1// SPDX-License-Identifier: GPL-2.0
2//
3// Serial Sound Interface (I2S) support for SH7760/SH7780
4//
5// Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net>
6//
7// dont forget to set IPSEL/OMSEL register bits (in your board code) to
8// enable SSI output pins!
9
10/*
11 * LIMITATIONS:
12 *	The SSI unit has only one physical data line, so full duplex is
13 *	impossible.  This can be remedied  on the  SH7760 by  using the
14 *	other SSI unit for recording; however the SH7780 has only 1 SSI
15 *	unit, and its pins are shared with the AC97 unit,  among others.
16 *
17 * FEATURES:
18 *	The SSI features "compressed mode": in this mode it continuously
19 *	streams PCM data over the I2S lines and uses LRCK as a handshake
20 *	signal.  Can be used to send compressed data (AC3/DTS) to a DSP.
21 *	The number of bits sent over the wire in a frame can be adjusted
22 *	and can be independent from the actual sample bit depth. This is
23 *	useful to support TDM mode codecs like the AD1939 which have a
24 *	fixed TDM slot size, regardless of sample resolution.
25 */
26
27#include <linux/init.h>
28#include <linux/module.h>
29#include <linux/platform_device.h>
30#include <sound/core.h>
31#include <sound/pcm.h>
32#include <sound/initval.h>
33#include <sound/soc.h>
34#include <asm/io.h>
35
36#define SSICR	0x00
37#define SSISR	0x04
38
39#define CR_DMAEN	(1 << 28)
40#define CR_CHNL_SHIFT	22
41#define CR_CHNL_MASK	(3 << CR_CHNL_SHIFT)
42#define CR_DWL_SHIFT	19
43#define CR_DWL_MASK	(7 << CR_DWL_SHIFT)
44#define CR_SWL_SHIFT	16
45#define CR_SWL_MASK	(7 << CR_SWL_SHIFT)
46#define CR_SCK_MASTER	(1 << 15)	/* bitclock master bit */
47#define CR_SWS_MASTER	(1 << 14)	/* wordselect master bit */
48#define CR_SCKP		(1 << 13)	/* I2Sclock polarity */
49#define CR_SWSP		(1 << 12)	/* LRCK polarity */
50#define CR_SPDP		(1 << 11)
51#define CR_SDTA		(1 << 10)	/* i2s alignment (msb/lsb) */
52#define CR_PDTA		(1 << 9)	/* fifo data alignment */
53#define CR_DEL		(1 << 8)	/* delay data by 1 i2sclk */
54#define CR_BREN		(1 << 7)	/* clock gating in burst mode */
55#define CR_CKDIV_SHIFT	4
56#define CR_CKDIV_MASK	(7 << CR_CKDIV_SHIFT)	/* bitclock divider */
57#define CR_MUTE		(1 << 3)	/* SSI mute */
58#define CR_CPEN		(1 << 2)	/* compressed mode */
59#define CR_TRMD		(1 << 1)	/* transmit/receive select */
60#define CR_EN		(1 << 0)	/* enable SSI */
61
62#define SSIREG(reg)	(*(unsigned long *)(ssi->mmio + (reg)))
63
64struct ssi_priv {
65	unsigned long mmio;
66	unsigned long sysclk;
67	int inuse;
68} ssi_cpu_data[] = {
69#if defined(CONFIG_CPU_SUBTYPE_SH7760)
70	{
71		.mmio	= 0xFE680000,
72	},
73	{
74		.mmio	= 0xFE690000,
75	},
76#elif defined(CONFIG_CPU_SUBTYPE_SH7780)
77	{
78		.mmio	= 0xFFE70000,
79	},
80#else
81#error "Unsupported SuperH SoC"
82#endif
83};
84
85/*
86 * track usage of the SSI; it is simplex-only so prevent attempts of
87 * concurrent playback + capture. FIXME: any locking required?
88 */
89static int ssi_startup(struct snd_pcm_substream *substream,
90		       struct snd_soc_dai *dai)
91{
92	struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
93	if (ssi->inuse) {
94		pr_debug("ssi: already in use!\n");
95		return -EBUSY;
96	} else
97		ssi->inuse = 1;
98	return 0;
99}
100
101static void ssi_shutdown(struct snd_pcm_substream *substream,
102			 struct snd_soc_dai *dai)
103{
104	struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
105
106	ssi->inuse = 0;
107}
108
109static int ssi_trigger(struct snd_pcm_substream *substream, int cmd,
110		       struct snd_soc_dai *dai)
111{
112	struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
113
114	switch (cmd) {
115	case SNDRV_PCM_TRIGGER_START:
116		SSIREG(SSICR) |= CR_DMAEN | CR_EN;
117		break;
118	case SNDRV_PCM_TRIGGER_STOP:
119		SSIREG(SSICR) &= ~(CR_DMAEN | CR_EN);
120		break;
121	default:
122		return -EINVAL;
123	}
124
125	return 0;
126}
127
128static int ssi_hw_params(struct snd_pcm_substream *substream,
129			 struct snd_pcm_hw_params *params,
130			 struct snd_soc_dai *dai)
131{
132	struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
133	unsigned long ssicr = SSIREG(SSICR);
134	unsigned int bits, channels, swl, recv, i;
135
136	channels = params_channels(params);
137	bits = params->msbits;
138	recv = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ? 0 : 1;
139
140	pr_debug("ssi_hw_params() enter\nssicr was    %08lx\n", ssicr);
141	pr_debug("bits: %u channels: %u\n", bits, channels);
142
143	ssicr &= ~(CR_TRMD | CR_CHNL_MASK | CR_DWL_MASK | CR_PDTA |
144		   CR_SWL_MASK);
145
146	/* direction (send/receive) */
147	if (!recv)
148		ssicr |= CR_TRMD;	/* transmit */
149
150	/* channels */
151	if ((channels < 2) || (channels > 8) || (channels & 1)) {
152		pr_debug("ssi: invalid number of channels\n");
153		return -EINVAL;
154	}
155	ssicr |= ((channels >> 1) - 1) << CR_CHNL_SHIFT;
156
157	/* DATA WORD LENGTH (DWL): databits in audio sample */
158	i = 0;
159	switch (bits) {
160	case 32: ++i;
161	case 24: ++i;
162	case 22: ++i;
163	case 20: ++i;
164	case 18: ++i;
165	case 16: ++i;
166		 ssicr |= i << CR_DWL_SHIFT;
167	case 8:	 break;
168	default:
169		pr_debug("ssi: invalid sample width\n");
170		return -EINVAL;
171	}
172
173	/*
174	 * SYSTEM WORD LENGTH: size in bits of half a frame over the I2S
175	 * wires. This is usually bits_per_sample x channels/2;  i.e. in
176	 * Stereo mode  the SWL equals DWL.  SWL can  be bigger than the
177	 * product of (channels_per_slot x samplebits), e.g.  for codecs
178	 * like the AD1939 which  only accept 32bit wide TDM slots.  For
179	 * "standard" I2S operation we set SWL = chans / 2 * DWL here.
180	 * Waiting for ASoC to get TDM support ;-)
181	 */
182	if ((bits > 16) && (bits <= 24)) {
183		bits = 24;	/* these are padded by the SSI */
184		/*ssicr |= CR_PDTA;*/ /* cpu/data endianness ? */
185	}
186	i = 0;
187	swl = (bits * channels) / 2;
188	switch (swl) {
189	case 256: ++i;
190	case 128: ++i;
191	case 64:  ++i;
192	case 48:  ++i;
193	case 32:  ++i;
194	case 16:  ++i;
195		  ssicr |= i << CR_SWL_SHIFT;
196	case 8:   break;
197	default:
198		pr_debug("ssi: invalid system word length computed\n");
199		return -EINVAL;
200	}
201
202	SSIREG(SSICR) = ssicr;
203
204	pr_debug("ssi_hw_params() leave\nssicr is now %08lx\n", ssicr);
205	return 0;
206}
207
208static int ssi_set_sysclk(struct snd_soc_dai *cpu_dai, int clk_id,
209			  unsigned int freq, int dir)
210{
211	struct ssi_priv *ssi = &ssi_cpu_data[cpu_dai->id];
212
213	ssi->sysclk = freq;
214
215	return 0;
216}
217
218/*
219 * This divider is used to generate the SSI_SCK (I2S bitclock) from the
220 * clock at the HAC_BIT_CLK ("oversampling clock") pin.
221 */
222static int ssi_set_clkdiv(struct snd_soc_dai *dai, int did, int div)
223{
224	struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
225	unsigned long ssicr;
226	int i;
227
228	i = 0;
229	ssicr = SSIREG(SSICR) & ~CR_CKDIV_MASK;
230	switch (div) {
231	case 16: ++i;
232	case 8:  ++i;
233	case 4:  ++i;
234	case 2:  ++i;
235		 SSIREG(SSICR) = ssicr | (i << CR_CKDIV_SHIFT);
236	case 1:  break;
237	default:
238		pr_debug("ssi: invalid sck divider %d\n", div);
239		return -EINVAL;
240	}
241
242	return 0;
243}
244
245static int ssi_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
246{
247	struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
248	unsigned long ssicr = SSIREG(SSICR);
249
250	pr_debug("ssi_set_fmt()\nssicr was    0x%08lx\n", ssicr);
251
252	ssicr &= ~(CR_DEL | CR_PDTA | CR_BREN | CR_SWSP | CR_SCKP |
253		   CR_SWS_MASTER | CR_SCK_MASTER);
254
255	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
256	case SND_SOC_DAIFMT_I2S:
257		break;
258	case SND_SOC_DAIFMT_RIGHT_J:
259		ssicr |= CR_DEL | CR_PDTA;
260		break;
261	case SND_SOC_DAIFMT_LEFT_J:
262		ssicr |= CR_DEL;
263		break;
264	default:
265		pr_debug("ssi: unsupported format\n");
266		return -EINVAL;
267	}
268
269	switch (fmt & SND_SOC_DAIFMT_CLOCK_MASK) {
270	case SND_SOC_DAIFMT_CONT:
271		break;
272	case SND_SOC_DAIFMT_GATED:
273		ssicr |= CR_BREN;
274		break;
275	}
276
277	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
278	case SND_SOC_DAIFMT_NB_NF:
279		ssicr |= CR_SCKP;	/* sample data at low clkedge */
280		break;
281	case SND_SOC_DAIFMT_NB_IF:
282		ssicr |= CR_SCKP | CR_SWSP;
283		break;
284	case SND_SOC_DAIFMT_IB_NF:
285		break;
286	case SND_SOC_DAIFMT_IB_IF:
287		ssicr |= CR_SWSP;	/* word select starts low */
288		break;
289	default:
290		pr_debug("ssi: invalid inversion\n");
291		return -EINVAL;
292	}
293
294	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
295	case SND_SOC_DAIFMT_BC_FC:
296		break;
297	case SND_SOC_DAIFMT_BP_FC:
298		ssicr |= CR_SCK_MASTER;
299		break;
300	case SND_SOC_DAIFMT_BC_FP:
301		ssicr |= CR_SWS_MASTER;
302		break;
303	case SND_SOC_DAIFMT_BP_FP:
304		ssicr |= CR_SWS_MASTER | CR_SCK_MASTER;
305		break;
306	default:
307		pr_debug("ssi: invalid master/secondary configuration\n");
308		return -EINVAL;
309	}
310
311	SSIREG(SSICR) = ssicr;
312	pr_debug("ssi_set_fmt() leave\nssicr is now 0x%08lx\n", ssicr);
313
314	return 0;
315}
316
317/* the SSI depends on an external clocksource (at HAC_BIT_CLK) even in
318 * Master mode,  so really this is board specific;  the SSI can do any
319 * rate with the right bitclk and divider settings.
320 */
321#define SSI_RATES	\
322	SNDRV_PCM_RATE_8000_192000
323
324/* the SSI can do 8-32 bit samples, with 8 possible channels */
325#define SSI_FMTS	\
326	(SNDRV_PCM_FMTBIT_S8      | SNDRV_PCM_FMTBIT_U8      |	\
327	 SNDRV_PCM_FMTBIT_S16_LE  | SNDRV_PCM_FMTBIT_U16_LE  |	\
328	 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_U20_3LE |	\
329	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3LE |	\
330	 SNDRV_PCM_FMTBIT_S32_LE  | SNDRV_PCM_FMTBIT_U32_LE)
331
332static const struct snd_soc_dai_ops ssi_dai_ops = {
333	.startup	= ssi_startup,
334	.shutdown	= ssi_shutdown,
335	.trigger	= ssi_trigger,
336	.hw_params	= ssi_hw_params,
337	.set_sysclk	= ssi_set_sysclk,
338	.set_clkdiv	= ssi_set_clkdiv,
339	.set_fmt	= ssi_set_fmt,
340};
341
342static struct snd_soc_dai_driver sh4_ssi_dai[] = {
343{
344	.name			= "ssi-dai.0",
345	.playback = {
346		.rates		= SSI_RATES,
347		.formats	= SSI_FMTS,
348		.channels_min	= 2,
349		.channels_max	= 8,
350	},
351	.capture = {
352		.rates		= SSI_RATES,
353		.formats	= SSI_FMTS,
354		.channels_min	= 2,
355		.channels_max	= 8,
356	},
357	.ops = &ssi_dai_ops,
358},
359#ifdef CONFIG_CPU_SUBTYPE_SH7760
360{
361	.name			= "ssi-dai.1",
362	.playback = {
363		.rates		= SSI_RATES,
364		.formats	= SSI_FMTS,
365		.channels_min	= 2,
366		.channels_max	= 8,
367	},
368	.capture = {
369		.rates		= SSI_RATES,
370		.formats	= SSI_FMTS,
371		.channels_min	= 2,
372		.channels_max	= 8,
373	},
374	.ops = &ssi_dai_ops,
375},
376#endif
377};
378
379static const struct snd_soc_component_driver sh4_ssi_component = {
380	.name			= "sh4-ssi",
381	.legacy_dai_naming	= 1,
382};
383
384static int sh4_soc_dai_probe(struct platform_device *pdev)
385{
386	return devm_snd_soc_register_component(&pdev->dev, &sh4_ssi_component,
387					       sh4_ssi_dai,
388					       ARRAY_SIZE(sh4_ssi_dai));
389}
390
391static struct platform_driver sh4_ssi_driver = {
392	.driver = {
393			.name = "sh4-ssi-dai",
394	},
395
396	.probe = sh4_soc_dai_probe,
397};
398
399module_platform_driver(sh4_ssi_driver);
400
401MODULE_LICENSE("GPL v2");
402MODULE_DESCRIPTION("SuperH onchip SSI (I2S) audio driver");
403MODULE_AUTHOR("Manuel Lauss <mano@roarinelk.homelinux.net>");
404