1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2/* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */
3#include <ctype.h>
4#include <stdio.h>
5#include <stdlib.h>
6#include <string.h>
7#include <libelf.h>
8#include <gelf.h>
9#include <unistd.h>
10#include <linux/ptrace.h>
11#include <linux/kernel.h>
12
13/* s8 will be marked as poison while it's a reg of riscv */
14#if defined(__riscv)
15#define rv_s8 s8
16#endif
17
18#include "bpf.h"
19#include "libbpf.h"
20#include "libbpf_common.h"
21#include "libbpf_internal.h"
22#include "hashmap.h"
23
24/* libbpf's USDT support consists of BPF-side state/code and user-space
25 * state/code working together in concert. BPF-side parts are defined in
26 * usdt.bpf.h header library. User-space state is encapsulated by struct
27 * usdt_manager and all the supporting code centered around usdt_manager.
28 *
29 * usdt.bpf.h defines two BPF maps that usdt_manager expects: USDT spec map
30 * and IP-to-spec-ID map, which is auxiliary map necessary for kernels that
31 * don't support BPF cookie (see below). These two maps are implicitly
32 * embedded into user's end BPF object file when user's code included
33 * usdt.bpf.h. This means that libbpf doesn't do anything special to create
34 * these USDT support maps. They are created by normal libbpf logic of
35 * instantiating BPF maps when opening and loading BPF object.
36 *
37 * As such, libbpf is basically unaware of the need to do anything
38 * USDT-related until the very first call to bpf_program__attach_usdt(), which
39 * can be called by user explicitly or happen automatically during skeleton
40 * attach (or, equivalently, through generic bpf_program__attach() call). At
41 * this point, libbpf will instantiate and initialize struct usdt_manager and
42 * store it in bpf_object. USDT manager is per-BPF object construct, as each
43 * independent BPF object might or might not have USDT programs, and thus all
44 * the expected USDT-related state. There is no coordination between two
45 * bpf_object in parts of USDT attachment, they are oblivious of each other's
46 * existence and libbpf is just oblivious, dealing with bpf_object-specific
47 * USDT state.
48 *
49 * Quick crash course on USDTs.
50 *
51 * From user-space application's point of view, USDT is essentially just
52 * a slightly special function call that normally has zero overhead, unless it
53 * is being traced by some external entity (e.g, BPF-based tool). Here's how
54 * a typical application can trigger USDT probe:
55 *
56 * #include <sys/sdt.h>  // provided by systemtap-sdt-devel package
57 * // folly also provide similar functionality in folly/tracing/StaticTracepoint.h
58 *
59 * STAP_PROBE3(my_usdt_provider, my_usdt_probe_name, 123, x, &y);
60 *
61 * USDT is identified by it's <provider-name>:<probe-name> pair of names. Each
62 * individual USDT has a fixed number of arguments (3 in the above example)
63 * and specifies values of each argument as if it was a function call.
64 *
65 * USDT call is actually not a function call, but is instead replaced by
66 * a single NOP instruction (thus zero overhead, effectively). But in addition
67 * to that, those USDT macros generate special SHT_NOTE ELF records in
68 * .note.stapsdt ELF section. Here's an example USDT definition as emitted by
69 * `readelf -n <binary>`:
70 *
71 *   stapsdt              0x00000089       NT_STAPSDT (SystemTap probe descriptors)
72 *   Provider: test
73 *   Name: usdt12
74 *   Location: 0x0000000000549df3, Base: 0x00000000008effa4, Semaphore: 0x0000000000a4606e
75 *   Arguments: -4@-1204(%rbp) -4@%edi -8@-1216(%rbp) -8@%r8 -4@$5 -8@%r9 8@%rdx 8@%r10 -4@$-9 -2@%cx -2@%ax -1@%sil
76 *
77 * In this case we have USDT test:usdt12 with 12 arguments.
78 *
79 * Location and base are offsets used to calculate absolute IP address of that
80 * NOP instruction that kernel can replace with an interrupt instruction to
81 * trigger instrumentation code (BPF program for all that we care about).
82 *
83 * Semaphore above is and optional feature. It records an address of a 2-byte
84 * refcount variable (normally in '.probes' ELF section) used for signaling if
85 * there is anything that is attached to USDT. This is useful for user
86 * applications if, for example, they need to prepare some arguments that are
87 * passed only to USDTs and preparation is expensive. By checking if USDT is
88 * "activated", an application can avoid paying those costs unnecessarily.
89 * Recent enough kernel has built-in support for automatically managing this
90 * refcount, which libbpf expects and relies on. If USDT is defined without
91 * associated semaphore, this value will be zero. See selftests for semaphore
92 * examples.
93 *
94 * Arguments is the most interesting part. This USDT specification string is
95 * providing information about all the USDT arguments and their locations. The
96 * part before @ sign defined byte size of the argument (1, 2, 4, or 8) and
97 * whether the argument is signed or unsigned (negative size means signed).
98 * The part after @ sign is assembly-like definition of argument location
99 * (see [0] for more details). Technically, assembler can provide some pretty
100 * advanced definitions, but libbpf is currently supporting three most common
101 * cases:
102 *   1) immediate constant, see 5th and 9th args above (-4@$5 and -4@-9);
103 *   2) register value, e.g., 8@%rdx, which means "unsigned 8-byte integer
104 *      whose value is in register %rdx";
105 *   3) memory dereference addressed by register, e.g., -4@-1204(%rbp), which
106 *      specifies signed 32-bit integer stored at offset -1204 bytes from
107 *      memory address stored in %rbp.
108 *
109 *   [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation
110 *
111 * During attachment, libbpf parses all the relevant USDT specifications and
112 * prepares `struct usdt_spec` (USDT spec), which is then provided to BPF-side
113 * code through spec map. This allows BPF applications to quickly fetch the
114 * actual value at runtime using a simple BPF-side code.
115 *
116 * With basics out of the way, let's go over less immediately obvious aspects
117 * of supporting USDTs.
118 *
119 * First, there is no special USDT BPF program type. It is actually just
120 * a uprobe BPF program (which for kernel, at least currently, is just a kprobe
121 * program, so BPF_PROG_TYPE_KPROBE program type). With the only difference
122 * that uprobe is usually attached at the function entry, while USDT will
123 * normally will be somewhere inside the function. But it should always be
124 * pointing to NOP instruction, which makes such uprobes the fastest uprobe
125 * kind.
126 *
127 * Second, it's important to realize that such STAP_PROBEn(provider, name, ...)
128 * macro invocations can end up being inlined many-many times, depending on
129 * specifics of each individual user application. So single conceptual USDT
130 * (identified by provider:name pair of identifiers) is, generally speaking,
131 * multiple uprobe locations (USDT call sites) in different places in user
132 * application. Further, again due to inlining, each USDT call site might end
133 * up having the same argument #N be located in a different place. In one call
134 * site it could be a constant, in another will end up in a register, and in
135 * yet another could be some other register or even somewhere on the stack.
136 *
137 * As such, "attaching to USDT" means (in general case) attaching the same
138 * uprobe BPF program to multiple target locations in user application, each
139 * potentially having a completely different USDT spec associated with it.
140 * To wire all this up together libbpf allocates a unique integer spec ID for
141 * each unique USDT spec. Spec IDs are allocated as sequential small integers
142 * so that they can be used as keys in array BPF map (for performance reasons).
143 * Spec ID allocation and accounting is big part of what usdt_manager is
144 * about. This state has to be maintained per-BPF object and coordinate
145 * between different USDT attachments within the same BPF object.
146 *
147 * Spec ID is the key in spec BPF map, value is the actual USDT spec layed out
148 * as struct usdt_spec. Each invocation of BPF program at runtime needs to
149 * know its associated spec ID. It gets it either through BPF cookie, which
150 * libbpf sets to spec ID during attach time, or, if kernel is too old to
151 * support BPF cookie, through IP-to-spec-ID map that libbpf maintains in such
152 * case. The latter means that some modes of operation can't be supported
153 * without BPF cookie. Such mode is attaching to shared library "generically",
154 * without specifying target process. In such case, it's impossible to
155 * calculate absolute IP addresses for IP-to-spec-ID map, and thus such mode
156 * is not supported without BPF cookie support.
157 *
158 * Note that libbpf is using BPF cookie functionality for its own internal
159 * needs, so user itself can't rely on BPF cookie feature. To that end, libbpf
160 * provides conceptually equivalent USDT cookie support. It's still u64
161 * user-provided value that can be associated with USDT attachment. Note that
162 * this will be the same value for all USDT call sites within the same single
163 * *logical* USDT attachment. This makes sense because to user attaching to
164 * USDT is a single BPF program triggered for singular USDT probe. The fact
165 * that this is done at multiple actual locations is a mostly hidden
166 * implementation details. This USDT cookie value can be fetched with
167 * bpf_usdt_cookie(ctx) API provided by usdt.bpf.h
168 *
169 * Lastly, while single USDT can have tons of USDT call sites, it doesn't
170 * necessarily have that many different USDT specs. It very well might be
171 * that 1000 USDT call sites only need 5 different USDT specs, because all the
172 * arguments are typically contained in a small set of registers or stack
173 * locations. As such, it's wasteful to allocate as many USDT spec IDs as
174 * there are USDT call sites. So libbpf tries to be frugal and performs
175 * on-the-fly deduplication during a single USDT attachment to only allocate
176 * the minimal required amount of unique USDT specs (and thus spec IDs). This
177 * is trivially achieved by using USDT spec string (Arguments string from USDT
178 * note) as a lookup key in a hashmap. USDT spec string uniquely defines
179 * everything about how to fetch USDT arguments, so two USDT call sites
180 * sharing USDT spec string can safely share the same USDT spec and spec ID.
181 * Note, this spec string deduplication is happening only during the same USDT
182 * attachment, so each USDT spec shares the same USDT cookie value. This is
183 * not generally true for other USDT attachments within the same BPF object,
184 * as even if USDT spec string is the same, USDT cookie value can be
185 * different. It was deemed excessive to try to deduplicate across independent
186 * USDT attachments by taking into account USDT spec string *and* USDT cookie
187 * value, which would complicated spec ID accounting significantly for little
188 * gain.
189 */
190
191#define USDT_BASE_SEC ".stapsdt.base"
192#define USDT_SEMA_SEC ".probes"
193#define USDT_NOTE_SEC  ".note.stapsdt"
194#define USDT_NOTE_TYPE 3
195#define USDT_NOTE_NAME "stapsdt"
196
197/* should match exactly enum __bpf_usdt_arg_type from usdt.bpf.h */
198enum usdt_arg_type {
199	USDT_ARG_CONST,
200	USDT_ARG_REG,
201	USDT_ARG_REG_DEREF,
202};
203
204/* should match exactly struct __bpf_usdt_arg_spec from usdt.bpf.h */
205struct usdt_arg_spec {
206	__u64 val_off;
207	enum usdt_arg_type arg_type;
208	short reg_off;
209	bool arg_signed;
210	char arg_bitshift;
211};
212
213/* should match BPF_USDT_MAX_ARG_CNT in usdt.bpf.h */
214#define USDT_MAX_ARG_CNT 12
215
216/* should match struct __bpf_usdt_spec from usdt.bpf.h */
217struct usdt_spec {
218	struct usdt_arg_spec args[USDT_MAX_ARG_CNT];
219	__u64 usdt_cookie;
220	short arg_cnt;
221};
222
223struct usdt_note {
224	const char *provider;
225	const char *name;
226	/* USDT args specification string, e.g.:
227	 * "-4@%esi -4@-24(%rbp) -4@%ecx 2@%ax 8@%rdx"
228	 */
229	const char *args;
230	long loc_addr;
231	long base_addr;
232	long sema_addr;
233};
234
235struct usdt_target {
236	long abs_ip;
237	long rel_ip;
238	long sema_off;
239	struct usdt_spec spec;
240	const char *spec_str;
241};
242
243struct usdt_manager {
244	struct bpf_map *specs_map;
245	struct bpf_map *ip_to_spec_id_map;
246
247	int *free_spec_ids;
248	size_t free_spec_cnt;
249	size_t next_free_spec_id;
250
251	bool has_bpf_cookie;
252	bool has_sema_refcnt;
253	bool has_uprobe_multi;
254};
255
256struct usdt_manager *usdt_manager_new(struct bpf_object *obj)
257{
258	static const char *ref_ctr_sysfs_path = "/sys/bus/event_source/devices/uprobe/format/ref_ctr_offset";
259	struct usdt_manager *man;
260	struct bpf_map *specs_map, *ip_to_spec_id_map;
261
262	specs_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_specs");
263	ip_to_spec_id_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_ip_to_spec_id");
264	if (!specs_map || !ip_to_spec_id_map) {
265		pr_warn("usdt: failed to find USDT support BPF maps, did you forget to include bpf/usdt.bpf.h?\n");
266		return ERR_PTR(-ESRCH);
267	}
268
269	man = calloc(1, sizeof(*man));
270	if (!man)
271		return ERR_PTR(-ENOMEM);
272
273	man->specs_map = specs_map;
274	man->ip_to_spec_id_map = ip_to_spec_id_map;
275
276	/* Detect if BPF cookie is supported for kprobes.
277	 * We don't need IP-to-ID mapping if we can use BPF cookies.
278	 * Added in: 7adfc6c9b315 ("bpf: Add bpf_get_attach_cookie() BPF helper to access bpf_cookie value")
279	 */
280	man->has_bpf_cookie = kernel_supports(obj, FEAT_BPF_COOKIE);
281
282	/* Detect kernel support for automatic refcounting of USDT semaphore.
283	 * If this is not supported, USDTs with semaphores will not be supported.
284	 * Added in: a6ca88b241d5 ("trace_uprobe: support reference counter in fd-based uprobe")
285	 */
286	man->has_sema_refcnt = faccessat(AT_FDCWD, ref_ctr_sysfs_path, F_OK, AT_EACCESS) == 0;
287
288	/*
289	 * Detect kernel support for uprobe multi link to be used for attaching
290	 * usdt probes.
291	 */
292	man->has_uprobe_multi = kernel_supports(obj, FEAT_UPROBE_MULTI_LINK);
293	return man;
294}
295
296void usdt_manager_free(struct usdt_manager *man)
297{
298	if (IS_ERR_OR_NULL(man))
299		return;
300
301	free(man->free_spec_ids);
302	free(man);
303}
304
305static int sanity_check_usdt_elf(Elf *elf, const char *path)
306{
307	GElf_Ehdr ehdr;
308	int endianness;
309
310	if (elf_kind(elf) != ELF_K_ELF) {
311		pr_warn("usdt: unrecognized ELF kind %d for '%s'\n", elf_kind(elf), path);
312		return -EBADF;
313	}
314
315	switch (gelf_getclass(elf)) {
316	case ELFCLASS64:
317		if (sizeof(void *) != 8) {
318			pr_warn("usdt: attaching to 64-bit ELF binary '%s' is not supported\n", path);
319			return -EBADF;
320		}
321		break;
322	case ELFCLASS32:
323		if (sizeof(void *) != 4) {
324			pr_warn("usdt: attaching to 32-bit ELF binary '%s' is not supported\n", path);
325			return -EBADF;
326		}
327		break;
328	default:
329		pr_warn("usdt: unsupported ELF class for '%s'\n", path);
330		return -EBADF;
331	}
332
333	if (!gelf_getehdr(elf, &ehdr))
334		return -EINVAL;
335
336	if (ehdr.e_type != ET_EXEC && ehdr.e_type != ET_DYN) {
337		pr_warn("usdt: unsupported type of ELF binary '%s' (%d), only ET_EXEC and ET_DYN are supported\n",
338			path, ehdr.e_type);
339		return -EBADF;
340	}
341
342#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
343	endianness = ELFDATA2LSB;
344#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
345	endianness = ELFDATA2MSB;
346#else
347# error "Unrecognized __BYTE_ORDER__"
348#endif
349	if (endianness != ehdr.e_ident[EI_DATA]) {
350		pr_warn("usdt: ELF endianness mismatch for '%s'\n", path);
351		return -EBADF;
352	}
353
354	return 0;
355}
356
357static int find_elf_sec_by_name(Elf *elf, const char *sec_name, GElf_Shdr *shdr, Elf_Scn **scn)
358{
359	Elf_Scn *sec = NULL;
360	size_t shstrndx;
361
362	if (elf_getshdrstrndx(elf, &shstrndx))
363		return -EINVAL;
364
365	/* check if ELF is corrupted and avoid calling elf_strptr if yes */
366	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL))
367		return -EINVAL;
368
369	while ((sec = elf_nextscn(elf, sec)) != NULL) {
370		char *name;
371
372		if (!gelf_getshdr(sec, shdr))
373			return -EINVAL;
374
375		name = elf_strptr(elf, shstrndx, shdr->sh_name);
376		if (name && strcmp(sec_name, name) == 0) {
377			*scn = sec;
378			return 0;
379		}
380	}
381
382	return -ENOENT;
383}
384
385struct elf_seg {
386	long start;
387	long end;
388	long offset;
389	bool is_exec;
390};
391
392static int cmp_elf_segs(const void *_a, const void *_b)
393{
394	const struct elf_seg *a = _a;
395	const struct elf_seg *b = _b;
396
397	return a->start < b->start ? -1 : 1;
398}
399
400static int parse_elf_segs(Elf *elf, const char *path, struct elf_seg **segs, size_t *seg_cnt)
401{
402	GElf_Phdr phdr;
403	size_t n;
404	int i, err;
405	struct elf_seg *seg;
406	void *tmp;
407
408	*seg_cnt = 0;
409
410	if (elf_getphdrnum(elf, &n)) {
411		err = -errno;
412		return err;
413	}
414
415	for (i = 0; i < n; i++) {
416		if (!gelf_getphdr(elf, i, &phdr)) {
417			err = -errno;
418			return err;
419		}
420
421		pr_debug("usdt: discovered PHDR #%d in '%s': vaddr 0x%lx memsz 0x%lx offset 0x%lx type 0x%lx flags 0x%lx\n",
422			 i, path, (long)phdr.p_vaddr, (long)phdr.p_memsz, (long)phdr.p_offset,
423			 (long)phdr.p_type, (long)phdr.p_flags);
424		if (phdr.p_type != PT_LOAD)
425			continue;
426
427		tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs));
428		if (!tmp)
429			return -ENOMEM;
430
431		*segs = tmp;
432		seg = *segs + *seg_cnt;
433		(*seg_cnt)++;
434
435		seg->start = phdr.p_vaddr;
436		seg->end = phdr.p_vaddr + phdr.p_memsz;
437		seg->offset = phdr.p_offset;
438		seg->is_exec = phdr.p_flags & PF_X;
439	}
440
441	if (*seg_cnt == 0) {
442		pr_warn("usdt: failed to find PT_LOAD program headers in '%s'\n", path);
443		return -ESRCH;
444	}
445
446	qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs);
447	return 0;
448}
449
450static int parse_vma_segs(int pid, const char *lib_path, struct elf_seg **segs, size_t *seg_cnt)
451{
452	char path[PATH_MAX], line[PATH_MAX], mode[16];
453	size_t seg_start, seg_end, seg_off;
454	struct elf_seg *seg;
455	int tmp_pid, i, err;
456	FILE *f;
457
458	*seg_cnt = 0;
459
460	/* Handle containerized binaries only accessible from
461	 * /proc/<pid>/root/<path>. They will be reported as just /<path> in
462	 * /proc/<pid>/maps.
463	 */
464	if (sscanf(lib_path, "/proc/%d/root%s", &tmp_pid, path) == 2 && pid == tmp_pid)
465		goto proceed;
466
467	if (!realpath(lib_path, path)) {
468		pr_warn("usdt: failed to get absolute path of '%s' (err %d), using path as is...\n",
469			lib_path, -errno);
470		libbpf_strlcpy(path, lib_path, sizeof(path));
471	}
472
473proceed:
474	sprintf(line, "/proc/%d/maps", pid);
475	f = fopen(line, "re");
476	if (!f) {
477		err = -errno;
478		pr_warn("usdt: failed to open '%s' to get base addr of '%s': %d\n",
479			line, lib_path, err);
480		return err;
481	}
482
483	/* We need to handle lines with no path at the end:
484	 *
485	 * 7f5c6f5d1000-7f5c6f5d3000 rw-p 001c7000 08:04 21238613      /usr/lib64/libc-2.17.so
486	 * 7f5c6f5d3000-7f5c6f5d8000 rw-p 00000000 00:00 0
487	 * 7f5c6f5d8000-7f5c6f5d9000 r-xp 00000000 103:01 362990598    /data/users/andriin/linux/tools/bpf/usdt/libhello_usdt.so
488	 */
489	while (fscanf(f, "%zx-%zx %s %zx %*s %*d%[^\n]\n",
490		      &seg_start, &seg_end, mode, &seg_off, line) == 5) {
491		void *tmp;
492
493		/* to handle no path case (see above) we need to capture line
494		 * without skipping any whitespaces. So we need to strip
495		 * leading whitespaces manually here
496		 */
497		i = 0;
498		while (isblank(line[i]))
499			i++;
500		if (strcmp(line + i, path) != 0)
501			continue;
502
503		pr_debug("usdt: discovered segment for lib '%s': addrs %zx-%zx mode %s offset %zx\n",
504			 path, seg_start, seg_end, mode, seg_off);
505
506		/* ignore non-executable sections for shared libs */
507		if (mode[2] != 'x')
508			continue;
509
510		tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs));
511		if (!tmp) {
512			err = -ENOMEM;
513			goto err_out;
514		}
515
516		*segs = tmp;
517		seg = *segs + *seg_cnt;
518		*seg_cnt += 1;
519
520		seg->start = seg_start;
521		seg->end = seg_end;
522		seg->offset = seg_off;
523		seg->is_exec = true;
524	}
525
526	if (*seg_cnt == 0) {
527		pr_warn("usdt: failed to find '%s' (resolved to '%s') within PID %d memory mappings\n",
528			lib_path, path, pid);
529		err = -ESRCH;
530		goto err_out;
531	}
532
533	qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs);
534	err = 0;
535err_out:
536	fclose(f);
537	return err;
538}
539
540static struct elf_seg *find_elf_seg(struct elf_seg *segs, size_t seg_cnt, long virtaddr)
541{
542	struct elf_seg *seg;
543	int i;
544
545	/* for ELF binaries (both executables and shared libraries), we are
546	 * given virtual address (absolute for executables, relative for
547	 * libraries) which should match address range of [seg_start, seg_end)
548	 */
549	for (i = 0, seg = segs; i < seg_cnt; i++, seg++) {
550		if (seg->start <= virtaddr && virtaddr < seg->end)
551			return seg;
552	}
553	return NULL;
554}
555
556static struct elf_seg *find_vma_seg(struct elf_seg *segs, size_t seg_cnt, long offset)
557{
558	struct elf_seg *seg;
559	int i;
560
561	/* for VMA segments from /proc/<pid>/maps file, provided "address" is
562	 * actually a file offset, so should be fall within logical
563	 * offset-based range of [offset_start, offset_end)
564	 */
565	for (i = 0, seg = segs; i < seg_cnt; i++, seg++) {
566		if (seg->offset <= offset && offset < seg->offset + (seg->end - seg->start))
567			return seg;
568	}
569	return NULL;
570}
571
572static int parse_usdt_note(Elf *elf, const char *path, GElf_Nhdr *nhdr,
573			   const char *data, size_t name_off, size_t desc_off,
574			   struct usdt_note *usdt_note);
575
576static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie);
577
578static int collect_usdt_targets(struct usdt_manager *man, Elf *elf, const char *path, pid_t pid,
579				const char *usdt_provider, const char *usdt_name, __u64 usdt_cookie,
580				struct usdt_target **out_targets, size_t *out_target_cnt)
581{
582	size_t off, name_off, desc_off, seg_cnt = 0, vma_seg_cnt = 0, target_cnt = 0;
583	struct elf_seg *segs = NULL, *vma_segs = NULL;
584	struct usdt_target *targets = NULL, *target;
585	long base_addr = 0;
586	Elf_Scn *notes_scn, *base_scn;
587	GElf_Shdr base_shdr, notes_shdr;
588	GElf_Ehdr ehdr;
589	GElf_Nhdr nhdr;
590	Elf_Data *data;
591	int err;
592
593	*out_targets = NULL;
594	*out_target_cnt = 0;
595
596	err = find_elf_sec_by_name(elf, USDT_NOTE_SEC, &notes_shdr, &notes_scn);
597	if (err) {
598		pr_warn("usdt: no USDT notes section (%s) found in '%s'\n", USDT_NOTE_SEC, path);
599		return err;
600	}
601
602	if (notes_shdr.sh_type != SHT_NOTE || !gelf_getehdr(elf, &ehdr)) {
603		pr_warn("usdt: invalid USDT notes section (%s) in '%s'\n", USDT_NOTE_SEC, path);
604		return -EINVAL;
605	}
606
607	err = parse_elf_segs(elf, path, &segs, &seg_cnt);
608	if (err) {
609		pr_warn("usdt: failed to process ELF program segments for '%s': %d\n", path, err);
610		goto err_out;
611	}
612
613	/* .stapsdt.base ELF section is optional, but is used for prelink
614	 * offset compensation (see a big comment further below)
615	 */
616	if (find_elf_sec_by_name(elf, USDT_BASE_SEC, &base_shdr, &base_scn) == 0)
617		base_addr = base_shdr.sh_addr;
618
619	data = elf_getdata(notes_scn, 0);
620	off = 0;
621	while ((off = gelf_getnote(data, off, &nhdr, &name_off, &desc_off)) > 0) {
622		long usdt_abs_ip, usdt_rel_ip, usdt_sema_off = 0;
623		struct usdt_note note;
624		struct elf_seg *seg = NULL;
625		void *tmp;
626
627		err = parse_usdt_note(elf, path, &nhdr, data->d_buf, name_off, desc_off, &note);
628		if (err)
629			goto err_out;
630
631		if (strcmp(note.provider, usdt_provider) != 0 || strcmp(note.name, usdt_name) != 0)
632			continue;
633
634		/* We need to compensate "prelink effect". See [0] for details,
635		 * relevant parts quoted here:
636		 *
637		 * Each SDT probe also expands into a non-allocated ELF note. You can
638		 * find this by looking at SHT_NOTE sections and decoding the format;
639		 * see below for details. Because the note is non-allocated, it means
640		 * there is no runtime cost, and also preserved in both stripped files
641		 * and .debug files.
642		 *
643		 * However, this means that prelink won't adjust the note's contents
644		 * for address offsets. Instead, this is done via the .stapsdt.base
645		 * section. This is a special section that is added to the text. We
646		 * will only ever have one of these sections in a final link and it
647		 * will only ever be one byte long. Nothing about this section itself
648		 * matters, we just use it as a marker to detect prelink address
649		 * adjustments.
650		 *
651		 * Each probe note records the link-time address of the .stapsdt.base
652		 * section alongside the probe PC address. The decoder compares the
653		 * base address stored in the note with the .stapsdt.base section's
654		 * sh_addr. Initially these are the same, but the section header will
655		 * be adjusted by prelink. So the decoder applies the difference to
656		 * the probe PC address to get the correct prelinked PC address; the
657		 * same adjustment is applied to the semaphore address, if any.
658		 *
659		 *   [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation
660		 */
661		usdt_abs_ip = note.loc_addr;
662		if (base_addr)
663			usdt_abs_ip += base_addr - note.base_addr;
664
665		/* When attaching uprobes (which is what USDTs basically are)
666		 * kernel expects file offset to be specified, not a relative
667		 * virtual address, so we need to translate virtual address to
668		 * file offset, for both ET_EXEC and ET_DYN binaries.
669		 */
670		seg = find_elf_seg(segs, seg_cnt, usdt_abs_ip);
671		if (!seg) {
672			err = -ESRCH;
673			pr_warn("usdt: failed to find ELF program segment for '%s:%s' in '%s' at IP 0x%lx\n",
674				usdt_provider, usdt_name, path, usdt_abs_ip);
675			goto err_out;
676		}
677		if (!seg->is_exec) {
678			err = -ESRCH;
679			pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx) for '%s:%s' at IP 0x%lx is not executable\n",
680				path, seg->start, seg->end, usdt_provider, usdt_name,
681				usdt_abs_ip);
682			goto err_out;
683		}
684		/* translate from virtual address to file offset */
685		usdt_rel_ip = usdt_abs_ip - seg->start + seg->offset;
686
687		if (ehdr.e_type == ET_DYN && !man->has_bpf_cookie) {
688			/* If we don't have BPF cookie support but need to
689			 * attach to a shared library, we'll need to know and
690			 * record absolute addresses of attach points due to
691			 * the need to lookup USDT spec by absolute IP of
692			 * triggered uprobe. Doing this resolution is only
693			 * possible when we have a specific PID of the process
694			 * that's using specified shared library. BPF cookie
695			 * removes the absolute address limitation as we don't
696			 * need to do this lookup (we just use BPF cookie as
697			 * an index of USDT spec), so for newer kernels with
698			 * BPF cookie support libbpf supports USDT attachment
699			 * to shared libraries with no PID filter.
700			 */
701			if (pid < 0) {
702				pr_warn("usdt: attaching to shared libraries without specific PID is not supported on current kernel\n");
703				err = -ENOTSUP;
704				goto err_out;
705			}
706
707			/* vma_segs are lazily initialized only if necessary */
708			if (vma_seg_cnt == 0) {
709				err = parse_vma_segs(pid, path, &vma_segs, &vma_seg_cnt);
710				if (err) {
711					pr_warn("usdt: failed to get memory segments in PID %d for shared library '%s': %d\n",
712						pid, path, err);
713					goto err_out;
714				}
715			}
716
717			seg = find_vma_seg(vma_segs, vma_seg_cnt, usdt_rel_ip);
718			if (!seg) {
719				err = -ESRCH;
720				pr_warn("usdt: failed to find shared lib memory segment for '%s:%s' in '%s' at relative IP 0x%lx\n",
721					usdt_provider, usdt_name, path, usdt_rel_ip);
722				goto err_out;
723			}
724
725			usdt_abs_ip = seg->start - seg->offset + usdt_rel_ip;
726		}
727
728		pr_debug("usdt: probe for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved abs_ip 0x%lx rel_ip 0x%lx) args '%s' in segment [0x%lx, 0x%lx) at offset 0x%lx\n",
729			 usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ", path,
730			 note.loc_addr, note.base_addr, usdt_abs_ip, usdt_rel_ip, note.args,
731			 seg ? seg->start : 0, seg ? seg->end : 0, seg ? seg->offset : 0);
732
733		/* Adjust semaphore address to be a file offset */
734		if (note.sema_addr) {
735			if (!man->has_sema_refcnt) {
736				pr_warn("usdt: kernel doesn't support USDT semaphore refcounting for '%s:%s' in '%s'\n",
737					usdt_provider, usdt_name, path);
738				err = -ENOTSUP;
739				goto err_out;
740			}
741
742			seg = find_elf_seg(segs, seg_cnt, note.sema_addr);
743			if (!seg) {
744				err = -ESRCH;
745				pr_warn("usdt: failed to find ELF loadable segment with semaphore of '%s:%s' in '%s' at 0x%lx\n",
746					usdt_provider, usdt_name, path, note.sema_addr);
747				goto err_out;
748			}
749			if (seg->is_exec) {
750				err = -ESRCH;
751				pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx] for semaphore of '%s:%s' at 0x%lx is executable\n",
752					path, seg->start, seg->end, usdt_provider, usdt_name,
753					note.sema_addr);
754				goto err_out;
755			}
756
757			usdt_sema_off = note.sema_addr - seg->start + seg->offset;
758
759			pr_debug("usdt: sema  for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved 0x%lx) in segment [0x%lx, 0x%lx] at offset 0x%lx\n",
760				 usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ",
761				 path, note.sema_addr, note.base_addr, usdt_sema_off,
762				 seg->start, seg->end, seg->offset);
763		}
764
765		/* Record adjusted addresses and offsets and parse USDT spec */
766		tmp = libbpf_reallocarray(targets, target_cnt + 1, sizeof(*targets));
767		if (!tmp) {
768			err = -ENOMEM;
769			goto err_out;
770		}
771		targets = tmp;
772
773		target = &targets[target_cnt];
774		memset(target, 0, sizeof(*target));
775
776		target->abs_ip = usdt_abs_ip;
777		target->rel_ip = usdt_rel_ip;
778		target->sema_off = usdt_sema_off;
779
780		/* notes.args references strings from ELF itself, so they can
781		 * be referenced safely until elf_end() call
782		 */
783		target->spec_str = note.args;
784
785		err = parse_usdt_spec(&target->spec, &note, usdt_cookie);
786		if (err)
787			goto err_out;
788
789		target_cnt++;
790	}
791
792	*out_targets = targets;
793	*out_target_cnt = target_cnt;
794	err = target_cnt;
795
796err_out:
797	free(segs);
798	free(vma_segs);
799	if (err < 0)
800		free(targets);
801	return err;
802}
803
804struct bpf_link_usdt {
805	struct bpf_link link;
806
807	struct usdt_manager *usdt_man;
808
809	size_t spec_cnt;
810	int *spec_ids;
811
812	size_t uprobe_cnt;
813	struct {
814		long abs_ip;
815		struct bpf_link *link;
816	} *uprobes;
817
818	struct bpf_link *multi_link;
819};
820
821static int bpf_link_usdt_detach(struct bpf_link *link)
822{
823	struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link);
824	struct usdt_manager *man = usdt_link->usdt_man;
825	int i;
826
827	bpf_link__destroy(usdt_link->multi_link);
828
829	/* When having multi_link, uprobe_cnt is 0 */
830	for (i = 0; i < usdt_link->uprobe_cnt; i++) {
831		/* detach underlying uprobe link */
832		bpf_link__destroy(usdt_link->uprobes[i].link);
833		/* there is no need to update specs map because it will be
834		 * unconditionally overwritten on subsequent USDT attaches,
835		 * but if BPF cookies are not used we need to remove entry
836		 * from ip_to_spec_id map, otherwise we'll run into false
837		 * conflicting IP errors
838		 */
839		if (!man->has_bpf_cookie) {
840			/* not much we can do about errors here */
841			(void)bpf_map_delete_elem(bpf_map__fd(man->ip_to_spec_id_map),
842						  &usdt_link->uprobes[i].abs_ip);
843		}
844	}
845
846	/* try to return the list of previously used spec IDs to usdt_manager
847	 * for future reuse for subsequent USDT attaches
848	 */
849	if (!man->free_spec_ids) {
850		/* if there were no free spec IDs yet, just transfer our IDs */
851		man->free_spec_ids = usdt_link->spec_ids;
852		man->free_spec_cnt = usdt_link->spec_cnt;
853		usdt_link->spec_ids = NULL;
854	} else {
855		/* otherwise concat IDs */
856		size_t new_cnt = man->free_spec_cnt + usdt_link->spec_cnt;
857		int *new_free_ids;
858
859		new_free_ids = libbpf_reallocarray(man->free_spec_ids, new_cnt,
860						   sizeof(*new_free_ids));
861		/* If we couldn't resize free_spec_ids, we'll just leak
862		 * a bunch of free IDs; this is very unlikely to happen and if
863		 * system is so exhausted on memory, it's the least of user's
864		 * concerns, probably.
865		 * So just do our best here to return those IDs to usdt_manager.
866		 * Another edge case when we can legitimately get NULL is when
867		 * new_cnt is zero, which can happen in some edge cases, so we
868		 * need to be careful about that.
869		 */
870		if (new_free_ids || new_cnt == 0) {
871			memcpy(new_free_ids + man->free_spec_cnt, usdt_link->spec_ids,
872			       usdt_link->spec_cnt * sizeof(*usdt_link->spec_ids));
873			man->free_spec_ids = new_free_ids;
874			man->free_spec_cnt = new_cnt;
875		}
876	}
877
878	return 0;
879}
880
881static void bpf_link_usdt_dealloc(struct bpf_link *link)
882{
883	struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link);
884
885	free(usdt_link->spec_ids);
886	free(usdt_link->uprobes);
887	free(usdt_link);
888}
889
890static size_t specs_hash_fn(long key, void *ctx)
891{
892	return str_hash((char *)key);
893}
894
895static bool specs_equal_fn(long key1, long key2, void *ctx)
896{
897	return strcmp((char *)key1, (char *)key2) == 0;
898}
899
900static int allocate_spec_id(struct usdt_manager *man, struct hashmap *specs_hash,
901			    struct bpf_link_usdt *link, struct usdt_target *target,
902			    int *spec_id, bool *is_new)
903{
904	long tmp;
905	void *new_ids;
906	int err;
907
908	/* check if we already allocated spec ID for this spec string */
909	if (hashmap__find(specs_hash, target->spec_str, &tmp)) {
910		*spec_id = tmp;
911		*is_new = false;
912		return 0;
913	}
914
915	/* otherwise it's a new ID that needs to be set up in specs map and
916	 * returned back to usdt_manager when USDT link is detached
917	 */
918	new_ids = libbpf_reallocarray(link->spec_ids, link->spec_cnt + 1, sizeof(*link->spec_ids));
919	if (!new_ids)
920		return -ENOMEM;
921	link->spec_ids = new_ids;
922
923	/* get next free spec ID, giving preference to free list, if not empty */
924	if (man->free_spec_cnt) {
925		*spec_id = man->free_spec_ids[man->free_spec_cnt - 1];
926
927		/* cache spec ID for current spec string for future lookups */
928		err = hashmap__add(specs_hash, target->spec_str, *spec_id);
929		if (err)
930			 return err;
931
932		man->free_spec_cnt--;
933	} else {
934		/* don't allocate spec ID bigger than what fits in specs map */
935		if (man->next_free_spec_id >= bpf_map__max_entries(man->specs_map))
936			return -E2BIG;
937
938		*spec_id = man->next_free_spec_id;
939
940		/* cache spec ID for current spec string for future lookups */
941		err = hashmap__add(specs_hash, target->spec_str, *spec_id);
942		if (err)
943			 return err;
944
945		man->next_free_spec_id++;
946	}
947
948	/* remember new spec ID in the link for later return back to free list on detach */
949	link->spec_ids[link->spec_cnt] = *spec_id;
950	link->spec_cnt++;
951	*is_new = true;
952	return 0;
953}
954
955struct bpf_link *usdt_manager_attach_usdt(struct usdt_manager *man, const struct bpf_program *prog,
956					  pid_t pid, const char *path,
957					  const char *usdt_provider, const char *usdt_name,
958					  __u64 usdt_cookie)
959{
960	unsigned long *offsets = NULL, *ref_ctr_offsets = NULL;
961	int i, err, spec_map_fd, ip_map_fd;
962	LIBBPF_OPTS(bpf_uprobe_opts, opts);
963	struct hashmap *specs_hash = NULL;
964	struct bpf_link_usdt *link = NULL;
965	struct usdt_target *targets = NULL;
966	__u64 *cookies = NULL;
967	struct elf_fd elf_fd;
968	size_t target_cnt;
969
970	spec_map_fd = bpf_map__fd(man->specs_map);
971	ip_map_fd = bpf_map__fd(man->ip_to_spec_id_map);
972
973	err = elf_open(path, &elf_fd);
974	if (err)
975		return libbpf_err_ptr(err);
976
977	err = sanity_check_usdt_elf(elf_fd.elf, path);
978	if (err)
979		goto err_out;
980
981	/* normalize PID filter */
982	if (pid < 0)
983		pid = -1;
984	else if (pid == 0)
985		pid = getpid();
986
987	/* discover USDT in given binary, optionally limiting
988	 * activations to a given PID, if pid > 0
989	 */
990	err = collect_usdt_targets(man, elf_fd.elf, path, pid, usdt_provider, usdt_name,
991				   usdt_cookie, &targets, &target_cnt);
992	if (err <= 0) {
993		err = (err == 0) ? -ENOENT : err;
994		goto err_out;
995	}
996
997	specs_hash = hashmap__new(specs_hash_fn, specs_equal_fn, NULL);
998	if (IS_ERR(specs_hash)) {
999		err = PTR_ERR(specs_hash);
1000		goto err_out;
1001	}
1002
1003	link = calloc(1, sizeof(*link));
1004	if (!link) {
1005		err = -ENOMEM;
1006		goto err_out;
1007	}
1008
1009	link->usdt_man = man;
1010	link->link.detach = &bpf_link_usdt_detach;
1011	link->link.dealloc = &bpf_link_usdt_dealloc;
1012
1013	if (man->has_uprobe_multi) {
1014		offsets = calloc(target_cnt, sizeof(*offsets));
1015		cookies = calloc(target_cnt, sizeof(*cookies));
1016		ref_ctr_offsets = calloc(target_cnt, sizeof(*ref_ctr_offsets));
1017
1018		if (!offsets || !ref_ctr_offsets || !cookies) {
1019			err = -ENOMEM;
1020			goto err_out;
1021		}
1022	} else {
1023		link->uprobes = calloc(target_cnt, sizeof(*link->uprobes));
1024		if (!link->uprobes) {
1025			err = -ENOMEM;
1026			goto err_out;
1027		}
1028	}
1029
1030	for (i = 0; i < target_cnt; i++) {
1031		struct usdt_target *target = &targets[i];
1032		struct bpf_link *uprobe_link;
1033		bool is_new;
1034		int spec_id;
1035
1036		/* Spec ID can be either reused or newly allocated. If it is
1037		 * newly allocated, we'll need to fill out spec map, otherwise
1038		 * entire spec should be valid and can be just used by a new
1039		 * uprobe. We reuse spec when USDT arg spec is identical. We
1040		 * also never share specs between two different USDT
1041		 * attachments ("links"), so all the reused specs already
1042		 * share USDT cookie value implicitly.
1043		 */
1044		err = allocate_spec_id(man, specs_hash, link, target, &spec_id, &is_new);
1045		if (err)
1046			goto err_out;
1047
1048		if (is_new && bpf_map_update_elem(spec_map_fd, &spec_id, &target->spec, BPF_ANY)) {
1049			err = -errno;
1050			pr_warn("usdt: failed to set USDT spec #%d for '%s:%s' in '%s': %d\n",
1051				spec_id, usdt_provider, usdt_name, path, err);
1052			goto err_out;
1053		}
1054		if (!man->has_bpf_cookie &&
1055		    bpf_map_update_elem(ip_map_fd, &target->abs_ip, &spec_id, BPF_NOEXIST)) {
1056			err = -errno;
1057			if (err == -EEXIST) {
1058				pr_warn("usdt: IP collision detected for spec #%d for '%s:%s' in '%s'\n",
1059				        spec_id, usdt_provider, usdt_name, path);
1060			} else {
1061				pr_warn("usdt: failed to map IP 0x%lx to spec #%d for '%s:%s' in '%s': %d\n",
1062					target->abs_ip, spec_id, usdt_provider, usdt_name,
1063					path, err);
1064			}
1065			goto err_out;
1066		}
1067
1068		if (man->has_uprobe_multi) {
1069			offsets[i] = target->rel_ip;
1070			ref_ctr_offsets[i] = target->sema_off;
1071			cookies[i] = spec_id;
1072		} else {
1073			opts.ref_ctr_offset = target->sema_off;
1074			opts.bpf_cookie = man->has_bpf_cookie ? spec_id : 0;
1075			uprobe_link = bpf_program__attach_uprobe_opts(prog, pid, path,
1076								      target->rel_ip, &opts);
1077			err = libbpf_get_error(uprobe_link);
1078			if (err) {
1079				pr_warn("usdt: failed to attach uprobe #%d for '%s:%s' in '%s': %d\n",
1080					i, usdt_provider, usdt_name, path, err);
1081				goto err_out;
1082			}
1083
1084			link->uprobes[i].link = uprobe_link;
1085			link->uprobes[i].abs_ip = target->abs_ip;
1086			link->uprobe_cnt++;
1087		}
1088	}
1089
1090	if (man->has_uprobe_multi) {
1091		LIBBPF_OPTS(bpf_uprobe_multi_opts, opts_multi,
1092			.ref_ctr_offsets = ref_ctr_offsets,
1093			.offsets = offsets,
1094			.cookies = cookies,
1095			.cnt = target_cnt,
1096		);
1097
1098		link->multi_link = bpf_program__attach_uprobe_multi(prog, pid, path,
1099								    NULL, &opts_multi);
1100		if (!link->multi_link) {
1101			err = -errno;
1102			pr_warn("usdt: failed to attach uprobe multi for '%s:%s' in '%s': %d\n",
1103				usdt_provider, usdt_name, path, err);
1104			goto err_out;
1105		}
1106
1107		free(offsets);
1108		free(ref_ctr_offsets);
1109		free(cookies);
1110	}
1111
1112	free(targets);
1113	hashmap__free(specs_hash);
1114	elf_close(&elf_fd);
1115	return &link->link;
1116
1117err_out:
1118	free(offsets);
1119	free(ref_ctr_offsets);
1120	free(cookies);
1121
1122	if (link)
1123		bpf_link__destroy(&link->link);
1124	free(targets);
1125	hashmap__free(specs_hash);
1126	elf_close(&elf_fd);
1127	return libbpf_err_ptr(err);
1128}
1129
1130/* Parse out USDT ELF note from '.note.stapsdt' section.
1131 * Logic inspired by perf's code.
1132 */
1133static int parse_usdt_note(Elf *elf, const char *path, GElf_Nhdr *nhdr,
1134			   const char *data, size_t name_off, size_t desc_off,
1135			   struct usdt_note *note)
1136{
1137	const char *provider, *name, *args;
1138	long addrs[3];
1139	size_t len;
1140
1141	/* sanity check USDT note name and type first */
1142	if (strncmp(data + name_off, USDT_NOTE_NAME, nhdr->n_namesz) != 0)
1143		return -EINVAL;
1144	if (nhdr->n_type != USDT_NOTE_TYPE)
1145		return -EINVAL;
1146
1147	/* sanity check USDT note contents ("description" in ELF terminology) */
1148	len = nhdr->n_descsz;
1149	data = data + desc_off;
1150
1151	/* +3 is the very minimum required to store three empty strings */
1152	if (len < sizeof(addrs) + 3)
1153		return -EINVAL;
1154
1155	/* get location, base, and semaphore addrs */
1156	memcpy(&addrs, data, sizeof(addrs));
1157
1158	/* parse string fields: provider, name, args */
1159	provider = data + sizeof(addrs);
1160
1161	name = (const char *)memchr(provider, '\0', data + len - provider);
1162	if (!name) /* non-zero-terminated provider */
1163		return -EINVAL;
1164	name++;
1165	if (name >= data + len || *name == '\0') /* missing or empty name */
1166		return -EINVAL;
1167
1168	args = memchr(name, '\0', data + len - name);
1169	if (!args) /* non-zero-terminated name */
1170		return -EINVAL;
1171	++args;
1172	if (args >= data + len) /* missing arguments spec */
1173		return -EINVAL;
1174
1175	note->provider = provider;
1176	note->name = name;
1177	if (*args == '\0' || *args == ':')
1178		note->args = "";
1179	else
1180		note->args = args;
1181	note->loc_addr = addrs[0];
1182	note->base_addr = addrs[1];
1183	note->sema_addr = addrs[2];
1184
1185	return 0;
1186}
1187
1188static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz);
1189
1190static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie)
1191{
1192	struct usdt_arg_spec *arg;
1193	const char *s;
1194	int arg_sz, len;
1195
1196	spec->usdt_cookie = usdt_cookie;
1197	spec->arg_cnt = 0;
1198
1199	s = note->args;
1200	while (s[0]) {
1201		if (spec->arg_cnt >= USDT_MAX_ARG_CNT) {
1202			pr_warn("usdt: too many USDT arguments (> %d) for '%s:%s' with args spec '%s'\n",
1203				USDT_MAX_ARG_CNT, note->provider, note->name, note->args);
1204			return -E2BIG;
1205		}
1206
1207		arg = &spec->args[spec->arg_cnt];
1208		len = parse_usdt_arg(s, spec->arg_cnt, arg, &arg_sz);
1209		if (len < 0)
1210			return len;
1211
1212		arg->arg_signed = arg_sz < 0;
1213		if (arg_sz < 0)
1214			arg_sz = -arg_sz;
1215
1216		switch (arg_sz) {
1217		case 1: case 2: case 4: case 8:
1218			arg->arg_bitshift = 64 - arg_sz * 8;
1219			break;
1220		default:
1221			pr_warn("usdt: unsupported arg #%d (spec '%s') size: %d\n",
1222				spec->arg_cnt, s, arg_sz);
1223			return -EINVAL;
1224		}
1225
1226		s += len;
1227		spec->arg_cnt++;
1228	}
1229
1230	return 0;
1231}
1232
1233/* Architecture-specific logic for parsing USDT argument location specs */
1234
1235#if defined(__x86_64__) || defined(__i386__)
1236
1237static int calc_pt_regs_off(const char *reg_name)
1238{
1239	static struct {
1240		const char *names[4];
1241		size_t pt_regs_off;
1242	} reg_map[] = {
1243#ifdef __x86_64__
1244#define reg_off(reg64, reg32) offsetof(struct pt_regs, reg64)
1245#else
1246#define reg_off(reg64, reg32) offsetof(struct pt_regs, reg32)
1247#endif
1248		{ {"rip", "eip", "", ""}, reg_off(rip, eip) },
1249		{ {"rax", "eax", "ax", "al"}, reg_off(rax, eax) },
1250		{ {"rbx", "ebx", "bx", "bl"}, reg_off(rbx, ebx) },
1251		{ {"rcx", "ecx", "cx", "cl"}, reg_off(rcx, ecx) },
1252		{ {"rdx", "edx", "dx", "dl"}, reg_off(rdx, edx) },
1253		{ {"rsi", "esi", "si", "sil"}, reg_off(rsi, esi) },
1254		{ {"rdi", "edi", "di", "dil"}, reg_off(rdi, edi) },
1255		{ {"rbp", "ebp", "bp", "bpl"}, reg_off(rbp, ebp) },
1256		{ {"rsp", "esp", "sp", "spl"}, reg_off(rsp, esp) },
1257#undef reg_off
1258#ifdef __x86_64__
1259		{ {"r8", "r8d", "r8w", "r8b"}, offsetof(struct pt_regs, r8) },
1260		{ {"r9", "r9d", "r9w", "r9b"}, offsetof(struct pt_regs, r9) },
1261		{ {"r10", "r10d", "r10w", "r10b"}, offsetof(struct pt_regs, r10) },
1262		{ {"r11", "r11d", "r11w", "r11b"}, offsetof(struct pt_regs, r11) },
1263		{ {"r12", "r12d", "r12w", "r12b"}, offsetof(struct pt_regs, r12) },
1264		{ {"r13", "r13d", "r13w", "r13b"}, offsetof(struct pt_regs, r13) },
1265		{ {"r14", "r14d", "r14w", "r14b"}, offsetof(struct pt_regs, r14) },
1266		{ {"r15", "r15d", "r15w", "r15b"}, offsetof(struct pt_regs, r15) },
1267#endif
1268	};
1269	int i, j;
1270
1271	for (i = 0; i < ARRAY_SIZE(reg_map); i++) {
1272		for (j = 0; j < ARRAY_SIZE(reg_map[i].names); j++) {
1273			if (strcmp(reg_name, reg_map[i].names[j]) == 0)
1274				return reg_map[i].pt_regs_off;
1275		}
1276	}
1277
1278	pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1279	return -ENOENT;
1280}
1281
1282static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1283{
1284	char reg_name[16];
1285	int len, reg_off;
1286	long off;
1287
1288	if (sscanf(arg_str, " %d @ %ld ( %%%15[^)] ) %n", arg_sz, &off, reg_name, &len) == 3) {
1289		/* Memory dereference case, e.g., -4@-20(%rbp) */
1290		arg->arg_type = USDT_ARG_REG_DEREF;
1291		arg->val_off = off;
1292		reg_off = calc_pt_regs_off(reg_name);
1293		if (reg_off < 0)
1294			return reg_off;
1295		arg->reg_off = reg_off;
1296	} else if (sscanf(arg_str, " %d @ ( %%%15[^)] ) %n", arg_sz, reg_name, &len) == 2) {
1297		/* Memory dereference case without offset, e.g., 8@(%rsp) */
1298		arg->arg_type = USDT_ARG_REG_DEREF;
1299		arg->val_off = 0;
1300		reg_off = calc_pt_regs_off(reg_name);
1301		if (reg_off < 0)
1302			return reg_off;
1303		arg->reg_off = reg_off;
1304	} else if (sscanf(arg_str, " %d @ %%%15s %n", arg_sz, reg_name, &len) == 2) {
1305		/* Register read case, e.g., -4@%eax */
1306		arg->arg_type = USDT_ARG_REG;
1307		arg->val_off = 0;
1308
1309		reg_off = calc_pt_regs_off(reg_name);
1310		if (reg_off < 0)
1311			return reg_off;
1312		arg->reg_off = reg_off;
1313	} else if (sscanf(arg_str, " %d @ $%ld %n", arg_sz, &off, &len) == 2) {
1314		/* Constant value case, e.g., 4@$71 */
1315		arg->arg_type = USDT_ARG_CONST;
1316		arg->val_off = off;
1317		arg->reg_off = 0;
1318	} else {
1319		pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1320		return -EINVAL;
1321	}
1322
1323	return len;
1324}
1325
1326#elif defined(__s390x__)
1327
1328/* Do not support __s390__ for now, since user_pt_regs is broken with -m31. */
1329
1330static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1331{
1332	unsigned int reg;
1333	int len;
1334	long off;
1335
1336	if (sscanf(arg_str, " %d @ %ld ( %%r%u ) %n", arg_sz, &off, &reg, &len) == 3) {
1337		/* Memory dereference case, e.g., -2@-28(%r15) */
1338		arg->arg_type = USDT_ARG_REG_DEREF;
1339		arg->val_off = off;
1340		if (reg > 15) {
1341			pr_warn("usdt: unrecognized register '%%r%u'\n", reg);
1342			return -EINVAL;
1343		}
1344		arg->reg_off = offsetof(user_pt_regs, gprs[reg]);
1345	} else if (sscanf(arg_str, " %d @ %%r%u %n", arg_sz, &reg, &len) == 2) {
1346		/* Register read case, e.g., -8@%r0 */
1347		arg->arg_type = USDT_ARG_REG;
1348		arg->val_off = 0;
1349		if (reg > 15) {
1350			pr_warn("usdt: unrecognized register '%%r%u'\n", reg);
1351			return -EINVAL;
1352		}
1353		arg->reg_off = offsetof(user_pt_regs, gprs[reg]);
1354	} else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) {
1355		/* Constant value case, e.g., 4@71 */
1356		arg->arg_type = USDT_ARG_CONST;
1357		arg->val_off = off;
1358		arg->reg_off = 0;
1359	} else {
1360		pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1361		return -EINVAL;
1362	}
1363
1364	return len;
1365}
1366
1367#elif defined(__aarch64__)
1368
1369static int calc_pt_regs_off(const char *reg_name)
1370{
1371	int reg_num;
1372
1373	if (sscanf(reg_name, "x%d", &reg_num) == 1) {
1374		if (reg_num >= 0 && reg_num < 31)
1375			return offsetof(struct user_pt_regs, regs[reg_num]);
1376	} else if (strcmp(reg_name, "sp") == 0) {
1377		return offsetof(struct user_pt_regs, sp);
1378	}
1379	pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1380	return -ENOENT;
1381}
1382
1383static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1384{
1385	char reg_name[16];
1386	int len, reg_off;
1387	long off;
1388
1389	if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] , %ld ] %n", arg_sz, reg_name, &off, &len) == 3) {
1390		/* Memory dereference case, e.g., -4@[sp, 96] */
1391		arg->arg_type = USDT_ARG_REG_DEREF;
1392		arg->val_off = off;
1393		reg_off = calc_pt_regs_off(reg_name);
1394		if (reg_off < 0)
1395			return reg_off;
1396		arg->reg_off = reg_off;
1397	} else if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] ] %n", arg_sz, reg_name, &len) == 2) {
1398		/* Memory dereference case, e.g., -4@[sp] */
1399		arg->arg_type = USDT_ARG_REG_DEREF;
1400		arg->val_off = 0;
1401		reg_off = calc_pt_regs_off(reg_name);
1402		if (reg_off < 0)
1403			return reg_off;
1404		arg->reg_off = reg_off;
1405	} else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) {
1406		/* Constant value case, e.g., 4@5 */
1407		arg->arg_type = USDT_ARG_CONST;
1408		arg->val_off = off;
1409		arg->reg_off = 0;
1410	} else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) {
1411		/* Register read case, e.g., -8@x4 */
1412		arg->arg_type = USDT_ARG_REG;
1413		arg->val_off = 0;
1414		reg_off = calc_pt_regs_off(reg_name);
1415		if (reg_off < 0)
1416			return reg_off;
1417		arg->reg_off = reg_off;
1418	} else {
1419		pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1420		return -EINVAL;
1421	}
1422
1423	return len;
1424}
1425
1426#elif defined(__riscv)
1427
1428static int calc_pt_regs_off(const char *reg_name)
1429{
1430	static struct {
1431		const char *name;
1432		size_t pt_regs_off;
1433	} reg_map[] = {
1434		{ "ra", offsetof(struct user_regs_struct, ra) },
1435		{ "sp", offsetof(struct user_regs_struct, sp) },
1436		{ "gp", offsetof(struct user_regs_struct, gp) },
1437		{ "tp", offsetof(struct user_regs_struct, tp) },
1438		{ "a0", offsetof(struct user_regs_struct, a0) },
1439		{ "a1", offsetof(struct user_regs_struct, a1) },
1440		{ "a2", offsetof(struct user_regs_struct, a2) },
1441		{ "a3", offsetof(struct user_regs_struct, a3) },
1442		{ "a4", offsetof(struct user_regs_struct, a4) },
1443		{ "a5", offsetof(struct user_regs_struct, a5) },
1444		{ "a6", offsetof(struct user_regs_struct, a6) },
1445		{ "a7", offsetof(struct user_regs_struct, a7) },
1446		{ "s0", offsetof(struct user_regs_struct, s0) },
1447		{ "s1", offsetof(struct user_regs_struct, s1) },
1448		{ "s2", offsetof(struct user_regs_struct, s2) },
1449		{ "s3", offsetof(struct user_regs_struct, s3) },
1450		{ "s4", offsetof(struct user_regs_struct, s4) },
1451		{ "s5", offsetof(struct user_regs_struct, s5) },
1452		{ "s6", offsetof(struct user_regs_struct, s6) },
1453		{ "s7", offsetof(struct user_regs_struct, s7) },
1454		{ "s8", offsetof(struct user_regs_struct, rv_s8) },
1455		{ "s9", offsetof(struct user_regs_struct, s9) },
1456		{ "s10", offsetof(struct user_regs_struct, s10) },
1457		{ "s11", offsetof(struct user_regs_struct, s11) },
1458		{ "t0", offsetof(struct user_regs_struct, t0) },
1459		{ "t1", offsetof(struct user_regs_struct, t1) },
1460		{ "t2", offsetof(struct user_regs_struct, t2) },
1461		{ "t3", offsetof(struct user_regs_struct, t3) },
1462		{ "t4", offsetof(struct user_regs_struct, t4) },
1463		{ "t5", offsetof(struct user_regs_struct, t5) },
1464		{ "t6", offsetof(struct user_regs_struct, t6) },
1465	};
1466	int i;
1467
1468	for (i = 0; i < ARRAY_SIZE(reg_map); i++) {
1469		if (strcmp(reg_name, reg_map[i].name) == 0)
1470			return reg_map[i].pt_regs_off;
1471	}
1472
1473	pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1474	return -ENOENT;
1475}
1476
1477static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1478{
1479	char reg_name[16];
1480	int len, reg_off;
1481	long off;
1482
1483	if (sscanf(arg_str, " %d @ %ld ( %15[a-z0-9] ) %n", arg_sz, &off, reg_name, &len) == 3) {
1484		/* Memory dereference case, e.g., -8@-88(s0) */
1485		arg->arg_type = USDT_ARG_REG_DEREF;
1486		arg->val_off = off;
1487		reg_off = calc_pt_regs_off(reg_name);
1488		if (reg_off < 0)
1489			return reg_off;
1490		arg->reg_off = reg_off;
1491	} else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) {
1492		/* Constant value case, e.g., 4@5 */
1493		arg->arg_type = USDT_ARG_CONST;
1494		arg->val_off = off;
1495		arg->reg_off = 0;
1496	} else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) {
1497		/* Register read case, e.g., -8@a1 */
1498		arg->arg_type = USDT_ARG_REG;
1499		arg->val_off = 0;
1500		reg_off = calc_pt_regs_off(reg_name);
1501		if (reg_off < 0)
1502			return reg_off;
1503		arg->reg_off = reg_off;
1504	} else {
1505		pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1506		return -EINVAL;
1507	}
1508
1509	return len;
1510}
1511
1512#elif defined(__arm__)
1513
1514static int calc_pt_regs_off(const char *reg_name)
1515{
1516	static struct {
1517		const char *name;
1518		size_t pt_regs_off;
1519	} reg_map[] = {
1520		{ "r0", offsetof(struct pt_regs, uregs[0]) },
1521		{ "r1", offsetof(struct pt_regs, uregs[1]) },
1522		{ "r2", offsetof(struct pt_regs, uregs[2]) },
1523		{ "r3", offsetof(struct pt_regs, uregs[3]) },
1524		{ "r4", offsetof(struct pt_regs, uregs[4]) },
1525		{ "r5", offsetof(struct pt_regs, uregs[5]) },
1526		{ "r6", offsetof(struct pt_regs, uregs[6]) },
1527		{ "r7", offsetof(struct pt_regs, uregs[7]) },
1528		{ "r8", offsetof(struct pt_regs, uregs[8]) },
1529		{ "r9", offsetof(struct pt_regs, uregs[9]) },
1530		{ "r10", offsetof(struct pt_regs, uregs[10]) },
1531		{ "fp", offsetof(struct pt_regs, uregs[11]) },
1532		{ "ip", offsetof(struct pt_regs, uregs[12]) },
1533		{ "sp", offsetof(struct pt_regs, uregs[13]) },
1534		{ "lr", offsetof(struct pt_regs, uregs[14]) },
1535		{ "pc", offsetof(struct pt_regs, uregs[15]) },
1536	};
1537	int i;
1538
1539	for (i = 0; i < ARRAY_SIZE(reg_map); i++) {
1540		if (strcmp(reg_name, reg_map[i].name) == 0)
1541			return reg_map[i].pt_regs_off;
1542	}
1543
1544	pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1545	return -ENOENT;
1546}
1547
1548static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1549{
1550	char reg_name[16];
1551	int len, reg_off;
1552	long off;
1553
1554	if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] , #%ld ] %n",
1555		   arg_sz, reg_name, &off, &len) == 3) {
1556		/* Memory dereference case, e.g., -4@[fp, #96] */
1557		arg->arg_type = USDT_ARG_REG_DEREF;
1558		arg->val_off = off;
1559		reg_off = calc_pt_regs_off(reg_name);
1560		if (reg_off < 0)
1561			return reg_off;
1562		arg->reg_off = reg_off;
1563	} else if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] ] %n", arg_sz, reg_name, &len) == 2) {
1564		/* Memory dereference case, e.g., -4@[sp] */
1565		arg->arg_type = USDT_ARG_REG_DEREF;
1566		arg->val_off = 0;
1567		reg_off = calc_pt_regs_off(reg_name);
1568		if (reg_off < 0)
1569			return reg_off;
1570		arg->reg_off = reg_off;
1571	} else if (sscanf(arg_str, " %d @ #%ld %n", arg_sz, &off, &len) == 2) {
1572		/* Constant value case, e.g., 4@#5 */
1573		arg->arg_type = USDT_ARG_CONST;
1574		arg->val_off = off;
1575		arg->reg_off = 0;
1576	} else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) {
1577		/* Register read case, e.g., -8@r4 */
1578		arg->arg_type = USDT_ARG_REG;
1579		arg->val_off = 0;
1580		reg_off = calc_pt_regs_off(reg_name);
1581		if (reg_off < 0)
1582			return reg_off;
1583		arg->reg_off = reg_off;
1584	} else {
1585		pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1586		return -EINVAL;
1587	}
1588
1589	return len;
1590}
1591
1592#else
1593
1594static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1595{
1596	pr_warn("usdt: libbpf doesn't support USDTs on current architecture\n");
1597	return -ENOTSUP;
1598}
1599
1600#endif
1601