1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  skl-message.c - HDA DSP interface for FW registration, Pipe and Module
4 *  configurations
5 *
6 *  Copyright (C) 2015 Intel Corp
7 *  Author:Rafal Redzimski <rafal.f.redzimski@intel.com>
8 *	   Jeeja KP <jeeja.kp@intel.com>
9 *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 */
11
12#include <linux/slab.h>
13#include <linux/pci.h>
14#include <sound/core.h>
15#include <sound/pcm.h>
16#include <uapi/sound/skl-tplg-interface.h>
17#include "skl-sst-dsp.h"
18#include "cnl-sst-dsp.h"
19#include "skl-sst-ipc.h"
20#include "skl.h"
21#include "../common/sst-dsp.h"
22#include "../common/sst-dsp-priv.h"
23#include "skl-topology.h"
24
25static int skl_alloc_dma_buf(struct device *dev,
26		struct snd_dma_buffer *dmab, size_t size)
27{
28	return snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, dev, size, dmab);
29}
30
31static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab)
32{
33	snd_dma_free_pages(dmab);
34	return 0;
35}
36
37#define SKL_ASTATE_PARAM_ID	4
38
39void skl_dsp_set_astate_cfg(struct skl_dev *skl, u32 cnt, void *data)
40{
41	struct skl_ipc_large_config_msg	msg = {0};
42
43	msg.large_param_id = SKL_ASTATE_PARAM_ID;
44	msg.param_data_size = (cnt * sizeof(struct skl_astate_param) +
45				sizeof(cnt));
46
47	skl_ipc_set_large_config(&skl->ipc, &msg, data);
48}
49
50static int skl_dsp_setup_spib(struct device *dev, unsigned int size,
51				int stream_tag, int enable)
52{
53	struct hdac_bus *bus = dev_get_drvdata(dev);
54	struct hdac_stream *stream = snd_hdac_get_stream(bus,
55			SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
56
57	if (!stream)
58		return -EINVAL;
59
60	/* enable/disable SPIB for this hdac stream */
61	snd_hdac_stream_spbcap_enable(bus, enable, stream->index);
62
63	/* set the spib value */
64	snd_hdac_stream_set_spib(bus, stream, size);
65
66	return 0;
67}
68
69static int skl_dsp_prepare(struct device *dev, unsigned int format,
70			unsigned int size, struct snd_dma_buffer *dmab)
71{
72	struct hdac_bus *bus = dev_get_drvdata(dev);
73	struct hdac_ext_stream *estream;
74	struct hdac_stream *stream;
75	struct snd_pcm_substream substream;
76	int ret;
77
78	if (!bus)
79		return -ENODEV;
80
81	memset(&substream, 0, sizeof(substream));
82	substream.stream = SNDRV_PCM_STREAM_PLAYBACK;
83
84	estream = snd_hdac_ext_stream_assign(bus, &substream,
85					HDAC_EXT_STREAM_TYPE_HOST);
86	if (!estream)
87		return -ENODEV;
88
89	stream = hdac_stream(estream);
90
91	/* assign decouple host dma channel */
92	ret = snd_hdac_dsp_prepare(stream, format, size, dmab);
93	if (ret < 0)
94		return ret;
95
96	skl_dsp_setup_spib(dev, size, stream->stream_tag, true);
97
98	return stream->stream_tag;
99}
100
101static int skl_dsp_trigger(struct device *dev, bool start, int stream_tag)
102{
103	struct hdac_bus *bus = dev_get_drvdata(dev);
104	struct hdac_stream *stream;
105
106	if (!bus)
107		return -ENODEV;
108
109	stream = snd_hdac_get_stream(bus,
110		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
111	if (!stream)
112		return -EINVAL;
113
114	snd_hdac_dsp_trigger(stream, start);
115
116	return 0;
117}
118
119static int skl_dsp_cleanup(struct device *dev,
120		struct snd_dma_buffer *dmab, int stream_tag)
121{
122	struct hdac_bus *bus = dev_get_drvdata(dev);
123	struct hdac_stream *stream;
124	struct hdac_ext_stream *estream;
125
126	if (!bus)
127		return -ENODEV;
128
129	stream = snd_hdac_get_stream(bus,
130		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
131	if (!stream)
132		return -EINVAL;
133
134	estream = stream_to_hdac_ext_stream(stream);
135	skl_dsp_setup_spib(dev, 0, stream_tag, false);
136	snd_hdac_ext_stream_release(estream, HDAC_EXT_STREAM_TYPE_HOST);
137
138	snd_hdac_dsp_cleanup(stream, dmab);
139
140	return 0;
141}
142
143static struct skl_dsp_loader_ops skl_get_loader_ops(void)
144{
145	struct skl_dsp_loader_ops loader_ops;
146
147	memset(&loader_ops, 0, sizeof(struct skl_dsp_loader_ops));
148
149	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
150	loader_ops.free_dma_buf = skl_free_dma_buf;
151
152	return loader_ops;
153};
154
155static struct skl_dsp_loader_ops bxt_get_loader_ops(void)
156{
157	struct skl_dsp_loader_ops loader_ops;
158
159	memset(&loader_ops, 0, sizeof(loader_ops));
160
161	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
162	loader_ops.free_dma_buf = skl_free_dma_buf;
163	loader_ops.prepare = skl_dsp_prepare;
164	loader_ops.trigger = skl_dsp_trigger;
165	loader_ops.cleanup = skl_dsp_cleanup;
166
167	return loader_ops;
168};
169
170static const struct skl_dsp_ops dsp_ops[] = {
171	{
172		.id = PCI_DEVICE_ID_INTEL_HDA_SKL_LP,
173		.num_cores = 2,
174		.loader_ops = skl_get_loader_ops,
175		.init = skl_sst_dsp_init,
176		.init_fw = skl_sst_init_fw,
177		.cleanup = skl_sst_dsp_cleanup
178	},
179	{
180		.id = PCI_DEVICE_ID_INTEL_HDA_KBL_LP,
181		.num_cores = 2,
182		.loader_ops = skl_get_loader_ops,
183		.init = skl_sst_dsp_init,
184		.init_fw = skl_sst_init_fw,
185		.cleanup = skl_sst_dsp_cleanup
186	},
187	{
188		.id = PCI_DEVICE_ID_INTEL_HDA_APL,
189		.num_cores = 2,
190		.loader_ops = bxt_get_loader_ops,
191		.init = bxt_sst_dsp_init,
192		.init_fw = bxt_sst_init_fw,
193		.cleanup = bxt_sst_dsp_cleanup
194	},
195	{
196		.id = PCI_DEVICE_ID_INTEL_HDA_GML,
197		.num_cores = 2,
198		.loader_ops = bxt_get_loader_ops,
199		.init = bxt_sst_dsp_init,
200		.init_fw = bxt_sst_init_fw,
201		.cleanup = bxt_sst_dsp_cleanup
202	},
203	{
204		.id = PCI_DEVICE_ID_INTEL_HDA_CNL_LP,
205		.num_cores = 4,
206		.loader_ops = bxt_get_loader_ops,
207		.init = cnl_sst_dsp_init,
208		.init_fw = cnl_sst_init_fw,
209		.cleanup = cnl_sst_dsp_cleanup
210	},
211	{
212		.id = PCI_DEVICE_ID_INTEL_HDA_CNL_H,
213		.num_cores = 4,
214		.loader_ops = bxt_get_loader_ops,
215		.init = cnl_sst_dsp_init,
216		.init_fw = cnl_sst_init_fw,
217		.cleanup = cnl_sst_dsp_cleanup
218	},
219	{
220		.id = PCI_DEVICE_ID_INTEL_HDA_CML_LP,
221		.num_cores = 4,
222		.loader_ops = bxt_get_loader_ops,
223		.init = cnl_sst_dsp_init,
224		.init_fw = cnl_sst_init_fw,
225		.cleanup = cnl_sst_dsp_cleanup
226	},
227	{
228		.id = PCI_DEVICE_ID_INTEL_HDA_CML_H,
229		.num_cores = 4,
230		.loader_ops = bxt_get_loader_ops,
231		.init = cnl_sst_dsp_init,
232		.init_fw = cnl_sst_init_fw,
233		.cleanup = cnl_sst_dsp_cleanup
234	},
235};
236
237const struct skl_dsp_ops *skl_get_dsp_ops(int pci_id)
238{
239	int i;
240
241	for (i = 0; i < ARRAY_SIZE(dsp_ops); i++) {
242		if (dsp_ops[i].id == pci_id)
243			return &dsp_ops[i];
244	}
245
246	return NULL;
247}
248
249int skl_init_dsp(struct skl_dev *skl)
250{
251	void __iomem *mmio_base;
252	struct hdac_bus *bus = skl_to_bus(skl);
253	struct skl_dsp_loader_ops loader_ops;
254	int irq = bus->irq;
255	const struct skl_dsp_ops *ops;
256	struct skl_dsp_cores *cores;
257	int ret;
258
259	/* enable ppcap interrupt */
260	snd_hdac_ext_bus_ppcap_enable(bus, true);
261	snd_hdac_ext_bus_ppcap_int_enable(bus, true);
262
263	/* read the BAR of the ADSP MMIO */
264	mmio_base = pci_ioremap_bar(skl->pci, 4);
265	if (mmio_base == NULL) {
266		dev_err(bus->dev, "ioremap error\n");
267		return -ENXIO;
268	}
269
270	ops = skl_get_dsp_ops(skl->pci->device);
271	if (!ops) {
272		ret = -EIO;
273		goto unmap_mmio;
274	}
275
276	loader_ops = ops->loader_ops();
277	ret = ops->init(bus->dev, mmio_base, irq,
278				skl->fw_name, loader_ops,
279				&skl);
280
281	if (ret < 0)
282		goto unmap_mmio;
283
284	skl->dsp_ops = ops;
285	cores = &skl->cores;
286	cores->count = ops->num_cores;
287
288	cores->state = kcalloc(cores->count, sizeof(*cores->state), GFP_KERNEL);
289	if (!cores->state) {
290		ret = -ENOMEM;
291		goto unmap_mmio;
292	}
293
294	cores->usage_count = kcalloc(cores->count, sizeof(*cores->usage_count),
295				     GFP_KERNEL);
296	if (!cores->usage_count) {
297		ret = -ENOMEM;
298		goto free_core_state;
299	}
300
301	dev_dbg(bus->dev, "dsp registration status=%d\n", ret);
302
303	return 0;
304
305free_core_state:
306	kfree(cores->state);
307
308unmap_mmio:
309	iounmap(mmio_base);
310
311	return ret;
312}
313
314int skl_free_dsp(struct skl_dev *skl)
315{
316	struct hdac_bus *bus = skl_to_bus(skl);
317
318	/* disable  ppcap interrupt */
319	snd_hdac_ext_bus_ppcap_int_enable(bus, false);
320
321	skl->dsp_ops->cleanup(bus->dev, skl);
322
323	kfree(skl->cores.state);
324	kfree(skl->cores.usage_count);
325
326	if (skl->dsp->addr.lpe)
327		iounmap(skl->dsp->addr.lpe);
328
329	return 0;
330}
331
332/*
333 * In the case of "suspend_active" i.e, the Audio IP being active
334 * during system suspend, immediately excecute any pending D0i3 work
335 * before suspending. This is needed for the IP to work in low power
336 * mode during system suspend. In the case of normal suspend, cancel
337 * any pending D0i3 work.
338 */
339int skl_suspend_late_dsp(struct skl_dev *skl)
340{
341	struct delayed_work *dwork;
342
343	if (!skl)
344		return 0;
345
346	dwork = &skl->d0i3.work;
347
348	if (dwork->work.func) {
349		if (skl->supend_active)
350			flush_delayed_work(dwork);
351		else
352			cancel_delayed_work_sync(dwork);
353	}
354
355	return 0;
356}
357
358int skl_suspend_dsp(struct skl_dev *skl)
359{
360	struct hdac_bus *bus = skl_to_bus(skl);
361	int ret;
362
363	/* if ppcap is not supported return 0 */
364	if (!bus->ppcap)
365		return 0;
366
367	ret = skl_dsp_sleep(skl->dsp);
368	if (ret < 0)
369		return ret;
370
371	/* disable ppcap interrupt */
372	snd_hdac_ext_bus_ppcap_int_enable(bus, false);
373	snd_hdac_ext_bus_ppcap_enable(bus, false);
374
375	return 0;
376}
377
378int skl_resume_dsp(struct skl_dev *skl)
379{
380	struct hdac_bus *bus = skl_to_bus(skl);
381	int ret;
382
383	/* if ppcap is not supported return 0 */
384	if (!bus->ppcap)
385		return 0;
386
387	/* enable ppcap interrupt */
388	snd_hdac_ext_bus_ppcap_enable(bus, true);
389	snd_hdac_ext_bus_ppcap_int_enable(bus, true);
390
391	/* check if DSP 1st boot is done */
392	if (skl->is_first_boot)
393		return 0;
394
395	/*
396	 * Disable dynamic clock and power gating during firmware
397	 * and library download
398	 */
399	skl->enable_miscbdcge(skl->dev, false);
400	skl->clock_power_gating(skl->dev, false);
401
402	ret = skl_dsp_wake(skl->dsp);
403	skl->enable_miscbdcge(skl->dev, true);
404	skl->clock_power_gating(skl->dev, true);
405	if (ret < 0)
406		return ret;
407
408	if (skl->cfg.astate_cfg != NULL) {
409		skl_dsp_set_astate_cfg(skl, skl->cfg.astate_cfg->count,
410					skl->cfg.astate_cfg);
411	}
412	return ret;
413}
414
415enum skl_bitdepth skl_get_bit_depth(int params)
416{
417	switch (params) {
418	case 8:
419		return SKL_DEPTH_8BIT;
420
421	case 16:
422		return SKL_DEPTH_16BIT;
423
424	case 24:
425		return SKL_DEPTH_24BIT;
426
427	case 32:
428		return SKL_DEPTH_32BIT;
429
430	default:
431		return SKL_DEPTH_INVALID;
432
433	}
434}
435
436/*
437 * Each module in DSP expects a base module configuration, which consists of
438 * PCM format information, which we calculate in driver and resource values
439 * which are read from widget information passed through topology binary
440 * This is send when we create a module with INIT_INSTANCE IPC msg
441 */
442static void skl_set_base_module_format(struct skl_dev *skl,
443			struct skl_module_cfg *mconfig,
444			struct skl_base_cfg *base_cfg)
445{
446	struct skl_module *module = mconfig->module;
447	struct skl_module_res *res = &module->resources[mconfig->res_idx];
448	struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx];
449	struct skl_module_fmt *format = &fmt->inputs[0].fmt;
450
451	base_cfg->audio_fmt.number_of_channels = format->channels;
452
453	base_cfg->audio_fmt.s_freq = format->s_freq;
454	base_cfg->audio_fmt.bit_depth = format->bit_depth;
455	base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth;
456	base_cfg->audio_fmt.ch_cfg = format->ch_cfg;
457	base_cfg->audio_fmt.sample_type = format->sample_type;
458
459	dev_dbg(skl->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n",
460			format->bit_depth, format->valid_bit_depth,
461			format->ch_cfg);
462
463	base_cfg->audio_fmt.channel_map = format->ch_map;
464
465	base_cfg->audio_fmt.interleaving = format->interleaving_style;
466
467	base_cfg->cpc = res->cpc;
468	base_cfg->ibs = res->ibs;
469	base_cfg->obs = res->obs;
470	base_cfg->is_pages = res->is_pages;
471}
472
473static void fill_pin_params(struct skl_audio_data_format *pin_fmt,
474			    struct skl_module_fmt *format)
475{
476	pin_fmt->number_of_channels = format->channels;
477	pin_fmt->s_freq = format->s_freq;
478	pin_fmt->bit_depth = format->bit_depth;
479	pin_fmt->valid_bit_depth = format->valid_bit_depth;
480	pin_fmt->ch_cfg = format->ch_cfg;
481	pin_fmt->sample_type = format->sample_type;
482	pin_fmt->channel_map = format->ch_map;
483	pin_fmt->interleaving = format->interleaving_style;
484}
485
486/*
487 * Any module configuration begins with a base module configuration but
488 * can be followed by a generic extension containing audio format for all
489 * module's pins that are in use.
490 */
491static void skl_set_base_ext_module_format(struct skl_dev *skl,
492					   struct skl_module_cfg *mconfig,
493					   struct skl_base_cfg_ext *base_cfg_ext)
494{
495	struct skl_module *module = mconfig->module;
496	struct skl_module_pin_resources *pin_res;
497	struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx];
498	struct skl_module_res *res = &module->resources[mconfig->res_idx];
499	struct skl_module_fmt *format;
500	struct skl_pin_format *pin_fmt;
501	char *params;
502	int i;
503
504	base_cfg_ext->nr_input_pins = res->nr_input_pins;
505	base_cfg_ext->nr_output_pins = res->nr_output_pins;
506	base_cfg_ext->priv_param_length =
507		mconfig->formats_config[SKL_PARAM_INIT].caps_size;
508
509	for (i = 0; i < res->nr_input_pins; i++) {
510		pin_res = &res->input[i];
511		pin_fmt = &base_cfg_ext->pins_fmt[i];
512
513		pin_fmt->pin_idx = pin_res->pin_index;
514		pin_fmt->buf_size = pin_res->buf_size;
515
516		format = &fmt->inputs[pin_res->pin_index].fmt;
517		fill_pin_params(&pin_fmt->audio_fmt, format);
518	}
519
520	for (i = 0; i < res->nr_output_pins; i++) {
521		pin_res = &res->output[i];
522		pin_fmt = &base_cfg_ext->pins_fmt[res->nr_input_pins + i];
523
524		pin_fmt->pin_idx = pin_res->pin_index;
525		pin_fmt->buf_size = pin_res->buf_size;
526
527		format = &fmt->outputs[pin_res->pin_index].fmt;
528		fill_pin_params(&pin_fmt->audio_fmt, format);
529	}
530
531	if (!base_cfg_ext->priv_param_length)
532		return;
533
534	params = (char *)base_cfg_ext + sizeof(struct skl_base_cfg_ext);
535	params += (base_cfg_ext->nr_input_pins + base_cfg_ext->nr_output_pins) *
536		  sizeof(struct skl_pin_format);
537
538	memcpy(params, mconfig->formats_config[SKL_PARAM_INIT].caps,
539	       mconfig->formats_config[SKL_PARAM_INIT].caps_size);
540}
541
542/*
543 * Copies copier capabilities into copier module and updates copier module
544 * config size.
545 */
546static void skl_copy_copier_caps(struct skl_module_cfg *mconfig,
547				struct skl_cpr_cfg *cpr_mconfig)
548{
549	if (mconfig->formats_config[SKL_PARAM_INIT].caps_size == 0)
550		return;
551
552	memcpy(&cpr_mconfig->gtw_cfg.config_data,
553			mconfig->formats_config[SKL_PARAM_INIT].caps,
554			mconfig->formats_config[SKL_PARAM_INIT].caps_size);
555
556	cpr_mconfig->gtw_cfg.config_length =
557			(mconfig->formats_config[SKL_PARAM_INIT].caps_size) / 4;
558}
559
560#define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF
561/*
562 * Calculate the gatewat settings required for copier module, type of
563 * gateway and index of gateway to use
564 */
565static u32 skl_get_node_id(struct skl_dev *skl,
566			struct skl_module_cfg *mconfig)
567{
568	union skl_connector_node_id node_id = {0};
569	union skl_ssp_dma_node ssp_node  = {0};
570	struct skl_pipe_params *params = mconfig->pipe->p_params;
571
572	switch (mconfig->dev_type) {
573	case SKL_DEVICE_BT:
574		node_id.node.dma_type =
575			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
576			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
577			SKL_DMA_I2S_LINK_INPUT_CLASS;
578		node_id.node.vindex = params->host_dma_id +
579					(mconfig->vbus_id << 3);
580		break;
581
582	case SKL_DEVICE_I2S:
583		node_id.node.dma_type =
584			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
585			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
586			SKL_DMA_I2S_LINK_INPUT_CLASS;
587		ssp_node.dma_node.time_slot_index = mconfig->time_slot;
588		ssp_node.dma_node.i2s_instance = mconfig->vbus_id;
589		node_id.node.vindex = ssp_node.val;
590		break;
591
592	case SKL_DEVICE_DMIC:
593		node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS;
594		node_id.node.vindex = mconfig->vbus_id +
595					 (mconfig->time_slot);
596		break;
597
598	case SKL_DEVICE_HDALINK:
599		node_id.node.dma_type =
600			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
601			SKL_DMA_HDA_LINK_OUTPUT_CLASS :
602			SKL_DMA_HDA_LINK_INPUT_CLASS;
603		node_id.node.vindex = params->link_dma_id;
604		break;
605
606	case SKL_DEVICE_HDAHOST:
607		node_id.node.dma_type =
608			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
609			SKL_DMA_HDA_HOST_OUTPUT_CLASS :
610			SKL_DMA_HDA_HOST_INPUT_CLASS;
611		node_id.node.vindex = params->host_dma_id;
612		break;
613
614	default:
615		node_id.val = 0xFFFFFFFF;
616		break;
617	}
618
619	return node_id.val;
620}
621
622static void skl_setup_cpr_gateway_cfg(struct skl_dev *skl,
623			struct skl_module_cfg *mconfig,
624			struct skl_cpr_cfg *cpr_mconfig)
625{
626	u32 dma_io_buf;
627	struct skl_module_res *res;
628	int res_idx = mconfig->res_idx;
629
630	cpr_mconfig->gtw_cfg.node_id = skl_get_node_id(skl, mconfig);
631
632	if (cpr_mconfig->gtw_cfg.node_id == SKL_NON_GATEWAY_CPR_NODE_ID) {
633		cpr_mconfig->cpr_feature_mask = 0;
634		return;
635	}
636
637	if (skl->nr_modules) {
638		res = &mconfig->module->resources[mconfig->res_idx];
639		cpr_mconfig->gtw_cfg.dma_buffer_size = res->dma_buffer_size;
640		goto skip_buf_size_calc;
641	} else {
642		res = &mconfig->module->resources[res_idx];
643	}
644
645	switch (mconfig->hw_conn_type) {
646	case SKL_CONN_SOURCE:
647		if (mconfig->dev_type == SKL_DEVICE_HDAHOST)
648			dma_io_buf =  res->ibs;
649		else
650			dma_io_buf =  res->obs;
651		break;
652
653	case SKL_CONN_SINK:
654		if (mconfig->dev_type == SKL_DEVICE_HDAHOST)
655			dma_io_buf =  res->obs;
656		else
657			dma_io_buf =  res->ibs;
658		break;
659
660	default:
661		dev_warn(skl->dev, "wrong connection type: %d\n",
662				mconfig->hw_conn_type);
663		return;
664	}
665
666	cpr_mconfig->gtw_cfg.dma_buffer_size =
667				mconfig->dma_buffer_size * dma_io_buf;
668
669	/* fallback to 2ms default value */
670	if (!cpr_mconfig->gtw_cfg.dma_buffer_size) {
671		if (mconfig->hw_conn_type == SKL_CONN_SOURCE)
672			cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->obs;
673		else
674			cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->ibs;
675	}
676
677skip_buf_size_calc:
678	cpr_mconfig->cpr_feature_mask = 0;
679	cpr_mconfig->gtw_cfg.config_length  = 0;
680
681	skl_copy_copier_caps(mconfig, cpr_mconfig);
682}
683
684#define DMA_CONTROL_ID 5
685#define DMA_I2S_BLOB_SIZE 21
686
687int skl_dsp_set_dma_control(struct skl_dev *skl, u32 *caps,
688				u32 caps_size, u32 node_id)
689{
690	struct skl_dma_control *dma_ctrl;
691	struct skl_ipc_large_config_msg msg = {0};
692	int err = 0;
693
694
695	/*
696	 * if blob size zero, then return
697	 */
698	if (caps_size == 0)
699		return 0;
700
701	msg.large_param_id = DMA_CONTROL_ID;
702	msg.param_data_size = sizeof(struct skl_dma_control) + caps_size;
703
704	dma_ctrl = kzalloc(msg.param_data_size, GFP_KERNEL);
705	if (dma_ctrl == NULL)
706		return -ENOMEM;
707
708	dma_ctrl->node_id = node_id;
709
710	/*
711	 * NHLT blob may contain additional configs along with i2s blob.
712	 * firmware expects only the i2s blob size as the config_length.
713	 * So fix to i2s blob size.
714	 * size in dwords.
715	 */
716	dma_ctrl->config_length = DMA_I2S_BLOB_SIZE;
717
718	memcpy(dma_ctrl->config_data, caps, caps_size);
719
720	err = skl_ipc_set_large_config(&skl->ipc, &msg, (u32 *)dma_ctrl);
721
722	kfree(dma_ctrl);
723	return err;
724}
725EXPORT_SYMBOL_GPL(skl_dsp_set_dma_control);
726
727static void skl_setup_out_format(struct skl_dev *skl,
728			struct skl_module_cfg *mconfig,
729			struct skl_audio_data_format *out_fmt)
730{
731	struct skl_module *module = mconfig->module;
732	struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx];
733	struct skl_module_fmt *format = &fmt->outputs[0].fmt;
734
735	out_fmt->number_of_channels = (u8)format->channels;
736	out_fmt->s_freq = format->s_freq;
737	out_fmt->bit_depth = format->bit_depth;
738	out_fmt->valid_bit_depth = format->valid_bit_depth;
739	out_fmt->ch_cfg = format->ch_cfg;
740
741	out_fmt->channel_map = format->ch_map;
742	out_fmt->interleaving = format->interleaving_style;
743	out_fmt->sample_type = format->sample_type;
744
745	dev_dbg(skl->dev, "copier out format chan=%d fre=%d bitdepth=%d\n",
746		out_fmt->number_of_channels, format->s_freq, format->bit_depth);
747}
748
749/*
750 * DSP needs SRC module for frequency conversion, SRC takes base module
751 * configuration and the target frequency as extra parameter passed as src
752 * config
753 */
754static void skl_set_src_format(struct skl_dev *skl,
755			struct skl_module_cfg *mconfig,
756			struct skl_src_module_cfg *src_mconfig)
757{
758	struct skl_module *module = mconfig->module;
759	struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx];
760	struct skl_module_fmt *fmt = &iface->outputs[0].fmt;
761
762	skl_set_base_module_format(skl, mconfig,
763		(struct skl_base_cfg *)src_mconfig);
764
765	src_mconfig->src_cfg = fmt->s_freq;
766}
767
768/*
769 * DSP needs updown module to do channel conversion. updown module take base
770 * module configuration and channel configuration
771 * It also take coefficients and now we have defaults applied here
772 */
773static void skl_set_updown_mixer_format(struct skl_dev *skl,
774			struct skl_module_cfg *mconfig,
775			struct skl_up_down_mixer_cfg *mixer_mconfig)
776{
777	struct skl_module *module = mconfig->module;
778	struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx];
779	struct skl_module_fmt *fmt = &iface->outputs[0].fmt;
780
781	skl_set_base_module_format(skl,	mconfig,
782		(struct skl_base_cfg *)mixer_mconfig);
783	mixer_mconfig->out_ch_cfg = fmt->ch_cfg;
784	mixer_mconfig->ch_map = fmt->ch_map;
785}
786
787/*
788 * 'copier' is DSP internal module which copies data from Host DMA (HDA host
789 * dma) or link (hda link, SSP, PDM)
790 * Here we calculate the copier module parameters, like PCM format, output
791 * format, gateway settings
792 * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg
793 */
794static void skl_set_copier_format(struct skl_dev *skl,
795			struct skl_module_cfg *mconfig,
796			struct skl_cpr_cfg *cpr_mconfig)
797{
798	struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt;
799	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig;
800
801	skl_set_base_module_format(skl, mconfig, base_cfg);
802
803	skl_setup_out_format(skl, mconfig, out_fmt);
804	skl_setup_cpr_gateway_cfg(skl, mconfig, cpr_mconfig);
805}
806
807/*
808 * Mic select module allows selecting one or many input channels, thus
809 * acting as a demux.
810 *
811 * Mic select module take base module configuration and out-format
812 * configuration
813 */
814static void skl_set_base_outfmt_format(struct skl_dev *skl,
815			struct skl_module_cfg *mconfig,
816			struct skl_base_outfmt_cfg *base_outfmt_mcfg)
817{
818	struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt;
819	struct skl_base_cfg *base_cfg =
820				(struct skl_base_cfg *)base_outfmt_mcfg;
821
822	skl_set_base_module_format(skl, mconfig, base_cfg);
823	skl_setup_out_format(skl, mconfig, out_fmt);
824}
825
826static u16 skl_get_module_param_size(struct skl_dev *skl,
827			struct skl_module_cfg *mconfig)
828{
829	struct skl_module_res *res;
830	struct skl_module *module = mconfig->module;
831	u16 param_size;
832
833	switch (mconfig->m_type) {
834	case SKL_MODULE_TYPE_COPIER:
835		param_size = sizeof(struct skl_cpr_cfg);
836		param_size += mconfig->formats_config[SKL_PARAM_INIT].caps_size;
837		return param_size;
838
839	case SKL_MODULE_TYPE_SRCINT:
840		return sizeof(struct skl_src_module_cfg);
841
842	case SKL_MODULE_TYPE_UPDWMIX:
843		return sizeof(struct skl_up_down_mixer_cfg);
844
845	case SKL_MODULE_TYPE_BASE_OUTFMT:
846	case SKL_MODULE_TYPE_MIC_SELECT:
847		return sizeof(struct skl_base_outfmt_cfg);
848
849	case SKL_MODULE_TYPE_MIXER:
850	case SKL_MODULE_TYPE_KPB:
851		return sizeof(struct skl_base_cfg);
852
853	case SKL_MODULE_TYPE_ALGO:
854	default:
855		res = &module->resources[mconfig->res_idx];
856
857		param_size = sizeof(struct skl_base_cfg) + sizeof(struct skl_base_cfg_ext);
858		param_size += (res->nr_input_pins + res->nr_output_pins) *
859			      sizeof(struct skl_pin_format);
860		param_size += mconfig->formats_config[SKL_PARAM_INIT].caps_size;
861
862		return param_size;
863	}
864
865	return 0;
866}
867
868/*
869 * DSP firmware supports various modules like copier, SRC, updown etc.
870 * These modules required various parameters to be calculated and sent for
871 * the module initialization to DSP. By default a generic module needs only
872 * base module format configuration
873 */
874
875static int skl_set_module_format(struct skl_dev *skl,
876			struct skl_module_cfg *module_config,
877			u16 *module_config_size,
878			void **param_data)
879{
880	u16 param_size;
881
882	param_size  = skl_get_module_param_size(skl, module_config);
883
884	*param_data = kzalloc(param_size, GFP_KERNEL);
885	if (NULL == *param_data)
886		return -ENOMEM;
887
888	*module_config_size = param_size;
889
890	switch (module_config->m_type) {
891	case SKL_MODULE_TYPE_COPIER:
892		skl_set_copier_format(skl, module_config, *param_data);
893		break;
894
895	case SKL_MODULE_TYPE_SRCINT:
896		skl_set_src_format(skl, module_config, *param_data);
897		break;
898
899	case SKL_MODULE_TYPE_UPDWMIX:
900		skl_set_updown_mixer_format(skl, module_config, *param_data);
901		break;
902
903	case SKL_MODULE_TYPE_BASE_OUTFMT:
904	case SKL_MODULE_TYPE_MIC_SELECT:
905		skl_set_base_outfmt_format(skl, module_config, *param_data);
906		break;
907
908	case SKL_MODULE_TYPE_MIXER:
909	case SKL_MODULE_TYPE_KPB:
910		skl_set_base_module_format(skl, module_config, *param_data);
911		break;
912
913	case SKL_MODULE_TYPE_ALGO:
914	default:
915		skl_set_base_module_format(skl, module_config, *param_data);
916		skl_set_base_ext_module_format(skl, module_config,
917					       *param_data +
918					       sizeof(struct skl_base_cfg));
919		break;
920	}
921
922	dev_dbg(skl->dev, "Module type=%d id=%d config size: %d bytes\n",
923			module_config->m_type, module_config->id.module_id,
924			param_size);
925	print_hex_dump_debug("Module params:", DUMP_PREFIX_OFFSET, 8, 4,
926			*param_data, param_size, false);
927	return 0;
928}
929
930static int skl_get_queue_index(struct skl_module_pin *mpin,
931				struct skl_module_inst_id id, int max)
932{
933	int i;
934
935	for (i = 0; i < max; i++)  {
936		if (mpin[i].id.module_id == id.module_id &&
937			mpin[i].id.instance_id == id.instance_id)
938			return i;
939	}
940
941	return -EINVAL;
942}
943
944/*
945 * Allocates queue for each module.
946 * if dynamic, the pin_index is allocated 0 to max_pin.
947 * In static, the pin_index is fixed based on module_id and instance id
948 */
949static int skl_alloc_queue(struct skl_module_pin *mpin,
950			struct skl_module_cfg *tgt_cfg, int max)
951{
952	int i;
953	struct skl_module_inst_id id = tgt_cfg->id;
954	/*
955	 * if pin in dynamic, find first free pin
956	 * otherwise find match module and instance id pin as topology will
957	 * ensure a unique pin is assigned to this so no need to
958	 * allocate/free
959	 */
960	for (i = 0; i < max; i++)  {
961		if (mpin[i].is_dynamic) {
962			if (!mpin[i].in_use &&
963				mpin[i].pin_state == SKL_PIN_UNBIND) {
964
965				mpin[i].in_use = true;
966				mpin[i].id.module_id = id.module_id;
967				mpin[i].id.instance_id = id.instance_id;
968				mpin[i].id.pvt_id = id.pvt_id;
969				mpin[i].tgt_mcfg = tgt_cfg;
970				return i;
971			}
972		} else {
973			if (mpin[i].id.module_id == id.module_id &&
974				mpin[i].id.instance_id == id.instance_id &&
975				mpin[i].pin_state == SKL_PIN_UNBIND) {
976
977				mpin[i].tgt_mcfg = tgt_cfg;
978				return i;
979			}
980		}
981	}
982
983	return -EINVAL;
984}
985
986static void skl_free_queue(struct skl_module_pin *mpin, int q_index)
987{
988	if (mpin[q_index].is_dynamic) {
989		mpin[q_index].in_use = false;
990		mpin[q_index].id.module_id = 0;
991		mpin[q_index].id.instance_id = 0;
992		mpin[q_index].id.pvt_id = 0;
993	}
994	mpin[q_index].pin_state = SKL_PIN_UNBIND;
995	mpin[q_index].tgt_mcfg = NULL;
996}
997
998/* Module state will be set to unint, if all the out pin state is UNBIND */
999
1000static void skl_clear_module_state(struct skl_module_pin *mpin, int max,
1001						struct skl_module_cfg *mcfg)
1002{
1003	int i;
1004	bool found = false;
1005
1006	for (i = 0; i < max; i++)  {
1007		if (mpin[i].pin_state == SKL_PIN_UNBIND)
1008			continue;
1009		found = true;
1010		break;
1011	}
1012
1013	if (!found)
1014		mcfg->m_state = SKL_MODULE_INIT_DONE;
1015	return;
1016}
1017
1018/*
1019 * A module needs to be instanataited in DSP. A mdoule is present in a
1020 * collection of module referred as a PIPE.
1021 * We first calculate the module format, based on module type and then
1022 * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper
1023 */
1024int skl_init_module(struct skl_dev *skl,
1025			struct skl_module_cfg *mconfig)
1026{
1027	u16 module_config_size = 0;
1028	void *param_data = NULL;
1029	int ret;
1030	struct skl_ipc_init_instance_msg msg;
1031
1032	dev_dbg(skl->dev, "%s: module_id = %d instance=%d\n", __func__,
1033		 mconfig->id.module_id, mconfig->id.pvt_id);
1034
1035	if (mconfig->pipe->state != SKL_PIPE_CREATED) {
1036		dev_err(skl->dev, "Pipe not created state= %d pipe_id= %d\n",
1037				 mconfig->pipe->state, mconfig->pipe->ppl_id);
1038		return -EIO;
1039	}
1040
1041	ret = skl_set_module_format(skl, mconfig,
1042			&module_config_size, &param_data);
1043	if (ret < 0) {
1044		dev_err(skl->dev, "Failed to set module format ret=%d\n", ret);
1045		return ret;
1046	}
1047
1048	msg.module_id = mconfig->id.module_id;
1049	msg.instance_id = mconfig->id.pvt_id;
1050	msg.ppl_instance_id = mconfig->pipe->ppl_id;
1051	msg.param_data_size = module_config_size;
1052	msg.core_id = mconfig->core_id;
1053	msg.domain = mconfig->domain;
1054
1055	ret = skl_ipc_init_instance(&skl->ipc, &msg, param_data);
1056	if (ret < 0) {
1057		dev_err(skl->dev, "Failed to init instance ret=%d\n", ret);
1058		kfree(param_data);
1059		return ret;
1060	}
1061	mconfig->m_state = SKL_MODULE_INIT_DONE;
1062	kfree(param_data);
1063	return ret;
1064}
1065
1066static void skl_dump_bind_info(struct skl_dev *skl, struct skl_module_cfg
1067	*src_module, struct skl_module_cfg *dst_module)
1068{
1069	dev_dbg(skl->dev, "%s: src module_id = %d  src_instance=%d\n",
1070		__func__, src_module->id.module_id, src_module->id.pvt_id);
1071	dev_dbg(skl->dev, "%s: dst_module=%d dst_instance=%d\n", __func__,
1072		 dst_module->id.module_id, dst_module->id.pvt_id);
1073
1074	dev_dbg(skl->dev, "src_module state = %d dst module state = %d\n",
1075		src_module->m_state, dst_module->m_state);
1076}
1077
1078/*
1079 * On module freeup, we need to unbind the module with modules
1080 * it is already bind.
1081 * Find the pin allocated and unbind then using bind_unbind IPC
1082 */
1083int skl_unbind_modules(struct skl_dev *skl,
1084			struct skl_module_cfg *src_mcfg,
1085			struct skl_module_cfg *dst_mcfg)
1086{
1087	int ret;
1088	struct skl_ipc_bind_unbind_msg msg;
1089	struct skl_module_inst_id src_id = src_mcfg->id;
1090	struct skl_module_inst_id dst_id = dst_mcfg->id;
1091	int in_max = dst_mcfg->module->max_input_pins;
1092	int out_max = src_mcfg->module->max_output_pins;
1093	int src_index, dst_index, src_pin_state, dst_pin_state;
1094
1095	skl_dump_bind_info(skl, src_mcfg, dst_mcfg);
1096
1097	/* get src queue index */
1098	src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max);
1099	if (src_index < 0)
1100		return 0;
1101
1102	msg.src_queue = src_index;
1103
1104	/* get dst queue index */
1105	dst_index  = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max);
1106	if (dst_index < 0)
1107		return 0;
1108
1109	msg.dst_queue = dst_index;
1110
1111	src_pin_state = src_mcfg->m_out_pin[src_index].pin_state;
1112	dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state;
1113
1114	if (src_pin_state != SKL_PIN_BIND_DONE ||
1115		dst_pin_state != SKL_PIN_BIND_DONE)
1116		return 0;
1117
1118	msg.module_id = src_mcfg->id.module_id;
1119	msg.instance_id = src_mcfg->id.pvt_id;
1120	msg.dst_module_id = dst_mcfg->id.module_id;
1121	msg.dst_instance_id = dst_mcfg->id.pvt_id;
1122	msg.bind = false;
1123
1124	ret = skl_ipc_bind_unbind(&skl->ipc, &msg);
1125	if (!ret) {
1126		/* free queue only if unbind is success */
1127		skl_free_queue(src_mcfg->m_out_pin, src_index);
1128		skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1129
1130		/*
1131		 * check only if src module bind state, bind is
1132		 * always from src -> sink
1133		 */
1134		skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg);
1135	}
1136
1137	return ret;
1138}
1139
1140#define CPR_SINK_FMT_PARAM_ID 2
1141
1142/*
1143 * Once a module is instantiated it need to be 'bind' with other modules in
1144 * the pipeline. For binding we need to find the module pins which are bind
1145 * together
1146 * This function finds the pins and then sends bund_unbind IPC message to
1147 * DSP using IPC helper
1148 */
1149int skl_bind_modules(struct skl_dev *skl,
1150			struct skl_module_cfg *src_mcfg,
1151			struct skl_module_cfg *dst_mcfg)
1152{
1153	int ret = 0;
1154	struct skl_ipc_bind_unbind_msg msg;
1155	int in_max = dst_mcfg->module->max_input_pins;
1156	int out_max = src_mcfg->module->max_output_pins;
1157	int src_index, dst_index;
1158	struct skl_module_fmt *format;
1159	struct skl_cpr_pin_fmt pin_fmt;
1160	struct skl_module *module;
1161	struct skl_module_iface *fmt;
1162
1163	skl_dump_bind_info(skl, src_mcfg, dst_mcfg);
1164
1165	if (src_mcfg->m_state < SKL_MODULE_INIT_DONE ||
1166		dst_mcfg->m_state < SKL_MODULE_INIT_DONE)
1167		return 0;
1168
1169	src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max);
1170	if (src_index < 0)
1171		return -EINVAL;
1172
1173	msg.src_queue = src_index;
1174	dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max);
1175	if (dst_index < 0) {
1176		skl_free_queue(src_mcfg->m_out_pin, src_index);
1177		return -EINVAL;
1178	}
1179
1180	/*
1181	 * Copier module requires the separate large_config_set_ipc to
1182	 * configure the pins other than 0
1183	 */
1184	if (src_mcfg->m_type == SKL_MODULE_TYPE_COPIER && src_index > 0) {
1185		pin_fmt.sink_id = src_index;
1186		module = src_mcfg->module;
1187		fmt = &module->formats[src_mcfg->fmt_idx];
1188
1189		/* Input fmt is same as that of src module input cfg */
1190		format = &fmt->inputs[0].fmt;
1191		fill_pin_params(&(pin_fmt.src_fmt), format);
1192
1193		format = &fmt->outputs[src_index].fmt;
1194		fill_pin_params(&(pin_fmt.dst_fmt), format);
1195		ret = skl_set_module_params(skl, (void *)&pin_fmt,
1196					sizeof(struct skl_cpr_pin_fmt),
1197					CPR_SINK_FMT_PARAM_ID, src_mcfg);
1198
1199		if (ret < 0)
1200			goto out;
1201	}
1202
1203	msg.dst_queue = dst_index;
1204
1205	dev_dbg(skl->dev, "src queue = %d dst queue =%d\n",
1206			 msg.src_queue, msg.dst_queue);
1207
1208	msg.module_id = src_mcfg->id.module_id;
1209	msg.instance_id = src_mcfg->id.pvt_id;
1210	msg.dst_module_id = dst_mcfg->id.module_id;
1211	msg.dst_instance_id = dst_mcfg->id.pvt_id;
1212	msg.bind = true;
1213
1214	ret = skl_ipc_bind_unbind(&skl->ipc, &msg);
1215
1216	if (!ret) {
1217		src_mcfg->m_state = SKL_MODULE_BIND_DONE;
1218		src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE;
1219		dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE;
1220		return ret;
1221	}
1222out:
1223	/* error case , if IPC fails, clear the queue index */
1224	skl_free_queue(src_mcfg->m_out_pin, src_index);
1225	skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1226
1227	return ret;
1228}
1229
1230static int skl_set_pipe_state(struct skl_dev *skl, struct skl_pipe *pipe,
1231	enum skl_ipc_pipeline_state state)
1232{
1233	dev_dbg(skl->dev, "%s: pipe_state = %d\n", __func__, state);
1234
1235	return skl_ipc_set_pipeline_state(&skl->ipc, pipe->ppl_id, state);
1236}
1237
1238/*
1239 * A pipeline is a collection of modules. Before a module in instantiated a
1240 * pipeline needs to be created for it.
1241 * This function creates pipeline, by sending create pipeline IPC messages
1242 * to FW
1243 */
1244int skl_create_pipeline(struct skl_dev *skl, struct skl_pipe *pipe)
1245{
1246	int ret;
1247
1248	dev_dbg(skl->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id);
1249
1250	ret = skl_ipc_create_pipeline(&skl->ipc, pipe->memory_pages,
1251				pipe->pipe_priority, pipe->ppl_id,
1252				pipe->lp_mode);
1253	if (ret < 0) {
1254		dev_err(skl->dev, "Failed to create pipeline\n");
1255		return ret;
1256	}
1257
1258	pipe->state = SKL_PIPE_CREATED;
1259
1260	return 0;
1261}
1262
1263/*
1264 * A pipeline needs to be deleted on cleanup. If a pipeline is running,
1265 * then pause it first. Before actual deletion, pipeline should enter
1266 * reset state. Finish the procedure by sending delete pipeline IPC.
1267 * DSP will stop the DMA engines and release resources
1268 */
1269int skl_delete_pipe(struct skl_dev *skl, struct skl_pipe *pipe)
1270{
1271	int ret;
1272
1273	dev_dbg(skl->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1274
1275	/* If pipe was not created in FW, do not try to delete it */
1276	if (pipe->state < SKL_PIPE_CREATED)
1277		return 0;
1278
1279	/* If pipe is started, do stop the pipe in FW. */
1280	if (pipe->state >= SKL_PIPE_STARTED) {
1281		ret = skl_set_pipe_state(skl, pipe, PPL_PAUSED);
1282		if (ret < 0) {
1283			dev_err(skl->dev, "Failed to stop pipeline\n");
1284			return ret;
1285		}
1286
1287		pipe->state = SKL_PIPE_PAUSED;
1288	}
1289
1290	/* reset pipe state before deletion */
1291	ret = skl_set_pipe_state(skl, pipe, PPL_RESET);
1292	if (ret < 0) {
1293		dev_err(skl->dev, "Failed to reset pipe ret=%d\n", ret);
1294		return ret;
1295	}
1296
1297	pipe->state = SKL_PIPE_RESET;
1298
1299	ret = skl_ipc_delete_pipeline(&skl->ipc, pipe->ppl_id);
1300	if (ret < 0) {
1301		dev_err(skl->dev, "Failed to delete pipeline\n");
1302		return ret;
1303	}
1304
1305	pipe->state = SKL_PIPE_INVALID;
1306
1307	return ret;
1308}
1309
1310/*
1311 * A pipeline is also a scheduling entity in DSP which can be run, stopped
1312 * For processing data the pipe need to be run by sending IPC set pipe state
1313 * to DSP
1314 */
1315int skl_run_pipe(struct skl_dev *skl, struct skl_pipe *pipe)
1316{
1317	int ret;
1318
1319	dev_dbg(skl->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1320
1321	/* If pipe was not created in FW, do not try to pause or delete */
1322	if (pipe->state < SKL_PIPE_CREATED)
1323		return 0;
1324
1325	/* Pipe has to be paused before it is started */
1326	ret = skl_set_pipe_state(skl, pipe, PPL_PAUSED);
1327	if (ret < 0) {
1328		dev_err(skl->dev, "Failed to pause pipe\n");
1329		return ret;
1330	}
1331
1332	pipe->state = SKL_PIPE_PAUSED;
1333
1334	ret = skl_set_pipe_state(skl, pipe, PPL_RUNNING);
1335	if (ret < 0) {
1336		dev_err(skl->dev, "Failed to start pipe\n");
1337		return ret;
1338	}
1339
1340	pipe->state = SKL_PIPE_STARTED;
1341
1342	return 0;
1343}
1344
1345/*
1346 * Stop the pipeline by sending set pipe state IPC
1347 * DSP doesnt implement stop so we always send pause message
1348 */
1349int skl_stop_pipe(struct skl_dev *skl, struct skl_pipe *pipe)
1350{
1351	int ret;
1352
1353	dev_dbg(skl->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id);
1354
1355	/* If pipe was not created in FW, do not try to pause or delete */
1356	if (pipe->state < SKL_PIPE_PAUSED)
1357		return 0;
1358
1359	ret = skl_set_pipe_state(skl, pipe, PPL_PAUSED);
1360	if (ret < 0) {
1361		dev_dbg(skl->dev, "Failed to stop pipe\n");
1362		return ret;
1363	}
1364
1365	pipe->state = SKL_PIPE_PAUSED;
1366
1367	return 0;
1368}
1369
1370/*
1371 * Reset the pipeline by sending set pipe state IPC this will reset the DMA
1372 * from the DSP side
1373 */
1374int skl_reset_pipe(struct skl_dev *skl, struct skl_pipe *pipe)
1375{
1376	int ret;
1377
1378	/* If pipe was not created in FW, do not try to pause or delete */
1379	if (pipe->state < SKL_PIPE_PAUSED)
1380		return 0;
1381
1382	ret = skl_set_pipe_state(skl, pipe, PPL_RESET);
1383	if (ret < 0) {
1384		dev_dbg(skl->dev, "Failed to reset pipe ret=%d\n", ret);
1385		return ret;
1386	}
1387
1388	pipe->state = SKL_PIPE_RESET;
1389
1390	return 0;
1391}
1392
1393/* Algo parameter set helper function */
1394int skl_set_module_params(struct skl_dev *skl, u32 *params, int size,
1395				u32 param_id, struct skl_module_cfg *mcfg)
1396{
1397	struct skl_ipc_large_config_msg msg;
1398
1399	msg.module_id = mcfg->id.module_id;
1400	msg.instance_id = mcfg->id.pvt_id;
1401	msg.param_data_size = size;
1402	msg.large_param_id = param_id;
1403
1404	return skl_ipc_set_large_config(&skl->ipc, &msg, params);
1405}
1406
1407int skl_get_module_params(struct skl_dev *skl, u32 *params, int size,
1408			  u32 param_id, struct skl_module_cfg *mcfg)
1409{
1410	struct skl_ipc_large_config_msg msg;
1411	size_t bytes = size;
1412
1413	msg.module_id = mcfg->id.module_id;
1414	msg.instance_id = mcfg->id.pvt_id;
1415	msg.param_data_size = size;
1416	msg.large_param_id = param_id;
1417
1418	return skl_ipc_get_large_config(&skl->ipc, &msg, &params, &bytes);
1419}
1420