1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2/* Copyright (c) 2019 Facebook */
3
4#ifdef __KERNEL__
5#include <linux/bpf.h>
6#include <linux/btf.h>
7#include <linux/string.h>
8#include <linux/bpf_verifier.h>
9#include "relo_core.h"
10
11static const char *btf_kind_str(const struct btf_type *t)
12{
13	return btf_type_str(t);
14}
15
16static bool is_ldimm64_insn(struct bpf_insn *insn)
17{
18	return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
19}
20
21static const struct btf_type *
22skip_mods_and_typedefs(const struct btf *btf, u32 id, u32 *res_id)
23{
24	return btf_type_skip_modifiers(btf, id, res_id);
25}
26
27static const char *btf__name_by_offset(const struct btf *btf, u32 offset)
28{
29	return btf_name_by_offset(btf, offset);
30}
31
32static s64 btf__resolve_size(const struct btf *btf, u32 type_id)
33{
34	const struct btf_type *t;
35	int size;
36
37	t = btf_type_by_id(btf, type_id);
38	t = btf_resolve_size(btf, t, &size);
39	if (IS_ERR(t))
40		return PTR_ERR(t);
41	return size;
42}
43
44enum libbpf_print_level {
45	LIBBPF_WARN,
46	LIBBPF_INFO,
47	LIBBPF_DEBUG,
48};
49
50#undef pr_warn
51#undef pr_info
52#undef pr_debug
53#define pr_warn(fmt, log, ...)	bpf_log((void *)log, fmt, "", ##__VA_ARGS__)
54#define pr_info(fmt, log, ...)	bpf_log((void *)log, fmt, "", ##__VA_ARGS__)
55#define pr_debug(fmt, log, ...)	bpf_log((void *)log, fmt, "", ##__VA_ARGS__)
56#define libbpf_print(level, fmt, ...)	bpf_log((void *)prog_name, fmt, ##__VA_ARGS__)
57#else
58#include <stdio.h>
59#include <string.h>
60#include <errno.h>
61#include <ctype.h>
62#include <linux/err.h>
63
64#include "libbpf.h"
65#include "bpf.h"
66#include "btf.h"
67#include "str_error.h"
68#include "libbpf_internal.h"
69#endif
70
71static bool is_flex_arr(const struct btf *btf,
72			const struct bpf_core_accessor *acc,
73			const struct btf_array *arr)
74{
75	const struct btf_type *t;
76
77	/* not a flexible array, if not inside a struct or has non-zero size */
78	if (!acc->name || arr->nelems > 0)
79		return false;
80
81	/* has to be the last member of enclosing struct */
82	t = btf_type_by_id(btf, acc->type_id);
83	return acc->idx == btf_vlen(t) - 1;
84}
85
86static const char *core_relo_kind_str(enum bpf_core_relo_kind kind)
87{
88	switch (kind) {
89	case BPF_CORE_FIELD_BYTE_OFFSET: return "byte_off";
90	case BPF_CORE_FIELD_BYTE_SIZE: return "byte_sz";
91	case BPF_CORE_FIELD_EXISTS: return "field_exists";
92	case BPF_CORE_FIELD_SIGNED: return "signed";
93	case BPF_CORE_FIELD_LSHIFT_U64: return "lshift_u64";
94	case BPF_CORE_FIELD_RSHIFT_U64: return "rshift_u64";
95	case BPF_CORE_TYPE_ID_LOCAL: return "local_type_id";
96	case BPF_CORE_TYPE_ID_TARGET: return "target_type_id";
97	case BPF_CORE_TYPE_EXISTS: return "type_exists";
98	case BPF_CORE_TYPE_MATCHES: return "type_matches";
99	case BPF_CORE_TYPE_SIZE: return "type_size";
100	case BPF_CORE_ENUMVAL_EXISTS: return "enumval_exists";
101	case BPF_CORE_ENUMVAL_VALUE: return "enumval_value";
102	default: return "unknown";
103	}
104}
105
106static bool core_relo_is_field_based(enum bpf_core_relo_kind kind)
107{
108	switch (kind) {
109	case BPF_CORE_FIELD_BYTE_OFFSET:
110	case BPF_CORE_FIELD_BYTE_SIZE:
111	case BPF_CORE_FIELD_EXISTS:
112	case BPF_CORE_FIELD_SIGNED:
113	case BPF_CORE_FIELD_LSHIFT_U64:
114	case BPF_CORE_FIELD_RSHIFT_U64:
115		return true;
116	default:
117		return false;
118	}
119}
120
121static bool core_relo_is_type_based(enum bpf_core_relo_kind kind)
122{
123	switch (kind) {
124	case BPF_CORE_TYPE_ID_LOCAL:
125	case BPF_CORE_TYPE_ID_TARGET:
126	case BPF_CORE_TYPE_EXISTS:
127	case BPF_CORE_TYPE_MATCHES:
128	case BPF_CORE_TYPE_SIZE:
129		return true;
130	default:
131		return false;
132	}
133}
134
135static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind)
136{
137	switch (kind) {
138	case BPF_CORE_ENUMVAL_EXISTS:
139	case BPF_CORE_ENUMVAL_VALUE:
140		return true;
141	default:
142		return false;
143	}
144}
145
146int __bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
147				const struct btf *targ_btf, __u32 targ_id, int level)
148{
149	const struct btf_type *local_type, *targ_type;
150	int depth = 32; /* max recursion depth */
151
152	/* caller made sure that names match (ignoring flavor suffix) */
153	local_type = btf_type_by_id(local_btf, local_id);
154	targ_type = btf_type_by_id(targ_btf, targ_id);
155	if (!btf_kind_core_compat(local_type, targ_type))
156		return 0;
157
158recur:
159	depth--;
160	if (depth < 0)
161		return -EINVAL;
162
163	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
164	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
165	if (!local_type || !targ_type)
166		return -EINVAL;
167
168	if (!btf_kind_core_compat(local_type, targ_type))
169		return 0;
170
171	switch (btf_kind(local_type)) {
172	case BTF_KIND_UNKN:
173	case BTF_KIND_STRUCT:
174	case BTF_KIND_UNION:
175	case BTF_KIND_ENUM:
176	case BTF_KIND_FWD:
177	case BTF_KIND_ENUM64:
178		return 1;
179	case BTF_KIND_INT:
180		/* just reject deprecated bitfield-like integers; all other
181		 * integers are by default compatible between each other
182		 */
183		return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
184	case BTF_KIND_PTR:
185		local_id = local_type->type;
186		targ_id = targ_type->type;
187		goto recur;
188	case BTF_KIND_ARRAY:
189		local_id = btf_array(local_type)->type;
190		targ_id = btf_array(targ_type)->type;
191		goto recur;
192	case BTF_KIND_FUNC_PROTO: {
193		struct btf_param *local_p = btf_params(local_type);
194		struct btf_param *targ_p = btf_params(targ_type);
195		__u16 local_vlen = btf_vlen(local_type);
196		__u16 targ_vlen = btf_vlen(targ_type);
197		int i, err;
198
199		if (local_vlen != targ_vlen)
200			return 0;
201
202		for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
203			if (level <= 0)
204				return -EINVAL;
205
206			skip_mods_and_typedefs(local_btf, local_p->type, &local_id);
207			skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id);
208			err = __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
209							  level - 1);
210			if (err <= 0)
211				return err;
212		}
213
214		/* tail recurse for return type check */
215		skip_mods_and_typedefs(local_btf, local_type->type, &local_id);
216		skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id);
217		goto recur;
218	}
219	default:
220		pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
221			btf_kind_str(local_type), local_id, targ_id);
222		return 0;
223	}
224}
225
226/*
227 * Turn bpf_core_relo into a low- and high-level spec representation,
228 * validating correctness along the way, as well as calculating resulting
229 * field bit offset, specified by accessor string. Low-level spec captures
230 * every single level of nestedness, including traversing anonymous
231 * struct/union members. High-level one only captures semantically meaningful
232 * "turning points": named fields and array indicies.
233 * E.g., for this case:
234 *
235 *   struct sample {
236 *       int __unimportant;
237 *       struct {
238 *           int __1;
239 *           int __2;
240 *           int a[7];
241 *       };
242 *   };
243 *
244 *   struct sample *s = ...;
245 *
246 *   int x = &s->a[3]; // access string = '0:1:2:3'
247 *
248 * Low-level spec has 1:1 mapping with each element of access string (it's
249 * just a parsed access string representation): [0, 1, 2, 3].
250 *
251 * High-level spec will capture only 3 points:
252 *   - initial zero-index access by pointer (&s->... is the same as &s[0]...);
253 *   - field 'a' access (corresponds to '2' in low-level spec);
254 *   - array element #3 access (corresponds to '3' in low-level spec).
255 *
256 * Type-based relocations (TYPE_EXISTS/TYPE_MATCHES/TYPE_SIZE,
257 * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their
258 * spec and raw_spec are kept empty.
259 *
260 * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access
261 * string to specify enumerator's value index that need to be relocated.
262 */
263int bpf_core_parse_spec(const char *prog_name, const struct btf *btf,
264			const struct bpf_core_relo *relo,
265			struct bpf_core_spec *spec)
266{
267	int access_idx, parsed_len, i;
268	struct bpf_core_accessor *acc;
269	const struct btf_type *t;
270	const char *name, *spec_str;
271	__u32 id, name_off;
272	__s64 sz;
273
274	spec_str = btf__name_by_offset(btf, relo->access_str_off);
275	if (str_is_empty(spec_str) || *spec_str == ':')
276		return -EINVAL;
277
278	memset(spec, 0, sizeof(*spec));
279	spec->btf = btf;
280	spec->root_type_id = relo->type_id;
281	spec->relo_kind = relo->kind;
282
283	/* type-based relocations don't have a field access string */
284	if (core_relo_is_type_based(relo->kind)) {
285		if (strcmp(spec_str, "0"))
286			return -EINVAL;
287		return 0;
288	}
289
290	/* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */
291	while (*spec_str) {
292		if (*spec_str == ':')
293			++spec_str;
294		if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1)
295			return -EINVAL;
296		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
297			return -E2BIG;
298		spec_str += parsed_len;
299		spec->raw_spec[spec->raw_len++] = access_idx;
300	}
301
302	if (spec->raw_len == 0)
303		return -EINVAL;
304
305	t = skip_mods_and_typedefs(btf, relo->type_id, &id);
306	if (!t)
307		return -EINVAL;
308
309	access_idx = spec->raw_spec[0];
310	acc = &spec->spec[0];
311	acc->type_id = id;
312	acc->idx = access_idx;
313	spec->len++;
314
315	if (core_relo_is_enumval_based(relo->kind)) {
316		if (!btf_is_any_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t))
317			return -EINVAL;
318
319		/* record enumerator name in a first accessor */
320		name_off = btf_is_enum(t) ? btf_enum(t)[access_idx].name_off
321					  : btf_enum64(t)[access_idx].name_off;
322		acc->name = btf__name_by_offset(btf, name_off);
323		return 0;
324	}
325
326	if (!core_relo_is_field_based(relo->kind))
327		return -EINVAL;
328
329	sz = btf__resolve_size(btf, id);
330	if (sz < 0)
331		return sz;
332	spec->bit_offset = access_idx * sz * 8;
333
334	for (i = 1; i < spec->raw_len; i++) {
335		t = skip_mods_and_typedefs(btf, id, &id);
336		if (!t)
337			return -EINVAL;
338
339		access_idx = spec->raw_spec[i];
340		acc = &spec->spec[spec->len];
341
342		if (btf_is_composite(t)) {
343			const struct btf_member *m;
344			__u32 bit_offset;
345
346			if (access_idx >= btf_vlen(t))
347				return -EINVAL;
348
349			bit_offset = btf_member_bit_offset(t, access_idx);
350			spec->bit_offset += bit_offset;
351
352			m = btf_members(t) + access_idx;
353			if (m->name_off) {
354				name = btf__name_by_offset(btf, m->name_off);
355				if (str_is_empty(name))
356					return -EINVAL;
357
358				acc->type_id = id;
359				acc->idx = access_idx;
360				acc->name = name;
361				spec->len++;
362			}
363
364			id = m->type;
365		} else if (btf_is_array(t)) {
366			const struct btf_array *a = btf_array(t);
367			bool flex;
368
369			t = skip_mods_and_typedefs(btf, a->type, &id);
370			if (!t)
371				return -EINVAL;
372
373			flex = is_flex_arr(btf, acc - 1, a);
374			if (!flex && access_idx >= a->nelems)
375				return -EINVAL;
376
377			spec->spec[spec->len].type_id = id;
378			spec->spec[spec->len].idx = access_idx;
379			spec->len++;
380
381			sz = btf__resolve_size(btf, id);
382			if (sz < 0)
383				return sz;
384			spec->bit_offset += access_idx * sz * 8;
385		} else {
386			pr_warn("prog '%s': relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n",
387				prog_name, relo->type_id, spec_str, i, id, btf_kind_str(t));
388			return -EINVAL;
389		}
390	}
391
392	return 0;
393}
394
395/* Check two types for compatibility for the purpose of field access
396 * relocation. const/volatile/restrict and typedefs are skipped to ensure we
397 * are relocating semantically compatible entities:
398 *   - any two STRUCTs/UNIONs are compatible and can be mixed;
399 *   - any two FWDs are compatible, if their names match (modulo flavor suffix);
400 *   - any two PTRs are always compatible;
401 *   - for ENUMs, names should be the same (ignoring flavor suffix) or at
402 *     least one of enums should be anonymous;
403 *   - for ENUMs, check sizes, names are ignored;
404 *   - for INT, size and signedness are ignored;
405 *   - any two FLOATs are always compatible;
406 *   - for ARRAY, dimensionality is ignored, element types are checked for
407 *     compatibility recursively;
408 *   - everything else shouldn't be ever a target of relocation.
409 * These rules are not set in stone and probably will be adjusted as we get
410 * more experience with using BPF CO-RE relocations.
411 */
412static int bpf_core_fields_are_compat(const struct btf *local_btf,
413				      __u32 local_id,
414				      const struct btf *targ_btf,
415				      __u32 targ_id)
416{
417	const struct btf_type *local_type, *targ_type;
418
419recur:
420	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
421	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
422	if (!local_type || !targ_type)
423		return -EINVAL;
424
425	if (btf_is_composite(local_type) && btf_is_composite(targ_type))
426		return 1;
427	if (!btf_kind_core_compat(local_type, targ_type))
428		return 0;
429
430	switch (btf_kind(local_type)) {
431	case BTF_KIND_PTR:
432	case BTF_KIND_FLOAT:
433		return 1;
434	case BTF_KIND_FWD:
435	case BTF_KIND_ENUM64:
436	case BTF_KIND_ENUM: {
437		const char *local_name, *targ_name;
438		size_t local_len, targ_len;
439
440		local_name = btf__name_by_offset(local_btf,
441						 local_type->name_off);
442		targ_name = btf__name_by_offset(targ_btf, targ_type->name_off);
443		local_len = bpf_core_essential_name_len(local_name);
444		targ_len = bpf_core_essential_name_len(targ_name);
445		/* one of them is anonymous or both w/ same flavor-less names */
446		return local_len == 0 || targ_len == 0 ||
447		       (local_len == targ_len &&
448			strncmp(local_name, targ_name, local_len) == 0);
449	}
450	case BTF_KIND_INT:
451		/* just reject deprecated bitfield-like integers; all other
452		 * integers are by default compatible between each other
453		 */
454		return btf_int_offset(local_type) == 0 &&
455		       btf_int_offset(targ_type) == 0;
456	case BTF_KIND_ARRAY:
457		local_id = btf_array(local_type)->type;
458		targ_id = btf_array(targ_type)->type;
459		goto recur;
460	default:
461		return 0;
462	}
463}
464
465/*
466 * Given single high-level named field accessor in local type, find
467 * corresponding high-level accessor for a target type. Along the way,
468 * maintain low-level spec for target as well. Also keep updating target
469 * bit offset.
470 *
471 * Searching is performed through recursive exhaustive enumeration of all
472 * fields of a struct/union. If there are any anonymous (embedded)
473 * structs/unions, they are recursively searched as well. If field with
474 * desired name is found, check compatibility between local and target types,
475 * before returning result.
476 *
477 * 1 is returned, if field is found.
478 * 0 is returned if no compatible field is found.
479 * <0 is returned on error.
480 */
481static int bpf_core_match_member(const struct btf *local_btf,
482				 const struct bpf_core_accessor *local_acc,
483				 const struct btf *targ_btf,
484				 __u32 targ_id,
485				 struct bpf_core_spec *spec,
486				 __u32 *next_targ_id)
487{
488	const struct btf_type *local_type, *targ_type;
489	const struct btf_member *local_member, *m;
490	const char *local_name, *targ_name;
491	__u32 local_id;
492	int i, n, found;
493
494	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
495	if (!targ_type)
496		return -EINVAL;
497	if (!btf_is_composite(targ_type))
498		return 0;
499
500	local_id = local_acc->type_id;
501	local_type = btf_type_by_id(local_btf, local_id);
502	local_member = btf_members(local_type) + local_acc->idx;
503	local_name = btf__name_by_offset(local_btf, local_member->name_off);
504
505	n = btf_vlen(targ_type);
506	m = btf_members(targ_type);
507	for (i = 0; i < n; i++, m++) {
508		__u32 bit_offset;
509
510		bit_offset = btf_member_bit_offset(targ_type, i);
511
512		/* too deep struct/union/array nesting */
513		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
514			return -E2BIG;
515
516		/* speculate this member will be the good one */
517		spec->bit_offset += bit_offset;
518		spec->raw_spec[spec->raw_len++] = i;
519
520		targ_name = btf__name_by_offset(targ_btf, m->name_off);
521		if (str_is_empty(targ_name)) {
522			/* embedded struct/union, we need to go deeper */
523			found = bpf_core_match_member(local_btf, local_acc,
524						      targ_btf, m->type,
525						      spec, next_targ_id);
526			if (found) /* either found or error */
527				return found;
528		} else if (strcmp(local_name, targ_name) == 0) {
529			/* matching named field */
530			struct bpf_core_accessor *targ_acc;
531
532			targ_acc = &spec->spec[spec->len++];
533			targ_acc->type_id = targ_id;
534			targ_acc->idx = i;
535			targ_acc->name = targ_name;
536
537			*next_targ_id = m->type;
538			found = bpf_core_fields_are_compat(local_btf,
539							   local_member->type,
540							   targ_btf, m->type);
541			if (!found)
542				spec->len--; /* pop accessor */
543			return found;
544		}
545		/* member turned out not to be what we looked for */
546		spec->bit_offset -= bit_offset;
547		spec->raw_len--;
548	}
549
550	return 0;
551}
552
553/*
554 * Try to match local spec to a target type and, if successful, produce full
555 * target spec (high-level, low-level + bit offset).
556 */
557static int bpf_core_spec_match(struct bpf_core_spec *local_spec,
558			       const struct btf *targ_btf, __u32 targ_id,
559			       struct bpf_core_spec *targ_spec)
560{
561	const struct btf_type *targ_type;
562	const struct bpf_core_accessor *local_acc;
563	struct bpf_core_accessor *targ_acc;
564	int i, sz, matched;
565	__u32 name_off;
566
567	memset(targ_spec, 0, sizeof(*targ_spec));
568	targ_spec->btf = targ_btf;
569	targ_spec->root_type_id = targ_id;
570	targ_spec->relo_kind = local_spec->relo_kind;
571
572	if (core_relo_is_type_based(local_spec->relo_kind)) {
573		if (local_spec->relo_kind == BPF_CORE_TYPE_MATCHES)
574			return bpf_core_types_match(local_spec->btf,
575						    local_spec->root_type_id,
576						    targ_btf, targ_id);
577		else
578			return bpf_core_types_are_compat(local_spec->btf,
579							 local_spec->root_type_id,
580							 targ_btf, targ_id);
581	}
582
583	local_acc = &local_spec->spec[0];
584	targ_acc = &targ_spec->spec[0];
585
586	if (core_relo_is_enumval_based(local_spec->relo_kind)) {
587		size_t local_essent_len, targ_essent_len;
588		const char *targ_name;
589
590		/* has to resolve to an enum */
591		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id);
592		if (!btf_is_any_enum(targ_type))
593			return 0;
594
595		local_essent_len = bpf_core_essential_name_len(local_acc->name);
596
597		for (i = 0; i < btf_vlen(targ_type); i++) {
598			if (btf_is_enum(targ_type))
599				name_off = btf_enum(targ_type)[i].name_off;
600			else
601				name_off = btf_enum64(targ_type)[i].name_off;
602
603			targ_name = btf__name_by_offset(targ_spec->btf, name_off);
604			targ_essent_len = bpf_core_essential_name_len(targ_name);
605			if (targ_essent_len != local_essent_len)
606				continue;
607			if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) {
608				targ_acc->type_id = targ_id;
609				targ_acc->idx = i;
610				targ_acc->name = targ_name;
611				targ_spec->len++;
612				targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
613				targ_spec->raw_len++;
614				return 1;
615			}
616		}
617		return 0;
618	}
619
620	if (!core_relo_is_field_based(local_spec->relo_kind))
621		return -EINVAL;
622
623	for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) {
624		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id,
625						   &targ_id);
626		if (!targ_type)
627			return -EINVAL;
628
629		if (local_acc->name) {
630			matched = bpf_core_match_member(local_spec->btf,
631							local_acc,
632							targ_btf, targ_id,
633							targ_spec, &targ_id);
634			if (matched <= 0)
635				return matched;
636		} else {
637			/* for i=0, targ_id is already treated as array element
638			 * type (because it's the original struct), for others
639			 * we should find array element type first
640			 */
641			if (i > 0) {
642				const struct btf_array *a;
643				bool flex;
644
645				if (!btf_is_array(targ_type))
646					return 0;
647
648				a = btf_array(targ_type);
649				flex = is_flex_arr(targ_btf, targ_acc - 1, a);
650				if (!flex && local_acc->idx >= a->nelems)
651					return 0;
652				if (!skip_mods_and_typedefs(targ_btf, a->type,
653							    &targ_id))
654					return -EINVAL;
655			}
656
657			/* too deep struct/union/array nesting */
658			if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
659				return -E2BIG;
660
661			targ_acc->type_id = targ_id;
662			targ_acc->idx = local_acc->idx;
663			targ_acc->name = NULL;
664			targ_spec->len++;
665			targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
666			targ_spec->raw_len++;
667
668			sz = btf__resolve_size(targ_btf, targ_id);
669			if (sz < 0)
670				return sz;
671			targ_spec->bit_offset += local_acc->idx * sz * 8;
672		}
673	}
674
675	return 1;
676}
677
678static int bpf_core_calc_field_relo(const char *prog_name,
679				    const struct bpf_core_relo *relo,
680				    const struct bpf_core_spec *spec,
681				    __u64 *val, __u32 *field_sz, __u32 *type_id,
682				    bool *validate)
683{
684	const struct bpf_core_accessor *acc;
685	const struct btf_type *t;
686	__u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id;
687	const struct btf_member *m;
688	const struct btf_type *mt;
689	bool bitfield;
690	__s64 sz;
691
692	*field_sz = 0;
693
694	if (relo->kind == BPF_CORE_FIELD_EXISTS) {
695		*val = spec ? 1 : 0;
696		return 0;
697	}
698
699	if (!spec)
700		return -EUCLEAN; /* request instruction poisoning */
701
702	acc = &spec->spec[spec->len - 1];
703	t = btf_type_by_id(spec->btf, acc->type_id);
704
705	/* a[n] accessor needs special handling */
706	if (!acc->name) {
707		if (relo->kind == BPF_CORE_FIELD_BYTE_OFFSET) {
708			*val = spec->bit_offset / 8;
709			/* remember field size for load/store mem size */
710			sz = btf__resolve_size(spec->btf, acc->type_id);
711			if (sz < 0)
712				return -EINVAL;
713			*field_sz = sz;
714			*type_id = acc->type_id;
715		} else if (relo->kind == BPF_CORE_FIELD_BYTE_SIZE) {
716			sz = btf__resolve_size(spec->btf, acc->type_id);
717			if (sz < 0)
718				return -EINVAL;
719			*val = sz;
720		} else {
721			pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n",
722				prog_name, relo->kind, relo->insn_off / 8);
723			return -EINVAL;
724		}
725		if (validate)
726			*validate = true;
727		return 0;
728	}
729
730	m = btf_members(t) + acc->idx;
731	mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id);
732	bit_off = spec->bit_offset;
733	bit_sz = btf_member_bitfield_size(t, acc->idx);
734
735	bitfield = bit_sz > 0;
736	if (bitfield) {
737		byte_sz = mt->size;
738		byte_off = bit_off / 8 / byte_sz * byte_sz;
739		/* figure out smallest int size necessary for bitfield load */
740		while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) {
741			if (byte_sz >= 8) {
742				/* bitfield can't be read with 64-bit read */
743				pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n",
744					prog_name, relo->kind, relo->insn_off / 8);
745				return -E2BIG;
746			}
747			byte_sz *= 2;
748			byte_off = bit_off / 8 / byte_sz * byte_sz;
749		}
750	} else {
751		sz = btf__resolve_size(spec->btf, field_type_id);
752		if (sz < 0)
753			return -EINVAL;
754		byte_sz = sz;
755		byte_off = spec->bit_offset / 8;
756		bit_sz = byte_sz * 8;
757	}
758
759	/* for bitfields, all the relocatable aspects are ambiguous and we
760	 * might disagree with compiler, so turn off validation of expected
761	 * value, except for signedness
762	 */
763	if (validate)
764		*validate = !bitfield;
765
766	switch (relo->kind) {
767	case BPF_CORE_FIELD_BYTE_OFFSET:
768		*val = byte_off;
769		if (!bitfield) {
770			*field_sz = byte_sz;
771			*type_id = field_type_id;
772		}
773		break;
774	case BPF_CORE_FIELD_BYTE_SIZE:
775		*val = byte_sz;
776		break;
777	case BPF_CORE_FIELD_SIGNED:
778		*val = (btf_is_any_enum(mt) && BTF_INFO_KFLAG(mt->info)) ||
779		       (btf_is_int(mt) && (btf_int_encoding(mt) & BTF_INT_SIGNED));
780		if (validate)
781			*validate = true; /* signedness is never ambiguous */
782		break;
783	case BPF_CORE_FIELD_LSHIFT_U64:
784#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
785		*val = 64 - (bit_off + bit_sz - byte_off  * 8);
786#else
787		*val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8);
788#endif
789		break;
790	case BPF_CORE_FIELD_RSHIFT_U64:
791		*val = 64 - bit_sz;
792		if (validate)
793			*validate = true; /* right shift is never ambiguous */
794		break;
795	case BPF_CORE_FIELD_EXISTS:
796	default:
797		return -EOPNOTSUPP;
798	}
799
800	return 0;
801}
802
803static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo,
804				   const struct bpf_core_spec *spec,
805				   __u64 *val, bool *validate)
806{
807	__s64 sz;
808
809	/* by default, always check expected value in bpf_insn */
810	if (validate)
811		*validate = true;
812
813	/* type-based relos return zero when target type is not found */
814	if (!spec) {
815		*val = 0;
816		return 0;
817	}
818
819	switch (relo->kind) {
820	case BPF_CORE_TYPE_ID_TARGET:
821		*val = spec->root_type_id;
822		/* type ID, embedded in bpf_insn, might change during linking,
823		 * so enforcing it is pointless
824		 */
825		if (validate)
826			*validate = false;
827		break;
828	case BPF_CORE_TYPE_EXISTS:
829	case BPF_CORE_TYPE_MATCHES:
830		*val = 1;
831		break;
832	case BPF_CORE_TYPE_SIZE:
833		sz = btf__resolve_size(spec->btf, spec->root_type_id);
834		if (sz < 0)
835			return -EINVAL;
836		*val = sz;
837		break;
838	case BPF_CORE_TYPE_ID_LOCAL:
839	/* BPF_CORE_TYPE_ID_LOCAL is handled specially and shouldn't get here */
840	default:
841		return -EOPNOTSUPP;
842	}
843
844	return 0;
845}
846
847static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo,
848				      const struct bpf_core_spec *spec,
849				      __u64 *val)
850{
851	const struct btf_type *t;
852
853	switch (relo->kind) {
854	case BPF_CORE_ENUMVAL_EXISTS:
855		*val = spec ? 1 : 0;
856		break;
857	case BPF_CORE_ENUMVAL_VALUE:
858		if (!spec)
859			return -EUCLEAN; /* request instruction poisoning */
860		t = btf_type_by_id(spec->btf, spec->spec[0].type_id);
861		if (btf_is_enum(t))
862			*val = btf_enum(t)[spec->spec[0].idx].val;
863		else
864			*val = btf_enum64_value(btf_enum64(t) + spec->spec[0].idx);
865		break;
866	default:
867		return -EOPNOTSUPP;
868	}
869
870	return 0;
871}
872
873/* Calculate original and target relocation values, given local and target
874 * specs and relocation kind. These values are calculated for each candidate.
875 * If there are multiple candidates, resulting values should all be consistent
876 * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity.
877 * If instruction has to be poisoned, *poison will be set to true.
878 */
879static int bpf_core_calc_relo(const char *prog_name,
880			      const struct bpf_core_relo *relo,
881			      int relo_idx,
882			      const struct bpf_core_spec *local_spec,
883			      const struct bpf_core_spec *targ_spec,
884			      struct bpf_core_relo_res *res)
885{
886	int err = -EOPNOTSUPP;
887
888	res->orig_val = 0;
889	res->new_val = 0;
890	res->poison = false;
891	res->validate = true;
892	res->fail_memsz_adjust = false;
893	res->orig_sz = res->new_sz = 0;
894	res->orig_type_id = res->new_type_id = 0;
895
896	if (core_relo_is_field_based(relo->kind)) {
897		err = bpf_core_calc_field_relo(prog_name, relo, local_spec,
898					       &res->orig_val, &res->orig_sz,
899					       &res->orig_type_id, &res->validate);
900		err = err ?: bpf_core_calc_field_relo(prog_name, relo, targ_spec,
901						      &res->new_val, &res->new_sz,
902						      &res->new_type_id, NULL);
903		if (err)
904			goto done;
905		/* Validate if it's safe to adjust load/store memory size.
906		 * Adjustments are performed only if original and new memory
907		 * sizes differ.
908		 */
909		res->fail_memsz_adjust = false;
910		if (res->orig_sz != res->new_sz) {
911			const struct btf_type *orig_t, *new_t;
912
913			orig_t = btf_type_by_id(local_spec->btf, res->orig_type_id);
914			new_t = btf_type_by_id(targ_spec->btf, res->new_type_id);
915
916			/* There are two use cases in which it's safe to
917			 * adjust load/store's mem size:
918			 *   - reading a 32-bit kernel pointer, while on BPF
919			 *   size pointers are always 64-bit; in this case
920			 *   it's safe to "downsize" instruction size due to
921			 *   pointer being treated as unsigned integer with
922			 *   zero-extended upper 32-bits;
923			 *   - reading unsigned integers, again due to
924			 *   zero-extension is preserving the value correctly.
925			 *
926			 * In all other cases it's incorrect to attempt to
927			 * load/store field because read value will be
928			 * incorrect, so we poison relocated instruction.
929			 */
930			if (btf_is_ptr(orig_t) && btf_is_ptr(new_t))
931				goto done;
932			if (btf_is_int(orig_t) && btf_is_int(new_t) &&
933			    btf_int_encoding(orig_t) != BTF_INT_SIGNED &&
934			    btf_int_encoding(new_t) != BTF_INT_SIGNED)
935				goto done;
936
937			/* mark as invalid mem size adjustment, but this will
938			 * only be checked for LDX/STX/ST insns
939			 */
940			res->fail_memsz_adjust = true;
941		}
942	} else if (core_relo_is_type_based(relo->kind)) {
943		err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val, &res->validate);
944		err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val, NULL);
945	} else if (core_relo_is_enumval_based(relo->kind)) {
946		err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val);
947		err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val);
948	}
949
950done:
951	if (err == -EUCLEAN) {
952		/* EUCLEAN is used to signal instruction poisoning request */
953		res->poison = true;
954		err = 0;
955	} else if (err == -EOPNOTSUPP) {
956		/* EOPNOTSUPP means unknown/unsupported relocation */
957		pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n",
958			prog_name, relo_idx, core_relo_kind_str(relo->kind),
959			relo->kind, relo->insn_off / 8);
960	}
961
962	return err;
963}
964
965/*
966 * Turn instruction for which CO_RE relocation failed into invalid one with
967 * distinct signature.
968 */
969static void bpf_core_poison_insn(const char *prog_name, int relo_idx,
970				 int insn_idx, struct bpf_insn *insn)
971{
972	pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n",
973		 prog_name, relo_idx, insn_idx);
974	insn->code = BPF_JMP | BPF_CALL;
975	insn->dst_reg = 0;
976	insn->src_reg = 0;
977	insn->off = 0;
978	/* if this instruction is reachable (not a dead code),
979	 * verifier will complain with the following message:
980	 * invalid func unknown#195896080
981	 */
982	insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */
983}
984
985static int insn_bpf_size_to_bytes(struct bpf_insn *insn)
986{
987	switch (BPF_SIZE(insn->code)) {
988	case BPF_DW: return 8;
989	case BPF_W: return 4;
990	case BPF_H: return 2;
991	case BPF_B: return 1;
992	default: return -1;
993	}
994}
995
996static int insn_bytes_to_bpf_size(__u32 sz)
997{
998	switch (sz) {
999	case 8: return BPF_DW;
1000	case 4: return BPF_W;
1001	case 2: return BPF_H;
1002	case 1: return BPF_B;
1003	default: return -1;
1004	}
1005}
1006
1007/*
1008 * Patch relocatable BPF instruction.
1009 *
1010 * Patched value is determined by relocation kind and target specification.
1011 * For existence relocations target spec will be NULL if field/type is not found.
1012 * Expected insn->imm value is determined using relocation kind and local
1013 * spec, and is checked before patching instruction. If actual insn->imm value
1014 * is wrong, bail out with error.
1015 *
1016 * Currently supported classes of BPF instruction are:
1017 * 1. rX = <imm> (assignment with immediate operand);
1018 * 2. rX += <imm> (arithmetic operations with immediate operand);
1019 * 3. rX = <imm64> (load with 64-bit immediate value);
1020 * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64};
1021 * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64};
1022 * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}.
1023 */
1024int bpf_core_patch_insn(const char *prog_name, struct bpf_insn *insn,
1025			int insn_idx, const struct bpf_core_relo *relo,
1026			int relo_idx, const struct bpf_core_relo_res *res)
1027{
1028	__u64 orig_val, new_val;
1029	__u8 class;
1030
1031	class = BPF_CLASS(insn->code);
1032
1033	if (res->poison) {
1034poison:
1035		/* poison second part of ldimm64 to avoid confusing error from
1036		 * verifier about "unknown opcode 00"
1037		 */
1038		if (is_ldimm64_insn(insn))
1039			bpf_core_poison_insn(prog_name, relo_idx, insn_idx + 1, insn + 1);
1040		bpf_core_poison_insn(prog_name, relo_idx, insn_idx, insn);
1041		return 0;
1042	}
1043
1044	orig_val = res->orig_val;
1045	new_val = res->new_val;
1046
1047	switch (class) {
1048	case BPF_ALU:
1049	case BPF_ALU64:
1050		if (BPF_SRC(insn->code) != BPF_K)
1051			return -EINVAL;
1052		if (res->validate && insn->imm != orig_val) {
1053			pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %llu -> %llu\n",
1054				prog_name, relo_idx,
1055				insn_idx, insn->imm, (unsigned long long)orig_val,
1056				(unsigned long long)new_val);
1057			return -EINVAL;
1058		}
1059		orig_val = insn->imm;
1060		insn->imm = new_val;
1061		pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %llu -> %llu\n",
1062			 prog_name, relo_idx, insn_idx,
1063			 (unsigned long long)orig_val, (unsigned long long)new_val);
1064		break;
1065	case BPF_LDX:
1066	case BPF_ST:
1067	case BPF_STX:
1068		if (res->validate && insn->off != orig_val) {
1069			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %llu -> %llu\n",
1070				prog_name, relo_idx, insn_idx, insn->off, (unsigned long long)orig_val,
1071				(unsigned long long)new_val);
1072			return -EINVAL;
1073		}
1074		if (new_val > SHRT_MAX) {
1075			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %llu\n",
1076				prog_name, relo_idx, insn_idx, (unsigned long long)new_val);
1077			return -ERANGE;
1078		}
1079		if (res->fail_memsz_adjust) {
1080			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. "
1081				"Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n",
1082				prog_name, relo_idx, insn_idx);
1083			goto poison;
1084		}
1085
1086		orig_val = insn->off;
1087		insn->off = new_val;
1088		pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %llu -> %llu\n",
1089			 prog_name, relo_idx, insn_idx, (unsigned long long)orig_val,
1090			 (unsigned long long)new_val);
1091
1092		if (res->new_sz != res->orig_sz) {
1093			int insn_bytes_sz, insn_bpf_sz;
1094
1095			insn_bytes_sz = insn_bpf_size_to_bytes(insn);
1096			if (insn_bytes_sz != res->orig_sz) {
1097				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n",
1098					prog_name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz);
1099				return -EINVAL;
1100			}
1101
1102			insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz);
1103			if (insn_bpf_sz < 0) {
1104				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n",
1105					prog_name, relo_idx, insn_idx, res->new_sz);
1106				return -EINVAL;
1107			}
1108
1109			insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code);
1110			pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n",
1111				 prog_name, relo_idx, insn_idx, res->orig_sz, res->new_sz);
1112		}
1113		break;
1114	case BPF_LD: {
1115		__u64 imm;
1116
1117		if (!is_ldimm64_insn(insn) ||
1118		    insn[0].src_reg != 0 || insn[0].off != 0 ||
1119		    insn[1].code != 0 || insn[1].dst_reg != 0 ||
1120		    insn[1].src_reg != 0 || insn[1].off != 0) {
1121			pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n",
1122				prog_name, relo_idx, insn_idx);
1123			return -EINVAL;
1124		}
1125
1126		imm = (__u32)insn[0].imm | ((__u64)insn[1].imm << 32);
1127		if (res->validate && imm != orig_val) {
1128			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %llu -> %llu\n",
1129				prog_name, relo_idx,
1130				insn_idx, (unsigned long long)imm,
1131				(unsigned long long)orig_val, (unsigned long long)new_val);
1132			return -EINVAL;
1133		}
1134
1135		insn[0].imm = new_val;
1136		insn[1].imm = new_val >> 32;
1137		pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %llu\n",
1138			 prog_name, relo_idx, insn_idx,
1139			 (unsigned long long)imm, (unsigned long long)new_val);
1140		break;
1141	}
1142	default:
1143		pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n",
1144			prog_name, relo_idx, insn_idx, insn->code,
1145			insn->src_reg, insn->dst_reg, insn->off, insn->imm);
1146		return -EINVAL;
1147	}
1148
1149	return 0;
1150}
1151
1152/* Output spec definition in the format:
1153 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>,
1154 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b
1155 */
1156int bpf_core_format_spec(char *buf, size_t buf_sz, const struct bpf_core_spec *spec)
1157{
1158	const struct btf_type *t;
1159	const char *s;
1160	__u32 type_id;
1161	int i, len = 0;
1162
1163#define append_buf(fmt, args...)				\
1164	({							\
1165		int r;						\
1166		r = snprintf(buf, buf_sz, fmt, ##args);		\
1167		len += r;					\
1168		if (r >= buf_sz)				\
1169			r = buf_sz;				\
1170		buf += r;					\
1171		buf_sz -= r;					\
1172	})
1173
1174	type_id = spec->root_type_id;
1175	t = btf_type_by_id(spec->btf, type_id);
1176	s = btf__name_by_offset(spec->btf, t->name_off);
1177
1178	append_buf("<%s> [%u] %s %s",
1179		   core_relo_kind_str(spec->relo_kind),
1180		   type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s);
1181
1182	if (core_relo_is_type_based(spec->relo_kind))
1183		return len;
1184
1185	if (core_relo_is_enumval_based(spec->relo_kind)) {
1186		t = skip_mods_and_typedefs(spec->btf, type_id, NULL);
1187		if (btf_is_enum(t)) {
1188			const struct btf_enum *e;
1189			const char *fmt_str;
1190
1191			e = btf_enum(t) + spec->raw_spec[0];
1192			s = btf__name_by_offset(spec->btf, e->name_off);
1193			fmt_str = BTF_INFO_KFLAG(t->info) ? "::%s = %d" : "::%s = %u";
1194			append_buf(fmt_str, s, e->val);
1195		} else {
1196			const struct btf_enum64 *e;
1197			const char *fmt_str;
1198
1199			e = btf_enum64(t) + spec->raw_spec[0];
1200			s = btf__name_by_offset(spec->btf, e->name_off);
1201			fmt_str = BTF_INFO_KFLAG(t->info) ? "::%s = %lld" : "::%s = %llu";
1202			append_buf(fmt_str, s, (unsigned long long)btf_enum64_value(e));
1203		}
1204		return len;
1205	}
1206
1207	if (core_relo_is_field_based(spec->relo_kind)) {
1208		for (i = 0; i < spec->len; i++) {
1209			if (spec->spec[i].name)
1210				append_buf(".%s", spec->spec[i].name);
1211			else if (i > 0 || spec->spec[i].idx > 0)
1212				append_buf("[%u]", spec->spec[i].idx);
1213		}
1214
1215		append_buf(" (");
1216		for (i = 0; i < spec->raw_len; i++)
1217			append_buf("%s%d", i == 0 ? "" : ":", spec->raw_spec[i]);
1218
1219		if (spec->bit_offset % 8)
1220			append_buf(" @ offset %u.%u)", spec->bit_offset / 8, spec->bit_offset % 8);
1221		else
1222			append_buf(" @ offset %u)", spec->bit_offset / 8);
1223		return len;
1224	}
1225
1226	return len;
1227#undef append_buf
1228}
1229
1230/*
1231 * Calculate CO-RE relocation target result.
1232 *
1233 * The outline and important points of the algorithm:
1234 * 1. For given local type, find corresponding candidate target types.
1235 *    Candidate type is a type with the same "essential" name, ignoring
1236 *    everything after last triple underscore (___). E.g., `sample`,
1237 *    `sample___flavor_one`, `sample___flavor_another_one`, are all candidates
1238 *    for each other. Names with triple underscore are referred to as
1239 *    "flavors" and are useful, among other things, to allow to
1240 *    specify/support incompatible variations of the same kernel struct, which
1241 *    might differ between different kernel versions and/or build
1242 *    configurations.
1243 *
1244 *    N.B. Struct "flavors" could be generated by bpftool's BTF-to-C
1245 *    converter, when deduplicated BTF of a kernel still contains more than
1246 *    one different types with the same name. In that case, ___2, ___3, etc
1247 *    are appended starting from second name conflict. But start flavors are
1248 *    also useful to be defined "locally", in BPF program, to extract same
1249 *    data from incompatible changes between different kernel
1250 *    versions/configurations. For instance, to handle field renames between
1251 *    kernel versions, one can use two flavors of the struct name with the
1252 *    same common name and use conditional relocations to extract that field,
1253 *    depending on target kernel version.
1254 * 2. For each candidate type, try to match local specification to this
1255 *    candidate target type. Matching involves finding corresponding
1256 *    high-level spec accessors, meaning that all named fields should match,
1257 *    as well as all array accesses should be within the actual bounds. Also,
1258 *    types should be compatible (see bpf_core_fields_are_compat for details).
1259 * 3. It is supported and expected that there might be multiple flavors
1260 *    matching the spec. As long as all the specs resolve to the same set of
1261 *    offsets across all candidates, there is no error. If there is any
1262 *    ambiguity, CO-RE relocation will fail. This is necessary to accommodate
1263 *    imperfection of BTF deduplication, which can cause slight duplication of
1264 *    the same BTF type, if some directly or indirectly referenced (by
1265 *    pointer) type gets resolved to different actual types in different
1266 *    object files. If such a situation occurs, deduplicated BTF will end up
1267 *    with two (or more) structurally identical types, which differ only in
1268 *    types they refer to through pointer. This should be OK in most cases and
1269 *    is not an error.
1270 * 4. Candidate types search is performed by linearly scanning through all
1271 *    types in target BTF. It is anticipated that this is overall more
1272 *    efficient memory-wise and not significantly worse (if not better)
1273 *    CPU-wise compared to prebuilding a map from all local type names to
1274 *    a list of candidate type names. It's also sped up by caching resolved
1275 *    list of matching candidates per each local "root" type ID, that has at
1276 *    least one bpf_core_relo associated with it. This list is shared
1277 *    between multiple relocations for the same type ID and is updated as some
1278 *    of the candidates are pruned due to structural incompatibility.
1279 */
1280int bpf_core_calc_relo_insn(const char *prog_name,
1281			    const struct bpf_core_relo *relo,
1282			    int relo_idx,
1283			    const struct btf *local_btf,
1284			    struct bpf_core_cand_list *cands,
1285			    struct bpf_core_spec *specs_scratch,
1286			    struct bpf_core_relo_res *targ_res)
1287{
1288	struct bpf_core_spec *local_spec = &specs_scratch[0];
1289	struct bpf_core_spec *cand_spec = &specs_scratch[1];
1290	struct bpf_core_spec *targ_spec = &specs_scratch[2];
1291	struct bpf_core_relo_res cand_res;
1292	const struct btf_type *local_type;
1293	const char *local_name;
1294	__u32 local_id;
1295	char spec_buf[256];
1296	int i, j, err;
1297
1298	local_id = relo->type_id;
1299	local_type = btf_type_by_id(local_btf, local_id);
1300	local_name = btf__name_by_offset(local_btf, local_type->name_off);
1301	if (!local_name)
1302		return -EINVAL;
1303
1304	err = bpf_core_parse_spec(prog_name, local_btf, relo, local_spec);
1305	if (err) {
1306		const char *spec_str;
1307
1308		spec_str = btf__name_by_offset(local_btf, relo->access_str_off);
1309		pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n",
1310			prog_name, relo_idx, local_id, btf_kind_str(local_type),
1311			str_is_empty(local_name) ? "<anon>" : local_name,
1312			spec_str ?: "<?>", err);
1313		return -EINVAL;
1314	}
1315
1316	bpf_core_format_spec(spec_buf, sizeof(spec_buf), local_spec);
1317	pr_debug("prog '%s': relo #%d: %s\n", prog_name, relo_idx, spec_buf);
1318
1319	/* TYPE_ID_LOCAL relo is special and doesn't need candidate search */
1320	if (relo->kind == BPF_CORE_TYPE_ID_LOCAL) {
1321		/* bpf_insn's imm value could get out of sync during linking */
1322		memset(targ_res, 0, sizeof(*targ_res));
1323		targ_res->validate = false;
1324		targ_res->poison = false;
1325		targ_res->orig_val = local_spec->root_type_id;
1326		targ_res->new_val = local_spec->root_type_id;
1327		return 0;
1328	}
1329
1330	/* libbpf doesn't support candidate search for anonymous types */
1331	if (str_is_empty(local_name)) {
1332		pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n",
1333			prog_name, relo_idx, core_relo_kind_str(relo->kind), relo->kind);
1334		return -EOPNOTSUPP;
1335	}
1336
1337	for (i = 0, j = 0; i < cands->len; i++) {
1338		err = bpf_core_spec_match(local_spec, cands->cands[i].btf,
1339					  cands->cands[i].id, cand_spec);
1340		if (err < 0) {
1341			bpf_core_format_spec(spec_buf, sizeof(spec_buf), cand_spec);
1342			pr_warn("prog '%s': relo #%d: error matching candidate #%d %s: %d\n ",
1343				prog_name, relo_idx, i, spec_buf, err);
1344			return err;
1345		}
1346
1347		bpf_core_format_spec(spec_buf, sizeof(spec_buf), cand_spec);
1348		pr_debug("prog '%s': relo #%d: %s candidate #%d %s\n", prog_name,
1349			 relo_idx, err == 0 ? "non-matching" : "matching", i, spec_buf);
1350
1351		if (err == 0)
1352			continue;
1353
1354		err = bpf_core_calc_relo(prog_name, relo, relo_idx, local_spec, cand_spec, &cand_res);
1355		if (err)
1356			return err;
1357
1358		if (j == 0) {
1359			*targ_res = cand_res;
1360			*targ_spec = *cand_spec;
1361		} else if (cand_spec->bit_offset != targ_spec->bit_offset) {
1362			/* if there are many field relo candidates, they
1363			 * should all resolve to the same bit offset
1364			 */
1365			pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n",
1366				prog_name, relo_idx, cand_spec->bit_offset,
1367				targ_spec->bit_offset);
1368			return -EINVAL;
1369		} else if (cand_res.poison != targ_res->poison ||
1370			   cand_res.new_val != targ_res->new_val) {
1371			/* all candidates should result in the same relocation
1372			 * decision and value, otherwise it's dangerous to
1373			 * proceed due to ambiguity
1374			 */
1375			pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %llu != %s %llu\n",
1376				prog_name, relo_idx,
1377				cand_res.poison ? "failure" : "success",
1378				(unsigned long long)cand_res.new_val,
1379				targ_res->poison ? "failure" : "success",
1380				(unsigned long long)targ_res->new_val);
1381			return -EINVAL;
1382		}
1383
1384		cands->cands[j++] = cands->cands[i];
1385	}
1386
1387	/*
1388	 * For BPF_CORE_FIELD_EXISTS relo or when used BPF program has field
1389	 * existence checks or kernel version/config checks, it's expected
1390	 * that we might not find any candidates. In this case, if field
1391	 * wasn't found in any candidate, the list of candidates shouldn't
1392	 * change at all, we'll just handle relocating appropriately,
1393	 * depending on relo's kind.
1394	 */
1395	if (j > 0)
1396		cands->len = j;
1397
1398	/*
1399	 * If no candidates were found, it might be both a programmer error,
1400	 * as well as expected case, depending whether instruction w/
1401	 * relocation is guarded in some way that makes it unreachable (dead
1402	 * code) if relocation can't be resolved. This is handled in
1403	 * bpf_core_patch_insn() uniformly by replacing that instruction with
1404	 * BPF helper call insn (using invalid helper ID). If that instruction
1405	 * is indeed unreachable, then it will be ignored and eliminated by
1406	 * verifier. If it was an error, then verifier will complain and point
1407	 * to a specific instruction number in its log.
1408	 */
1409	if (j == 0) {
1410		pr_debug("prog '%s': relo #%d: no matching targets found\n",
1411			 prog_name, relo_idx);
1412
1413		/* calculate single target relo result explicitly */
1414		err = bpf_core_calc_relo(prog_name, relo, relo_idx, local_spec, NULL, targ_res);
1415		if (err)
1416			return err;
1417	}
1418
1419	return 0;
1420}
1421
1422static bool bpf_core_names_match(const struct btf *local_btf, size_t local_name_off,
1423				 const struct btf *targ_btf, size_t targ_name_off)
1424{
1425	const char *local_n, *targ_n;
1426	size_t local_len, targ_len;
1427
1428	local_n = btf__name_by_offset(local_btf, local_name_off);
1429	targ_n = btf__name_by_offset(targ_btf, targ_name_off);
1430
1431	if (str_is_empty(targ_n))
1432		return str_is_empty(local_n);
1433
1434	targ_len = bpf_core_essential_name_len(targ_n);
1435	local_len = bpf_core_essential_name_len(local_n);
1436
1437	return targ_len == local_len && strncmp(local_n, targ_n, local_len) == 0;
1438}
1439
1440static int bpf_core_enums_match(const struct btf *local_btf, const struct btf_type *local_t,
1441				const struct btf *targ_btf, const struct btf_type *targ_t)
1442{
1443	__u16 local_vlen = btf_vlen(local_t);
1444	__u16 targ_vlen = btf_vlen(targ_t);
1445	int i, j;
1446
1447	if (local_t->size != targ_t->size)
1448		return 0;
1449
1450	if (local_vlen > targ_vlen)
1451		return 0;
1452
1453	/* iterate over the local enum's variants and make sure each has
1454	 * a symbolic name correspondent in the target
1455	 */
1456	for (i = 0; i < local_vlen; i++) {
1457		bool matched = false;
1458		__u32 local_n_off, targ_n_off;
1459
1460		local_n_off = btf_is_enum(local_t) ? btf_enum(local_t)[i].name_off :
1461						     btf_enum64(local_t)[i].name_off;
1462
1463		for (j = 0; j < targ_vlen; j++) {
1464			targ_n_off = btf_is_enum(targ_t) ? btf_enum(targ_t)[j].name_off :
1465							   btf_enum64(targ_t)[j].name_off;
1466
1467			if (bpf_core_names_match(local_btf, local_n_off, targ_btf, targ_n_off)) {
1468				matched = true;
1469				break;
1470			}
1471		}
1472
1473		if (!matched)
1474			return 0;
1475	}
1476	return 1;
1477}
1478
1479static int bpf_core_composites_match(const struct btf *local_btf, const struct btf_type *local_t,
1480				     const struct btf *targ_btf, const struct btf_type *targ_t,
1481				     bool behind_ptr, int level)
1482{
1483	const struct btf_member *local_m = btf_members(local_t);
1484	__u16 local_vlen = btf_vlen(local_t);
1485	__u16 targ_vlen = btf_vlen(targ_t);
1486	int i, j, err;
1487
1488	if (local_vlen > targ_vlen)
1489		return 0;
1490
1491	/* check that all local members have a match in the target */
1492	for (i = 0; i < local_vlen; i++, local_m++) {
1493		const struct btf_member *targ_m = btf_members(targ_t);
1494		bool matched = false;
1495
1496		for (j = 0; j < targ_vlen; j++, targ_m++) {
1497			if (!bpf_core_names_match(local_btf, local_m->name_off,
1498						  targ_btf, targ_m->name_off))
1499				continue;
1500
1501			err = __bpf_core_types_match(local_btf, local_m->type, targ_btf,
1502						     targ_m->type, behind_ptr, level - 1);
1503			if (err < 0)
1504				return err;
1505			if (err > 0) {
1506				matched = true;
1507				break;
1508			}
1509		}
1510
1511		if (!matched)
1512			return 0;
1513	}
1514	return 1;
1515}
1516
1517/* Check that two types "match". This function assumes that root types were
1518 * already checked for name match.
1519 *
1520 * The matching relation is defined as follows:
1521 * - modifiers and typedefs are stripped (and, hence, effectively ignored)
1522 * - generally speaking types need to be of same kind (struct vs. struct, union
1523 *   vs. union, etc.)
1524 *   - exceptions are struct/union behind a pointer which could also match a
1525 *     forward declaration of a struct or union, respectively, and enum vs.
1526 *     enum64 (see below)
1527 * Then, depending on type:
1528 * - integers:
1529 *   - match if size and signedness match
1530 * - arrays & pointers:
1531 *   - target types are recursively matched
1532 * - structs & unions:
1533 *   - local members need to exist in target with the same name
1534 *   - for each member we recursively check match unless it is already behind a
1535 *     pointer, in which case we only check matching names and compatible kind
1536 * - enums:
1537 *   - local variants have to have a match in target by symbolic name (but not
1538 *     numeric value)
1539 *   - size has to match (but enum may match enum64 and vice versa)
1540 * - function pointers:
1541 *   - number and position of arguments in local type has to match target
1542 *   - for each argument and the return value we recursively check match
1543 */
1544int __bpf_core_types_match(const struct btf *local_btf, __u32 local_id, const struct btf *targ_btf,
1545			   __u32 targ_id, bool behind_ptr, int level)
1546{
1547	const struct btf_type *local_t, *targ_t;
1548	int depth = 32; /* max recursion depth */
1549	__u16 local_k, targ_k;
1550
1551	if (level <= 0)
1552		return -EINVAL;
1553
1554recur:
1555	depth--;
1556	if (depth < 0)
1557		return -EINVAL;
1558
1559	local_t = skip_mods_and_typedefs(local_btf, local_id, &local_id);
1560	targ_t = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
1561	if (!local_t || !targ_t)
1562		return -EINVAL;
1563
1564	/* While the name check happens after typedefs are skipped, root-level
1565	 * typedefs would still be name-matched as that's the contract with
1566	 * callers.
1567	 */
1568	if (!bpf_core_names_match(local_btf, local_t->name_off, targ_btf, targ_t->name_off))
1569		return 0;
1570
1571	local_k = btf_kind(local_t);
1572	targ_k = btf_kind(targ_t);
1573
1574	switch (local_k) {
1575	case BTF_KIND_UNKN:
1576		return local_k == targ_k;
1577	case BTF_KIND_FWD: {
1578		bool local_f = BTF_INFO_KFLAG(local_t->info);
1579
1580		if (behind_ptr) {
1581			if (local_k == targ_k)
1582				return local_f == BTF_INFO_KFLAG(targ_t->info);
1583
1584			/* for forward declarations kflag dictates whether the
1585			 * target is a struct (0) or union (1)
1586			 */
1587			return (targ_k == BTF_KIND_STRUCT && !local_f) ||
1588			       (targ_k == BTF_KIND_UNION && local_f);
1589		} else {
1590			if (local_k != targ_k)
1591				return 0;
1592
1593			/* match if the forward declaration is for the same kind */
1594			return local_f == BTF_INFO_KFLAG(targ_t->info);
1595		}
1596	}
1597	case BTF_KIND_ENUM:
1598	case BTF_KIND_ENUM64:
1599		if (!btf_is_any_enum(targ_t))
1600			return 0;
1601
1602		return bpf_core_enums_match(local_btf, local_t, targ_btf, targ_t);
1603	case BTF_KIND_STRUCT:
1604	case BTF_KIND_UNION:
1605		if (behind_ptr) {
1606			bool targ_f = BTF_INFO_KFLAG(targ_t->info);
1607
1608			if (local_k == targ_k)
1609				return 1;
1610
1611			if (targ_k != BTF_KIND_FWD)
1612				return 0;
1613
1614			return (local_k == BTF_KIND_UNION) == targ_f;
1615		} else {
1616			if (local_k != targ_k)
1617				return 0;
1618
1619			return bpf_core_composites_match(local_btf, local_t, targ_btf, targ_t,
1620							 behind_ptr, level);
1621		}
1622	case BTF_KIND_INT: {
1623		__u8 local_sgn;
1624		__u8 targ_sgn;
1625
1626		if (local_k != targ_k)
1627			return 0;
1628
1629		local_sgn = btf_int_encoding(local_t) & BTF_INT_SIGNED;
1630		targ_sgn = btf_int_encoding(targ_t) & BTF_INT_SIGNED;
1631
1632		return local_t->size == targ_t->size && local_sgn == targ_sgn;
1633	}
1634	case BTF_KIND_PTR:
1635		if (local_k != targ_k)
1636			return 0;
1637
1638		behind_ptr = true;
1639
1640		local_id = local_t->type;
1641		targ_id = targ_t->type;
1642		goto recur;
1643	case BTF_KIND_ARRAY: {
1644		const struct btf_array *local_array = btf_array(local_t);
1645		const struct btf_array *targ_array = btf_array(targ_t);
1646
1647		if (local_k != targ_k)
1648			return 0;
1649
1650		if (local_array->nelems != targ_array->nelems)
1651			return 0;
1652
1653		local_id = local_array->type;
1654		targ_id = targ_array->type;
1655		goto recur;
1656	}
1657	case BTF_KIND_FUNC_PROTO: {
1658		struct btf_param *local_p = btf_params(local_t);
1659		struct btf_param *targ_p = btf_params(targ_t);
1660		__u16 local_vlen = btf_vlen(local_t);
1661		__u16 targ_vlen = btf_vlen(targ_t);
1662		int i, err;
1663
1664		if (local_k != targ_k)
1665			return 0;
1666
1667		if (local_vlen != targ_vlen)
1668			return 0;
1669
1670		for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
1671			err = __bpf_core_types_match(local_btf, local_p->type, targ_btf,
1672						     targ_p->type, behind_ptr, level - 1);
1673			if (err <= 0)
1674				return err;
1675		}
1676
1677		/* tail recurse for return type check */
1678		local_id = local_t->type;
1679		targ_id = targ_t->type;
1680		goto recur;
1681	}
1682	default:
1683		pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
1684			btf_kind_str(local_t), local_id, targ_id);
1685		return 0;
1686	}
1687}
1688