};
84
85struct sched_atom {
86	enum sched_event_type	type;
87	int			specific_wait;
88	u64			timestamp;
89	u64			duration;
90	unsigned long		nr;
91	sem_t			*wait_sem;
92	struct task_desc	*wakee;
93};
94
95enum thread_state {
96	THREAD_SLEEPING = 0,
97	THREAD_WAIT_CPU,
98	THREAD_SCHED_IN,
99	THREAD_IGNORE
100};
101
102struct work_atom {
103	struct list_head	list;
104	enum thread_state	state;
105	u64			sched_out_time;
106	u64			wake_up_time;
107	u64			sched_in_time;
108	u64			runtime;
109};
110
111struct work_atoms {
112	struct list_head	work_list;
113	struct thread		*thread;
114	struct rb_node		node;
115	u64			max_lat;
116	u64			max_lat_start;
117	u64			max_lat_end;
118	u64			total_lat;
119	u64			nb_atoms;
120	u64			total_runtime;
121	int			num_merged;
122};
123
124typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
125
126struct perf_sched;
127
128struct trace_sched_handler {
129	int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
130			    struct perf_sample *sample, struct machine *machine);
131
132	int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
133			     struct perf_sample *sample, struct machine *machine);
134
135	int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
136			    struct perf_sample *sample, struct machine *machine);
137
138	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
139	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
140			  struct machine *machine);
141
142	int (*migrate_task_event)(struct perf_sched *sched,
143				  struct evsel *evsel,
144				  struct perf_sample *sample,
145				  struct machine *machine);
146};
147
148#define COLOR_PIDS PERF_COLOR_BLUE
149#define COLOR_CPUS PERF_COLOR_BG_RED
150
151struct perf_sched_map {
152	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
153	struct perf_cpu		*comp_cpus;
154	bool			 comp;
155	struct perf_thread_map *color_pids;
156	const char		*color_pids_str;
157	struct perf_cpu_map	*color_cpus;
158	const char		*color_cpus_str;
159	struct perf_cpu_map	*cpus;
160	const char		*cpus_str;
161};
162
163struct perf_sched {
164	struct perf_tool tool;
165	const char	 *sort_order;
166	unsigned long	 nr_tasks;
167	struct task_desc **pid_to_task;
168	struct task_desc **tasks;
169	const struct trace_sched_handler *tp_handler;
170	struct mutex	 start_work_mutex;
171	struct mutex	 work_done_wait_mutex;
172	int		 profile_cpu;
173/*
174 * Track the current task - that way we can know whether there's any
175 * weird events, such as a task being switched away that is not current.
176 */
177	struct perf_cpu	 max_cpu;
178	u32		 *curr_pid;
179	struct thread	 **curr_thread;
180	char		 next_shortname1;
181	char		 next_shortname2;
182	unsigned int	 replay_repeat;
183	unsigned long	 nr_run_events;
184	unsigned long	 nr_sleep_events;
185	unsigned long	 nr_wakeup_events;
186	unsigned long	 nr_sleep_corrections;
187	unsigned long	 nr_run_events_optimized;
188	unsigned long	 targetless_wakeups;
189	unsigned long	 multitarget_wakeups;
190	unsigned long	 nr_runs;
191	unsigned long	 nr_timestamps;
192	unsigned long	 nr_unordered_timestamps;
193	unsigned long	 nr_context_switch_bugs;
194	unsigned long	 nr_events;
195	unsigned long	 nr_lost_chunks;
196	unsigned long	 nr_lost_events;
197	u64		 run_measurement_overhead;
198	u64		 sleep_measurement_overhead;
199	u64		 start_time;
200	u64		 cpu_usage;
201	u64		 runavg_cpu_usage;
202	u64		 parent_cpu_usage;
203	u64		 runavg_parent_cpu_usage;
204	u64		 sum_runtime;
205	u64		 sum_fluct;
206	u64		 run_avg;
207	u64		 all_runtime;
208	u64		 all_count;
209	u64		 *cpu_last_switched;
210	struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
211	struct list_head sort_list, cmp_pid;
212	bool force;
213	bool skip_merge;
214	struct perf_sched_map map;
215
216	/* options for timehist command */
217	bool		summary;
218	bool		summary_only;
219	bool		idle_hist;
220	bool		show_callchain;
221	unsigned int	max_stack;
222	bool		show_cpu_visual;
223	bool		show_wakeups;
224	bool		show_next;
225	bool		show_migrations;
226	bool		show_state;
227	u64		skipped_samples;
228	const char	*time_str;
229	struct perf_time_interval ptime;
230	struct perf_time_interval hist_time;
231	volatile bool   thread_funcs_exit;
232};
233
234/* per thread run time data */
235struct thread_runtime {
236	u64 last_time;      /* time of previous sched in/out event */
237	u64 dt_run;         /* run time */
238	u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
239	u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
240	u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
241	u64 dt_delay;       /* time between wakeup and sched-in */
242	u64 ready_to_run;   /* time of wakeup */
243
244	struct stats run_stats;
245	u64 total_run_time;
246	u64 total_sleep_time;
247	u64 total_iowait_time;
248	u64 total_preempt_time;
249	u64 total_delay_time;
250
251	char last_state;
252
253	char shortname[3];
254	bool comm_changed;
255
256	u64 migrations;
257};
258
259/* per event run time data */
260struct evsel_runtime {
261	u64 *last_time; /* time this event was last seen per cpu */
262	u32 ncpu;       /* highest cpu slot allocated */
263};
264
265/* per cpu idle time data */
266struct idle_thread_runtime {
267	struct thread_runtime	tr;
268	struct thread		*last_thread;
269	struct rb_root_cached	sorted_root;
270	struct callchain_root	callchain;
271	struct callchain_cursor	cursor;
272};
273
274/* track idle times per cpu */
275static struct thread **idle_threads;
276static int idle_max_cpu;
277static char idle_comm[] = "<idle>";
278
279static u64 get_nsecs(void)
280{
281	struct timespec ts;
282
283	clock_gettime(CLOCK_MONOTONIC, &ts);
284
285	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
286}
287
288static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
289{
290	u64 T0 = get_nsecs(), T1;
291
292	do {
293		T1 = get_nsecs();
294	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
295}
296
297static void sleep_nsecs(u64 nsecs)
298{
299	struct timespec ts;
300
301	ts.tv_nsec = nsecs % 999999999;
302	ts.tv_sec = nsecs / 999999999;
303
304	nanosleep(&ts, NULL);
305}
306
307static void calibrate_run_measurement_overhead(struct perf_sched *sched)
308{
309	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
310	int i;
311
312	for (i = 0; i < 10; i++) {
313		T0 = get_nsecs();
314		burn_nsecs(sched, 0);
315		T1 = get_nsecs();
316		delta = T1-T0;
317		min_delta = min(min_delta, delta);
318	}
319	sched->run_measurement_overhead = min_delta;
320
321	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
322}
323
324static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
325{
326	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
327	int i;
328
329	for (i = 0; i < 10; i++) {
330		T0 = get_nsecs();
331		sleep_nsecs(10000);
332		T1 = get_nsecs();
333		delta = T1-T0;
334		min_delta = min(min_delta, delta);
335	}
336	min_delta -= 10000;
337	sched->sleep_measurement_overhead = min_delta;
338
339	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
340}
341
342static struct sched_atom *
343get_new_event(struct task_desc *task, u64 timestamp)
344{
345	struct sched_atom *event = zalloc(sizeof(*event));
346	unsigned long idx = task->nr_events;
347	size_t size;
348
349	event->timestamp = timestamp;
350	event->nr = idx;
351
352	task->nr_events++;
353	size = sizeof(struct sched_atom *) * task->nr_events;
354	task->atoms = realloc(task->atoms, size);
355	BUG_ON(!task->atoms);
356
357	task->atoms[idx] = event;
358
359	return event;
360}
361
362static struct sched_atom *last_event(struct task_desc *task)
363{
364	if (!task->nr_events)
365		return NULL;
366
367	return task->atoms[task->nr_events - 1];
368}
369
370static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
371				u64 timestamp, u64 duration)
372{
373	struct sched_atom *event, *curr_event = last_event(task);
374
375	/*
376	 * optimize an existing RUN event by merging this one
377	 * to it:
378	 */
379	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
380		sched->nr_run_events_optimized++;
381		curr_event->duration += duration;
382		return;
383	}
384
385	event = get_new_event(task, timestamp);
386
387	event->type = SCHED_EVENT_RUN;
388	event->duration = duration;
389
390	sched->nr_run_events++;
391}
392
393static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
394				   u64 timestamp, struct task_desc *wakee)
395{
396	struct sched_atom *event, *wakee_event;
397
398	event = get_new_event(task, timestamp);
399	event->type = SCHED_EVENT_WAKEUP;
400	event->wakee = wakee;
401
402	wakee_event = last_event(wakee);
403	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
404		sched->targetless_wakeups++;
405		return;
406	}
407	if (wakee_event->wait_sem) {
408		sched->multitarget_wakeups++;
409		return;
410	}
411
412	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
413	sem_init(wakee_event->wait_sem, 0, 0);
414	wakee_event->specific_wait = 1;
415	event->wait_sem = wakee_event->wait_sem;
416
417	sched->nr_wakeup_events++;
418}
419
420static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
421				  u64 timestamp, const char task_state __maybe_unused)
422{
423	struct sched_atom *event = get_new_event(task, timestamp);
424
425	event->type = SCHED_EVENT_SLEEP;
426
427	sched->nr_sleep_events++;
428}
429
430static struct task_desc *register_pid(struct perf_sched *sched,
431				      unsigned long pid, const char *comm)
432{
433	struct task_desc *task;
434	static int pid_max;
435
436	if (sched->pid_to_task == NULL) {
437		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
438			pid_max = MAX_PID;
439		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
440	}
441	if (pid >= (unsigned long)pid_max) {
442		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
443			sizeof(struct task_desc *))) == NULL);
444		while (pid >= (unsigned long)pid_max)
445			sched->pid_to_task[pid_max++] = NULL;
446	}
447
448	task = sched->pid_to_task[pid];
449
450	if (task)
451		return task;
452
453	task = zalloc(sizeof(*task));
454	task->pid = pid;
455	task->nr = sched->nr_tasks;
456	strcpy(task->comm, comm);
457	/*
458	 * every task starts in sleeping state - this gets ignored
459	 * if there's no wakeup pointing to this sleep state:
460	 */
461	add_sched_event_sleep(sched, task, 0, 0);
462
463	sched->pid_to_task[pid] = task;
464	sched->nr_tasks++;
465	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
466	BUG_ON(!sched->tasks);
467	sched->tasks[task->nr] = task;
468
469	if (verbose > 0)
470		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
471
472	return task;
473}
474
475
476static void print_task_traces(struct perf_sched *sched)
477{
478	struct task_desc *task;
479	unsigned long i;
480
481	for (i = 0; i < sched->nr_tasks; i++) {
482		task = sched->tasks[i];
483		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
484			task->nr, task->comm, task->pid, task->nr_events);
485	}
486}
487
488static void add_cross_task_wakeups(struct perf_sched *sched)
489{
490	struct task_desc *task1, *task2;
491	unsigned long i, j;
492
493	for (i = 0; i < sched->nr_tasks; i++) {
494		task1 = sched->tasks[i];
495		j = i + 1;
496		if (j == sched->nr_tasks)
497			j = 0;
498		task2 = sched->tasks[j];
499		add_sched_event_wakeup(sched, task1, 0, task2);
500	}
501}
502
503static void perf_sched__process_event(struct perf_sched *sched,
504				      struct sched_atom *atom)
505{
506	int ret = 0;
507
508	switch (atom->type) {
509		case SCHED_EVENT_RUN:
510			burn_nsecs(sched, atom->duration);
511			break;
512		case SCHED_EVENT_SLEEP:
513			if (atom->wait_sem)
514				ret = sem_wait(atom->wait_sem);
515			BUG_ON(ret);
516			break;
517		case SCHED_EVENT_WAKEUP:
518			if (atom->wait_sem)
519				ret = sem_post(atom->wait_sem);
520			BUG_ON(ret);
521			break;
522		case SCHED_EVENT_MIGRATION:
523			break;
524		default:
525			BUG_ON(1);
526	}
527}
528
529static u64 get_cpu_usage_nsec_parent(void)
530{
531	struct rusage ru;
532	u64 sum;
533	int err;
534
535	err = getrusage(RUSAGE_SELF, &ru);
536	BUG_ON(err);
537
538	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
539	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
540
541	return sum;
542}
543
544static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
545{
546	struct perf_event_attr attr;
547	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
548	int fd;
549	struct rlimit limit;
550	bool need_privilege = false;
551
552	memset(&attr, 0, sizeof(attr));
553
554	attr.type = PERF_TYPE_SOFTWARE;
555	attr.config = PERF_COUNT_SW_TASK_CLOCK;
556
557force_again:
558	fd = sys_perf_event_open(&attr, 0, -1, -1,
559				 perf_event_open_cloexec_flag());
560
561	if (fd < 0) {
562		if (errno == EMFILE) {
563			if (sched->force) {
564				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
565				limit.rlim_cur += sched->nr_tasks - cur_task;
566				if (limit.rlim_cur > limit.rlim_max) {
567					limit.rlim_max = limit.rlim_cur;
568					need_privilege = true;
569				}
570				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
571					if (need_privilege && errno == EPERM)
572						strcpy(info, "Need privilege\n");
573				} else
574					goto force_again;
575			} else
576				strcpy(info, "Have a try with -f option\n");
577		}
578		pr_err("Error: sys_perf_event_open() syscall returned "
579		       "with %d (%s)\n%s", fd,
580		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
581		exit(EXIT_FAILURE);
582	}
583	return fd;
584}
585
586static u64 get_cpu_usage_nsec_self(int fd)
587{
588	u64 runtime;
589	int ret;
590
591	ret = read(fd, &runtime, sizeof(runtime));
592	BUG_ON(ret != sizeof(runtime));
593
594	return runtime;
595}
596
597struct sched_thread_parms {
598	struct task_desc  *task;
599	struct perf_sched *sched;
600	int fd;
601};
602
603static void *thread_func(void *ctx)
604{
605	struct sched_thread_parms *parms = ctx;
606	struct task_desc *this_task = parms->task;
607	struct perf_sched *sched = parms->sched;
608	u64 cpu_usage_0, cpu_usage_1;
609	unsigned long i, ret;
610	char comm2[22];
611	int fd = parms->fd;
612
613	zfree(&parms);
614
615	sprintf(comm2, ":%s", this_task->comm);
616	prctl(PR_SET_NAME, comm2);
617	if (fd < 0)
618		return NULL;
619
620	while (!sched->thread_funcs_exit) {
621		ret = sem_post(&this_task->ready_for_work);
622		BUG_ON(ret);
623		mutex_lock(&sched->start_work_mutex);
624		mutex_unlock(&sched->start_work_mutex);
625
626		cpu_usage_0 = get_cpu_usage_nsec_self(fd);
627
628		for (i = 0; i < this_task->nr_events; i++) {
629			this_task->curr_event = i;
630			perf_sched__process_event(sched, this_task->atoms[i]);
631		}
632
633		cpu_usage_1 = get_cpu_usage_nsec_self(fd);
634		this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
635		ret = sem_post(&this_task->work_done_sem);
636		BUG_ON(ret);
637
638		mutex_lock(&sched->work_done_wait_mutex);
639		mutex_unlock(&sched->work_done_wait_mutex);
640	}
641	return NULL;
642}
643
644static void create_tasks(struct perf_sched *sched)
645	EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex)
646	EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex)
647{
648	struct task_desc *task;
649	pthread_attr_t attr;
650	unsigned long i;
651	int err;
652
653	err = pthread_attr_init(&attr);
654	BUG_ON(err);
655	err = pthread_attr_setstacksize(&attr,
656			(size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
657	BUG_ON(err);
658	mutex_lock(&sched->start_work_mutex);
659	mutex_lock(&sched->work_done_wait_mutex);
660	for (i = 0; i < sched->nr_tasks; i++) {
661		struct sched_thread_parms *parms = malloc(sizeof(*parms));
662		BUG_ON(parms == NULL);
663		parms->task = task = sched->tasks[i];
664		parms->sched = sched;
665		parms->fd = self_open_counters(sched, i);
666		sem_init(&task->sleep_sem, 0, 0);
667		sem_init(&task->ready_for_work, 0, 0);
668		sem_init(&task->work_done_sem, 0, 0);
669		task->curr_event = 0;
670		err = pthread_create(&task->thread, &attr, thread_func, parms);
671		BUG_ON(err);
672	}
673}
674
675static void destroy_tasks(struct perf_sched *sched)
676	UNLOCK_FUNCTION(sched->start_work_mutex)
677	UNLOCK_FUNCTION(sched->work_done_wait_mutex)
678{
679	struct task_desc *task;
680	unsigned long i;
681	int err;
682
683	mutex_unlock(&sched->start_work_mutex);
684	mutex_unlock(&sched->work_done_wait_mutex);
685	/* Get rid of threads so they won't be upset by mutex destrunction */
686	for (i = 0; i < sched->nr_tasks; i++) {
687		task = sched->tasks[i];
688		err = pthread_join(task->thread, NULL);
689		BUG_ON(err);
690		sem_destroy(&task->sleep_sem);
691		sem_destroy(&task->ready_for_work);
692		sem_destroy(&task->work_done_sem);
693	}
694}
695
696static void wait_for_tasks(struct perf_sched *sched)
697	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
698	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
699{
700	u64 cpu_usage_0, cpu_usage_1;
701	struct task_desc *task;
702	unsigned long i, ret;
703
704	sched->start_time = get_nsecs();
705	sched->cpu_usage = 0;
706	mutex_unlock(&sched->work_done_wait_mutex);
707
708	for (i = 0; i < sched->nr_tasks; i++) {
709		task = sched->tasks[i];
710		ret = sem_wait(&task->ready_for_work);
711		BUG_ON(ret);
712		sem_init(&task->ready_for_work, 0, 0);
713	}
714	mutex_lock(&sched->work_done_wait_mutex);
715
716	cpu_usage_0 = get_cpu_usage_nsec_parent();
717
718	mutex_unlock(&sched->start_work_mutex);
719
720	for (i = 0; i < sched->nr_tasks; i++) {
721		task = sched->tasks[i];
722		ret = sem_wait(&task->work_done_sem);
723		BUG_ON(ret);
724		sem_init(&task->work_done_sem, 0, 0);
725		sched->cpu_usage += task->cpu_usage;
726		task->cpu_usage = 0;
727	}
728
729	cpu_usage_1 = get_cpu_usage_nsec_parent();
730	if (!sched->runavg_cpu_usage)
731		sched->runavg_cpu_usage = sched->cpu_usage;
732	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
733
734	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
735	if (!sched->runavg_parent_cpu_usage)
736		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
737	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
738					 sched->parent_cpu_usage)/sched->replay_repeat;
739
740	mutex_lock(&sched->start_work_mutex);
741
742	for (i = 0; i < sched->nr_tasks; i++) {
743		task = sched->tasks[i];
744		sem_init(&task->sleep_sem, 0, 0);
745		task->curr_event = 0;
746	}
747}
748
749static void run_one_test(struct perf_sched *sched)
750	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
751	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
752{
753	u64 T0, T1, delta, avg_delta, fluct;
754
755	T0 = get_nsecs();
756	wait_for_tasks(sched);
757	T1 = get_nsecs();
758
759	delta = T1 - T0;
760	sched->sum_runtime += delta;
761	sched->nr_runs++;
762
763	avg_delta = sched->sum_runtime / sched->nr_runs;
764	if (delta < avg_delta)
765		fluct = avg_delta - delta;
766	else
767		fluct = delta - avg_delta;
768	sched->sum_fluct += fluct;
769	if (!sched->run_avg)
770		sched->run_avg = delta;
771	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
772
773	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
774
775	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
776
777	printf("cpu: %0.2f / %0.2f",
778		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
779
780#if 0
781	/*
782	 * rusage statistics done by the parent, these are less
783	 * accurate than the sched->sum_exec_runtime based statistics:
784	 */
785	printf(" [%0.2f / %0.2f]",
786		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
787		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
788#endif
789
790	printf("\n");
791
792	if (sched->nr_sleep_corrections)
793		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
794	sched->nr_sleep_corrections = 0;
795}
796
797static void test_calibrations(struct perf_sched *sched)
798{
799	u64 T0, T1;
800
801	T0 = get_nsecs();
802	burn_nsecs(sched, NSEC_PER_MSEC);
803	T1 = get_nsecs();
804
805	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
806
807	T0 = get_nsecs();
808	sleep_nsecs(NSEC_PER_MSEC);
809	T1 = get_nsecs();
810
811	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
812}
813
814static int
815replay_wakeup_event(struct perf_sched *sched,
816		    struct evsel *evsel, struct perf_sample *sample,
817		    struct machine *machine __maybe_unused)
818{
819	const char *comm = evsel__strval(evsel, sample, "comm");
820	const u32 pid	 = evsel__intval(evsel, sample, "pid");
821	struct task_desc *waker, *wakee;
822
823	if (verbose > 0) {
824		printf("sched_wakeup event %p\n", evsel);
825
826		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
827	}
828
829	waker = register_pid(sched, sample->tid, "<unknown>");
830	wakee = register_pid(sched, pid, comm);
831
832	add_sched_event_wakeup(sched, waker, sample->time, wakee);
833	return 0;
834}
835
836static int replay_switch_event(struct perf_sched *sched,
837			       struct evsel *evsel,
838			       struct perf_sample *sample,
839			       struct machine *machine __maybe_unused)
840{
841	const char *prev_comm  = evsel__strval(evsel, sample, "prev_comm"),
842		   *next_comm  = evsel__strval(evsel, sample, "next_comm");
843	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
844		  next_pid = evsel__intval(evsel, sample, "next_pid");
845	const char prev_state = evsel__taskstate(evsel, sample, "prev_state");
846	struct task_desc *prev, __maybe_unused *next;
847	u64 timestamp0, timestamp = sample->time;
848	int cpu = sample->cpu;
849	s64 delta;
850
851	if (verbose > 0)
852		printf("sched_switch event %p\n", evsel);
853
854	if (cpu >= MAX_CPUS || cpu < 0)
855		return 0;
856
857	timestamp0 = sched->cpu_last_switched[cpu];
858	if (timestamp0)
859		delta = timestamp - timestamp0;
860	else
861		delta = 0;
862
863	if (delta < 0) {
864		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
865		return -1;
866	}
867
868	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
869		 prev_comm, prev_pid, next_comm, next_pid, delta);
870
871	prev = register_pid(sched, prev_pid, prev_comm);
872	next = register_pid(sched, next_pid, next_comm);
873
874	sched->cpu_last_switched[cpu] = timestamp;
875
876	add_sched_event_run(sched, prev, timestamp, delta);
877	add_sched_event_sleep(sched, prev, timestamp, prev_state);
878
879	return 0;
880}
881
882static int replay_fork_event(struct perf_sched *sched,
883			     union perf_event *event,
884			     struct machine *machine)
885{
886	struct thread *child, *parent;
887
888	child = machine__findnew_thread(machine, event->fork.pid,
889					event->fork.tid);
890	parent = machine__findnew_thread(machine, event->fork.ppid,
891					 event->fork.ptid);
892
893	if (child == NULL || parent == NULL) {
894		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
895				 child, parent);
896		goto out_put;
897	}
898
899	if (verbose > 0) {
900		printf("fork event\n");
901		printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent));
902		printf("...  child: %s/%d\n", thread__comm_str(child), thread__tid(child));
903	}
904
905	register_pid(sched, thread__tid(parent), thread__comm_str(parent));
906	register_pid(sched, thread__tid(child), thread__comm_str(child));
907out_put:
908	thread__put(child);
909	thread__put(parent);
910	return 0;
911}
912
913struct sort_dimension {
914	const char		*name;
915	sort_fn_t		cmp;
916	struct list_head	list;
917};
918
919/*
920 * handle runtime stats saved per thread
921 */
922static struct thread_runtime *thread__init_runtime(struct thread *thread)
923{
924	struct thread_runtime *r;
925
926	r = zalloc(sizeof(struct thread_runtime));
927	if (!r)
928		return NULL;
929
930	init_stats(&r->run_stats);
931	thread__set_priv(thread, r);
932
933	return r;
934}
935
936static struct thread_runtime *thread__get_runtime(struct thread *thread)
937{
938	struct thread_runtime *tr;
939
940	tr = thread__priv(thread);
941	if (tr == NULL) {
942		tr = thread__init_runtime(thread);
943		if (tr == NULL)
944			pr_debug("Failed to malloc memory for runtime data.\n");
945	}
946
947	return tr;
948}
949
950static int
951thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
952{
953	struct sort_dimension *sort;
954	int ret = 0;
955
956	BUG_ON(list_empty(list));
957
958	list_for_each_entry(sort, list, list) {
959		ret = sort->cmp(l, r);
960		if (ret)
961			return ret;
962	}
963
964	return ret;
965}
966
967static struct work_atoms *
968thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
969			 struct list_head *sort_list)
970{
971	struct rb_node *node = root->rb_root.rb_node;
972	struct work_atoms key = { .thread = thread };
973
974	while (node) {
975		struct work_atoms *atoms;
976		int cmp;
977
978		atoms = container_of(node, struct work_atoms, node);
979
980		cmp = thread_lat_cmp(sort_list, &key, atoms);
981		if (cmp > 0)
982			node = node->rb_left;
983		else if (cmp < 0)
984			node = node->rb_right;
985		else {
986			BUG_ON(thread != atoms->thread);
987			return atoms;
988		}
989	}
990	return NULL;
991}
992
993static void
994__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
995			 struct list_head *sort_list)
996{
997	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
998	bool leftmost = true;
999
1000	while (*new) {
1001		struct work_atoms *this;
1002		int cmp;
1003
1004		this = container_of(*new, struct work_atoms, node);
1005		parent = *new;
1006
1007		cmp = thread_lat_cmp(sort_list, data, this);
1008
1009		if (cmp > 0)
1010			new = &((*new)->rb_left);
1011		else {
1012			new = &((*new)->rb_right);
1013			leftmost = false;
1014		}
1015	}
1016
1017	rb_link_node(&data->node, parent, new);
1018	rb_insert_color_cached(&data->node, root, leftmost);
1019}
1020
1021static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1022{
1023	struct work_atoms *atoms = zalloc(sizeof(*atoms));
1024	if (!atoms) {
1025		pr_err("No memory at %s\n", __func__);
1026		return -1;
1027	}
1028
1029	atoms->thread = thread__get(thread);
1030	INIT_LIST_HEAD(&atoms->work_list);
1031	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1032	return 0;
1033}
1034
1035static int
1036add_sched_out_event(struct work_atoms *atoms,
1037		    char run_state,
1038		    u64 timestamp)
1039{
1040	struct work_atom *atom = zalloc(sizeof(*atom));
1041	if (!atom) {
1042		pr_err("Non memory at %s", __func__);
1043		return -1;
1044	}
1045
1046	atom->sched_out_time = timestamp;
1047
1048	if (run_state == 'R') {
1049		atom->state = THREAD_WAIT_CPU;
1050		atom->wake_up_time = atom->sched_out_time;
1051	}
1052
1053	list_add_tail(&atom->list, &atoms->work_list);
1054	return 0;
1055}
1056
1057static void
1058add_runtime_event(struct work_atoms *atoms, u64 delta,
1059		  u64 timestamp __maybe_unused)
1060{
1061	struct work_atom *atom;
1062
1063	BUG_ON(list_empty(&atoms->work_list));
1064
1065	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1066
1067	atom->runtime += delta;
1068	atoms->total_runtime += delta;
1069}
1070
1071static void
1072add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1073{
1074	struct work_atom *atom;
1075	u64 delta;
1076
1077	if (list_empty(&atoms->work_list))
1078		return;
1079
1080	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1081
1082	if (atom->state != THREAD_WAIT_CPU)
1083		return;
1084
1085	if (timestamp < atom->wake_up_time) {
1086		atom->state = THREAD_IGNORE;
1087		return;
1088	}
1089
1090	atom->state = THREAD_SCHED_IN;
1091	atom->sched_in_time = timestamp;
1092
1093	delta = atom->sched_in_time - atom->wake_up_time;
1094	atoms->total_lat += delta;
1095	if (delta > atoms->max_lat) {
1096		atoms->max_lat = delta;
1097		atoms->max_lat_start = atom->wake_up_time;
1098		atoms->max_lat_end = timestamp;
1099	}
1100	atoms->nb_atoms++;
1101}
1102
1103static int latency_switch_event(struct perf_sched *sched,
1104				struct evsel *evsel,
1105				struct perf_sample *sample,
1106				struct machine *machine)
1107{
1108	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1109		  next_pid = evsel__intval(evsel, sample, "next_pid");
1110	const char prev_state = evsel__taskstate(evsel, sample, "prev_state");
1111	struct work_atoms *out_events, *in_events;
1112	struct thread *sched_out, *sched_in;
1113	u64 timestamp0, timestamp = sample->time;
1114	int cpu = sample->cpu, err = -1;
1115	s64 delta;
1116
1117	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1118
1119	timestamp0 = sched->cpu_last_switched[cpu];
1120	sched->cpu_last_switched[cpu] = timestamp;
1121	if (timestamp0)
1122		delta = timestamp - timestamp0;
1123	else
1124		delta = 0;
1125
1126	if (delta < 0) {
1127		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1128		return -1;
1129	}
1130
1131	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1132	sched_in = machine__findnew_thread(machine, -1, next_pid);
1133	if (sched_out == NULL || sched_in == NULL)
1134		goto out_put;
1135
1136	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1137	if (!out_events) {
1138		if (thread_atoms_insert(sched, sched_out))
1139			goto out_put;
1140		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1141		if (!out_events) {
1142			pr_err("out-event: Internal tree error");
1143			goto out_put;
1144		}
1145	}
1146	if (add_sched_out_event(out_events, prev_state, timestamp))
1147		return -1;
1148
1149	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1150	if (!in_events) {
1151		if (thread_atoms_insert(sched, sched_in))
1152			goto out_put;
1153		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1154		if (!in_events) {
1155			pr_err("in-event: Internal tree error");
1156			goto out_put;
1157		}
1158		/*
1159		 * Take came in we have not heard about yet,
1160		 * add in an initial atom in runnable state:
1161		 */
1162		if (add_sched_out_event(in_events, 'R', timestamp))
1163			goto out_put;
1164	}
1165	add_sched_in_event(in_events, timestamp);
1166	err = 0;
1167out_put:
1168	thread__put(sched_out);
1169	thread__put(sched_in);
1170	return err;
1171}
1172
1173static int latency_runtime_event(struct perf_sched *sched,
1174				 struct evsel *evsel,
1175				 struct perf_sample *sample,
1176				 struct machine *machine)
1177{
1178	const u32 pid	   = evsel__intval(evsel, sample, "pid");
1179	const u64 runtime  = evsel__intval(evsel, sample, "runtime");
1180	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1181	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1182	u64 timestamp = sample->time;
1183	int cpu = sample->cpu, err = -1;
1184
1185	if (thread == NULL)
1186		return -1;
1187
1188	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1189	if (!atoms) {
1190		if (thread_atoms_insert(sched, thread))
1191			goto out_put;
1192		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1193		if (!atoms) {
1194			pr_err("in-event: Internal tree error");
1195			goto out_put;
1196		}
1197		if (add_sched_out_event(atoms, 'R', timestamp))
1198			goto out_put;
1199	}
1200
1201	add_runtime_event(atoms, runtime, timestamp);
1202	err = 0;
1203out_put:
1204	thread__put(thread);
1205	return err;
1206}
1207
1208static int latency_wakeup_event(struct perf_sched *sched,
1209				struct evsel *evsel,
1210				struct perf_sample *sample,
1211				struct machine *machine)
1212{
1213	const u32 pid	  = evsel__intval(evsel, sample, "pid");
1214	struct work_atoms *atoms;
1215	struct work_atom *atom;
1216	struct thread *wakee;
1217	u64 timestamp = sample->time;
1218	int err = -1;
1219
1220	wakee = machine__findnew_thread(machine, -1, pid);
1221	if (wakee == NULL)
1222		return -1;
1223	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1224	if (!atoms) {
1225		if (thread_atoms_insert(sched, wakee))
1226			goto out_put;
1227		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1228		if (!atoms) {
1229			pr_err("wakeup-event: Internal tree error");
1230			goto out_put;
1231		}
1232		if (add_sched_out_event(atoms, 'S', timestamp))
1233			goto out_put;
1234	}
1235
1236	BUG_ON(list_empty(&atoms->work_list));
1237
1238	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1239
1240	/*
1241	 * As we do not guarantee the wakeup event happens when
1242	 * task is out of run queue, also may happen when task is
1243	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1244	 * then we should not set the ->wake_up_time when wake up a
1245	 * task which is on run queue.
1246	 *
1247	 * You WILL be missing events if you've recorded only
1248	 * one CPU, or are only looking at only one, so don't
1249	 * skip in this case.
1250	 */
1251	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1252		goto out_ok;
1253
1254	sched->nr_timestamps++;
1255	if (atom->sched_out_time > timestamp) {
1256		sched->nr_unordered_timestamps++;
1257		goto out_ok;
1258	}
1259
1260	atom->state = THREAD_WAIT_CPU;
1261	atom->wake_up_time = timestamp;
1262out_ok:
1263	err = 0;
1264out_put:
1265	thread__put(wakee);
1266	return err;
1267}
1268
1269static int latency_migrate_task_event(struct perf_sched *sched,
1270				      struct evsel *evsel,
1271				      struct perf_sample *sample,
1272				      struct machine *machine)
1273{
1274	const u32 pid = evsel__intval(evsel, sample, "pid");
1275	u64 timestamp = sample->time;
1276	struct work_atoms *atoms;
1277	struct work_atom *atom;
1278	struct thread *migrant;
1279	int err = -1;
1280
1281	/*
1282	 * Only need to worry about migration when profiling one CPU.
1283	 */
1284	if (sched->profile_cpu == -1)
1285		return 0;
1286
1287	migrant = machine__findnew_thread(machine, -1, pid);
1288	if (migrant == NULL)
1289		return -1;
1290	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1291	if (!atoms) {
1292		if (thread_atoms_insert(sched, migrant))
1293			goto out_put;
1294		register_pid(sched, thread__tid(migrant), thread__comm_str(migrant));
1295		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1296		if (!atoms) {
1297			pr_err("migration-event: Internal tree error");
1298			goto out_put;
1299		}
1300		if (add_sched_out_event(atoms, 'R', timestamp))
1301			goto out_put;
1302	}
1303
1304	BUG_ON(list_empty(&atoms->work_list));
1305
1306	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1307	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1308
1309	sched->nr_timestamps++;
1310
1311	if (atom->sched_out_time > timestamp)
1312		sched->nr_unordered_timestamps++;
1313	err = 0;
1314out_put:
1315	thread__put(migrant);
1316	return err;
1317}
1318
1319static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1320{
1321	int i;
1322	int ret;
1323	u64 avg;
1324	char max_lat_start[32], max_lat_end[32];
1325
1326	if (!work_list->nb_atoms)
1327		return;
1328	/*
1329	 * Ignore idle threads:
1330	 */
1331	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1332		return;
1333
1334	sched->all_runtime += work_list->total_runtime;
1335	sched->all_count   += work_list->nb_atoms;
1336
1337	if (work_list->num_merged > 1) {
1338		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread),
1339			     work_list->num_merged);
1340	} else {
1341		ret = printf("  %s:%d ", thread__comm_str(work_list->thread),
1342			     thread__tid(work_list->thread));
1343	}
1344
1345	for (i = 0; i < 24 - ret; i++)
1346		printf(" ");
1347
1348	avg = work_list->total_lat / work_list->nb_atoms;
1349	timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1350	timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1351
1352	printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1353	      (double)work_list->total_runtime / NSEC_PER_MSEC,
1354		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1355		 (double)work_list->max_lat / NSEC_PER_MSEC,
1356		 max_lat_start, max_lat_end);
1357}
1358
1359static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1360{
1361	pid_t l_tid, r_tid;
1362
1363	if (RC_CHK_EQUAL(l->thread, r->thread))
1364		return 0;
1365	l_tid = thread__tid(l->thread);
1366	r_tid = thread__tid(r->thread);
1367	if (l_tid < r_tid)
1368		return -1;
1369	if (l_tid > r_tid)
1370		return 1;
1371	return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread));
1372}
1373
1374static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1375{
1376	u64 avgl, avgr;
1377
1378	if (!l->nb_atoms)
1379		return -1;
1380
1381	if (!r->nb_atoms)
1382		return 1;
1383
1384	avgl = l->total_lat / l->nb_atoms;
1385	avgr = r->total_lat / r->nb_atoms;
1386
1387	if (avgl < avgr)
1388		return -1;
1389	if (avgl > avgr)
1390		return 1;
1391
1392	return 0;
1393}
1394
1395static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1396{
1397	if (l->max_lat < r->max_lat)
1398		return -1;
1399	if (l->max_lat > r->max_lat)
1400		return 1;
1401
1402	return 0;
1403}
1404
1405static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1406{
1407	if (l->nb_atoms < r->nb_atoms)
1408		return -1;
1409	if (l->nb_atoms > r->nb_atoms)
1410		return 1;
1411
1412	return 0;
1413}
1414
1415static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1416{
1417	if (l->total_runtime < r->total_runtime)
1418		return -1;
1419	if (l->total_runtime > r->total_runtime)
1420		return 1;
1421
1422	return 0;
1423}
1424
1425static int sort_dimension__add(const char *tok, struct list_head *list)
1426{
1427	size_t i;
1428	static struct sort_dimension avg_sort_dimension = {
1429		.name = "avg",
1430		.cmp  = avg_cmp,
1431	};
1432	static struct sort_dimension max_sort_dimension = {
1433		.name = "max",
1434		.cmp  = max_cmp,
1435	};
1436	static struct sort_dimension pid_sort_dimension = {
1437		.name = "pid",
1438		.cmp  = pid_cmp,
1439	};
1440	static struct sort_dimension runtime_sort_dimension = {
1441		.name = "runtime",
1442		.cmp  = runtime_cmp,
1443	};
1444	static struct sort_dimension switch_sort_dimension = {
1445		.name = "switch",
1446		.cmp  = switch_cmp,
1447	};
1448	struct sort_dimension *available_sorts[] = {
1449		&pid_sort_dimension,
1450		&avg_sort_dimension,
1451		&max_sort_dimension,
1452		&switch_sort_dimension,
1453		&runtime_sort_dimension,
1454	};
1455
1456	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1457		if (!strcmp(available_sorts[i]->name, tok)) {
1458			list_add_tail(&available_sorts[i]->list, list);
1459
1460			return 0;
1461		}
1462	}
1463
1464	return -1;
1465}
1466
1467static void perf_sched__sort_lat(struct perf_sched *sched)
1468{
1469	struct rb_node *node;
1470	struct rb_root_cached *root = &sched->atom_root;
1471again:
1472	for (;;) {
1473		struct work_atoms *data;
1474		node = rb_first_cached(root);
1475		if (!node)
1476			break;
1477
1478		rb_erase_cached(node, root);
1479		data = rb_entry(node, struct work_atoms, node);
1480		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1481	}
1482	if (root == &sched->atom_root) {
1483		root = &sched->merged_atom_root;
1484		goto again;
1485	}
1486}
1487
1488static int process_sched_wakeup_event(struct perf_tool *tool,
1489				      struct evsel *evsel,
1490				      struct perf_sample *sample,
1491				      struct machine *machine)
1492{
1493	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1494
1495	if (sched->tp_handler->wakeup_event)
1496		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1497
1498	return 0;
1499}
1500
1501static int process_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
1502				      struct evsel *evsel __maybe_unused,
1503				      struct perf_sample *sample __maybe_unused,
1504				      struct machine *machine __maybe_unused)
1505{
1506	return 0;
1507}
1508
1509union map_priv {
1510	void	*ptr;
1511	bool	 color;
1512};
1513
1514static bool thread__has_color(struct thread *thread)
1515{
1516	union map_priv priv = {
1517		.ptr = thread__priv(thread),
1518	};
1519
1520	return priv.color;
1521}
1522
1523static struct thread*
1524map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1525{
1526	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1527	union map_priv priv = {
1528		.color = false,
1529	};
1530
1531	if (!sched->map.color_pids || !thread || thread__priv(thread))
1532		return thread;
1533
1534	if (thread_map__has(sched->map.color_pids, tid))
1535		priv.color = true;
1536
1537	thread__set_priv(thread, priv.ptr);
1538	return thread;
1539}
1540
1541static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1542			    struct perf_sample *sample, struct machine *machine)
1543{
1544	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1545	struct thread *sched_in;
1546	struct thread_runtime *tr;
1547	int new_shortname;
1548	u64 timestamp0, timestamp = sample->time;
1549	s64 delta;
1550	int i;
1551	struct perf_cpu this_cpu = {
1552		.cpu = sample->cpu,
1553	};
1554	int cpus_nr;
1555	bool new_cpu = false;
1556	const char *color = PERF_COLOR_NORMAL;
1557	char stimestamp[32];
1558
1559	BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0);
1560
1561	if (this_cpu.cpu > sched->max_cpu.cpu)
1562		sched->max_cpu = this_cpu;
1563
1564	if (sched->map.comp) {
1565		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1566		if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) {
1567			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1568			new_cpu = true;
1569		}
1570	} else
1571		cpus_nr = sched->max_cpu.cpu;
1572
1573	timestamp0 = sched->cpu_last_switched[this_cpu.cpu];
1574	sched->cpu_last_switched[this_cpu.cpu] = timestamp;
1575	if (timestamp0)
1576		delta = timestamp - timestamp0;
1577	else
1578		delta = 0;
1579
1580	if (delta < 0) {
1581		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1582		return -1;
1583	}
1584
1585	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1586	if (sched_in == NULL)
1587		return -1;
1588
1589	tr = thread__get_runtime(sched_in);
1590	if (tr == NULL) {
1591		thread__put(sched_in);
1592		return -1;
1593	}
1594
1595	sched->curr_thread[this_cpu.cpu] = thread__get(sched_in);
1596
1597	printf("  ");
1598
1599	new_shortname = 0;
1600	if (!tr->shortname[0]) {
1601		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1602			/*
1603			 * Don't allocate a letter-number for swapper:0
1604			 * as a shortname. Instead, we use '.' for it.
1605			 */
1606			tr->shortname[0] = '.';
1607			tr->shortname[1] = ' ';
1608		} else {
1609			tr->shortname[0] = sched->next_shortname1;
1610			tr->shortname[1] = sched->next_shortname2;
1611
1612			if (sched->next_shortname1 < 'Z') {
1613				sched->next_shortname1++;
1614			} else {
1615				sched->next_shortname1 = 'A';
1616				if (sched->next_shortname2 < '9')
1617					sched->next_shortname2++;
1618				else
1619					sched->next_shortname2 = '0';
1620			}
1621		}
1622		new_shortname = 1;
1623	}
1624
1625	for (i = 0; i < cpus_nr; i++) {
1626		struct perf_cpu cpu = {
1627			.cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i,
1628		};
1629		struct thread *curr_thread = sched->curr_thread[cpu.cpu];
1630		struct thread_runtime *curr_tr;
1631		const char *pid_color = color;
1632		const char *cpu_color = color;
1633
1634		if (curr_thread && thread__has_color(curr_thread))
1635			pid_color = COLOR_PIDS;
1636
1637		if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, cpu))
1638			continue;
1639
1640		if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu))
1641			cpu_color = COLOR_CPUS;
1642
1643		if (cpu.cpu != this_cpu.cpu)
1644			color_fprintf(stdout, color, " ");
1645		else
1646			color_fprintf(stdout, cpu_color, "*");
1647
1648		if (sched->curr_thread[cpu.cpu]) {
1649			curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]);
1650			if (curr_tr == NULL) {
1651				thread__put(sched_in);
1652				return -1;
1653			}
1654			color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1655		} else
1656			color_fprintf(stdout, color, "   ");
1657	}
1658
1659	if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu))
1660		goto out;
1661
1662	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1663	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1664	if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) {
1665		const char *pid_color = color;
1666
1667		if (thread__has_color(sched_in))
1668			pid_color = COLOR_PIDS;
1669
1670		color_fprintf(stdout, pid_color, "%s => %s:%d",
1671			tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in));
1672		tr->comm_changed = false;
1673	}
1674
1675	if (sched->map.comp && new_cpu)
1676		color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1677
1678out:
1679	color_fprintf(stdout, color, "\n");
1680
1681	thread__put(sched_in);
1682
1683	return 0;
1684}
1685
1686static int process_sched_switch_event(struct perf_tool *tool,
1687				      struct evsel *evsel,
1688				      struct perf_sample *sample,
1689				      struct machine *machine)
1690{
1691	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1692	int this_cpu = sample->cpu, err = 0;
1693	u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1694	    next_pid = evsel__intval(evsel, sample, "next_pid");
1695
1696	if (sched->curr_pid[this_cpu] != (u32)-1) {
1697		/*
1698		 * Are we trying to switch away a PID that is
1699		 * not current?
1700		 */
1701		if (sched->curr_pid[this_cpu] != prev_pid)
1702			sched->nr_context_switch_bugs++;
1703	}
1704
1705	if (sched->tp_handler->switch_event)
1706		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1707
1708	sched->curr_pid[this_cpu] = next_pid;
1709	return err;
1710}
1711
1712static int process_sched_runtime_event(struct perf_tool *tool,
1713				       struct evsel *evsel,
1714				       struct perf_sample *sample,
1715				       struct machine *machine)
1716{
1717	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1718
1719	if (sched->tp_handler->runtime_event)
1720		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1721
1722	return 0;
1723}
1724
1725static int perf_sched__process_fork_event(struct perf_tool *tool,
1726					  union perf_event *event,
1727					  struct perf_sample *sample,
1728					  struct machine *machine)
1729{
1730	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1731
1732	/* run the fork event through the perf machinery */
1733	perf_event__process_fork(tool, event, sample, machine);
1734
1735	/* and then run additional processing needed for this command */
1736	if (sched->tp_handler->fork_event)
1737		return sched->tp_handler->fork_event(sched, event, machine);
1738
1739	return 0;
1740}
1741
1742static int process_sched_migrate_task_event(struct perf_tool *tool,
1743					    struct evsel *evsel,
1744					    struct perf_sample *sample,
1745					    struct machine *machine)
1746{
1747	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1748
1749	if (sched->tp_handler->migrate_task_event)
1750		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1751
1752	return 0;
1753}
1754
1755typedef int (*tracepoint_handler)(struct perf_tool *tool,
1756				  struct evsel *evsel,
1757				  struct perf_sample *sample,
1758				  struct machine *machine);
1759
1760static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1761						 union perf_event *event __maybe_unused,
1762						 struct perf_sample *sample,
1763						 struct evsel *evsel,
1764						 struct machine *machine)
1765{
1766	int err = 0;
1767
1768	if (evsel->handler != NULL) {
1769		tracepoint_handler f = evsel->handler;
1770		err = f(tool, evsel, sample, machine);
1771	}
1772
1773	return err;
1774}
1775
1776static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1777				    union perf_event *event,
1778				    struct perf_sample *sample,
1779				    struct machine *machine)
1780{
1781	struct thread *thread;
1782	struct thread_runtime *tr;
1783	int err;
1784
1785	err = perf_event__process_comm(tool, event, sample, machine);
1786	if (err)
1787		return err;
1788
1789	thread = machine__find_thread(machine, sample->pid, sample->tid);
1790	if (!thread) {
1791		pr_err("Internal error: can't find thread\n");
1792		return -1;
1793	}
1794
1795	tr = thread__get_runtime(thread);
1796	if (tr == NULL) {
1797		thread__put(thread);
1798		return -1;
1799	}
1800
1801	tr->comm_changed = true;
1802	thread__put(thread);
1803
1804	return 0;
1805}
1806
1807static int perf_sched__read_events(struct perf_sched *sched)
1808{
1809	struct evsel_str_handler handlers[] = {
1810		{ "sched:sched_switch",	      process_sched_switch_event, },
1811		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1812		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1813		{ "sched:sched_waking",	      process_sched_wakeup_event, },
1814		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1815		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1816	};
1817	struct perf_session *session;
1818	struct perf_data data = {
1819		.path  = input_name,
1820		.mode  = PERF_DATA_MODE_READ,
1821		.force = sched->force,
1822	};
1823	int rc = -1;
1824
1825	session = perf_session__new(&data, &sched->tool);
1826	if (IS_ERR(session)) {
1827		pr_debug("Error creating perf session");
1828		return PTR_ERR(session);
1829	}
1830
1831	symbol__init(&session->header.env);
1832
1833	/* prefer sched_waking if it is captured */
1834	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
1835		handlers[2].handler = process_sched_wakeup_ignore;
1836
1837	if (perf_session__set_tracepoints_handlers(session, handlers))
1838		goto out_delete;
1839
1840	if (perf_session__has_traces(session, "record -R")) {
1841		int err = perf_session__process_events(session);
1842		if (err) {
1843			pr_err("Failed to process events, error %d", err);
1844			goto out_delete;
1845		}
1846
1847		sched->nr_events      = session->evlist->stats.nr_events[0];
1848		sched->nr_lost_events = session->evlist->stats.total_lost;
1849		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1850	}
1851
1852	rc = 0;
1853out_delete:
1854	perf_session__delete(session);
1855	return rc;
1856}
1857
1858/*
1859 * scheduling times are printed as msec.usec
1860 */
1861static inline void print_sched_time(unsigned long long nsecs, int width)
1862{
1863	unsigned long msecs;
1864	unsigned long usecs;
1865
1866	msecs  = nsecs / NSEC_PER_MSEC;
1867	nsecs -= msecs * NSEC_PER_MSEC;
1868	usecs  = nsecs / NSEC_PER_USEC;
1869	printf("%*lu.%03lu ", width, msecs, usecs);
1870}
1871
1872/*
1873 * returns runtime data for event, allocating memory for it the
1874 * first time it is used.
1875 */
1876static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1877{
1878	struct evsel_runtime *r = evsel->priv;
1879
1880	if (r == NULL) {
1881		r = zalloc(sizeof(struct evsel_runtime));
1882		evsel->priv = r;
1883	}
1884
1885	return r;
1886}
1887
1888/*
1889 * save last time event was seen per cpu
1890 */
1891static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
1892{
1893	struct evsel_runtime *r = evsel__get_runtime(evsel);
1894
1895	if (r == NULL)
1896		return;
1897
1898	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1899		int i, n = __roundup_pow_of_two(cpu+1);
1900		void *p = r->last_time;
1901
1902		p = realloc(r->last_time, n * sizeof(u64));
1903		if (!p)
1904			return;
1905
1906		r->last_time = p;
1907		for (i = r->ncpu; i < n; ++i)
1908			r->last_time[i] = (u64) 0;
1909
1910		r->ncpu = n;
1911	}
1912
1913	r->last_time[cpu] = timestamp;
1914}
1915
1916/* returns last time this event was seen on the given cpu */
1917static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
1918{
1919	struct evsel_runtime *r = evsel__get_runtime(evsel);
1920
1921	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1922		return 0;
1923
1924	return r->last_time[cpu];
1925}
1926
1927static int comm_width = 30;
1928
1929static char *timehist_get_commstr(struct thread *thread)
1930{
1931	static char str[32];
1932	const char *comm = thread__comm_str(thread);
1933	pid_t tid = thread__tid(thread);
1934	pid_t pid = thread__pid(thread);
1935	int n;
1936
1937	if (pid == 0)
1938		n = scnprintf(str, sizeof(str), "%s", comm);
1939
1940	else if (tid != pid)
1941		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1942
1943	else
1944		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1945
1946	if (n > comm_width)
1947		comm_width = n;
1948
1949	return str;
1950}
1951
1952static void timehist_header(struct perf_sched *sched)
1953{
1954	u32 ncpus = sched->max_cpu.cpu + 1;
1955	u32 i, j;
1956
1957	printf("%15s %6s ", "time", "cpu");
1958
1959	if (sched->show_cpu_visual) {
1960		printf(" ");
1961		for (i = 0, j = 0; i < ncpus; ++i) {
1962			printf("%x", j++);
1963			if (j > 15)
1964				j = 0;
1965		}
1966		printf(" ");
1967	}
1968
1969	printf(" %-*s  %9s  %9s  %9s", comm_width,
1970		"task name", "wait time", "sch delay", "run time");
1971
1972	if (sched->show_state)
1973		printf("  %s", "state");
1974
1975	printf("\n");
1976
1977	/*
1978	 * units row
1979	 */
1980	printf("%15s %-6s ", "", "");
1981
1982	if (sched->show_cpu_visual)
1983		printf(" %*s ", ncpus, "");
1984
1985	printf(" %-*s  %9s  %9s  %9s", comm_width,
1986	       "[tid/pid]", "(msec)", "(msec)", "(msec)");
1987
1988	if (sched->show_state)
1989		printf("  %5s", "");
1990
1991	printf("\n");
1992
1993	/*
1994	 * separator
1995	 */
1996	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1997
1998	if (sched->show_cpu_visual)
1999		printf(" %.*s ", ncpus, graph_dotted_line);
2000
2001	printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
2002		graph_dotted_line, graph_dotted_line, graph_dotted_line,
2003		graph_dotted_line);
2004
2005	if (sched->show_state)
2006		printf("  %.5s", graph_dotted_line);
2007
2008	printf("\n");
2009}
2010
2011static void timehist_print_sample(struct perf_sched *sched,
2012				  struct evsel *evsel,
2013				  struct perf_sample *sample,
2014				  struct addr_location *al,
2015				  struct thread *thread,
2016				  u64 t, const char state)
2017{
2018	struct thread_runtime *tr = thread__priv(thread);
2019	const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2020	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2021	u32 max_cpus = sched->max_cpu.cpu + 1;
2022	char tstr[64];
2023	char nstr[30];
2024	u64 wait_time;
2025
2026	if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2027		return;
2028
2029	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2030	printf("%15s [%04d] ", tstr, sample->cpu);
2031
2032	if (sched->show_cpu_visual) {
2033		u32 i;
2034		char c;
2035
2036		printf(" ");
2037		for (i = 0; i < max_cpus; ++i) {
2038			/* flag idle times with 'i'; others are sched events */
2039			if (i == sample->cpu)
2040				c = (thread__tid(thread) == 0) ? 'i' : 's';
2041			else
2042				c = ' ';
2043			printf("%c", c);
2044		}
2045		printf(" ");
2046	}
2047
2048	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2049
2050	wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2051	print_sched_time(wait_time, 6);
2052
2053	print_sched_time(tr->dt_delay, 6);
2054	print_sched_time(tr->dt_run, 6);
2055
2056	if (sched->show_state)
2057		printf(" %5c ", thread__tid(thread) == 0 ? 'I' : state);
2058
2059	if (sched->show_next) {
2060		snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2061		printf(" %-*s", comm_width, nstr);
2062	}
2063
2064	if (sched->show_wakeups && !sched->show_next)
2065		printf("  %-*s", comm_width, "");
2066
2067	if (thread__tid(thread) == 0)
2068		goto out;
2069
2070	if (sched->show_callchain)
2071		printf("  ");
2072
2073	sample__fprintf_sym(sample, al, 0,
2074			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2075			    EVSEL__PRINT_CALLCHAIN_ARROW |
2076			    EVSEL__PRINT_SKIP_IGNORED,
2077			    get_tls_callchain_cursor(), symbol_conf.bt_stop_list,  stdout);
2078
2079out:
2080	printf("\n");
2081}
2082
2083/*
2084 * Explanation of delta-time stats:
2085 *
2086 *            t = time of current schedule out event
2087 *        tprev = time of previous sched out event
2088 *                also time of schedule-in event for current task
2089 *    last_time = time of last sched change event for current task
2090 *                (i.e, time process was last scheduled out)
2091 * ready_to_run = time of wakeup for current task
2092 *
2093 * -----|------------|------------|------------|------
2094 *    last         ready        tprev          t
2095 *    time         to run
2096 *
2097 *      |-------- dt_wait --------|
2098 *                   |- dt_delay -|-- dt_run --|
2099 *
2100 *   dt_run = run time of current task
2101 *  dt_wait = time between last schedule out event for task and tprev
2102 *            represents time spent off the cpu
2103 * dt_delay = time between wakeup and schedule-in of task
2104 */
2105
2106static void timehist_update_runtime_stats(struct thread_runtime *r,
2107					 u64 t, u64 tprev)
2108{
2109	r->dt_delay   = 0;
2110	r->dt_sleep   = 0;
2111	r->dt_iowait  = 0;
2112	r->dt_preempt = 0;
2113	r->dt_run     = 0;
2114
2115	if (tprev) {
2116		r->dt_run = t - tprev;
2117		if (r->ready_to_run) {
2118			if (r->ready_to_run > tprev)
2119				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2120			else
2121				r->dt_delay = tprev - r->ready_to_run;
2122		}
2123
2124		if (r->last_time > tprev)
2125			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2126		else if (r->last_time) {
2127			u64 dt_wait = tprev - r->last_time;
2128
2129			if (r->last_state == 'R')
2130				r->dt_preempt = dt_wait;
2131			else if (r->last_state == 'D')
2132				r->dt_iowait = dt_wait;
2133			else
2134				r->dt_sleep = dt_wait;
2135		}
2136	}
2137
2138	update_stats(&r->run_stats, r->dt_run);
2139
2140	r->total_run_time     += r->dt_run;
2141	r->total_delay_time   += r->dt_delay;
2142	r->total_sleep_time   += r->dt_sleep;
2143	r->total_iowait_time  += r->dt_iowait;
2144	r->total_preempt_time += r->dt_preempt;
2145}
2146
2147static bool is_idle_sample(struct perf_sample *sample,
2148			   struct evsel *evsel)
2149{
2150	/* pid 0 == swapper == idle task */
2151	if (strcmp(evsel__name(evsel), "sched:sched_switch") == 0)
2152		return evsel__intval(evsel, sample, "prev_pid") == 0;
2153
2154	return sample->pid == 0;
2155}
2156
2157static void save_task_callchain(struct perf_sched *sched,
2158				struct perf_sample *sample,
2159				struct evsel *evsel,
2160				struct machine *machine)
2161{
2162	struct callchain_cursor *cursor;
2163	struct thread *thread;
2164
2165	/* want main thread for process - has maps */
2166	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2167	if (thread == NULL) {
2168		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2169		return;
2170	}
2171
2172	if (!sched->show_callchain || sample->callchain == NULL)
2173		return;
2174
2175	cursor = get_tls_callchain_cursor();
2176
2177	if (thread__resolve_callchain(thread, cursor, evsel, sample,
2178				      NULL, NULL, sched->max_stack + 2) != 0) {
2179		if (verbose > 0)
2180			pr_err("Failed to resolve callchain. Skipping\n");
2181
2182		return;
2183	}
2184
2185	callchain_cursor_commit(cursor);
2186
2187	while (true) {
2188		struct callchain_cursor_node *node;
2189		struct symbol *sym;
2190
2191		node = callchain_cursor_current(cursor);
2192		if (node == NULL)
2193			break;
2194
2195		sym = node->ms.sym;
2196		if (sym) {
2197			if (!strcmp(sym->name, "schedule") ||
2198			    !strcmp(sym->name, "__schedule") ||
2199			    !strcmp(sym->name, "preempt_schedule"))
2200				sym->ignore = 1;
2201		}
2202
2203		callchain_cursor_advance(cursor);
2204	}
2205}
2206
2207static int init_idle_thread(struct thread *thread)
2208{
2209	struct idle_thread_runtime *itr;
2210
2211	thread__set_comm(thread, idle_comm, 0);
2212
2213	itr = zalloc(sizeof(*itr));
2214	if (itr == NULL)
2215		return -ENOMEM;
2216
2217	init_stats(&itr->tr.run_stats);
2218	callchain_init(&itr->callchain);
2219	callchain_cursor_reset(&itr->cursor);
2220	thread__set_priv(thread, itr);
2221
2222	return 0;
2223}
2224
2225/*
2226 * Track idle stats per cpu by maintaining a local thread
2227 * struct for the idle task on each cpu.
2228 */
2229static int init_idle_threads(int ncpu)
2230{
2231	int i, ret;
2232
2233	idle_threads = zalloc(ncpu * sizeof(struct thread *));
2234	if (!idle_threads)
2235		return -ENOMEM;
2236
2237	idle_max_cpu = ncpu;
2238
2239	/* allocate the actual thread struct if needed */
2240	for (i = 0; i < ncpu; ++i) {
2241		idle_threads[i] = thread__new(0, 0);
2242		if (idle_threads[i] == NULL)
2243			return -ENOMEM;
2244
2245		ret = init_idle_thread(idle_threads[i]);
2246		if (ret < 0)
2247			return ret;
2248	}
2249
2250	return 0;
2251}
2252
2253static void free_idle_threads(void)
2254{
2255	int i;
2256
2257	if (idle_threads == NULL)
2258		return;
2259
2260	for (i = 0; i < idle_max_cpu; ++i) {
2261		if ((idle_threads[i]))
2262			thread__delete(idle_threads[i]);
2263	}
2264
2265	free(idle_threads);
2266}
2267
2268static struct thread *get_idle_thread(int cpu)
2269{
2270	/*
2271	 * expand/allocate array of pointers to local thread
2272	 * structs if needed
2273	 */
2274	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2275		int i, j = __roundup_pow_of_two(cpu+1);
2276		void *p;
2277
2278		p = realloc(idle_threads, j * sizeof(struct thread *));
2279		if (!p)
2280			return NULL;
2281
2282		idle_threads = (struct thread **) p;
2283		for (i = idle_max_cpu; i < j; ++i)
2284			idle_threads[i] = NULL;
2285
2286		idle_max_cpu = j;
2287	}
2288
2289	/* allocate a new thread struct if needed */
2290	if (idle_threads[cpu] == NULL) {
2291		idle_threads[cpu] = thread__new(0, 0);
2292
2293		if (idle_threads[cpu]) {
2294			if (init_idle_thread(idle_threads[cpu]) < 0)
2295				return NULL;
2296		}
2297	}
2298
2299	return idle_threads[cpu];
2300}
2301
2302static void save_idle_callchain(struct perf_sched *sched,
2303				struct idle_thread_runtime *itr,
2304				struct perf_sample *sample)
2305{
2306	struct callchain_cursor *cursor;
2307
2308	if (!sched->show_callchain || sample->callchain == NULL)
2309		return;
2310
2311	cursor = get_tls_callchain_cursor();
2312	if (cursor == NULL)
2313		return;
2314
2315	callchain_cursor__copy(&itr->cursor, cursor);
2316}
2317
2318static struct thread *timehist_get_thread(struct perf_sched *sched,
2319					  struct perf_sample *sample,
2320					  struct machine *machine,
2321					  struct evsel *evsel)
2322{
2323	struct thread *thread;
2324
2325	if (is_idle_sample(sample, evsel)) {
2326		thread = get_idle_thread(sample->cpu);
2327		if (thread == NULL)
2328			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2329
2330	} else {
2331		/* there were samples with tid 0 but non-zero pid */
2332		thread = machine__findnew_thread(machine, sample->pid,
2333						 sample->tid ?: sample->pid);
2334		if (thread == NULL) {
2335			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2336				 sample->tid);
2337		}
2338
2339		save_task_callchain(sched, sample, evsel, machine);
2340		if (sched->idle_hist) {
2341			struct thread *idle;
2342			struct idle_thread_runtime *itr;
2343
2344			idle = get_idle_thread(sample->cpu);
2345			if (idle == NULL) {
2346				pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2347				return NULL;
2348			}
2349
2350			itr = thread__priv(idle);
2351			if (itr == NULL)
2352				return NULL;
2353
2354			itr->last_thread = thread;
2355
2356			/* copy task callchain when entering to idle */
2357			if (evsel__intval(evsel, sample, "next_pid") == 0)
2358				save_idle_callchain(sched, itr, sample);
2359		}
2360	}
2361
2362	return thread;
2363}
2364
2365static bool timehist_skip_sample(struct perf_sched *sched,
2366				 struct thread *thread,
2367				 struct evsel *evsel,
2368				 struct perf_sample *sample)
2369{
2370	bool rc = false;
2371
2372	if (thread__is_filtered(thread)) {
2373		rc = true;
2374		sched->skipped_samples++;
2375	}
2376
2377	if (sched->idle_hist) {
2378		if (strcmp(evsel__name(evsel), "sched:sched_switch"))
2379			rc = true;
2380		else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2381			 evsel__intval(evsel, sample, "next_pid") != 0)
2382			rc = true;
2383	}
2384
2385	return rc;
2386}
2387
2388static void timehist_print_wakeup_event(struct perf_sched *sched,
2389					struct evsel *evsel,
2390					struct perf_sample *sample,
2391					struct machine *machine,
2392					struct thread *awakened)
2393{
2394	struct thread *thread;
2395	char tstr[64];
2396
2397	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2398	if (thread == NULL)
2399		return;
2400
2401	/* show wakeup unless both awakee and awaker are filtered */
2402	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2403	    timehist_skip_sample(sched, awakened, evsel, sample)) {
2404		return;
2405	}
2406
2407	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2408	printf("%15s [%04d] ", tstr, sample->cpu);
2409	if (sched->show_cpu_visual)
2410		printf(" %*s ", sched->max_cpu.cpu + 1, "");
2411
2412	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2413
2414	/* dt spacer */
2415	printf("  %9s  %9s  %9s ", "", "", "");
2416
2417	printf("awakened: %s", timehist_get_commstr(awakened));
2418
2419	printf("\n");
2420}
2421
2422static int timehist_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
2423					union perf_event *event __maybe_unused,
2424					struct evsel *evsel __maybe_unused,
2425					struct perf_sample *sample __maybe_unused,
2426					struct machine *machine __maybe_unused)
2427{
2428	return 0;
2429}
2430
2431static int timehist_sched_wakeup_event(struct perf_tool *tool,
2432				       union perf_event *event __maybe_unused,
2433				       struct evsel *evsel,
2434				       struct perf_sample *sample,
2435				       struct machine *machine)
2436{
2437	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2438	struct thread *thread;
2439	struct thread_runtime *tr = NULL;
2440	/* want pid of awakened task not pid in sample */
2441	const u32 pid = evsel__intval(evsel, sample, "pid");
2442
2443	thread = machine__findnew_thread(machine, 0, pid);
2444	if (thread == NULL)
2445		return -1;
2446
2447	tr = thread__get_runtime(thread);
2448	if (tr == NULL)
2449		return -1;
2450
2451	if (tr->ready_to_run == 0)
2452		tr->ready_to_run = sample->time;
2453
2454	/* show wakeups if requested */
2455	if (sched->show_wakeups &&
2456	    !perf_time__skip_sample(&sched->ptime, sample->time))
2457		timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2458
2459	return 0;
2460}
2461
2462static void timehist_print_migration_event(struct perf_sched *sched,
2463					struct evsel *evsel,
2464					struct perf_sample *sample,
2465					struct machine *machine,
2466					struct thread *migrated)
2467{
2468	struct thread *thread;
2469	char tstr[64];
2470	u32 max_cpus;
2471	u32 ocpu, dcpu;
2472
2473	if (sched->summary_only)
2474		return;
2475
2476	max_cpus = sched->max_cpu.cpu + 1;
2477	ocpu = evsel__intval(evsel, sample, "orig_cpu");
2478	dcpu = evsel__intval(evsel, sample, "dest_cpu");
2479
2480	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2481	if (thread == NULL)
2482		return;
2483
2484	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2485	    timehist_skip_sample(sched, migrated, evsel, sample)) {
2486		return;
2487	}
2488
2489	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2490	printf("%15s [%04d] ", tstr, sample->cpu);
2491
2492	if (sched->show_cpu_visual) {
2493		u32 i;
2494		char c;
2495
2496		printf("  ");
2497		for (i = 0; i < max_cpus; ++i) {
2498			c = (i == sample->cpu) ? 'm' : ' ';
2499			printf("%c", c);
2500		}
2501		printf("  ");
2502	}
2503
2504	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2505
2506	/* dt spacer */
2507	printf("  %9s  %9s  %9s ", "", "", "");
2508
2509	printf("migrated: %s", timehist_get_commstr(migrated));
2510	printf(" cpu %d => %d", ocpu, dcpu);
2511
2512	printf("\n");
2513}
2514
2515static int timehist_migrate_task_event(struct perf_tool *tool,
2516				       union perf_event *event __maybe_unused,
2517				       struct evsel *evsel,
2518				       struct perf_sample *sample,
2519				       struct machine *machine)
2520{
2521	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2522	struct thread *thread;
2523	struct thread_runtime *tr = NULL;
2524	/* want pid of migrated task not pid in sample */
2525	const u32 pid = evsel__intval(evsel, sample, "pid");
2526
2527	thread = machine__findnew_thread(machine, 0, pid);
2528	if (thread == NULL)
2529		return -1;
2530
2531	tr = thread__get_runtime(thread);
2532	if (tr == NULL)
2533		return -1;
2534
2535	tr->migrations++;
2536
2537	/* show migrations if requested */
2538	timehist_print_migration_event(sched, evsel, sample, machine, thread);
2539
2540	return 0;
2541}
2542
2543static int timehist_sched_change_event(struct perf_tool *tool,
2544				       union perf_event *event,
2545				       struct evsel *evsel,
2546				       struct perf_sample *sample,
2547				       struct machine *machine)
2548{
2549	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2550	struct perf_time_interval *ptime = &sched->ptime;
2551	struct addr_location al;
2552	struct thread *thread;
2553	struct thread_runtime *tr = NULL;
2554	u64 tprev, t = sample->time;
2555	int rc = 0;
2556	const char state = evsel__taskstate(evsel, sample, "prev_state");
2557
2558	addr_location__init(&al);
2559	if (machine__resolve(machine, &al, sample) < 0) {
2560		pr_err("problem processing %d event. skipping it\n",
2561		       event->header.type);
2562		rc = -1;
2563		goto out;
2564	}
2565
2566	thread = timehist_get_thread(sched, sample, machine, evsel);
2567	if (thread == NULL) {
2568		rc = -1;
2569		goto out;
2570	}
2571
2572	if (timehist_skip_sample(sched, thread, evsel, sample))
2573		goto out;
2574
2575	tr = thread__get_runtime(thread);
2576	if (tr == NULL) {
2577		rc = -1;
2578		goto out;
2579	}
2580
2581	tprev = evsel__get_time(evsel, sample->cpu);
2582
2583	/*
2584	 * If start time given:
2585	 * - sample time is under window user cares about - skip sample
2586	 * - tprev is under window user cares about  - reset to start of window
2587	 */
2588	if (ptime->start && ptime->start > t)
2589		goto out;
2590
2591	if (tprev && ptime->start > tprev)
2592		tprev = ptime->start;
2593
2594	/*
2595	 * If end time given:
2596	 * - previous sched event is out of window - we are done
2597	 * - sample time is beyond window user cares about - reset it
2598	 *   to close out stats for time window interest
2599	 */
2600	if (ptime->end) {
2601		if (tprev > ptime->end)
2602			goto out;
2603
2604		if (t > ptime->end)
2605			t = ptime->end;
2606	}
2607
2608	if (!sched->idle_hist || thread__tid(thread) == 0) {
2609		if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2610			timehist_update_runtime_stats(tr, t, tprev);
2611
2612		if (sched->idle_hist) {
2613			struct idle_thread_runtime *itr = (void *)tr;
2614			struct thread_runtime *last_tr;
2615
2616			BUG_ON(thread__tid(thread) != 0);
2617
2618			if (itr->last_thread == NULL)
2619				goto out;
2620
2621			/* add current idle time as last thread's runtime */
2622			last_tr = thread__get_runtime(itr->last_thread);
2623			if (last_tr == NULL)
2624				goto out;
2625
2626			timehist_update_runtime_stats(last_tr, t, tprev);
2627			/*
2628			 * remove delta time of last thread as it's not updated
2629			 * and otherwise it will show an invalid value next
2630			 * time.  we only care total run time and run stat.
2631			 */
2632			last_tr->dt_run = 0;
2633			last_tr->dt_delay = 0;
2634			last_tr->dt_sleep = 0;
2635			last_tr->dt_iowait = 0;
2636			last_tr->dt_preempt = 0;
2637
2638			if (itr->cursor.nr)
2639				callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2640
2641			itr->last_thread = NULL;
2642		}
2643	}
2644
2645	if (!sched->summary_only)
2646		timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2647
2648out:
2649	if (sched->hist_time.start == 0 && t >= ptime->start)
2650		sched->hist_time.start = t;
2651	if (ptime->end == 0 || t <= ptime->end)
2652		sched->hist_time.end = t;
2653
2654	if (tr) {
2655		/* time of this sched_switch event becomes last time task seen */
2656		tr->last_time = sample->time;
2657
2658		/* last state is used to determine where to account wait time */
2659		tr->last_state = state;
2660
2661		/* sched out event for task so reset ready to run time */
2662		tr->ready_to_run = 0;
2663	}
2664
2665	evsel__save_time(evsel, sample->time, sample->cpu);
2666
2667	addr_location__exit(&al);
2668	return rc;
2669}
2670
2671static int timehist_sched_switch_event(struct perf_tool *tool,
2672			     union perf_event *event,
2673			     struct evsel *evsel,
2674			     struct perf_sample *sample,
2675			     struct machine *machine __maybe_unused)
2676{
2677	return timehist_sched_change_event(tool, event, evsel, sample, machine);
2678}
2679
2680static int process_lost(struct perf_tool *tool __maybe_unused,
2681			union perf_event *event,
2682			struct perf_sample *sample,
2683			struct machine *machine __maybe_unused)
2684{
2685	char tstr[64];
2686
2687	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2688	printf("%15s ", tstr);
2689	printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2690
2691	return 0;
2692}
2693
2694
2695static void print_thread_runtime(struct thread *t,
2696				 struct thread_runtime *r)
2697{
2698	double mean = avg_stats(&r->run_stats);
2699	float stddev;
2700
2701	printf("%*s   %5d  %9" PRIu64 " ",
2702	       comm_width, timehist_get_commstr(t), thread__ppid(t),
2703	       (u64) r->run_stats.n);
2704
2705	print_sched_time(r->total_run_time, 8);
2706	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2707	print_sched_time(r->run_stats.min, 6);
2708	printf(" ");
2709	print_sched_time((u64) mean, 6);
2710	printf(" ");
2711	print_sched_time(r->run_stats.max, 6);
2712	printf("  ");
2713	printf("%5.2f", stddev);
2714	printf("   %5" PRIu64, r->migrations);
2715	printf("\n");
2716}
2717
2718static void print_thread_waittime(struct thread *t,
2719				  struct thread_runtime *r)
2720{
2721	printf("%*s   %5d  %9" PRIu64 " ",
2722	       comm_width, timehist_get_commstr(t), thread__ppid(t),
2723	       (u64) r->run_stats.n);
2724
2725	print_sched_time(r->total_run_time, 8);
2726	print_sched_time(r->total_sleep_time, 6);
2727	printf(" ");
2728	print_sched_time(r->total_iowait_time, 6);
2729	printf(" ");
2730	print_sched_time(r->total_preempt_time, 6);
2731	printf(" ");
2732	print_sched_time(r->total_delay_time, 6);
2733	printf("\n");
2734}
2735
2736struct total_run_stats {
2737	struct perf_sched *sched;
2738	u64  sched_count;
2739	u64  task_count;
2740	u64  total_run_time;
2741};
2742
2743static int show_thread_runtime(struct thread *t, void *priv)
2744{
2745	struct total_run_stats *stats = priv;
2746	struct thread_runtime *r;
2747
2748	if (thread__is_filtered(t))
2749		return 0;
2750
2751	r = thread__priv(t);
2752	if (r && r->run_stats.n) {
2753		stats->task_count++;
2754		stats->sched_count += r->run_stats.n;
2755		stats->total_run_time += r->total_run_time;
2756
2757		if (stats->sched->show_state)
2758			print_thread_waittime(t, r);
2759		else
2760			print_thread_runtime(t, r);
2761	}
2762
2763	return 0;
2764}
2765
2766static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2767{
2768	const char *sep = " <- ";
2769	struct callchain_list *chain;
2770	size_t ret = 0;
2771	char bf[1024];
2772	bool first;
2773
2774	if (node == NULL)
2775		return 0;
2776
2777	ret = callchain__fprintf_folded(fp, node->parent);
2778	first = (ret == 0);
2779
2780	list_for_each_entry(chain, &node->val, list) {
2781		if (chain->ip >= PERF_CONTEXT_MAX)
2782			continue;
2783		if (chain->ms.sym && chain->ms.sym->ignore)
2784			continue;
2785		ret += fprintf(fp, "%s%s", first ? "" : sep,
2786			       callchain_list__sym_name(chain, bf, sizeof(bf),
2787							false));
2788		first = false;
2789	}
2790
2791	return ret;
2792}
2793
2794static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2795{
2796	size_t ret = 0;
2797	FILE *fp = stdout;
2798	struct callchain_node *chain;
2799	struct rb_node *rb_node = rb_first_cached(root);
2800
2801	printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2802	printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2803	       graph_dotted_line);
2804
2805	while (rb_node) {
2806		chain = rb_entry(rb_node, struct callchain_node, rb_node);
2807		rb_node = rb_next(rb_node);
2808
2809		ret += fprintf(fp, "  ");
2810		print_sched_time(chain->hit, 12);
2811		ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2812		ret += fprintf(fp, " %8d  ", chain->count);
2813		ret += callchain__fprintf_folded(fp, chain);
2814		ret += fprintf(fp, "\n");
2815	}
2816
2817	return ret;
2818}
2819
2820static void timehist_print_summary(struct perf_sched *sched,
2821				   struct perf_session *session)
2822{
2823	struct machine *m = &session->machines.host;
2824	struct total_run_stats totals;
2825	u64 task_count;
2826	struct thread *t;
2827	struct thread_runtime *r;
2828	int i;
2829	u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2830
2831	memset(&totals, 0, sizeof(totals));
2832	totals.sched = sched;
2833
2834	if (sched->idle_hist) {
2835		printf("\nIdle-time summary\n");
2836		printf("%*s  parent  sched-out  ", comm_width, "comm");
2837		printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2838	} else if (sched->show_state) {
2839		printf("\nWait-time summary\n");
2840		printf("%*s  parent   sched-in  ", comm_width, "comm");
2841		printf("   run-time      sleep      iowait     preempt       delay\n");
2842	} else {
2843		printf("\nRuntime summary\n");
2844		printf("%*s  parent   sched-in  ", comm_width, "comm");
2845		printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2846	}
2847	printf("%*s            (count)  ", comm_width, "");
2848	printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2849	       sched->show_state ? "(msec)" : "%");
2850	printf("%.117s\n", graph_dotted_line);
2851
2852	machine__for_each_thread(m, show_thread_runtime, &totals);
2853	task_count = totals.task_count;
2854	if (!task_count)
2855		printf("<no still running tasks>\n");
2856
2857	/* CPU idle stats not tracked when samples were skipped */
2858	if (sched->skipped_samples && !sched->idle_hist)
2859		return;
2860
2861	printf("\nIdle stats:\n");
2862	for (i = 0; i < idle_max_cpu; ++i) {
2863		if (cpu_list && !test_bit(i, cpu_bitmap))
2864			continue;
2865
2866		t = idle_threads[i];
2867		if (!t)
2868			continue;
2869
2870		r = thread__priv(t);
2871		if (r && r->run_stats.n) {
2872			totals.sched_count += r->run_stats.n;
2873			printf("    CPU %2d idle for ", i);
2874			print_sched_time(r->total_run_time, 6);
2875			printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2876		} else
2877			printf("    CPU %2d idle entire time window\n", i);
2878	}
2879
2880	if (sched->idle_hist && sched->show_callchain) {
2881		callchain_param.mode  = CHAIN_FOLDED;
2882		callchain_param.value = CCVAL_PERIOD;
2883
2884		callchain_register_param(&callchain_param);
2885
2886		printf("\nIdle stats by callchain:\n");
2887		for (i = 0; i < idle_max_cpu; ++i) {
2888			struct idle_thread_runtime *itr;
2889
2890			t = idle_threads[i];
2891			if (!t)
2892				continue;
2893
2894			itr = thread__priv(t);
2895			if (itr == NULL)
2896				continue;
2897
2898			callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2899					     0, &callchain_param);
2900
2901			printf("  CPU %2d:", i);
2902			print_sched_time(itr->tr.total_run_time, 6);
2903			printf(" msec\n");
2904			timehist_print_idlehist_callchain(&itr->sorted_root);
2905			printf("\n");
2906		}
2907	}
2908
2909	printf("\n"
2910	       "    Total number of unique tasks: %" PRIu64 "\n"
2911	       "Total number of context switches: %" PRIu64 "\n",
2912	       totals.task_count, totals.sched_count);
2913
2914	printf("           Total run time (msec): ");
2915	print_sched_time(totals.total_run_time, 2);
2916	printf("\n");
2917
2918	printf("    Total scheduling time (msec): ");
2919	print_sched_time(hist_time, 2);
2920	printf(" (x %d)\n", sched->max_cpu.cpu);
2921}
2922
2923typedef int (*sched_handler)(struct perf_tool *tool,
2924			  union perf_event *event,
2925			  struct evsel *evsel,
2926			  struct perf_sample *sample,
2927			  struct machine *machine);
2928
2929static int perf_timehist__process_sample(struct perf_tool *tool,
2930					 union perf_event *event,
2931					 struct perf_sample *sample,
2932					 struct evsel *evsel,
2933					 struct machine *machine)
2934{
2935	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2936	int err = 0;
2937	struct perf_cpu this_cpu = {
2938		.cpu = sample->cpu,
2939	};
2940
2941	if (this_cpu.cpu > sched->max_cpu.cpu)
2942		sched->max_cpu = this_cpu;
2943
2944	if (evsel->handler != NULL) {
2945		sched_handler f = evsel->handler;
2946
2947		err = f(tool, event, evsel, sample, machine);
2948	}
2949
2950	return err;
2951}
2952
2953static int timehist_check_attr(struct perf_sched *sched,
2954			       struct evlist *evlist)
2955{
2956	struct evsel *evsel;
2957	struct evsel_runtime *er;
2958
2959	list_for_each_entry(evsel, &evlist->core.entries, core.node) {
2960		er = evsel__get_runtime(evsel);
2961		if (er == NULL) {
2962			pr_err("Failed to allocate memory for evsel runtime data\n");
2963			return -1;
2964		}
2965
2966		if (sched->show_callchain && !evsel__has_callchain(evsel)) {
2967			pr_info("Samples do not have callchains.\n");
2968			sched->show_callchain = 0;
2969			symbol_conf.use_callchain = 0;
2970		}
2971	}
2972
2973	return 0;
2974}
2975
2976static int perf_sched__timehist(struct perf_sched *sched)
2977{
2978	struct evsel_str_handler handlers[] = {
2979		{ "sched:sched_switch",       timehist_sched_switch_event, },
2980		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
2981		{ "sched:sched_waking",       timehist_sched_wakeup_event, },
2982		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
2983	};
2984	const struct evsel_str_handler migrate_handlers[] = {
2985		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
2986	};
2987	struct perf_data data = {
2988		.path  = input_name,
2989		.mode  = PERF_DATA_MODE_READ,
2990		.force = sched->force,
2991	};
2992
2993	struct perf_session *session;
2994	struct evlist *evlist;
2995	int err = -1;
2996
2997	/*
2998	 * event handlers for timehist option
2999	 */
3000	sched->tool.sample	 = perf_timehist__process_sample;
3001	sched->tool.mmap	 = perf_event__process_mmap;
3002	sched->tool.comm	 = perf_event__process_comm;
3003	sched->tool.exit	 = perf_event__process_exit;
3004	sched->tool.fork	 = perf_event__process_fork;
3005	sched->tool.lost	 = process_lost;
3006	sched->tool.attr	 = perf_event__process_attr;
3007	sched->tool.tracing_data = perf_event__process_tracing_data;
3008	sched->tool.build_id	 = perf_event__process_build_id;
3009
3010	sched->tool.ordered_events = true;
3011	sched->tool.ordering_requires_timestamps = true;
3012
3013	symbol_conf.use_callchain = sched->show_callchain;
3014
3015	session = perf_session__new(&data, &sched->tool);
3016	if (IS_ERR(session))
3017		return PTR_ERR(session);
3018
3019	if (cpu_list) {
3020		err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3021		if (err < 0)
3022			goto out;
3023	}
3024
3025	evlist = session->evlist;
3026
3027	symbol__init(&session->header.env);
3028
3029	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3030		pr_err("Invalid time string\n");
3031		return -EINVAL;
3032	}
3033
3034	if (timehist_check_attr(sched, evlist) != 0)
3035		goto out;
3036
3037	setup_pager();
3038
3039	/* prefer sched_waking if it is captured */
3040	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3041		handlers[1].handler = timehist_sched_wakeup_ignore;
3042
3043	/* setup per-evsel handlers */
3044	if (perf_session__set_tracepoints_handlers(session, handlers))
3045		goto out;
3046
3047	/* sched_switch event at a minimum needs to exist */
3048	if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
3049		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3050		goto out;
3051	}
3052
3053	if (sched->show_migrations &&
3054	    perf_session__set_tracepoints_handlers(session, migrate_handlers))
3055		goto out;
3056
3057	/* pre-allocate struct for per-CPU idle stats */
3058	sched->max_cpu.cpu = session->header.env.nr_cpus_online;
3059	if (sched->max_cpu.cpu == 0)
3060		sched->max_cpu.cpu = 4;
3061	if (init_idle_threads(sched->max_cpu.cpu))
3062		goto out;
3063
3064	/* summary_only implies summary option, but don't overwrite summary if set */
3065	if (sched->summary_only)
3066		sched->summary = sched->summary_only;
3067
3068	if (!sched->summary_only)
3069		timehist_header(sched);
3070
3071	err = perf_session__process_events(session);
3072	if (err) {
3073		pr_err("Failed to process events, error %d", err);
3074		goto out;
3075	}
3076
3077	sched->nr_events      = evlist->stats.nr_events[0];
3078	sched->nr_lost_events = evlist->stats.total_lost;
3079	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3080
3081	if (sched->summary)
3082		timehist_print_summary(sched, session);
3083
3084out:
3085	free_idle_threads();
3086	perf_session__delete(session);
3087
3088	return err;
3089}
3090
3091
3092static void print_bad_events(struct perf_sched *sched)
3093{
3094	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3095		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3096			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3097			sched->nr_unordered_timestamps, sched->nr_timestamps);
3098	}
3099	if (sched->nr_lost_events && sched->nr_events) {
3100		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3101			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3102			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3103	}
3104	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3105		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3106			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3107			sched->nr_context_switch_bugs, sched->nr_timestamps);
3108		if (sched->nr_lost_events)
3109			printf(" (due to lost events?)");
3110		printf("\n");
3111	}
3112}
3113
3114static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3115{
3116	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3117	struct work_atoms *this;
3118	const char *comm = thread__comm_str(data->thread), *this_comm;
3119	bool leftmost = true;
3120
3121	while (*new) {
3122		int cmp;
3123
3124		this = container_of(*new, struct work_atoms, node);
3125		parent = *new;
3126
3127		this_comm = thread__comm_str(this->thread);
3128		cmp = strcmp(comm, this_comm);
3129		if (cmp > 0) {
3130			new = &((*new)->rb_left);
3131		} else if (cmp < 0) {
3132			new = &((*new)->rb_right);
3133			leftmost = false;
3134		} else {
3135			this->num_merged++;
3136			this->total_runtime += data->total_runtime;
3137			this->nb_atoms += data->nb_atoms;
3138			this->total_lat += data->total_lat;
3139			list_splice(&data->work_list, &this->work_list);
3140			if (this->max_lat < data->max_lat) {
3141				this->max_lat = data->max_lat;
3142				this->max_lat_start = data->max_lat_start;
3143				this->max_lat_end = data->max_lat_end;
3144			}
3145			zfree(&data);
3146			return;
3147		}
3148	}
3149
3150	data->num_merged++;
3151	rb_link_node(&data->node, parent, new);
3152	rb_insert_color_cached(&data->node, root, leftmost);
3153}
3154
3155static void perf_sched__merge_lat(struct perf_sched *sched)
3156{
3157	struct work_atoms *data;
3158	struct rb_node *node;
3159
3160	if (sched->skip_merge)
3161		return;
3162
3163	while ((node = rb_first_cached(&sched->atom_root))) {
3164		rb_erase_cached(node, &sched->atom_root);
3165		data = rb_entry(node, struct work_atoms, node);
3166		__merge_work_atoms(&sched->merged_atom_root, data);
3167	}
3168}
3169
3170static int setup_cpus_switch_event(struct perf_sched *sched)
3171{
3172	unsigned int i;
3173
3174	sched->cpu_last_switched = calloc(MAX_CPUS, sizeof(*(sched->cpu_last_switched)));
3175	if (!sched->cpu_last_switched)
3176		return -1;
3177
3178	sched->curr_pid = malloc(MAX_CPUS * sizeof(*(sched->curr_pid)));
3179	if (!sched->curr_pid) {
3180		zfree(&sched->cpu_last_switched);
3181		return -1;
3182	}
3183
3184	for (i = 0; i < MAX_CPUS; i++)
3185		sched->curr_pid[i] = -1;
3186
3187	return 0;
3188}
3189
3190static void free_cpus_switch_event(struct perf_sched *sched)
3191{
3192	zfree(&sched->curr_pid);
3193	zfree(&sched->cpu_last_switched);
3194}
3195
3196static int perf_sched__lat(struct perf_sched *sched)
3197{
3198	int rc = -1;
3199	struct rb_node *next;
3200
3201	setup_pager();
3202
3203	if (setup_cpus_switch_event(sched))
3204		return rc;
3205
3206	if (perf_sched__read_events(sched))
3207		goto out_free_cpus_switch_event;
3208
3209	perf_sched__merge_lat(sched);
3210	perf_sched__sort_lat(sched);
3211
3212	printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3213	printf("  Task                  |   Runtime ms  | Switches | Avg delay ms    | Max delay ms    | Max delay start           | Max delay end          |\n");
3214	printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3215
3216	next = rb_first_cached(&sched->sorted_atom_root);
3217
3218	while (next) {
3219		struct work_atoms *work_list;
3220
3221		work_list = rb_entry(next, struct work_atoms, node);
3222		output_lat_thread(sched, work_list);
3223		next = rb_next(next);
3224		thread__zput(work_list->thread);
3225	}
3226
3227	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3228	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3229		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3230
3231	printf(" ---------------------------------------------------\n");
3232
3233	print_bad_events(sched);
3234	printf("\n");
3235
3236	rc = 0;
3237
3238out_free_cpus_switch_event:
3239	free_cpus_switch_event(sched);
3240	return rc;
3241}
3242
3243static int setup_map_cpus(struct perf_sched *sched)
3244{
3245	sched->max_cpu.cpu  = sysconf(_SC_NPROCESSORS_CONF);
3246
3247	if (sched->map.comp) {
3248		sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int));
3249		if (!sched->map.comp_cpus)
3250			return -1;
3251	}
3252
3253	if (sched->map.cpus_str) {
3254		sched->map.cpus = perf_cpu_map__new(sched->map.cpus_str);
3255		if (!sched->map.cpus) {
3256			pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3257			zfree(&sched->map.comp_cpus);
3258			return -1;
3259		}
3260	}
3261
3262	return 0;
3263}
3264
3265static int setup_color_pids(struct perf_sched *sched)
3266{
3267	struct perf_thread_map *map;
3268
3269	if (!sched->map.color_pids_str)
3270		return 0;
3271
3272	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3273	if (!map) {
3274		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3275		return -1;
3276	}
3277
3278	sched->map.color_pids = map;
3279	return 0;
3280}
3281
3282static int setup_color_cpus(struct perf_sched *sched)
3283{
3284	struct perf_cpu_map *map;
3285
3286	if (!sched->map.color_cpus_str)
3287		return 0;
3288
3289	map = perf_cpu_map__new(sched->map.color_cpus_str);
3290	if (!map) {
3291		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3292		return -1;
3293	}
3294
3295	sched->map.color_cpus = map;
3296	return 0;
3297}
3298
3299static int perf_sched__map(struct perf_sched *sched)
3300{
3301	int rc = -1;
3302
3303	sched->curr_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_thread)));
3304	if (!sched->curr_thread)
3305		return rc;
3306
3307	if (setup_cpus_switch_event(sched))
3308		goto out_free_curr_thread;
3309
3310	if (setup_map_cpus(sched))
3311		goto out_free_cpus_switch_event;
3312
3313	if (setup_color_pids(sched))
3314		goto out_put_map_cpus;
3315
3316	if (setup_color_cpus(sched))
3317		goto out_put_color_pids;
3318
3319	setup_pager();
3320	if (perf_sched__read_events(sched))
3321		goto out_put_color_cpus;
3322
3323	rc = 0;
3324	print_bad_events(sched);
3325
3326out_put_color_cpus:
3327	perf_cpu_map__put(sched->map.color_cpus);
3328
3329out_put_color_pids:
3330	perf_thread_map__put(sched->map.color_pids);
3331
3332out_put_map_cpus:
3333	zfree(&sched->map.comp_cpus);
3334	perf_cpu_map__put(sched->map.cpus);
3335
3336out_free_cpus_switch_event:
3337	free_cpus_switch_event(sched);
3338
3339out_free_curr_thread:
3340	zfree(&sched->curr_thread);
3341	return rc;
3342}
3343
3344static int perf_sched__replay(struct perf_sched *sched)
3345{
3346	int ret;
3347	unsigned long i;
3348
3349	mutex_init(&sched->start_work_mutex);
3350	mutex_init(&sched->work_done_wait_mutex);
3351
3352	ret = setup_cpus_switch_event(sched);
3353	if (ret)
3354		goto out_mutex_destroy;
3355
3356	calibrate_run_measurement_overhead(sched);
3357	calibrate_sleep_measurement_overhead(sched);
3358
3359	test_calibrations(sched);
3360
3361	ret = perf_sched__read_events(sched);
3362	if (ret)
3363		goto out_free_cpus_switch_event;
3364
3365	printf("nr_run_events:        %ld\n", sched->nr_run_events);
3366	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3367	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3368
3369	if (sched->targetless_wakeups)
3370		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3371	if (sched->multitarget_wakeups)
3372		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3373	if (sched->nr_run_events_optimized)
3374		printf("run atoms optimized: %ld\n",
3375			sched->nr_run_events_optimized);
3376
3377	print_task_traces(sched);
3378	add_cross_task_wakeups(sched);
3379
3380	sched->thread_funcs_exit = false;
3381	create_tasks(sched);
3382	printf("------------------------------------------------------------\n");
3383	for (i = 0; i < sched->replay_repeat; i++)
3384		run_one_test(sched);
3385
3386	sched->thread_funcs_exit = true;
3387	destroy_tasks(sched);
3388
3389out_free_cpus_switch_event:
3390	free_cpus_switch_event(sched);
3391
3392out_mutex_destroy:
3393	mutex_destroy(&sched->start_work_mutex);
3394	mutex_destroy(&sched->work_done_wait_mutex);
3395	return ret;
3396}
3397
3398static void setup_sorting(struct perf_sched *sched, const struct option *options,
3399			  const char * const usage_msg[])
3400{
3401	char *tmp, *tok, *str = strdup(sched->sort_order);
3402
3403	for (tok = strtok_r(str, ", ", &tmp);
3404			tok; tok = strtok_r(NULL, ", ", &tmp)) {
3405		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3406			usage_with_options_msg(usage_msg, options,
3407					"Unknown --sort key: `%s'", tok);
3408		}
3409	}
3410
3411	free(str);
3412
3413	sort_dimension__add("pid", &sched->cmp_pid);
3414}
3415
3416static bool schedstat_events_exposed(void)
3417{
3418	/*
3419	 * Select "sched:sched_stat_wait" event to check
3420	 * whether schedstat tracepoints are exposed.
3421	 */
3422	return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3423		false : true;
3424}
3425
3426static int __cmd_record(int argc, const char **argv)
3427{
3428	unsigned int rec_argc, i, j;
3429	char **rec_argv;
3430	const char **rec_argv_copy;
3431	const char * const record_args[] = {
3432		"record",
3433		"-a",
3434		"-R",
3435		"-m", "1024",
3436		"-c", "1",
3437		"-e", "sched:sched_switch",
3438		"-e", "sched:sched_stat_runtime",
3439		"-e", "sched:sched_process_fork",
3440		"-e", "sched:sched_wakeup_new",
3441		"-e", "sched:sched_migrate_task",
3442	};
3443
3444	/*
3445	 * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3446	 * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3447	 * to prevent "perf sched record" execution failure, determine
3448	 * whether to record schedstat events according to actual situation.
3449	 */
3450	const char * const schedstat_args[] = {
3451		"-e", "sched:sched_stat_wait",
3452		"-e", "sched:sched_stat_sleep",
3453		"-e", "sched:sched_stat_iowait",
3454	};
3455	unsigned int schedstat_argc = schedstat_events_exposed() ?
3456		ARRAY_SIZE(schedstat_args) : 0;
3457
3458	struct tep_event *waking_event;
3459	int ret;
3460
3461	/*
3462	 * +2 for either "-e", "sched:sched_wakeup" or
3463	 * "-e", "sched:sched_waking"
3464	 */
3465	rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3466	rec_argv = calloc(rec_argc + 1, sizeof(char *));
3467	if (rec_argv == NULL)
3468		return -ENOMEM;
3469	rec_argv_copy = calloc(rec_argc + 1, sizeof(char *));
3470	if (rec_argv_copy == NULL) {
3471		free(rec_argv);
3472		return -ENOMEM;
3473	}
3474
3475	for (i = 0; i < ARRAY_SIZE(record_args); i++)
3476		rec_argv[i] = strdup(record_args[i]);
3477
3478	rec_argv[i++] = strdup("-e");
3479	waking_event = trace_event__tp_format("sched", "sched_waking");
3480	if (!IS_ERR(waking_event))
3481		rec_argv[i++] = strdup("sched:sched_waking");
3482	else
3483		rec_argv[i++] = strdup("sched:sched_wakeup");
3484
3485	for (j = 0; j < schedstat_argc; j++)
3486		rec_argv[i++] = strdup(schedstat_args[j]);
3487
3488	for (j = 1; j < (unsigned int)argc; j++, i++)
3489		rec_argv[i] = strdup(argv[j]);
3490
3491	BUG_ON(i != rec_argc);
3492
3493	memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc);
3494	ret = cmd_record(rec_argc, rec_argv_copy);
3495
3496	for (i = 0; i < rec_argc; i++)
3497		free(rec_argv[i]);
3498	free(rec_argv);
3499	free(rec_argv_copy);
3500
3501	return ret;
3502}
3503
3504int cmd_sched(int argc, const char **argv)
3505{
3506	static const char default_sort_order[] = "avg, max, switch, runtime";
3507	struct perf_sched sched = {
3508		.tool = {
3509			.sample		 = perf_sched__process_tracepoint_sample,
3510			.comm		 = perf_sched__process_comm,
3511			.namespaces	 = perf_event__process_namespaces,
3512			.lost		 = perf_event__process_lost,
3513			.fork		 = perf_sched__process_fork_event,
3514			.ordered_events = true,
3515		},
3516		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
3517		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
3518		.sort_order	      = default_sort_order,
3519		.replay_repeat	      = 10,
3520		.profile_cpu	      = -1,
3521		.next_shortname1      = 'A',
3522		.next_shortname2      = '0',
3523		.skip_merge           = 0,
3524		.show_callchain	      = 1,
3525		.max_stack            = 5,
3526	};
3527	const struct option sched_options[] = {
3528	OPT_STRING('i', "input", &input_name, "file",
3529		    "input file name"),
3530	OPT_INCR('v', "verbose", &verbose,
3531		    "be more verbose (show symbol address, etc)"),
3532	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3533		    "dump raw trace in ASCII"),
3534	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3535	OPT_END()
3536	};
3537	const struct option latency_options[] = {
3538	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3539		   "sort by key(s): runtime, switch, avg, max"),
3540	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3541		    "CPU to profile on"),
3542	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3543		    "latency stats per pid instead of per comm"),
3544	OPT_PARENT(sched_options)
3545	};
3546	const struct option replay_options[] = {
3547	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3548		     "repeat the workload replay N times (-1: infinite)"),
3549	OPT_PARENT(sched_options)
3550	};
3551	const struct option map_options[] = {
3552	OPT_BOOLEAN(0, "compact", &sched.map.comp,
3553		    "map output in compact mode"),
3554	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3555		   "highlight given pids in map"),
3556	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3557                    "highlight given CPUs in map"),
3558	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3559                    "display given CPUs in map"),
3560	OPT_PARENT(sched_options)
3561	};
3562	const struct option timehist_options[] = {
3563	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3564		   "file", "vmlinux pathname"),
3565	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3566		   "file", "kallsyms pathname"),
3567	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3568		    "Display call chains if present (default on)"),
3569	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3570		   "Maximum number of functions to display backtrace."),
3571	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3572		    "Look for files with symbols relative to this directory"),
3573	OPT_BOOLEAN('s', "summary", &sched.summary_only,
3574		    "Show only syscall summary with statistics"),
3575	OPT_BOOLEAN('S', "with-summary", &sched.summary,
3576		    "Show all syscalls and summary with statistics"),
3577	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3578	OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3579	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3580	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3581	OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3582	OPT_STRING(0, "time", &sched.time_str, "str",
3583		   "Time span for analysis (start,stop)"),
3584	OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3585	OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3586		   "analyze events only for given process id(s)"),
3587	OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3588		   "analyze events only for given thread id(s)"),
3589	OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3590	OPT_PARENT(sched_options)
3591	};
3592
3593	const char * const latency_usage[] = {
3594		"perf sched latency [<options>]",
3595		NULL
3596	};
3597	const char * const replay_usage[] = {
3598		"perf sched replay [<options>]",
3599		NULL
3600	};
3601	const char * const map_usage[] = {
3602		"perf sched map [<options>]",
3603		NULL
3604	};
3605	const char * const timehist_usage[] = {
3606		"perf sched timehist [<options>]",
3607		NULL
3608	};
3609	const char *const sched_subcommands[] = { "record", "latency", "map",
3610						  "replay", "script",
3611						  "timehist", NULL };
3612	const char *sched_usage[] = {
3613		NULL,
3614		NULL
3615	};
3616	struct trace_sched_handler lat_ops  = {
3617		.wakeup_event	    = latency_wakeup_event,
3618		.switch_event	    = latency_switch_event,
3619		.runtime_event	    = latency_runtime_event,
3620		.migrate_task_event = latency_migrate_task_event,
3621	};
3622	struct trace_sched_handler map_ops  = {
3623		.switch_event	    = map_switch_event,
3624	};
3625	struct trace_sched_handler replay_ops  = {
3626		.wakeup_event	    = replay_wakeup_event,
3627		.switch_event	    = replay_switch_event,
3628		.fork_event	    = replay_fork_event,
3629	};
3630	int ret;
3631
3632	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3633					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3634	if (!argc)
3635		usage_with_options(sched_usage, sched_options);
3636
3637	/*
3638	 * Aliased to 'perf script' for now:
3639	 */
3640	if (!strcmp(argv[0], "script")) {
3641		return cmd_script(argc, argv);
3642	} else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
3643		return __cmd_record(argc, argv);
3644	} else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
3645		sched.tp_handler = &lat_ops;
3646		if (argc > 1) {
3647			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3648			if (argc)
3649				usage_with_options(latency_usage, latency_options);
3650		}
3651		setup_sorting(&sched, latency_options, latency_usage);
3652		return perf_sched__lat(&sched);
3653	} else if (!strcmp(argv[0], "map")) {
3654		if (argc) {
3655			argc = parse_options(argc, argv, map_options, map_usage, 0);
3656			if (argc)
3657				usage_with_options(map_usage, map_options);
3658		}
3659		sched.tp_handler = &map_ops;
3660		setup_sorting(&sched, latency_options, latency_usage);
3661		return perf_sched__map(&sched);
3662	} else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) {
3663		sched.tp_handler = &replay_ops;
3664		if (argc) {
3665			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3666			if (argc)
3667				usage_with_options(replay_usage, replay_options);
3668		}
3669		return perf_sched__replay(&sched);
3670	} else if (!strcmp(argv[0], "timehist")) {
3671		if (argc) {
3672			argc = parse_options(argc, argv, timehist_options,
3673					     timehist_usage, 0);
3674			if (argc)
3675				usage_with_options(timehist_usage, timehist_options);
3676		}
3677		if ((sched.show_wakeups || sched.show_next) &&
3678		    sched.summary_only) {
3679			pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3680			parse_options_usage(timehist_usage, timehist_options, "s", true);
3681			if (sched.show_wakeups)
3682				parse_options_usage(NULL, timehist_options, "w", true);
3683			if (sched.show_next)
3684				parse_options_usage(NULL, timehist_options, "n", true);
3685			return -EINVAL;
3686		}
3687		ret = symbol__validate_sym_arguments();
3688		if (ret)
3689			return ret;
3690
3691		return perf_sched__timehist(&sched);
3692	} else {
3693		usage_with_options(sched_usage, sched_options);
3694	}
3695
3696	return 0;
3697}
3698