1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * STM32 ALSA SoC Digital Audio Interface (SAI) driver.
4 *
5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6 * Author(s): Olivier Moysan <olivier.moysan@st.com> for STMicroelectronics.
7 */
8
9#include <linux/clk.h>
10#include <linux/clk-provider.h>
11#include <linux/kernel.h>
12#include <linux/module.h>
13#include <linux/of_irq.h>
14#include <linux/of_platform.h>
15#include <linux/pm_runtime.h>
16#include <linux/regmap.h>
17
18#include <sound/asoundef.h>
19#include <sound/core.h>
20#include <sound/dmaengine_pcm.h>
21#include <sound/pcm_params.h>
22
23#include "stm32_sai.h"
24
25#define SAI_FREE_PROTOCOL	0x0
26#define SAI_SPDIF_PROTOCOL	0x1
27
28#define SAI_SLOT_SIZE_AUTO	0x0
29#define SAI_SLOT_SIZE_16	0x1
30#define SAI_SLOT_SIZE_32	0x2
31
32#define SAI_DATASIZE_8		0x2
33#define SAI_DATASIZE_10		0x3
34#define SAI_DATASIZE_16		0x4
35#define SAI_DATASIZE_20		0x5
36#define SAI_DATASIZE_24		0x6
37#define SAI_DATASIZE_32		0x7
38
39#define STM_SAI_DAI_NAME_SIZE	15
40
41#define STM_SAI_IS_PLAYBACK(ip)	((ip)->dir == SNDRV_PCM_STREAM_PLAYBACK)
42#define STM_SAI_IS_CAPTURE(ip)	((ip)->dir == SNDRV_PCM_STREAM_CAPTURE)
43
44#define STM_SAI_A_ID		0x0
45#define STM_SAI_B_ID		0x1
46
47#define STM_SAI_IS_SUB_A(x)	((x)->id == STM_SAI_A_ID)
48
49#define SAI_SYNC_NONE		0x0
50#define SAI_SYNC_INTERNAL	0x1
51#define SAI_SYNC_EXTERNAL	0x2
52
53#define STM_SAI_PROTOCOL_IS_SPDIF(ip)	((ip)->spdif)
54#define STM_SAI_HAS_SPDIF(x)	((x)->pdata->conf.has_spdif_pdm)
55#define STM_SAI_HAS_PDM(x)	((x)->pdata->conf.has_spdif_pdm)
56#define STM_SAI_HAS_EXT_SYNC(x) (!STM_SAI_IS_F4(sai->pdata))
57
58#define SAI_IEC60958_BLOCK_FRAMES	192
59#define SAI_IEC60958_STATUS_BYTES	24
60
61#define SAI_MCLK_NAME_LEN		32
62#define SAI_RATE_11K			11025
63
64/**
65 * struct stm32_sai_sub_data - private data of SAI sub block (block A or B)
66 * @pdev: device data pointer
67 * @regmap: SAI register map pointer
68 * @regmap_config: SAI sub block register map configuration pointer
69 * @dma_params: dma configuration data for rx or tx channel
70 * @cpu_dai_drv: DAI driver data pointer
71 * @cpu_dai: DAI runtime data pointer
72 * @substream: PCM substream data pointer
73 * @pdata: SAI block parent data pointer
74 * @np_sync_provider: synchronization provider node
75 * @sai_ck: kernel clock feeding the SAI clock generator
76 * @sai_mclk: master clock from SAI mclk provider
77 * @phys_addr: SAI registers physical base address
78 * @mclk_rate: SAI block master clock frequency (Hz). set at init
79 * @id: SAI sub block id corresponding to sub-block A or B
80 * @dir: SAI block direction (playback or capture). set at init
81 * @master: SAI block mode flag. (true=master, false=slave) set at init
82 * @spdif: SAI S/PDIF iec60958 mode flag. set at init
83 * @fmt: SAI block format. relevant only for custom protocols. set at init
84 * @sync: SAI block synchronization mode. (none, internal or external)
85 * @synco: SAI block ext sync source (provider setting). (none, sub-block A/B)
86 * @synci: SAI block ext sync source (client setting). (SAI sync provider index)
87 * @fs_length: frame synchronization length. depends on protocol settings
88 * @slots: rx or tx slot number
89 * @slot_width: rx or tx slot width in bits
90 * @slot_mask: rx or tx active slots mask. set at init or at runtime
91 * @data_size: PCM data width. corresponds to PCM substream width.
92 * @spdif_frm_cnt: S/PDIF playback frame counter
93 * @iec958: iec958 data
94 * @ctrl_lock: control lock
95 * @irq_lock: prevent race condition with IRQ
96 */
97struct stm32_sai_sub_data {
98	struct platform_device *pdev;
99	struct regmap *regmap;
100	const struct regmap_config *regmap_config;
101	struct snd_dmaengine_dai_dma_data dma_params;
102	struct snd_soc_dai_driver cpu_dai_drv;
103	struct snd_soc_dai *cpu_dai;
104	struct snd_pcm_substream *substream;
105	struct stm32_sai_data *pdata;
106	struct device_node *np_sync_provider;
107	struct clk *sai_ck;
108	struct clk *sai_mclk;
109	dma_addr_t phys_addr;
110	unsigned int mclk_rate;
111	unsigned int id;
112	int dir;
113	bool master;
114	bool spdif;
115	int fmt;
116	int sync;
117	int synco;
118	int synci;
119	int fs_length;
120	int slots;
121	int slot_width;
122	int slot_mask;
123	int data_size;
124	unsigned int spdif_frm_cnt;
125	struct snd_aes_iec958 iec958;
126	struct mutex ctrl_lock; /* protect resources accessed by controls */
127	spinlock_t irq_lock; /* used to prevent race condition with IRQ */
128};
129
130enum stm32_sai_fifo_th {
131	STM_SAI_FIFO_TH_EMPTY,
132	STM_SAI_FIFO_TH_QUARTER,
133	STM_SAI_FIFO_TH_HALF,
134	STM_SAI_FIFO_TH_3_QUARTER,
135	STM_SAI_FIFO_TH_FULL,
136};
137
138static bool stm32_sai_sub_readable_reg(struct device *dev, unsigned int reg)
139{
140	switch (reg) {
141	case STM_SAI_CR1_REGX:
142	case STM_SAI_CR2_REGX:
143	case STM_SAI_FRCR_REGX:
144	case STM_SAI_SLOTR_REGX:
145	case STM_SAI_IMR_REGX:
146	case STM_SAI_SR_REGX:
147	case STM_SAI_CLRFR_REGX:
148	case STM_SAI_DR_REGX:
149	case STM_SAI_PDMCR_REGX:
150	case STM_SAI_PDMLY_REGX:
151		return true;
152	default:
153		return false;
154	}
155}
156
157static bool stm32_sai_sub_volatile_reg(struct device *dev, unsigned int reg)
158{
159	switch (reg) {
160	case STM_SAI_DR_REGX:
161	case STM_SAI_SR_REGX:
162		return true;
163	default:
164		return false;
165	}
166}
167
168static bool stm32_sai_sub_writeable_reg(struct device *dev, unsigned int reg)
169{
170	switch (reg) {
171	case STM_SAI_CR1_REGX:
172	case STM_SAI_CR2_REGX:
173	case STM_SAI_FRCR_REGX:
174	case STM_SAI_SLOTR_REGX:
175	case STM_SAI_IMR_REGX:
176	case STM_SAI_CLRFR_REGX:
177	case STM_SAI_DR_REGX:
178	case STM_SAI_PDMCR_REGX:
179	case STM_SAI_PDMLY_REGX:
180		return true;
181	default:
182		return false;
183	}
184}
185
186static int stm32_sai_sub_reg_up(struct stm32_sai_sub_data *sai,
187				unsigned int reg, unsigned int mask,
188				unsigned int val)
189{
190	int ret;
191
192	ret = clk_enable(sai->pdata->pclk);
193	if (ret < 0)
194		return ret;
195
196	ret = regmap_update_bits(sai->regmap, reg, mask, val);
197
198	clk_disable(sai->pdata->pclk);
199
200	return ret;
201}
202
203static int stm32_sai_sub_reg_wr(struct stm32_sai_sub_data *sai,
204				unsigned int reg, unsigned int mask,
205				unsigned int val)
206{
207	int ret;
208
209	ret = clk_enable(sai->pdata->pclk);
210	if (ret < 0)
211		return ret;
212
213	ret = regmap_write_bits(sai->regmap, reg, mask, val);
214
215	clk_disable(sai->pdata->pclk);
216
217	return ret;
218}
219
220static int stm32_sai_sub_reg_rd(struct stm32_sai_sub_data *sai,
221				unsigned int reg, unsigned int *val)
222{
223	int ret;
224
225	ret = clk_enable(sai->pdata->pclk);
226	if (ret < 0)
227		return ret;
228
229	ret = regmap_read(sai->regmap, reg, val);
230
231	clk_disable(sai->pdata->pclk);
232
233	return ret;
234}
235
236static const struct regmap_config stm32_sai_sub_regmap_config_f4 = {
237	.reg_bits = 32,
238	.reg_stride = 4,
239	.val_bits = 32,
240	.max_register = STM_SAI_DR_REGX,
241	.readable_reg = stm32_sai_sub_readable_reg,
242	.volatile_reg = stm32_sai_sub_volatile_reg,
243	.writeable_reg = stm32_sai_sub_writeable_reg,
244	.fast_io = true,
245	.cache_type = REGCACHE_FLAT,
246};
247
248static const struct regmap_config stm32_sai_sub_regmap_config_h7 = {
249	.reg_bits = 32,
250	.reg_stride = 4,
251	.val_bits = 32,
252	.max_register = STM_SAI_PDMLY_REGX,
253	.readable_reg = stm32_sai_sub_readable_reg,
254	.volatile_reg = stm32_sai_sub_volatile_reg,
255	.writeable_reg = stm32_sai_sub_writeable_reg,
256	.fast_io = true,
257	.cache_type = REGCACHE_FLAT,
258};
259
260static int snd_pcm_iec958_info(struct snd_kcontrol *kcontrol,
261			       struct snd_ctl_elem_info *uinfo)
262{
263	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
264	uinfo->count = 1;
265
266	return 0;
267}
268
269static int snd_pcm_iec958_get(struct snd_kcontrol *kcontrol,
270			      struct snd_ctl_elem_value *uctl)
271{
272	struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
273
274	mutex_lock(&sai->ctrl_lock);
275	memcpy(uctl->value.iec958.status, sai->iec958.status, 4);
276	mutex_unlock(&sai->ctrl_lock);
277
278	return 0;
279}
280
281static int snd_pcm_iec958_put(struct snd_kcontrol *kcontrol,
282			      struct snd_ctl_elem_value *uctl)
283{
284	struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
285
286	mutex_lock(&sai->ctrl_lock);
287	memcpy(sai->iec958.status, uctl->value.iec958.status, 4);
288	mutex_unlock(&sai->ctrl_lock);
289
290	return 0;
291}
292
293static const struct snd_kcontrol_new iec958_ctls = {
294	.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
295			SNDRV_CTL_ELEM_ACCESS_VOLATILE),
296	.iface = SNDRV_CTL_ELEM_IFACE_PCM,
297	.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
298	.info = snd_pcm_iec958_info,
299	.get = snd_pcm_iec958_get,
300	.put = snd_pcm_iec958_put,
301};
302
303struct stm32_sai_mclk_data {
304	struct clk_hw hw;
305	unsigned long freq;
306	struct stm32_sai_sub_data *sai_data;
307};
308
309#define to_mclk_data(_hw) container_of(_hw, struct stm32_sai_mclk_data, hw)
310#define STM32_SAI_MAX_CLKS 1
311
312static int stm32_sai_get_clk_div(struct stm32_sai_sub_data *sai,
313				 unsigned long input_rate,
314				 unsigned long output_rate)
315{
316	int version = sai->pdata->conf.version;
317	int div;
318
319	div = DIV_ROUND_CLOSEST(input_rate, output_rate);
320	if (div > SAI_XCR1_MCKDIV_MAX(version)) {
321		dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
322		return -EINVAL;
323	}
324	dev_dbg(&sai->pdev->dev, "SAI divider %d\n", div);
325
326	if (input_rate % div)
327		dev_dbg(&sai->pdev->dev,
328			"Rate not accurate. requested (%ld), actual (%ld)\n",
329			output_rate, input_rate / div);
330
331	return div;
332}
333
334static int stm32_sai_set_clk_div(struct stm32_sai_sub_data *sai,
335				 unsigned int div)
336{
337	int version = sai->pdata->conf.version;
338	int ret, cr1, mask;
339
340	if (div > SAI_XCR1_MCKDIV_MAX(version)) {
341		dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
342		return -EINVAL;
343	}
344
345	mask = SAI_XCR1_MCKDIV_MASK(SAI_XCR1_MCKDIV_WIDTH(version));
346	cr1 = SAI_XCR1_MCKDIV_SET(div);
347	ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, mask, cr1);
348	if (ret < 0)
349		dev_err(&sai->pdev->dev, "Failed to update CR1 register\n");
350
351	return ret;
352}
353
354static int stm32_sai_set_parent_clock(struct stm32_sai_sub_data *sai,
355				      unsigned int rate)
356{
357	struct platform_device *pdev = sai->pdev;
358	struct clk *parent_clk = sai->pdata->clk_x8k;
359	int ret;
360
361	if (!(rate % SAI_RATE_11K))
362		parent_clk = sai->pdata->clk_x11k;
363
364	ret = clk_set_parent(sai->sai_ck, parent_clk);
365	if (ret)
366		dev_err(&pdev->dev, " Error %d setting sai_ck parent clock. %s",
367			ret, ret == -EBUSY ?
368			"Active stream rates conflict\n" : "\n");
369
370	return ret;
371}
372
373static long stm32_sai_mclk_round_rate(struct clk_hw *hw, unsigned long rate,
374				      unsigned long *prate)
375{
376	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
377	struct stm32_sai_sub_data *sai = mclk->sai_data;
378	int div;
379
380	div = stm32_sai_get_clk_div(sai, *prate, rate);
381	if (div < 0)
382		return div;
383
384	mclk->freq = *prate / div;
385
386	return mclk->freq;
387}
388
389static unsigned long stm32_sai_mclk_recalc_rate(struct clk_hw *hw,
390						unsigned long parent_rate)
391{
392	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
393
394	return mclk->freq;
395}
396
397static int stm32_sai_mclk_set_rate(struct clk_hw *hw, unsigned long rate,
398				   unsigned long parent_rate)
399{
400	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
401	struct stm32_sai_sub_data *sai = mclk->sai_data;
402	int div, ret;
403
404	div = stm32_sai_get_clk_div(sai, parent_rate, rate);
405	if (div < 0)
406		return div;
407
408	ret = stm32_sai_set_clk_div(sai, div);
409	if (ret)
410		return ret;
411
412	mclk->freq = rate;
413
414	return 0;
415}
416
417static int stm32_sai_mclk_enable(struct clk_hw *hw)
418{
419	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
420	struct stm32_sai_sub_data *sai = mclk->sai_data;
421
422	dev_dbg(&sai->pdev->dev, "Enable master clock\n");
423
424	return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
425				    SAI_XCR1_MCKEN, SAI_XCR1_MCKEN);
426}
427
428static void stm32_sai_mclk_disable(struct clk_hw *hw)
429{
430	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
431	struct stm32_sai_sub_data *sai = mclk->sai_data;
432
433	dev_dbg(&sai->pdev->dev, "Disable master clock\n");
434
435	stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, SAI_XCR1_MCKEN, 0);
436}
437
438static const struct clk_ops mclk_ops = {
439	.enable = stm32_sai_mclk_enable,
440	.disable = stm32_sai_mclk_disable,
441	.recalc_rate = stm32_sai_mclk_recalc_rate,
442	.round_rate = stm32_sai_mclk_round_rate,
443	.set_rate = stm32_sai_mclk_set_rate,
444};
445
446static int stm32_sai_add_mclk_provider(struct stm32_sai_sub_data *sai)
447{
448	struct clk_hw *hw;
449	struct stm32_sai_mclk_data *mclk;
450	struct device *dev = &sai->pdev->dev;
451	const char *pname = __clk_get_name(sai->sai_ck);
452	char *mclk_name, *p, *s = (char *)pname;
453	int ret, i = 0;
454
455	mclk = devm_kzalloc(dev, sizeof(*mclk), GFP_KERNEL);
456	if (!mclk)
457		return -ENOMEM;
458
459	mclk_name = devm_kcalloc(dev, sizeof(char),
460				 SAI_MCLK_NAME_LEN, GFP_KERNEL);
461	if (!mclk_name)
462		return -ENOMEM;
463
464	/*
465	 * Forge mclk clock name from parent clock name and suffix.
466	 * String after "_" char is stripped in parent name.
467	 */
468	p = mclk_name;
469	while (*s && *s != '_' && (i < (SAI_MCLK_NAME_LEN - 7))) {
470		*p++ = *s++;
471		i++;
472	}
473	STM_SAI_IS_SUB_A(sai) ? strcat(p, "a_mclk") : strcat(p, "b_mclk");
474
475	mclk->hw.init = CLK_HW_INIT(mclk_name, pname, &mclk_ops, 0);
476	mclk->sai_data = sai;
477	hw = &mclk->hw;
478
479	dev_dbg(dev, "Register master clock %s\n", mclk_name);
480	ret = devm_clk_hw_register(&sai->pdev->dev, hw);
481	if (ret) {
482		dev_err(dev, "mclk register returned %d\n", ret);
483		return ret;
484	}
485	sai->sai_mclk = hw->clk;
486
487	/* register mclk provider */
488	return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, hw);
489}
490
491static irqreturn_t stm32_sai_isr(int irq, void *devid)
492{
493	struct stm32_sai_sub_data *sai = (struct stm32_sai_sub_data *)devid;
494	struct platform_device *pdev = sai->pdev;
495	unsigned int sr, imr, flags;
496	snd_pcm_state_t status = SNDRV_PCM_STATE_RUNNING;
497
498	stm32_sai_sub_reg_rd(sai, STM_SAI_IMR_REGX, &imr);
499	stm32_sai_sub_reg_rd(sai, STM_SAI_SR_REGX, &sr);
500
501	flags = sr & imr;
502	if (!flags)
503		return IRQ_NONE;
504
505	stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX, SAI_XCLRFR_MASK,
506			     SAI_XCLRFR_MASK);
507
508	if (!sai->substream) {
509		dev_err(&pdev->dev, "Device stopped. Spurious IRQ 0x%x\n", sr);
510		return IRQ_NONE;
511	}
512
513	if (flags & SAI_XIMR_OVRUDRIE) {
514		dev_err(&pdev->dev, "IRQ %s\n",
515			STM_SAI_IS_PLAYBACK(sai) ? "underrun" : "overrun");
516		status = SNDRV_PCM_STATE_XRUN;
517	}
518
519	if (flags & SAI_XIMR_MUTEDETIE)
520		dev_dbg(&pdev->dev, "IRQ mute detected\n");
521
522	if (flags & SAI_XIMR_WCKCFGIE) {
523		dev_err(&pdev->dev, "IRQ wrong clock configuration\n");
524		status = SNDRV_PCM_STATE_DISCONNECTED;
525	}
526
527	if (flags & SAI_XIMR_CNRDYIE)
528		dev_err(&pdev->dev, "IRQ Codec not ready\n");
529
530	if (flags & SAI_XIMR_AFSDETIE) {
531		dev_err(&pdev->dev, "IRQ Anticipated frame synchro\n");
532		status = SNDRV_PCM_STATE_XRUN;
533	}
534
535	if (flags & SAI_XIMR_LFSDETIE) {
536		dev_err(&pdev->dev, "IRQ Late frame synchro\n");
537		status = SNDRV_PCM_STATE_XRUN;
538	}
539
540	spin_lock(&sai->irq_lock);
541	if (status != SNDRV_PCM_STATE_RUNNING && sai->substream)
542		snd_pcm_stop_xrun(sai->substream);
543	spin_unlock(&sai->irq_lock);
544
545	return IRQ_HANDLED;
546}
547
548static int stm32_sai_set_sysclk(struct snd_soc_dai *cpu_dai,
549				int clk_id, unsigned int freq, int dir)
550{
551	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
552	int ret;
553
554	if (dir == SND_SOC_CLOCK_OUT && sai->sai_mclk) {
555		ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
556					   SAI_XCR1_NODIV,
557					 freq ? 0 : SAI_XCR1_NODIV);
558		if (ret < 0)
559			return ret;
560
561		/* Assume shutdown if requested frequency is 0Hz */
562		if (!freq) {
563			/* Release mclk rate only if rate was actually set */
564			if (sai->mclk_rate) {
565				clk_rate_exclusive_put(sai->sai_mclk);
566				sai->mclk_rate = 0;
567			}
568			return 0;
569		}
570
571		/* If master clock is used, set parent clock now */
572		ret = stm32_sai_set_parent_clock(sai, freq);
573		if (ret)
574			return ret;
575
576		ret = clk_set_rate_exclusive(sai->sai_mclk, freq);
577		if (ret) {
578			dev_err(cpu_dai->dev,
579				ret == -EBUSY ?
580				"Active streams have incompatible rates" :
581				"Could not set mclk rate\n");
582			return ret;
583		}
584
585		dev_dbg(cpu_dai->dev, "SAI MCLK frequency is %uHz\n", freq);
586		sai->mclk_rate = freq;
587	}
588
589	return 0;
590}
591
592static int stm32_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
593				      u32 rx_mask, int slots, int slot_width)
594{
595	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
596	int slotr, slotr_mask, slot_size;
597
598	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
599		dev_warn(cpu_dai->dev, "Slot setting relevant only for TDM\n");
600		return 0;
601	}
602
603	dev_dbg(cpu_dai->dev, "Masks tx/rx:%#x/%#x, slots:%d, width:%d\n",
604		tx_mask, rx_mask, slots, slot_width);
605
606	switch (slot_width) {
607	case 16:
608		slot_size = SAI_SLOT_SIZE_16;
609		break;
610	case 32:
611		slot_size = SAI_SLOT_SIZE_32;
612		break;
613	default:
614		slot_size = SAI_SLOT_SIZE_AUTO;
615		break;
616	}
617
618	slotr = SAI_XSLOTR_SLOTSZ_SET(slot_size) |
619		SAI_XSLOTR_NBSLOT_SET(slots - 1);
620	slotr_mask = SAI_XSLOTR_SLOTSZ_MASK | SAI_XSLOTR_NBSLOT_MASK;
621
622	/* tx/rx mask set in machine init, if slot number defined in DT */
623	if (STM_SAI_IS_PLAYBACK(sai)) {
624		sai->slot_mask = tx_mask;
625		slotr |= SAI_XSLOTR_SLOTEN_SET(tx_mask);
626	}
627
628	if (STM_SAI_IS_CAPTURE(sai)) {
629		sai->slot_mask = rx_mask;
630		slotr |= SAI_XSLOTR_SLOTEN_SET(rx_mask);
631	}
632
633	slotr_mask |= SAI_XSLOTR_SLOTEN_MASK;
634
635	stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX, slotr_mask, slotr);
636
637	sai->slot_width = slot_width;
638	sai->slots = slots;
639
640	return 0;
641}
642
643static int stm32_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
644{
645	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
646	int cr1, frcr = 0;
647	int cr1_mask, frcr_mask = 0;
648	int ret;
649
650	dev_dbg(cpu_dai->dev, "fmt %x\n", fmt);
651
652	/* Do not generate master by default */
653	cr1 = SAI_XCR1_NODIV;
654	cr1_mask = SAI_XCR1_NODIV;
655
656	cr1_mask |= SAI_XCR1_PRTCFG_MASK;
657	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
658		cr1 |= SAI_XCR1_PRTCFG_SET(SAI_SPDIF_PROTOCOL);
659		goto conf_update;
660	}
661
662	cr1 |= SAI_XCR1_PRTCFG_SET(SAI_FREE_PROTOCOL);
663
664	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
665	/* SCK active high for all protocols */
666	case SND_SOC_DAIFMT_I2S:
667		cr1 |= SAI_XCR1_CKSTR;
668		frcr |= SAI_XFRCR_FSOFF | SAI_XFRCR_FSDEF;
669		break;
670	/* Left justified */
671	case SND_SOC_DAIFMT_MSB:
672		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
673		break;
674	/* Right justified */
675	case SND_SOC_DAIFMT_LSB:
676		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
677		break;
678	case SND_SOC_DAIFMT_DSP_A:
679		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF;
680		break;
681	case SND_SOC_DAIFMT_DSP_B:
682		frcr |= SAI_XFRCR_FSPOL;
683		break;
684	default:
685		dev_err(cpu_dai->dev, "Unsupported protocol %#x\n",
686			fmt & SND_SOC_DAIFMT_FORMAT_MASK);
687		return -EINVAL;
688	}
689
690	cr1_mask |= SAI_XCR1_CKSTR;
691	frcr_mask |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF |
692		     SAI_XFRCR_FSDEF;
693
694	/* DAI clock strobing. Invert setting previously set */
695	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
696	case SND_SOC_DAIFMT_NB_NF:
697		break;
698	case SND_SOC_DAIFMT_IB_NF:
699		cr1 ^= SAI_XCR1_CKSTR;
700		break;
701	case SND_SOC_DAIFMT_NB_IF:
702		frcr ^= SAI_XFRCR_FSPOL;
703		break;
704	case SND_SOC_DAIFMT_IB_IF:
705		/* Invert fs & sck */
706		cr1 ^= SAI_XCR1_CKSTR;
707		frcr ^= SAI_XFRCR_FSPOL;
708		break;
709	default:
710		dev_err(cpu_dai->dev, "Unsupported strobing %#x\n",
711			fmt & SND_SOC_DAIFMT_INV_MASK);
712		return -EINVAL;
713	}
714	cr1_mask |= SAI_XCR1_CKSTR;
715	frcr_mask |= SAI_XFRCR_FSPOL;
716
717	stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
718
719	/* DAI clock master masks */
720	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
721	case SND_SOC_DAIFMT_BC_FC:
722		/* codec is master */
723		cr1 |= SAI_XCR1_SLAVE;
724		sai->master = false;
725		break;
726	case SND_SOC_DAIFMT_BP_FP:
727		sai->master = true;
728		break;
729	default:
730		dev_err(cpu_dai->dev, "Unsupported mode %#x\n",
731			fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK);
732		return -EINVAL;
733	}
734
735	/* Set slave mode if sub-block is synchronized with another SAI */
736	if (sai->sync) {
737		dev_dbg(cpu_dai->dev, "Synchronized SAI configured as slave\n");
738		cr1 |= SAI_XCR1_SLAVE;
739		sai->master = false;
740	}
741
742	cr1_mask |= SAI_XCR1_SLAVE;
743
744conf_update:
745	ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
746	if (ret < 0) {
747		dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
748		return ret;
749	}
750
751	sai->fmt = fmt;
752
753	return 0;
754}
755
756static int stm32_sai_startup(struct snd_pcm_substream *substream,
757			     struct snd_soc_dai *cpu_dai)
758{
759	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
760	int imr, cr2, ret;
761	unsigned long flags;
762
763	spin_lock_irqsave(&sai->irq_lock, flags);
764	sai->substream = substream;
765	spin_unlock_irqrestore(&sai->irq_lock, flags);
766
767	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
768		snd_pcm_hw_constraint_mask64(substream->runtime,
769					     SNDRV_PCM_HW_PARAM_FORMAT,
770					     SNDRV_PCM_FMTBIT_S32_LE);
771		snd_pcm_hw_constraint_single(substream->runtime,
772					     SNDRV_PCM_HW_PARAM_CHANNELS, 2);
773	}
774
775	ret = clk_prepare_enable(sai->sai_ck);
776	if (ret < 0) {
777		dev_err(cpu_dai->dev, "Failed to enable clock: %d\n", ret);
778		return ret;
779	}
780
781	/* Enable ITs */
782	stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX,
783			     SAI_XCLRFR_MASK, SAI_XCLRFR_MASK);
784
785	imr = SAI_XIMR_OVRUDRIE;
786	if (STM_SAI_IS_CAPTURE(sai)) {
787		stm32_sai_sub_reg_rd(sai, STM_SAI_CR2_REGX, &cr2);
788		if (cr2 & SAI_XCR2_MUTECNT_MASK)
789			imr |= SAI_XIMR_MUTEDETIE;
790	}
791
792	if (sai->master)
793		imr |= SAI_XIMR_WCKCFGIE;
794	else
795		imr |= SAI_XIMR_AFSDETIE | SAI_XIMR_LFSDETIE;
796
797	stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
798			     SAI_XIMR_MASK, imr);
799
800	return 0;
801}
802
803static int stm32_sai_set_config(struct snd_soc_dai *cpu_dai,
804				struct snd_pcm_substream *substream,
805				struct snd_pcm_hw_params *params)
806{
807	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
808	int cr1, cr1_mask, ret;
809
810	/*
811	 * DMA bursts increment is set to 4 words.
812	 * SAI fifo threshold is set to half fifo, to keep enough space
813	 * for DMA incoming bursts.
814	 */
815	stm32_sai_sub_reg_wr(sai, STM_SAI_CR2_REGX,
816			     SAI_XCR2_FFLUSH | SAI_XCR2_FTH_MASK,
817			     SAI_XCR2_FFLUSH |
818			     SAI_XCR2_FTH_SET(STM_SAI_FIFO_TH_HALF));
819
820	/* DS bits in CR1 not set for SPDIF (size forced to 24 bits).*/
821	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
822		sai->spdif_frm_cnt = 0;
823		return 0;
824	}
825
826	/* Mode, data format and channel config */
827	cr1_mask = SAI_XCR1_DS_MASK;
828	switch (params_format(params)) {
829	case SNDRV_PCM_FORMAT_S8:
830		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_8);
831		break;
832	case SNDRV_PCM_FORMAT_S16_LE:
833		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_16);
834		break;
835	case SNDRV_PCM_FORMAT_S32_LE:
836		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_32);
837		break;
838	default:
839		dev_err(cpu_dai->dev, "Data format not supported\n");
840		return -EINVAL;
841	}
842
843	cr1_mask |= SAI_XCR1_MONO;
844	if ((sai->slots == 2) && (params_channels(params) == 1))
845		cr1 |= SAI_XCR1_MONO;
846
847	ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
848	if (ret < 0) {
849		dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
850		return ret;
851	}
852
853	return 0;
854}
855
856static int stm32_sai_set_slots(struct snd_soc_dai *cpu_dai)
857{
858	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
859	int slotr, slot_sz;
860
861	stm32_sai_sub_reg_rd(sai, STM_SAI_SLOTR_REGX, &slotr);
862
863	/*
864	 * If SLOTSZ is set to auto in SLOTR, align slot width on data size
865	 * By default slot width = data size, if not forced from DT
866	 */
867	slot_sz = slotr & SAI_XSLOTR_SLOTSZ_MASK;
868	if (slot_sz == SAI_XSLOTR_SLOTSZ_SET(SAI_SLOT_SIZE_AUTO))
869		sai->slot_width = sai->data_size;
870
871	if (sai->slot_width < sai->data_size) {
872		dev_err(cpu_dai->dev,
873			"Data size %d larger than slot width\n",
874			sai->data_size);
875		return -EINVAL;
876	}
877
878	/* Slot number is set to 2, if not specified in DT */
879	if (!sai->slots)
880		sai->slots = 2;
881
882	/* The number of slots in the audio frame is equal to NBSLOT[3:0] + 1*/
883	stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
884			     SAI_XSLOTR_NBSLOT_MASK,
885			     SAI_XSLOTR_NBSLOT_SET((sai->slots - 1)));
886
887	/* Set default slots mask if not already set from DT */
888	if (!(slotr & SAI_XSLOTR_SLOTEN_MASK)) {
889		sai->slot_mask = (1 << sai->slots) - 1;
890		stm32_sai_sub_reg_up(sai,
891				     STM_SAI_SLOTR_REGX, SAI_XSLOTR_SLOTEN_MASK,
892				     SAI_XSLOTR_SLOTEN_SET(sai->slot_mask));
893	}
894
895	dev_dbg(cpu_dai->dev, "Slots %d, slot width %d\n",
896		sai->slots, sai->slot_width);
897
898	return 0;
899}
900
901static void stm32_sai_set_frame(struct snd_soc_dai *cpu_dai)
902{
903	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
904	int fs_active, offset, format;
905	int frcr, frcr_mask;
906
907	format = sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
908	sai->fs_length = sai->slot_width * sai->slots;
909
910	fs_active = sai->fs_length / 2;
911	if ((format == SND_SOC_DAIFMT_DSP_A) ||
912	    (format == SND_SOC_DAIFMT_DSP_B))
913		fs_active = 1;
914
915	frcr = SAI_XFRCR_FRL_SET((sai->fs_length - 1));
916	frcr |= SAI_XFRCR_FSALL_SET((fs_active - 1));
917	frcr_mask = SAI_XFRCR_FRL_MASK | SAI_XFRCR_FSALL_MASK;
918
919	dev_dbg(cpu_dai->dev, "Frame length %d, frame active %d\n",
920		sai->fs_length, fs_active);
921
922	stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
923
924	if ((sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_LSB) {
925		offset = sai->slot_width - sai->data_size;
926
927		stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
928				     SAI_XSLOTR_FBOFF_MASK,
929				     SAI_XSLOTR_FBOFF_SET(offset));
930	}
931}
932
933static void stm32_sai_init_iec958_status(struct stm32_sai_sub_data *sai)
934{
935	unsigned char *cs = sai->iec958.status;
936
937	cs[0] = IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS_NONE;
938	cs[1] = IEC958_AES1_CON_GENERAL;
939	cs[2] = IEC958_AES2_CON_SOURCE_UNSPEC | IEC958_AES2_CON_CHANNEL_UNSPEC;
940	cs[3] = IEC958_AES3_CON_CLOCK_1000PPM | IEC958_AES3_CON_FS_NOTID;
941}
942
943static void stm32_sai_set_iec958_status(struct stm32_sai_sub_data *sai,
944					struct snd_pcm_runtime *runtime)
945{
946	if (!runtime)
947		return;
948
949	/* Force the sample rate according to runtime rate */
950	mutex_lock(&sai->ctrl_lock);
951	switch (runtime->rate) {
952	case 22050:
953		sai->iec958.status[3] = IEC958_AES3_CON_FS_22050;
954		break;
955	case 44100:
956		sai->iec958.status[3] = IEC958_AES3_CON_FS_44100;
957		break;
958	case 88200:
959		sai->iec958.status[3] = IEC958_AES3_CON_FS_88200;
960		break;
961	case 176400:
962		sai->iec958.status[3] = IEC958_AES3_CON_FS_176400;
963		break;
964	case 24000:
965		sai->iec958.status[3] = IEC958_AES3_CON_FS_24000;
966		break;
967	case 48000:
968		sai->iec958.status[3] = IEC958_AES3_CON_FS_48000;
969		break;
970	case 96000:
971		sai->iec958.status[3] = IEC958_AES3_CON_FS_96000;
972		break;
973	case 192000:
974		sai->iec958.status[3] = IEC958_AES3_CON_FS_192000;
975		break;
976	case 32000:
977		sai->iec958.status[3] = IEC958_AES3_CON_FS_32000;
978		break;
979	default:
980		sai->iec958.status[3] = IEC958_AES3_CON_FS_NOTID;
981		break;
982	}
983	mutex_unlock(&sai->ctrl_lock);
984}
985
986static int stm32_sai_configure_clock(struct snd_soc_dai *cpu_dai,
987				     struct snd_pcm_hw_params *params)
988{
989	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
990	int div = 0, cr1 = 0;
991	int sai_clk_rate, mclk_ratio, den;
992	unsigned int rate = params_rate(params);
993	int ret;
994
995	if (!sai->sai_mclk) {
996		ret = stm32_sai_set_parent_clock(sai, rate);
997		if (ret)
998			return ret;
999	}
1000	sai_clk_rate = clk_get_rate(sai->sai_ck);
1001
1002	if (STM_SAI_IS_F4(sai->pdata)) {
1003		/* mclk on (NODIV=0)
1004		 *   mclk_rate = 256 * fs
1005		 *   MCKDIV = 0 if sai_ck < 3/2 * mclk_rate
1006		 *   MCKDIV = sai_ck / (2 * mclk_rate) otherwise
1007		 * mclk off (NODIV=1)
1008		 *   MCKDIV ignored. sck = sai_ck
1009		 */
1010		if (!sai->mclk_rate)
1011			return 0;
1012
1013		if (2 * sai_clk_rate >= 3 * sai->mclk_rate) {
1014			div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1015						    2 * sai->mclk_rate);
1016			if (div < 0)
1017				return div;
1018		}
1019	} else {
1020		/*
1021		 * TDM mode :
1022		 *   mclk on
1023		 *      MCKDIV = sai_ck / (ws x 256)	(NOMCK=0. OSR=0)
1024		 *      MCKDIV = sai_ck / (ws x 512)	(NOMCK=0. OSR=1)
1025		 *   mclk off
1026		 *      MCKDIV = sai_ck / (frl x ws)	(NOMCK=1)
1027		 * Note: NOMCK/NODIV correspond to same bit.
1028		 */
1029		if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1030			div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1031						    rate * 128);
1032			if (div < 0)
1033				return div;
1034		} else {
1035			if (sai->mclk_rate) {
1036				mclk_ratio = sai->mclk_rate / rate;
1037				if (mclk_ratio == 512) {
1038					cr1 = SAI_XCR1_OSR;
1039				} else if (mclk_ratio != 256) {
1040					dev_err(cpu_dai->dev,
1041						"Wrong mclk ratio %d\n",
1042						mclk_ratio);
1043					return -EINVAL;
1044				}
1045
1046				stm32_sai_sub_reg_up(sai,
1047						     STM_SAI_CR1_REGX,
1048						     SAI_XCR1_OSR, cr1);
1049
1050				div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1051							    sai->mclk_rate);
1052				if (div < 0)
1053					return div;
1054			} else {
1055				/* mclk-fs not set, master clock not active */
1056				den = sai->fs_length * params_rate(params);
1057				div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1058							    den);
1059				if (div < 0)
1060					return div;
1061			}
1062		}
1063	}
1064
1065	return stm32_sai_set_clk_div(sai, div);
1066}
1067
1068static int stm32_sai_hw_params(struct snd_pcm_substream *substream,
1069			       struct snd_pcm_hw_params *params,
1070			       struct snd_soc_dai *cpu_dai)
1071{
1072	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1073	int ret;
1074
1075	sai->data_size = params_width(params);
1076
1077	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1078		/* Rate not already set in runtime structure */
1079		substream->runtime->rate = params_rate(params);
1080		stm32_sai_set_iec958_status(sai, substream->runtime);
1081	} else {
1082		ret = stm32_sai_set_slots(cpu_dai);
1083		if (ret < 0)
1084			return ret;
1085		stm32_sai_set_frame(cpu_dai);
1086	}
1087
1088	ret = stm32_sai_set_config(cpu_dai, substream, params);
1089	if (ret)
1090		return ret;
1091
1092	if (sai->master)
1093		ret = stm32_sai_configure_clock(cpu_dai, params);
1094
1095	return ret;
1096}
1097
1098static int stm32_sai_trigger(struct snd_pcm_substream *substream, int cmd,
1099			     struct snd_soc_dai *cpu_dai)
1100{
1101	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1102	int ret;
1103
1104	switch (cmd) {
1105	case SNDRV_PCM_TRIGGER_START:
1106	case SNDRV_PCM_TRIGGER_RESUME:
1107	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1108		dev_dbg(cpu_dai->dev, "Enable DMA and SAI\n");
1109
1110		stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1111				     SAI_XCR1_DMAEN, SAI_XCR1_DMAEN);
1112
1113		/* Enable SAI */
1114		ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1115					   SAI_XCR1_SAIEN, SAI_XCR1_SAIEN);
1116		if (ret < 0)
1117			dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1118		break;
1119	case SNDRV_PCM_TRIGGER_SUSPEND:
1120	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1121	case SNDRV_PCM_TRIGGER_STOP:
1122		dev_dbg(cpu_dai->dev, "Disable DMA and SAI\n");
1123
1124		stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
1125				     SAI_XIMR_MASK, 0);
1126
1127		stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1128				     SAI_XCR1_SAIEN,
1129				     (unsigned int)~SAI_XCR1_SAIEN);
1130
1131		ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1132					   SAI_XCR1_DMAEN,
1133					   (unsigned int)~SAI_XCR1_DMAEN);
1134		if (ret < 0)
1135			dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1136
1137		if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1138			sai->spdif_frm_cnt = 0;
1139		break;
1140	default:
1141		return -EINVAL;
1142	}
1143
1144	return ret;
1145}
1146
1147static void stm32_sai_shutdown(struct snd_pcm_substream *substream,
1148			       struct snd_soc_dai *cpu_dai)
1149{
1150	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1151	unsigned long flags;
1152
1153	stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX, SAI_XIMR_MASK, 0);
1154
1155	clk_disable_unprepare(sai->sai_ck);
1156
1157	spin_lock_irqsave(&sai->irq_lock, flags);
1158	sai->substream = NULL;
1159	spin_unlock_irqrestore(&sai->irq_lock, flags);
1160}
1161
1162static int stm32_sai_pcm_new(struct snd_soc_pcm_runtime *rtd,
1163			     struct snd_soc_dai *cpu_dai)
1164{
1165	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1166	struct snd_kcontrol_new knew = iec958_ctls;
1167
1168	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1169		dev_dbg(&sai->pdev->dev, "%s: register iec controls", __func__);
1170		knew.device = rtd->pcm->device;
1171		return snd_ctl_add(rtd->pcm->card, snd_ctl_new1(&knew, sai));
1172	}
1173
1174	return 0;
1175}
1176
1177static int stm32_sai_dai_probe(struct snd_soc_dai *cpu_dai)
1178{
1179	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1180	int cr1 = 0, cr1_mask, ret;
1181
1182	sai->cpu_dai = cpu_dai;
1183
1184	sai->dma_params.addr = (dma_addr_t)(sai->phys_addr + STM_SAI_DR_REGX);
1185	/*
1186	 * DMA supports 4, 8 or 16 burst sizes. Burst size 4 is the best choice,
1187	 * as it allows bytes, half-word and words transfers. (See DMA fifos
1188	 * constraints).
1189	 */
1190	sai->dma_params.maxburst = 4;
1191	if (sai->pdata->conf.fifo_size < 8)
1192		sai->dma_params.maxburst = 1;
1193	/* Buswidth will be set by framework at runtime */
1194	sai->dma_params.addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1195
1196	if (STM_SAI_IS_PLAYBACK(sai))
1197		snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params, NULL);
1198	else
1199		snd_soc_dai_init_dma_data(cpu_dai, NULL, &sai->dma_params);
1200
1201	/* Next settings are not relevant for spdif mode */
1202	if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1203		return 0;
1204
1205	cr1_mask = SAI_XCR1_RX_TX;
1206	if (STM_SAI_IS_CAPTURE(sai))
1207		cr1 |= SAI_XCR1_RX_TX;
1208
1209	/* Configure synchronization */
1210	if (sai->sync == SAI_SYNC_EXTERNAL) {
1211		/* Configure synchro client and provider */
1212		ret = sai->pdata->set_sync(sai->pdata, sai->np_sync_provider,
1213					   sai->synco, sai->synci);
1214		if (ret)
1215			return ret;
1216	}
1217
1218	cr1_mask |= SAI_XCR1_SYNCEN_MASK;
1219	cr1 |= SAI_XCR1_SYNCEN_SET(sai->sync);
1220
1221	return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
1222}
1223
1224static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops = {
1225	.probe		= stm32_sai_dai_probe,
1226	.set_sysclk	= stm32_sai_set_sysclk,
1227	.set_fmt	= stm32_sai_set_dai_fmt,
1228	.set_tdm_slot	= stm32_sai_set_dai_tdm_slot,
1229	.startup	= stm32_sai_startup,
1230	.hw_params	= stm32_sai_hw_params,
1231	.trigger	= stm32_sai_trigger,
1232	.shutdown	= stm32_sai_shutdown,
1233	.pcm_new	= stm32_sai_pcm_new,
1234};
1235
1236static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops2 = {
1237	.probe		= stm32_sai_dai_probe,
1238	.set_sysclk	= stm32_sai_set_sysclk,
1239	.set_fmt	= stm32_sai_set_dai_fmt,
1240	.set_tdm_slot	= stm32_sai_set_dai_tdm_slot,
1241	.startup	= stm32_sai_startup,
1242	.hw_params	= stm32_sai_hw_params,
1243	.trigger	= stm32_sai_trigger,
1244	.shutdown	= stm32_sai_shutdown,
1245};
1246
1247static int stm32_sai_pcm_process_spdif(struct snd_pcm_substream *substream,
1248				       int channel, unsigned long hwoff,
1249				       unsigned long bytes)
1250{
1251	struct snd_pcm_runtime *runtime = substream->runtime;
1252	struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
1253	struct snd_soc_dai *cpu_dai = snd_soc_rtd_to_cpu(rtd, 0);
1254	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1255	int *ptr = (int *)(runtime->dma_area + hwoff +
1256			   channel * (runtime->dma_bytes / runtime->channels));
1257	ssize_t cnt = bytes_to_samples(runtime, bytes);
1258	unsigned int frm_cnt = sai->spdif_frm_cnt;
1259	unsigned int byte;
1260	unsigned int mask;
1261
1262	do {
1263		*ptr = ((*ptr >> 8) & 0x00ffffff);
1264
1265		/* Set channel status bit */
1266		byte = frm_cnt >> 3;
1267		mask = 1 << (frm_cnt - (byte << 3));
1268		if (sai->iec958.status[byte] & mask)
1269			*ptr |= 0x04000000;
1270		ptr++;
1271
1272		if (!(cnt % 2))
1273			frm_cnt++;
1274
1275		if (frm_cnt == SAI_IEC60958_BLOCK_FRAMES)
1276			frm_cnt = 0;
1277	} while (--cnt);
1278	sai->spdif_frm_cnt = frm_cnt;
1279
1280	return 0;
1281}
1282
1283/* No support of mmap in S/PDIF mode */
1284static const struct snd_pcm_hardware stm32_sai_pcm_hw_spdif = {
1285	.info = SNDRV_PCM_INFO_INTERLEAVED,
1286	.buffer_bytes_max = 8 * PAGE_SIZE,
1287	.period_bytes_min = 1024,
1288	.period_bytes_max = PAGE_SIZE,
1289	.periods_min = 2,
1290	.periods_max = 8,
1291};
1292
1293static const struct snd_pcm_hardware stm32_sai_pcm_hw = {
1294	.info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP,
1295	.buffer_bytes_max = 8 * PAGE_SIZE,
1296	.period_bytes_min = 1024, /* 5ms at 48kHz */
1297	.period_bytes_max = PAGE_SIZE,
1298	.periods_min = 2,
1299	.periods_max = 8,
1300};
1301
1302static struct snd_soc_dai_driver stm32_sai_playback_dai = {
1303		.id = 1, /* avoid call to fmt_single_name() */
1304		.playback = {
1305			.channels_min = 1,
1306			.channels_max = 16,
1307			.rate_min = 8000,
1308			.rate_max = 192000,
1309			.rates = SNDRV_PCM_RATE_CONTINUOUS,
1310			/* DMA does not support 24 bits transfers */
1311			.formats =
1312				SNDRV_PCM_FMTBIT_S8 |
1313				SNDRV_PCM_FMTBIT_S16_LE |
1314				SNDRV_PCM_FMTBIT_S32_LE,
1315		},
1316		.ops = &stm32_sai_pcm_dai_ops,
1317};
1318
1319static struct snd_soc_dai_driver stm32_sai_capture_dai = {
1320		.id = 1, /* avoid call to fmt_single_name() */
1321		.capture = {
1322			.channels_min = 1,
1323			.channels_max = 16,
1324			.rate_min = 8000,
1325			.rate_max = 192000,
1326			.rates = SNDRV_PCM_RATE_CONTINUOUS,
1327			/* DMA does not support 24 bits transfers */
1328			.formats =
1329				SNDRV_PCM_FMTBIT_S8 |
1330				SNDRV_PCM_FMTBIT_S16_LE |
1331				SNDRV_PCM_FMTBIT_S32_LE,
1332		},
1333		.ops = &stm32_sai_pcm_dai_ops2,
1334};
1335
1336static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config = {
1337	.pcm_hardware = &stm32_sai_pcm_hw,
1338	.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1339};
1340
1341static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config_spdif = {
1342	.pcm_hardware = &stm32_sai_pcm_hw_spdif,
1343	.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1344	.process = stm32_sai_pcm_process_spdif,
1345};
1346
1347static const struct snd_soc_component_driver stm32_component = {
1348	.name = "stm32-sai",
1349	.legacy_dai_naming = 1,
1350};
1351
1352static const struct of_device_id stm32_sai_sub_ids[] = {
1353	{ .compatible = "st,stm32-sai-sub-a",
1354	  .data = (void *)STM_SAI_A_ID},
1355	{ .compatible = "st,stm32-sai-sub-b",
1356	  .data = (void *)STM_SAI_B_ID},
1357	{}
1358};
1359MODULE_DEVICE_TABLE(of, stm32_sai_sub_ids);
1360
1361static int stm32_sai_sub_parse_of(struct platform_device *pdev,
1362				  struct stm32_sai_sub_data *sai)
1363{
1364	struct device_node *np = pdev->dev.of_node;
1365	struct resource *res;
1366	void __iomem *base;
1367	struct of_phandle_args args;
1368	int ret;
1369
1370	if (!np)
1371		return -ENODEV;
1372
1373	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1374	if (IS_ERR(base))
1375		return PTR_ERR(base);
1376
1377	sai->phys_addr = res->start;
1378
1379	sai->regmap_config = &stm32_sai_sub_regmap_config_f4;
1380	/* Note: PDM registers not available for sub-block B */
1381	if (STM_SAI_HAS_PDM(sai) && STM_SAI_IS_SUB_A(sai))
1382		sai->regmap_config = &stm32_sai_sub_regmap_config_h7;
1383
1384	/*
1385	 * Do not manage peripheral clock through regmap framework as this
1386	 * can lead to circular locking issue with sai master clock provider.
1387	 * Manage peripheral clock directly in driver instead.
1388	 */
1389	sai->regmap = devm_regmap_init_mmio(&pdev->dev, base,
1390					    sai->regmap_config);
1391	if (IS_ERR(sai->regmap))
1392		return dev_err_probe(&pdev->dev, PTR_ERR(sai->regmap),
1393				     "Regmap init error\n");
1394
1395	/* Get direction property */
1396	if (of_property_match_string(np, "dma-names", "tx") >= 0) {
1397		sai->dir = SNDRV_PCM_STREAM_PLAYBACK;
1398	} else if (of_property_match_string(np, "dma-names", "rx") >= 0) {
1399		sai->dir = SNDRV_PCM_STREAM_CAPTURE;
1400	} else {
1401		dev_err(&pdev->dev, "Unsupported direction\n");
1402		return -EINVAL;
1403	}
1404
1405	/* Get spdif iec60958 property */
1406	sai->spdif = false;
1407	if (of_property_present(np, "st,iec60958")) {
1408		if (!STM_SAI_HAS_SPDIF(sai) ||
1409		    sai->dir == SNDRV_PCM_STREAM_CAPTURE) {
1410			dev_err(&pdev->dev, "S/PDIF IEC60958 not supported\n");
1411			return -EINVAL;
1412		}
1413		stm32_sai_init_iec958_status(sai);
1414		sai->spdif = true;
1415		sai->master = true;
1416	}
1417
1418	/* Get synchronization property */
1419	args.np = NULL;
1420	ret = of_parse_phandle_with_fixed_args(np, "st,sync", 1, 0, &args);
1421	if (ret < 0  && ret != -ENOENT) {
1422		dev_err(&pdev->dev, "Failed to get st,sync property\n");
1423		return ret;
1424	}
1425
1426	sai->sync = SAI_SYNC_NONE;
1427	if (args.np) {
1428		if (args.np == np) {
1429			dev_err(&pdev->dev, "%pOFn sync own reference\n", np);
1430			of_node_put(args.np);
1431			return -EINVAL;
1432		}
1433
1434		sai->np_sync_provider  = of_get_parent(args.np);
1435		if (!sai->np_sync_provider) {
1436			dev_err(&pdev->dev, "%pOFn parent node not found\n",
1437				np);
1438			of_node_put(args.np);
1439			return -ENODEV;
1440		}
1441
1442		sai->sync = SAI_SYNC_INTERNAL;
1443		if (sai->np_sync_provider != sai->pdata->pdev->dev.of_node) {
1444			if (!STM_SAI_HAS_EXT_SYNC(sai)) {
1445				dev_err(&pdev->dev,
1446					"External synchro not supported\n");
1447				of_node_put(args.np);
1448				return -EINVAL;
1449			}
1450			sai->sync = SAI_SYNC_EXTERNAL;
1451
1452			sai->synci = args.args[0];
1453			if (sai->synci < 1 ||
1454			    (sai->synci > (SAI_GCR_SYNCIN_MAX + 1))) {
1455				dev_err(&pdev->dev, "Wrong SAI index\n");
1456				of_node_put(args.np);
1457				return -EINVAL;
1458			}
1459
1460			if (of_property_match_string(args.np, "compatible",
1461						     "st,stm32-sai-sub-a") >= 0)
1462				sai->synco = STM_SAI_SYNC_OUT_A;
1463
1464			if (of_property_match_string(args.np, "compatible",
1465						     "st,stm32-sai-sub-b") >= 0)
1466				sai->synco = STM_SAI_SYNC_OUT_B;
1467
1468			if (!sai->synco) {
1469				dev_err(&pdev->dev, "Unknown SAI sub-block\n");
1470				of_node_put(args.np);
1471				return -EINVAL;
1472			}
1473		}
1474
1475		dev_dbg(&pdev->dev, "%s synchronized with %s\n",
1476			pdev->name, args.np->full_name);
1477	}
1478
1479	of_node_put(args.np);
1480	sai->sai_ck = devm_clk_get(&pdev->dev, "sai_ck");
1481	if (IS_ERR(sai->sai_ck))
1482		return dev_err_probe(&pdev->dev, PTR_ERR(sai->sai_ck),
1483				     "Missing kernel clock sai_ck\n");
1484
1485	ret = clk_prepare(sai->pdata->pclk);
1486	if (ret < 0)
1487		return ret;
1488
1489	if (STM_SAI_IS_F4(sai->pdata))
1490		return 0;
1491
1492	/* Register mclk provider if requested */
1493	if (of_property_present(np, "#clock-cells")) {
1494		ret = stm32_sai_add_mclk_provider(sai);
1495		if (ret < 0)
1496			return ret;
1497	} else {
1498		sai->sai_mclk = devm_clk_get_optional(&pdev->dev, "MCLK");
1499		if (IS_ERR(sai->sai_mclk))
1500			return PTR_ERR(sai->sai_mclk);
1501	}
1502
1503	return 0;
1504}
1505
1506static int stm32_sai_sub_probe(struct platform_device *pdev)
1507{
1508	struct stm32_sai_sub_data *sai;
1509	const struct snd_dmaengine_pcm_config *conf = &stm32_sai_pcm_config;
1510	int ret;
1511
1512	sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
1513	if (!sai)
1514		return -ENOMEM;
1515
1516	sai->id = (uintptr_t)device_get_match_data(&pdev->dev);
1517
1518	sai->pdev = pdev;
1519	mutex_init(&sai->ctrl_lock);
1520	spin_lock_init(&sai->irq_lock);
1521	platform_set_drvdata(pdev, sai);
1522
1523	sai->pdata = dev_get_drvdata(pdev->dev.parent);
1524	if (!sai->pdata) {
1525		dev_err(&pdev->dev, "Parent device data not available\n");
1526		return -EINVAL;
1527	}
1528
1529	ret = stm32_sai_sub_parse_of(pdev, sai);
1530	if (ret)
1531		return ret;
1532
1533	if (STM_SAI_IS_PLAYBACK(sai))
1534		sai->cpu_dai_drv = stm32_sai_playback_dai;
1535	else
1536		sai->cpu_dai_drv = stm32_sai_capture_dai;
1537	sai->cpu_dai_drv.name = dev_name(&pdev->dev);
1538
1539	ret = devm_request_irq(&pdev->dev, sai->pdata->irq, stm32_sai_isr,
1540			       IRQF_SHARED, dev_name(&pdev->dev), sai);
1541	if (ret) {
1542		dev_err(&pdev->dev, "IRQ request returned %d\n", ret);
1543		return ret;
1544	}
1545
1546	if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1547		conf = &stm32_sai_pcm_config_spdif;
1548
1549	ret = snd_dmaengine_pcm_register(&pdev->dev, conf, 0);
1550	if (ret)
1551		return dev_err_probe(&pdev->dev, ret, "Could not register pcm dma\n");
1552
1553	ret = snd_soc_register_component(&pdev->dev, &stm32_component,
1554					 &sai->cpu_dai_drv, 1);
1555	if (ret) {
1556		snd_dmaengine_pcm_unregister(&pdev->dev);
1557		return ret;
1558	}
1559
1560	pm_runtime_enable(&pdev->dev);
1561
1562	return 0;
1563}
1564
1565static void stm32_sai_sub_remove(struct platform_device *pdev)
1566{
1567	struct stm32_sai_sub_data *sai = dev_get_drvdata(&pdev->dev);
1568
1569	clk_unprepare(sai->pdata->pclk);
1570	snd_dmaengine_pcm_unregister(&pdev->dev);
1571	snd_soc_unregister_component(&pdev->dev);
1572	pm_runtime_disable(&pdev->dev);
1573}
1574
1575#ifdef CONFIG_PM_SLEEP
1576static int stm32_sai_sub_suspend(struct device *dev)
1577{
1578	struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1579	int ret;
1580
1581	ret = clk_enable(sai->pdata->pclk);
1582	if (ret < 0)
1583		return ret;
1584
1585	regcache_cache_only(sai->regmap, true);
1586	regcache_mark_dirty(sai->regmap);
1587
1588	clk_disable(sai->pdata->pclk);
1589
1590	return 0;
1591}
1592
1593static int stm32_sai_sub_resume(struct device *dev)
1594{
1595	struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1596	int ret;
1597
1598	ret = clk_enable(sai->pdata->pclk);
1599	if (ret < 0)
1600		return ret;
1601
1602	regcache_cache_only(sai->regmap, false);
1603	ret = regcache_sync(sai->regmap);
1604
1605	clk_disable(sai->pdata->pclk);
1606
1607	return ret;
1608}
1609#endif /* CONFIG_PM_SLEEP */
1610
1611static const struct dev_pm_ops stm32_sai_sub_pm_ops = {
1612	SET_SYSTEM_SLEEP_PM_OPS(stm32_sai_sub_suspend, stm32_sai_sub_resume)
1613};
1614
1615static struct platform_driver stm32_sai_sub_driver = {
1616	.driver = {
1617		.name = "st,stm32-sai-sub",
1618		.of_match_table = stm32_sai_sub_ids,
1619		.pm = &stm32_sai_sub_pm_ops,
1620	},
1621	.probe = stm32_sai_sub_probe,
1622	.remove_new = stm32_sai_sub_remove,
1623};
1624
1625module_platform_driver(stm32_sai_sub_driver);
1626
1627MODULE_DESCRIPTION("STM32 Soc SAI sub-block Interface");
1628MODULE_AUTHOR("Olivier Moysan <olivier.moysan@st.com>");
1629MODULE_ALIAS("platform:st,stm32-sai-sub");
1630MODULE_LICENSE("GPL v2");
1631