1/* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */
2#ifndef __BPF_CORE_READ_H__
3#define __BPF_CORE_READ_H__
4
5#include <bpf/bpf_helpers.h>
6
7/*
8 * enum bpf_field_info_kind is passed as a second argument into
9 * __builtin_preserve_field_info() built-in to get a specific aspect of
10 * a field, captured as a first argument. __builtin_preserve_field_info(field,
11 * info_kind) returns __u32 integer and produces BTF field relocation, which
12 * is understood and processed by libbpf during BPF object loading. See
13 * selftests/bpf for examples.
14 */
15enum bpf_field_info_kind {
16	BPF_FIELD_BYTE_OFFSET = 0,	/* field byte offset */
17	BPF_FIELD_BYTE_SIZE = 1,
18	BPF_FIELD_EXISTS = 2,		/* field existence in target kernel */
19	BPF_FIELD_SIGNED = 3,
20	BPF_FIELD_LSHIFT_U64 = 4,
21	BPF_FIELD_RSHIFT_U64 = 5,
22};
23
24/* second argument to __builtin_btf_type_id() built-in */
25enum bpf_type_id_kind {
26	BPF_TYPE_ID_LOCAL = 0,		/* BTF type ID in local program */
27	BPF_TYPE_ID_TARGET = 1,		/* BTF type ID in target kernel */
28};
29
30/* second argument to __builtin_preserve_type_info() built-in */
31enum bpf_type_info_kind {
32	BPF_TYPE_EXISTS = 0,		/* type existence in target kernel */
33	BPF_TYPE_SIZE = 1,		/* type size in target kernel */
34	BPF_TYPE_MATCHES = 2,		/* type match in target kernel */
35};
36
37/* second argument to __builtin_preserve_enum_value() built-in */
38enum bpf_enum_value_kind {
39	BPF_ENUMVAL_EXISTS = 0,		/* enum value existence in kernel */
40	BPF_ENUMVAL_VALUE = 1,		/* enum value value relocation */
41};
42
43#define __CORE_RELO(src, field, info)					      \
44	__builtin_preserve_field_info((src)->field, BPF_FIELD_##info)
45
46#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
47#define __CORE_BITFIELD_PROBE_READ(dst, src, fld)			      \
48	bpf_probe_read_kernel(						      \
49			(void *)dst,					      \
50			__CORE_RELO(src, fld, BYTE_SIZE),		      \
51			(const void *)src + __CORE_RELO(src, fld, BYTE_OFFSET))
52#else
53/* semantics of LSHIFT_64 assumes loading values into low-ordered bytes, so
54 * for big-endian we need to adjust destination pointer accordingly, based on
55 * field byte size
56 */
57#define __CORE_BITFIELD_PROBE_READ(dst, src, fld)			      \
58	bpf_probe_read_kernel(						      \
59			(void *)dst + (8 - __CORE_RELO(src, fld, BYTE_SIZE)), \
60			__CORE_RELO(src, fld, BYTE_SIZE),		      \
61			(const void *)src + __CORE_RELO(src, fld, BYTE_OFFSET))
62#endif
63
64/*
65 * Extract bitfield, identified by s->field, and return its value as u64.
66 * All this is done in relocatable manner, so bitfield changes such as
67 * signedness, bit size, offset changes, this will be handled automatically.
68 * This version of macro is using bpf_probe_read_kernel() to read underlying
69 * integer storage. Macro functions as an expression and its return type is
70 * bpf_probe_read_kernel()'s return value: 0, on success, <0 on error.
71 */
72#define BPF_CORE_READ_BITFIELD_PROBED(s, field) ({			      \
73	unsigned long long val = 0;					      \
74									      \
75	__CORE_BITFIELD_PROBE_READ(&val, s, field);			      \
76	val <<= __CORE_RELO(s, field, LSHIFT_U64);			      \
77	if (__CORE_RELO(s, field, SIGNED))				      \
78		val = ((long long)val) >> __CORE_RELO(s, field, RSHIFT_U64);  \
79	else								      \
80		val = val >> __CORE_RELO(s, field, RSHIFT_U64);		      \
81	val;								      \
82})
83
84/*
85 * Extract bitfield, identified by s->field, and return its value as u64.
86 * This version of macro is using direct memory reads and should be used from
87 * BPF program types that support such functionality (e.g., typed raw
88 * tracepoints).
89 */
90#define BPF_CORE_READ_BITFIELD(s, field) ({				      \
91	const void *p = (const void *)s + __CORE_RELO(s, field, BYTE_OFFSET); \
92	unsigned long long val;						      \
93									      \
94	/* This is a so-called barrier_var() operation that makes specified   \
95	 * variable "a black box" for optimizing compiler.		      \
96	 * It forces compiler to perform BYTE_OFFSET relocation on p and use  \
97	 * its calculated value in the switch below, instead of applying      \
98	 * the same relocation 4 times for each individual memory load.       \
99	 */								      \
100	asm volatile("" : "=r"(p) : "0"(p));				      \
101									      \
102	switch (__CORE_RELO(s, field, BYTE_SIZE)) {			      \
103	case 1: val = *(const unsigned char *)p; break;			      \
104	case 2: val = *(const unsigned short *)p; break;		      \
105	case 4: val = *(const unsigned int *)p; break;			      \
106	case 8: val = *(const unsigned long long *)p; break;		      \
107	}								      \
108	val <<= __CORE_RELO(s, field, LSHIFT_U64);			      \
109	if (__CORE_RELO(s, field, SIGNED))				      \
110		val = ((long long)val) >> __CORE_RELO(s, field, RSHIFT_U64);  \
111	else								      \
112		val = val >> __CORE_RELO(s, field, RSHIFT_U64);		      \
113	val;								      \
114})
115
116/*
117 * Write to a bitfield, identified by s->field.
118 * This is the inverse of BPF_CORE_WRITE_BITFIELD().
119 */
120#define BPF_CORE_WRITE_BITFIELD(s, field, new_val) ({			\
121	void *p = (void *)s + __CORE_RELO(s, field, BYTE_OFFSET);	\
122	unsigned int byte_size = __CORE_RELO(s, field, BYTE_SIZE);	\
123	unsigned int lshift = __CORE_RELO(s, field, LSHIFT_U64);	\
124	unsigned int rshift = __CORE_RELO(s, field, RSHIFT_U64);	\
125	unsigned long long mask, val, nval = new_val;			\
126	unsigned int rpad = rshift - lshift;				\
127									\
128	asm volatile("" : "+r"(p));					\
129									\
130	switch (byte_size) {						\
131	case 1: val = *(unsigned char *)p; break;			\
132	case 2: val = *(unsigned short *)p; break;			\
133	case 4: val = *(unsigned int *)p; break;			\
134	case 8: val = *(unsigned long long *)p; break;			\
135	}								\
136									\
137	mask = (~0ULL << rshift) >> lshift;				\
138	val = (val & ~mask) | ((nval << rpad) & mask);			\
139									\
140	switch (byte_size) {						\
141	case 1: *(unsigned char *)p      = val; break;			\
142	case 2: *(unsigned short *)p     = val; break;			\
143	case 4: *(unsigned int *)p       = val; break;			\
144	case 8: *(unsigned long long *)p = val; break;			\
145	}								\
146})
147
148/* Differentiator between compilers builtin implementations. This is a
149 * requirement due to the compiler parsing differences where GCC optimizes
150 * early in parsing those constructs of type pointers to the builtin specific
151 * type, resulting in not being possible to collect the required type
152 * information in the builtin expansion.
153 */
154#ifdef __clang__
155#define ___bpf_typeof(type) ((typeof(type) *) 0)
156#else
157#define ___bpf_typeof1(type, NR) ({					    \
158	extern typeof(type) *___concat(bpf_type_tmp_, NR);		    \
159	___concat(bpf_type_tmp_, NR);					    \
160})
161#define ___bpf_typeof(type) ___bpf_typeof1(type, __COUNTER__)
162#endif
163
164#ifdef __clang__
165#define ___bpf_field_ref1(field)	(field)
166#define ___bpf_field_ref2(type, field)	(___bpf_typeof(type)->field)
167#else
168#define ___bpf_field_ref1(field)	(&(field))
169#define ___bpf_field_ref2(type, field)	(&(___bpf_typeof(type)->field))
170#endif
171#define ___bpf_field_ref(args...)					    \
172	___bpf_apply(___bpf_field_ref, ___bpf_narg(args))(args)
173
174/*
175 * Convenience macro to check that field actually exists in target kernel's.
176 * Returns:
177 *    1, if matching field is present in target kernel;
178 *    0, if no matching field found.
179 *
180 * Supports two forms:
181 *   - field reference through variable access:
182 *     bpf_core_field_exists(p->my_field);
183 *   - field reference through type and field names:
184 *     bpf_core_field_exists(struct my_type, my_field).
185 */
186#define bpf_core_field_exists(field...)					    \
187	__builtin_preserve_field_info(___bpf_field_ref(field), BPF_FIELD_EXISTS)
188
189/*
190 * Convenience macro to get the byte size of a field. Works for integers,
191 * struct/unions, pointers, arrays, and enums.
192 *
193 * Supports two forms:
194 *   - field reference through variable access:
195 *     bpf_core_field_size(p->my_field);
196 *   - field reference through type and field names:
197 *     bpf_core_field_size(struct my_type, my_field).
198 */
199#define bpf_core_field_size(field...)					    \
200	__builtin_preserve_field_info(___bpf_field_ref(field), BPF_FIELD_BYTE_SIZE)
201
202/*
203 * Convenience macro to get field's byte offset.
204 *
205 * Supports two forms:
206 *   - field reference through variable access:
207 *     bpf_core_field_offset(p->my_field);
208 *   - field reference through type and field names:
209 *     bpf_core_field_offset(struct my_type, my_field).
210 */
211#define bpf_core_field_offset(field...)					    \
212	__builtin_preserve_field_info(___bpf_field_ref(field), BPF_FIELD_BYTE_OFFSET)
213
214/*
215 * Convenience macro to get BTF type ID of a specified type, using a local BTF
216 * information. Return 32-bit unsigned integer with type ID from program's own
217 * BTF. Always succeeds.
218 */
219#define bpf_core_type_id_local(type)					    \
220	__builtin_btf_type_id(*___bpf_typeof(type), BPF_TYPE_ID_LOCAL)
221
222/*
223 * Convenience macro to get BTF type ID of a target kernel's type that matches
224 * specified local type.
225 * Returns:
226 *    - valid 32-bit unsigned type ID in kernel BTF;
227 *    - 0, if no matching type was found in a target kernel BTF.
228 */
229#define bpf_core_type_id_kernel(type)					    \
230	__builtin_btf_type_id(*___bpf_typeof(type), BPF_TYPE_ID_TARGET)
231
232/*
233 * Convenience macro to check that provided named type
234 * (struct/union/enum/typedef) exists in a target kernel.
235 * Returns:
236 *    1, if such type is present in target kernel's BTF;
237 *    0, if no matching type is found.
238 */
239#define bpf_core_type_exists(type)					    \
240	__builtin_preserve_type_info(*___bpf_typeof(type), BPF_TYPE_EXISTS)
241
242/*
243 * Convenience macro to check that provided named type
244 * (struct/union/enum/typedef) "matches" that in a target kernel.
245 * Returns:
246 *    1, if the type matches in the target kernel's BTF;
247 *    0, if the type does not match any in the target kernel
248 */
249#define bpf_core_type_matches(type)					    \
250	__builtin_preserve_type_info(*___bpf_typeof(type), BPF_TYPE_MATCHES)
251
252/*
253 * Convenience macro to get the byte size of a provided named type
254 * (struct/union/enum/typedef) in a target kernel.
255 * Returns:
256 *    >= 0 size (in bytes), if type is present in target kernel's BTF;
257 *    0, if no matching type is found.
258 */
259#define bpf_core_type_size(type)					    \
260	__builtin_preserve_type_info(*___bpf_typeof(type), BPF_TYPE_SIZE)
261
262/*
263 * Convenience macro to check that provided enumerator value is defined in
264 * a target kernel.
265 * Returns:
266 *    1, if specified enum type and its enumerator value are present in target
267 *    kernel's BTF;
268 *    0, if no matching enum and/or enum value within that enum is found.
269 */
270#ifdef __clang__
271#define bpf_core_enum_value_exists(enum_type, enum_value)		    \
272	__builtin_preserve_enum_value(*(typeof(enum_type) *)enum_value, BPF_ENUMVAL_EXISTS)
273#else
274#define bpf_core_enum_value_exists(enum_type, enum_value)		    \
275	__builtin_preserve_enum_value(___bpf_typeof(enum_type), enum_value, BPF_ENUMVAL_EXISTS)
276#endif
277
278/*
279 * Convenience macro to get the integer value of an enumerator value in
280 * a target kernel.
281 * Returns:
282 *    64-bit value, if specified enum type and its enumerator value are
283 *    present in target kernel's BTF;
284 *    0, if no matching enum and/or enum value within that enum is found.
285 */
286#ifdef __clang__
287#define bpf_core_enum_value(enum_type, enum_value)			    \
288	__builtin_preserve_enum_value(*(typeof(enum_type) *)enum_value, BPF_ENUMVAL_VALUE)
289#else
290#define bpf_core_enum_value(enum_type, enum_value)			    \
291	__builtin_preserve_enum_value(___bpf_typeof(enum_type), enum_value, BPF_ENUMVAL_VALUE)
292#endif
293
294/*
295 * bpf_core_read() abstracts away bpf_probe_read_kernel() call and captures
296 * offset relocation for source address using __builtin_preserve_access_index()
297 * built-in, provided by Clang.
298 *
299 * __builtin_preserve_access_index() takes as an argument an expression of
300 * taking an address of a field within struct/union. It makes compiler emit
301 * a relocation, which records BTF type ID describing root struct/union and an
302 * accessor string which describes exact embedded field that was used to take
303 * an address. See detailed description of this relocation format and
304 * semantics in comments to struct bpf_core_relo in include/uapi/linux/bpf.h.
305 *
306 * This relocation allows libbpf to adjust BPF instruction to use correct
307 * actual field offset, based on target kernel BTF type that matches original
308 * (local) BTF, used to record relocation.
309 */
310#define bpf_core_read(dst, sz, src)					    \
311	bpf_probe_read_kernel(dst, sz, (const void *)__builtin_preserve_access_index(src))
312
313/* NOTE: see comments for BPF_CORE_READ_USER() about the proper types use. */
314#define bpf_core_read_user(dst, sz, src)				    \
315	bpf_probe_read_user(dst, sz, (const void *)__builtin_preserve_access_index(src))
316/*
317 * bpf_core_read_str() is a thin wrapper around bpf_probe_read_str()
318 * additionally emitting BPF CO-RE field relocation for specified source
319 * argument.
320 */
321#define bpf_core_read_str(dst, sz, src)					    \
322	bpf_probe_read_kernel_str(dst, sz, (const void *)__builtin_preserve_access_index(src))
323
324/* NOTE: see comments for BPF_CORE_READ_USER() about the proper types use. */
325#define bpf_core_read_user_str(dst, sz, src)				    \
326	bpf_probe_read_user_str(dst, sz, (const void *)__builtin_preserve_access_index(src))
327
328extern void *bpf_rdonly_cast(const void *obj, __u32 btf_id) __ksym __weak;
329
330/*
331 * Cast provided pointer *ptr* into a pointer to a specified *type* in such
332 * a way that BPF verifier will become aware of associated kernel-side BTF
333 * type. This allows to access members of kernel types directly without the
334 * need to use BPF_CORE_READ() macros.
335 */
336#define bpf_core_cast(ptr, type)					    \
337	((typeof(type) *)bpf_rdonly_cast((ptr), bpf_core_type_id_kernel(type)))
338
339#define ___concat(a, b) a ## b
340#define ___apply(fn, n) ___concat(fn, n)
341#define ___nth(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, __11, N, ...) N
342
343/*
344 * return number of provided arguments; used for switch-based variadic macro
345 * definitions (see ___last, ___arrow, etc below)
346 */
347#define ___narg(...) ___nth(_, ##__VA_ARGS__, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
348/*
349 * return 0 if no arguments are passed, N - otherwise; used for
350 * recursively-defined macros to specify termination (0) case, and generic
351 * (N) case (e.g., ___read_ptrs, ___core_read)
352 */
353#define ___empty(...) ___nth(_, ##__VA_ARGS__, N, N, N, N, N, N, N, N, N, N, 0)
354
355#define ___last1(x) x
356#define ___last2(a, x) x
357#define ___last3(a, b, x) x
358#define ___last4(a, b, c, x) x
359#define ___last5(a, b, c, d, x) x
360#define ___last6(a, b, c, d, e, x) x
361#define ___last7(a, b, c, d, e, f, x) x
362#define ___last8(a, b, c, d, e, f, g, x) x
363#define ___last9(a, b, c, d, e, f, g, h, x) x
364#define ___last10(a, b, c, d, e, f, g, h, i, x) x
365#define ___last(...) ___apply(___last, ___narg(__VA_ARGS__))(__VA_ARGS__)
366
367#define ___nolast2(a, _) a
368#define ___nolast3(a, b, _) a, b
369#define ___nolast4(a, b, c, _) a, b, c
370#define ___nolast5(a, b, c, d, _) a, b, c, d
371#define ___nolast6(a, b, c, d, e, _) a, b, c, d, e
372#define ___nolast7(a, b, c, d, e, f, _) a, b, c, d, e, f
373#define ___nolast8(a, b, c, d, e, f, g, _) a, b, c, d, e, f, g
374#define ___nolast9(a, b, c, d, e, f, g, h, _) a, b, c, d, e, f, g, h
375#define ___nolast10(a, b, c, d, e, f, g, h, i, _) a, b, c, d, e, f, g, h, i
376#define ___nolast(...) ___apply(___nolast, ___narg(__VA_ARGS__))(__VA_ARGS__)
377
378#define ___arrow1(a) a
379#define ___arrow2(a, b) a->b
380#define ___arrow3(a, b, c) a->b->c
381#define ___arrow4(a, b, c, d) a->b->c->d
382#define ___arrow5(a, b, c, d, e) a->b->c->d->e
383#define ___arrow6(a, b, c, d, e, f) a->b->c->d->e->f
384#define ___arrow7(a, b, c, d, e, f, g) a->b->c->d->e->f->g
385#define ___arrow8(a, b, c, d, e, f, g, h) a->b->c->d->e->f->g->h
386#define ___arrow9(a, b, c, d, e, f, g, h, i) a->b->c->d->e->f->g->h->i
387#define ___arrow10(a, b, c, d, e, f, g, h, i, j) a->b->c->d->e->f->g->h->i->j
388#define ___arrow(...) ___apply(___arrow, ___narg(__VA_ARGS__))(__VA_ARGS__)
389
390#define ___type(...) typeof(___arrow(__VA_ARGS__))
391
392#define ___read(read_fn, dst, src_type, src, accessor)			    \
393	read_fn((void *)(dst), sizeof(*(dst)), &((src_type)(src))->accessor)
394
395/* "recursively" read a sequence of inner pointers using local __t var */
396#define ___rd_first(fn, src, a) ___read(fn, &__t, ___type(src), src, a);
397#define ___rd_last(fn, ...)						    \
398	___read(fn, &__t, ___type(___nolast(__VA_ARGS__)), __t, ___last(__VA_ARGS__));
399#define ___rd_p1(fn, ...) const void *__t; ___rd_first(fn, __VA_ARGS__)
400#define ___rd_p2(fn, ...) ___rd_p1(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
401#define ___rd_p3(fn, ...) ___rd_p2(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
402#define ___rd_p4(fn, ...) ___rd_p3(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
403#define ___rd_p5(fn, ...) ___rd_p4(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
404#define ___rd_p6(fn, ...) ___rd_p5(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
405#define ___rd_p7(fn, ...) ___rd_p6(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
406#define ___rd_p8(fn, ...) ___rd_p7(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
407#define ___rd_p9(fn, ...) ___rd_p8(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
408#define ___read_ptrs(fn, src, ...)					    \
409	___apply(___rd_p, ___narg(__VA_ARGS__))(fn, src, __VA_ARGS__)
410
411#define ___core_read0(fn, fn_ptr, dst, src, a)				    \
412	___read(fn, dst, ___type(src), src, a);
413#define ___core_readN(fn, fn_ptr, dst, src, ...)			    \
414	___read_ptrs(fn_ptr, src, ___nolast(__VA_ARGS__))		    \
415	___read(fn, dst, ___type(src, ___nolast(__VA_ARGS__)), __t,	    \
416		___last(__VA_ARGS__));
417#define ___core_read(fn, fn_ptr, dst, src, a, ...)			    \
418	___apply(___core_read, ___empty(__VA_ARGS__))(fn, fn_ptr, dst,	    \
419						      src, a, ##__VA_ARGS__)
420
421/*
422 * BPF_CORE_READ_INTO() is a more performance-conscious variant of
423 * BPF_CORE_READ(), in which final field is read into user-provided storage.
424 * See BPF_CORE_READ() below for more details on general usage.
425 */
426#define BPF_CORE_READ_INTO(dst, src, a, ...) ({				    \
427	___core_read(bpf_core_read, bpf_core_read,			    \
428		     dst, (src), a, ##__VA_ARGS__)			    \
429})
430
431/*
432 * Variant of BPF_CORE_READ_INTO() for reading from user-space memory.
433 *
434 * NOTE: see comments for BPF_CORE_READ_USER() about the proper types use.
435 */
436#define BPF_CORE_READ_USER_INTO(dst, src, a, ...) ({			    \
437	___core_read(bpf_core_read_user, bpf_core_read_user,		    \
438		     dst, (src), a, ##__VA_ARGS__)			    \
439})
440
441/* Non-CO-RE variant of BPF_CORE_READ_INTO() */
442#define BPF_PROBE_READ_INTO(dst, src, a, ...) ({			    \
443	___core_read(bpf_probe_read_kernel, bpf_probe_read_kernel,	    \
444		     dst, (src), a, ##__VA_ARGS__)			    \
445})
446
447/* Non-CO-RE variant of BPF_CORE_READ_USER_INTO().
448 *
449 * As no CO-RE relocations are emitted, source types can be arbitrary and are
450 * not restricted to kernel types only.
451 */
452#define BPF_PROBE_READ_USER_INTO(dst, src, a, ...) ({			    \
453	___core_read(bpf_probe_read_user, bpf_probe_read_user,		    \
454		     dst, (src), a, ##__VA_ARGS__)			    \
455})
456
457/*
458 * BPF_CORE_READ_STR_INTO() does same "pointer chasing" as
459 * BPF_CORE_READ() for intermediate pointers, but then executes (and returns
460 * corresponding error code) bpf_core_read_str() for final string read.
461 */
462#define BPF_CORE_READ_STR_INTO(dst, src, a, ...) ({			    \
463	___core_read(bpf_core_read_str, bpf_core_read,			    \
464		     dst, (src), a, ##__VA_ARGS__)			    \
465})
466
467/*
468 * Variant of BPF_CORE_READ_STR_INTO() for reading from user-space memory.
469 *
470 * NOTE: see comments for BPF_CORE_READ_USER() about the proper types use.
471 */
472#define BPF_CORE_READ_USER_STR_INTO(dst, src, a, ...) ({		    \
473	___core_read(bpf_core_read_user_str, bpf_core_read_user,	    \
474		     dst, (src), a, ##__VA_ARGS__)			    \
475})
476
477/* Non-CO-RE variant of BPF_CORE_READ_STR_INTO() */
478#define BPF_PROBE_READ_STR_INTO(dst, src, a, ...) ({			    \
479	___core_read(bpf_probe_read_kernel_str, bpf_probe_read_kernel,	    \
480		     dst, (src), a, ##__VA_ARGS__)			    \
481})
482
483/*
484 * Non-CO-RE variant of BPF_CORE_READ_USER_STR_INTO().
485 *
486 * As no CO-RE relocations are emitted, source types can be arbitrary and are
487 * not restricted to kernel types only.
488 */
489#define BPF_PROBE_READ_USER_STR_INTO(dst, src, a, ...) ({		    \
490	___core_read(bpf_probe_read_user_str, bpf_probe_read_user,	    \
491		     dst, (src), a, ##__VA_ARGS__)			    \
492})
493
494/*
495 * BPF_CORE_READ() is used to simplify BPF CO-RE relocatable read, especially
496 * when there are few pointer chasing steps.
497 * E.g., what in non-BPF world (or in BPF w/ BCC) would be something like:
498 *	int x = s->a.b.c->d.e->f->g;
499 * can be succinctly achieved using BPF_CORE_READ as:
500 *	int x = BPF_CORE_READ(s, a.b.c, d.e, f, g);
501 *
502 * BPF_CORE_READ will decompose above statement into 4 bpf_core_read (BPF
503 * CO-RE relocatable bpf_probe_read_kernel() wrapper) calls, logically
504 * equivalent to:
505 * 1. const void *__t = s->a.b.c;
506 * 2. __t = __t->d.e;
507 * 3. __t = __t->f;
508 * 4. return __t->g;
509 *
510 * Equivalence is logical, because there is a heavy type casting/preservation
511 * involved, as well as all the reads are happening through
512 * bpf_probe_read_kernel() calls using __builtin_preserve_access_index() to
513 * emit CO-RE relocations.
514 *
515 * N.B. Only up to 9 "field accessors" are supported, which should be more
516 * than enough for any practical purpose.
517 */
518#define BPF_CORE_READ(src, a, ...) ({					    \
519	___type((src), a, ##__VA_ARGS__) __r;				    \
520	BPF_CORE_READ_INTO(&__r, (src), a, ##__VA_ARGS__);		    \
521	__r;								    \
522})
523
524/*
525 * Variant of BPF_CORE_READ() for reading from user-space memory.
526 *
527 * NOTE: all the source types involved are still *kernel types* and need to
528 * exist in kernel (or kernel module) BTF, otherwise CO-RE relocation will
529 * fail. Custom user types are not relocatable with CO-RE.
530 * The typical situation in which BPF_CORE_READ_USER() might be used is to
531 * read kernel UAPI types from the user-space memory passed in as a syscall
532 * input argument.
533 */
534#define BPF_CORE_READ_USER(src, a, ...) ({				    \
535	___type((src), a, ##__VA_ARGS__) __r;				    \
536	BPF_CORE_READ_USER_INTO(&__r, (src), a, ##__VA_ARGS__);		    \
537	__r;								    \
538})
539
540/* Non-CO-RE variant of BPF_CORE_READ() */
541#define BPF_PROBE_READ(src, a, ...) ({					    \
542	___type((src), a, ##__VA_ARGS__) __r;				    \
543	BPF_PROBE_READ_INTO(&__r, (src), a, ##__VA_ARGS__);		    \
544	__r;								    \
545})
546
547/*
548 * Non-CO-RE variant of BPF_CORE_READ_USER().
549 *
550 * As no CO-RE relocations are emitted, source types can be arbitrary and are
551 * not restricted to kernel types only.
552 */
553#define BPF_PROBE_READ_USER(src, a, ...) ({				    \
554	___type((src), a, ##__VA_ARGS__) __r;				    \
555	BPF_PROBE_READ_USER_INTO(&__r, (src), a, ##__VA_ARGS__);	    \
556	__r;								    \
557})
558
559#endif
560
561