1// SPDX-License-Identifier: GPL-2.0
2//
3// Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
4//
5// Author: Timur Tabi <timur@freescale.com>
6//
7// Copyright 2007-2010 Freescale Semiconductor, Inc.
8//
9// Some notes why imx-pcm-fiq is used instead of DMA on some boards:
10//
11// The i.MX SSI core has some nasty limitations in AC97 mode. While most
12// sane processor vendors have a FIFO per AC97 slot, the i.MX has only
13// one FIFO which combines all valid receive slots. We cannot even select
14// which slots we want to receive. The WM9712 with which this driver
15// was developed with always sends GPIO status data in slot 12 which
16// we receive in our (PCM-) data stream. The only chance we have is to
17// manually skip this data in the FIQ handler. With sampling rates different
18// from 48000Hz not every frame has valid receive data, so the ratio
19// between pcm data and GPIO status data changes. Our FIQ handler is not
20// able to handle this, hence this driver only works with 48000Hz sampling
21// rate.
22// Reading and writing AC97 registers is another challenge. The core
23// provides us status bits when the read register is updated with *another*
24// value. When we read the same register two times (and the register still
25// contains the same value) these status bits are not set. We work
26// around this by not polling these bits but only wait a fixed delay.
27
28#include <linux/init.h>
29#include <linux/io.h>
30#include <linux/module.h>
31#include <linux/interrupt.h>
32#include <linux/clk.h>
33#include <linux/ctype.h>
34#include <linux/device.h>
35#include <linux/delay.h>
36#include <linux/mutex.h>
37#include <linux/slab.h>
38#include <linux/spinlock.h>
39#include <linux/of.h>
40#include <linux/of_address.h>
41#include <linux/of_irq.h>
42#include <linux/of_platform.h>
43#include <linux/dma/imx-dma.h>
44
45#include <sound/core.h>
46#include <sound/pcm.h>
47#include <sound/pcm_params.h>
48#include <sound/initval.h>
49#include <sound/soc.h>
50#include <sound/dmaengine_pcm.h>
51
52#include "fsl_ssi.h"
53#include "imx-pcm.h"
54
55/* Define RX and TX to index ssi->regvals array; Can be 0 or 1 only */
56#define RX 0
57#define TX 1
58
59/**
60 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
61 *
62 * The SSI has a limitation in that the samples must be in the same byte
63 * order as the host CPU.  This is because when multiple bytes are written
64 * to the STX register, the bytes and bits must be written in the same
65 * order.  The STX is a shift register, so all the bits need to be aligned
66 * (bit-endianness must match byte-endianness).  Processors typically write
67 * the bits within a byte in the same order that the bytes of a word are
68 * written in.  So if the host CPU is big-endian, then only big-endian
69 * samples will be written to STX properly.
70 */
71#ifdef __BIG_ENDIAN
72#define FSLSSI_I2S_FORMATS \
73	(SNDRV_PCM_FMTBIT_S8 | \
74	 SNDRV_PCM_FMTBIT_S16_BE | \
75	 SNDRV_PCM_FMTBIT_S18_3BE | \
76	 SNDRV_PCM_FMTBIT_S20_3BE | \
77	 SNDRV_PCM_FMTBIT_S24_3BE | \
78	 SNDRV_PCM_FMTBIT_S24_BE)
79#else
80#define FSLSSI_I2S_FORMATS \
81	(SNDRV_PCM_FMTBIT_S8 | \
82	 SNDRV_PCM_FMTBIT_S16_LE | \
83	 SNDRV_PCM_FMTBIT_S18_3LE | \
84	 SNDRV_PCM_FMTBIT_S20_3LE | \
85	 SNDRV_PCM_FMTBIT_S24_3LE | \
86	 SNDRV_PCM_FMTBIT_S24_LE)
87#endif
88
89/*
90 * In AC97 mode, TXDIR bit is forced to 0 and TFDIR bit is forced to 1:
91 *  - SSI inputs external bit clock and outputs frame sync clock -- CBM_CFS
92 *  - Also have NB_NF to mark these two clocks will not be inverted
93 */
94#define FSLSSI_AC97_DAIFMT \
95	(SND_SOC_DAIFMT_AC97 | \
96	 SND_SOC_DAIFMT_BC_FP | \
97	 SND_SOC_DAIFMT_NB_NF)
98
99#define FSLSSI_SIER_DBG_RX_FLAGS \
100	(SSI_SIER_RFF0_EN | \
101	 SSI_SIER_RLS_EN | \
102	 SSI_SIER_RFS_EN | \
103	 SSI_SIER_ROE0_EN | \
104	 SSI_SIER_RFRC_EN)
105#define FSLSSI_SIER_DBG_TX_FLAGS \
106	(SSI_SIER_TFE0_EN | \
107	 SSI_SIER_TLS_EN | \
108	 SSI_SIER_TFS_EN | \
109	 SSI_SIER_TUE0_EN | \
110	 SSI_SIER_TFRC_EN)
111
112enum fsl_ssi_type {
113	FSL_SSI_MCP8610,
114	FSL_SSI_MX21,
115	FSL_SSI_MX35,
116	FSL_SSI_MX51,
117};
118
119struct fsl_ssi_regvals {
120	u32 sier;
121	u32 srcr;
122	u32 stcr;
123	u32 scr;
124};
125
126static bool fsl_ssi_readable_reg(struct device *dev, unsigned int reg)
127{
128	switch (reg) {
129	case REG_SSI_SACCEN:
130	case REG_SSI_SACCDIS:
131		return false;
132	default:
133		return true;
134	}
135}
136
137static bool fsl_ssi_volatile_reg(struct device *dev, unsigned int reg)
138{
139	switch (reg) {
140	case REG_SSI_STX0:
141	case REG_SSI_STX1:
142	case REG_SSI_SRX0:
143	case REG_SSI_SRX1:
144	case REG_SSI_SISR:
145	case REG_SSI_SFCSR:
146	case REG_SSI_SACNT:
147	case REG_SSI_SACADD:
148	case REG_SSI_SACDAT:
149	case REG_SSI_SATAG:
150	case REG_SSI_SACCST:
151	case REG_SSI_SOR:
152		return true;
153	default:
154		return false;
155	}
156}
157
158static bool fsl_ssi_precious_reg(struct device *dev, unsigned int reg)
159{
160	switch (reg) {
161	case REG_SSI_SRX0:
162	case REG_SSI_SRX1:
163	case REG_SSI_SISR:
164	case REG_SSI_SACADD:
165	case REG_SSI_SACDAT:
166	case REG_SSI_SATAG:
167		return true;
168	default:
169		return false;
170	}
171}
172
173static bool fsl_ssi_writeable_reg(struct device *dev, unsigned int reg)
174{
175	switch (reg) {
176	case REG_SSI_SRX0:
177	case REG_SSI_SRX1:
178	case REG_SSI_SACCST:
179		return false;
180	default:
181		return true;
182	}
183}
184
185static const struct regmap_config fsl_ssi_regconfig = {
186	.max_register = REG_SSI_SACCDIS,
187	.reg_bits = 32,
188	.val_bits = 32,
189	.reg_stride = 4,
190	.val_format_endian = REGMAP_ENDIAN_NATIVE,
191	.num_reg_defaults_raw = REG_SSI_SACCDIS / sizeof(uint32_t) + 1,
192	.readable_reg = fsl_ssi_readable_reg,
193	.volatile_reg = fsl_ssi_volatile_reg,
194	.precious_reg = fsl_ssi_precious_reg,
195	.writeable_reg = fsl_ssi_writeable_reg,
196	.cache_type = REGCACHE_FLAT,
197};
198
199struct fsl_ssi_soc_data {
200	bool imx;
201	bool imx21regs; /* imx21-class SSI - no SACC{ST,EN,DIS} regs */
202	bool offline_config;
203	u32 sisr_write_mask;
204};
205
206/**
207 * struct fsl_ssi - per-SSI private data
208 * @regs: Pointer to the regmap registers
209 * @irq: IRQ of this SSI
210 * @cpu_dai_drv: CPU DAI driver for this device
211 * @dai_fmt: DAI configuration this device is currently used with
212 * @streams: Mask of current active streams: BIT(TX) and BIT(RX)
213 * @i2s_net: I2S and Network mode configurations of SCR register
214 *           (this is the initial settings based on the DAI format)
215 * @synchronous: Use synchronous mode - both of TX and RX use STCK and SFCK
216 * @use_dma: DMA is used or FIQ with stream filter
217 * @use_dual_fifo: DMA with support for dual FIFO mode
218 * @use_dyna_fifo: DMA with support for multi FIFO script
219 * @has_ipg_clk_name: If "ipg" is in the clock name list of device tree
220 * @fifo_depth: Depth of the SSI FIFOs
221 * @slot_width: Width of each DAI slot
222 * @slots: Number of slots
223 * @regvals: Specific RX/TX register settings
224 * @clk: Clock source to access register
225 * @baudclk: Clock source to generate bit and frame-sync clocks
226 * @baudclk_streams: Active streams that are using baudclk
227 * @regcache_sfcsr: Cache sfcsr register value during suspend and resume
228 * @regcache_sacnt: Cache sacnt register value during suspend and resume
229 * @dma_params_tx: DMA transmit parameters
230 * @dma_params_rx: DMA receive parameters
231 * @ssi_phys: physical address of the SSI registers
232 * @fiq_params: FIQ stream filtering parameters
233 * @card_pdev: Platform_device pointer to register a sound card for PowerPC or
234 *             to register a CODEC platform device for AC97
235 * @card_name: Platform_device name to register a sound card for PowerPC or
236 *             to register a CODEC platform device for AC97
237 * @card_idx: The index of SSI to register a sound card for PowerPC or
238 *            to register a CODEC platform device for AC97
239 * @dbg_stats: Debugging statistics
240 * @soc: SoC specific data
241 * @dev: Pointer to &pdev->dev
242 * @fifo_watermark: The FIFO watermark setting. Notifies DMA when there are
243 *                  @fifo_watermark or fewer words in TX fifo or
244 *                  @fifo_watermark or more empty words in RX fifo.
245 * @dma_maxburst: Max number of words to transfer in one go. So far,
246 *                this is always the same as fifo_watermark.
247 * @ac97_reg_lock: Mutex lock to serialize AC97 register access operations
248 * @audio_config: configure for dma multi fifo script
249 */
250struct fsl_ssi {
251	struct regmap *regs;
252	int irq;
253	struct snd_soc_dai_driver cpu_dai_drv;
254
255	unsigned int dai_fmt;
256	u8 streams;
257	u8 i2s_net;
258	bool synchronous;
259	bool use_dma;
260	bool use_dual_fifo;
261	bool use_dyna_fifo;
262	bool has_ipg_clk_name;
263	unsigned int fifo_depth;
264	unsigned int slot_width;
265	unsigned int slots;
266	struct fsl_ssi_regvals regvals[2];
267
268	struct clk *clk;
269	struct clk *baudclk;
270	unsigned int baudclk_streams;
271
272	u32 regcache_sfcsr;
273	u32 regcache_sacnt;
274
275	struct snd_dmaengine_dai_dma_data dma_params_tx;
276	struct snd_dmaengine_dai_dma_data dma_params_rx;
277	dma_addr_t ssi_phys;
278
279	struct imx_pcm_fiq_params fiq_params;
280
281	struct platform_device *card_pdev;
282	char card_name[32];
283	u32 card_idx;
284
285	struct fsl_ssi_dbg dbg_stats;
286
287	const struct fsl_ssi_soc_data *soc;
288	struct device *dev;
289
290	u32 fifo_watermark;
291	u32 dma_maxburst;
292
293	struct mutex ac97_reg_lock;
294	struct sdma_peripheral_config audio_config[2];
295};
296
297/*
298 * SoC specific data
299 *
300 * Notes:
301 * 1) SSI in earlier SoCS has critical bits in control registers that
302 *    cannot be changed after SSI starts running -- a software reset
303 *    (set SSIEN to 0) is required to change their values. So adding
304 *    an offline_config flag for these SoCs.
305 * 2) SDMA is available since imx35. However, imx35 does not support
306 *    DMA bits changing when SSI is running, so set offline_config.
307 * 3) imx51 and later versions support register configurations when
308 *    SSI is running (SSIEN); For these versions, DMA needs to be
309 *    configured before SSI sends DMA request to avoid an undefined
310 *    DMA request on the SDMA side.
311 */
312
313static struct fsl_ssi_soc_data fsl_ssi_mpc8610 = {
314	.imx = false,
315	.offline_config = true,
316	.sisr_write_mask = SSI_SISR_RFRC | SSI_SISR_TFRC |
317			   SSI_SISR_ROE0 | SSI_SISR_ROE1 |
318			   SSI_SISR_TUE0 | SSI_SISR_TUE1,
319};
320
321static struct fsl_ssi_soc_data fsl_ssi_imx21 = {
322	.imx = true,
323	.imx21regs = true,
324	.offline_config = true,
325	.sisr_write_mask = 0,
326};
327
328static struct fsl_ssi_soc_data fsl_ssi_imx35 = {
329	.imx = true,
330	.offline_config = true,
331	.sisr_write_mask = SSI_SISR_RFRC | SSI_SISR_TFRC |
332			   SSI_SISR_ROE0 | SSI_SISR_ROE1 |
333			   SSI_SISR_TUE0 | SSI_SISR_TUE1,
334};
335
336static struct fsl_ssi_soc_data fsl_ssi_imx51 = {
337	.imx = true,
338	.offline_config = false,
339	.sisr_write_mask = SSI_SISR_ROE0 | SSI_SISR_ROE1 |
340			   SSI_SISR_TUE0 | SSI_SISR_TUE1,
341};
342
343static const struct of_device_id fsl_ssi_ids[] = {
344	{ .compatible = "fsl,mpc8610-ssi", .data = &fsl_ssi_mpc8610 },
345	{ .compatible = "fsl,imx51-ssi", .data = &fsl_ssi_imx51 },
346	{ .compatible = "fsl,imx35-ssi", .data = &fsl_ssi_imx35 },
347	{ .compatible = "fsl,imx21-ssi", .data = &fsl_ssi_imx21 },
348	{}
349};
350MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
351
352static bool fsl_ssi_is_ac97(struct fsl_ssi *ssi)
353{
354	return (ssi->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) ==
355		SND_SOC_DAIFMT_AC97;
356}
357
358static bool fsl_ssi_is_i2s_clock_provider(struct fsl_ssi *ssi)
359{
360	return (ssi->dai_fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) ==
361		SND_SOC_DAIFMT_BP_FP;
362}
363
364static bool fsl_ssi_is_i2s_bc_fp(struct fsl_ssi *ssi)
365{
366	return (ssi->dai_fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) ==
367		SND_SOC_DAIFMT_BC_FP;
368}
369
370/**
371 * fsl_ssi_isr - Interrupt handler to gather states
372 * @irq: irq number
373 * @dev_id: context
374 */
375static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
376{
377	struct fsl_ssi *ssi = dev_id;
378	struct regmap *regs = ssi->regs;
379	u32 sisr, sisr2;
380
381	regmap_read(regs, REG_SSI_SISR, &sisr);
382
383	sisr2 = sisr & ssi->soc->sisr_write_mask;
384	/* Clear the bits that we set */
385	if (sisr2)
386		regmap_write(regs, REG_SSI_SISR, sisr2);
387
388	fsl_ssi_dbg_isr(&ssi->dbg_stats, sisr);
389
390	return IRQ_HANDLED;
391}
392
393/**
394 * fsl_ssi_config_enable - Set SCR, SIER, STCR and SRCR registers with
395 * cached values in regvals
396 * @ssi: SSI context
397 * @tx: direction
398 *
399 * Notes:
400 * 1) For offline_config SoCs, enable all necessary bits of both streams
401 *    when 1st stream starts, even if the opposite stream will not start
402 * 2) It also clears FIFO before setting regvals; SOR is safe to set online
403 */
404static void fsl_ssi_config_enable(struct fsl_ssi *ssi, bool tx)
405{
406	struct fsl_ssi_regvals *vals = ssi->regvals;
407	int dir = tx ? TX : RX;
408	u32 sier, srcr, stcr;
409
410	/* Clear dirty data in the FIFO; It also prevents channel slipping */
411	regmap_update_bits(ssi->regs, REG_SSI_SOR,
412			   SSI_SOR_xX_CLR(tx), SSI_SOR_xX_CLR(tx));
413
414	/*
415	 * On offline_config SoCs, SxCR and SIER are already configured when
416	 * the previous stream started. So skip all SxCR and SIER settings
417	 * to prevent online reconfigurations, then jump to set SCR directly
418	 */
419	if (ssi->soc->offline_config && ssi->streams)
420		goto enable_scr;
421
422	if (ssi->soc->offline_config) {
423		/*
424		 * Online reconfiguration not supported, so enable all bits for
425		 * both streams at once to avoid necessity of reconfigurations
426		 */
427		srcr = vals[RX].srcr | vals[TX].srcr;
428		stcr = vals[RX].stcr | vals[TX].stcr;
429		sier = vals[RX].sier | vals[TX].sier;
430	} else {
431		/* Otherwise, only set bits for the current stream */
432		srcr = vals[dir].srcr;
433		stcr = vals[dir].stcr;
434		sier = vals[dir].sier;
435	}
436
437	/* Configure SRCR, STCR and SIER at once */
438	regmap_update_bits(ssi->regs, REG_SSI_SRCR, srcr, srcr);
439	regmap_update_bits(ssi->regs, REG_SSI_STCR, stcr, stcr);
440	regmap_update_bits(ssi->regs, REG_SSI_SIER, sier, sier);
441
442enable_scr:
443	/*
444	 * Start DMA before setting TE to avoid FIFO underrun
445	 * which may cause a channel slip or a channel swap
446	 *
447	 * TODO: FIQ cases might also need this upon testing
448	 */
449	if (ssi->use_dma && tx) {
450		int try = 100;
451		u32 sfcsr;
452
453		/* Enable SSI first to send TX DMA request */
454		regmap_update_bits(ssi->regs, REG_SSI_SCR,
455				   SSI_SCR_SSIEN, SSI_SCR_SSIEN);
456
457		/* Busy wait until TX FIFO not empty -- DMA working */
458		do {
459			regmap_read(ssi->regs, REG_SSI_SFCSR, &sfcsr);
460			if (SSI_SFCSR_TFCNT0(sfcsr))
461				break;
462		} while (--try);
463
464		/* FIFO still empty -- something might be wrong */
465		if (!SSI_SFCSR_TFCNT0(sfcsr))
466			dev_warn(ssi->dev, "Timeout waiting TX FIFO filling\n");
467	}
468	/* Enable all remaining bits in SCR */
469	regmap_update_bits(ssi->regs, REG_SSI_SCR,
470			   vals[dir].scr, vals[dir].scr);
471
472	/* Log the enabled stream to the mask */
473	ssi->streams |= BIT(dir);
474}
475
476/*
477 * Exclude bits that are used by the opposite stream
478 *
479 * When both streams are active, disabling some bits for the current stream
480 * might break the other stream if these bits are used by it.
481 *
482 * @vals : regvals of the current stream
483 * @avals: regvals of the opposite stream
484 * @aactive: active state of the opposite stream
485 *
486 *  1) XOR vals and avals to get the differences if the other stream is active;
487 *     Otherwise, return current vals if the other stream is not active
488 *  2) AND the result of 1) with the current vals
489 */
490#define _ssi_xor_shared_bits(vals, avals, aactive) \
491	((vals) ^ ((avals) * (aactive)))
492
493#define ssi_excl_shared_bits(vals, avals, aactive) \
494	((vals) & _ssi_xor_shared_bits(vals, avals, aactive))
495
496/**
497 * fsl_ssi_config_disable - Unset SCR, SIER, STCR and SRCR registers
498 * with cached values in regvals
499 * @ssi: SSI context
500 * @tx: direction
501 *
502 * Notes:
503 * 1) For offline_config SoCs, to avoid online reconfigurations, disable all
504 *    bits of both streams at once when the last stream is abort to end
505 * 2) It also clears FIFO after unsetting regvals; SOR is safe to set online
506 */
507static void fsl_ssi_config_disable(struct fsl_ssi *ssi, bool tx)
508{
509	struct fsl_ssi_regvals *vals, *avals;
510	u32 sier, srcr, stcr, scr;
511	int adir = tx ? RX : TX;
512	int dir = tx ? TX : RX;
513	bool aactive;
514
515	/* Check if the opposite stream is active */
516	aactive = ssi->streams & BIT(adir);
517
518	vals = &ssi->regvals[dir];
519
520	/* Get regvals of the opposite stream to keep opposite stream safe */
521	avals = &ssi->regvals[adir];
522
523	/*
524	 * To keep the other stream safe, exclude shared bits between
525	 * both streams, and get safe bits to disable current stream
526	 */
527	scr = ssi_excl_shared_bits(vals->scr, avals->scr, aactive);
528
529	/* Disable safe bits of SCR register for the current stream */
530	regmap_update_bits(ssi->regs, REG_SSI_SCR, scr, 0);
531
532	/* Log the disabled stream to the mask */
533	ssi->streams &= ~BIT(dir);
534
535	/*
536	 * On offline_config SoCs, if the other stream is active, skip
537	 * SxCR and SIER settings to prevent online reconfigurations
538	 */
539	if (ssi->soc->offline_config && aactive)
540		goto fifo_clear;
541
542	if (ssi->soc->offline_config) {
543		/* Now there is only current stream active, disable all bits */
544		srcr = vals->srcr | avals->srcr;
545		stcr = vals->stcr | avals->stcr;
546		sier = vals->sier | avals->sier;
547	} else {
548		/*
549		 * To keep the other stream safe, exclude shared bits between
550		 * both streams, and get safe bits to disable current stream
551		 */
552		sier = ssi_excl_shared_bits(vals->sier, avals->sier, aactive);
553		srcr = ssi_excl_shared_bits(vals->srcr, avals->srcr, aactive);
554		stcr = ssi_excl_shared_bits(vals->stcr, avals->stcr, aactive);
555	}
556
557	/* Clear configurations of SRCR, STCR and SIER at once */
558	regmap_update_bits(ssi->regs, REG_SSI_SRCR, srcr, 0);
559	regmap_update_bits(ssi->regs, REG_SSI_STCR, stcr, 0);
560	regmap_update_bits(ssi->regs, REG_SSI_SIER, sier, 0);
561
562fifo_clear:
563	/* Clear remaining data in the FIFO */
564	regmap_update_bits(ssi->regs, REG_SSI_SOR,
565			   SSI_SOR_xX_CLR(tx), SSI_SOR_xX_CLR(tx));
566}
567
568static void fsl_ssi_tx_ac97_saccst_setup(struct fsl_ssi *ssi)
569{
570	struct regmap *regs = ssi->regs;
571
572	/* no SACC{ST,EN,DIS} regs on imx21-class SSI */
573	if (!ssi->soc->imx21regs) {
574		/* Disable all channel slots */
575		regmap_write(regs, REG_SSI_SACCDIS, 0xff);
576		/* Enable slots 3 & 4 -- PCM Playback Left & Right channels */
577		regmap_write(regs, REG_SSI_SACCEN, 0x300);
578	}
579}
580
581/**
582 * fsl_ssi_setup_regvals - Cache critical bits of SIER, SRCR, STCR and
583 * SCR to later set them safely
584 * @ssi: SSI context
585 */
586static void fsl_ssi_setup_regvals(struct fsl_ssi *ssi)
587{
588	struct fsl_ssi_regvals *vals = ssi->regvals;
589
590	vals[RX].sier = SSI_SIER_RFF0_EN | FSLSSI_SIER_DBG_RX_FLAGS;
591	vals[RX].srcr = SSI_SRCR_RFEN0;
592	vals[RX].scr = SSI_SCR_SSIEN | SSI_SCR_RE;
593	vals[TX].sier = SSI_SIER_TFE0_EN | FSLSSI_SIER_DBG_TX_FLAGS;
594	vals[TX].stcr = SSI_STCR_TFEN0;
595	vals[TX].scr = SSI_SCR_SSIEN | SSI_SCR_TE;
596
597	/* AC97 has already enabled SSIEN, RE and TE, so ignore them */
598	if (fsl_ssi_is_ac97(ssi))
599		vals[RX].scr = vals[TX].scr = 0;
600
601	if (ssi->use_dual_fifo) {
602		vals[RX].srcr |= SSI_SRCR_RFEN1;
603		vals[TX].stcr |= SSI_STCR_TFEN1;
604	}
605
606	if (ssi->use_dma) {
607		vals[RX].sier |= SSI_SIER_RDMAE;
608		vals[TX].sier |= SSI_SIER_TDMAE;
609	} else {
610		vals[RX].sier |= SSI_SIER_RIE;
611		vals[TX].sier |= SSI_SIER_TIE;
612	}
613}
614
615static void fsl_ssi_setup_ac97(struct fsl_ssi *ssi)
616{
617	struct regmap *regs = ssi->regs;
618
619	/* Setup the clock control register */
620	regmap_write(regs, REG_SSI_STCCR, SSI_SxCCR_WL(17) | SSI_SxCCR_DC(13));
621	regmap_write(regs, REG_SSI_SRCCR, SSI_SxCCR_WL(17) | SSI_SxCCR_DC(13));
622
623	/* Enable AC97 mode and startup the SSI */
624	regmap_write(regs, REG_SSI_SACNT, SSI_SACNT_AC97EN | SSI_SACNT_FV);
625
626	/* AC97 has to communicate with codec before starting a stream */
627	regmap_update_bits(regs, REG_SSI_SCR,
628			   SSI_SCR_SSIEN | SSI_SCR_TE | SSI_SCR_RE,
629			   SSI_SCR_SSIEN | SSI_SCR_TE | SSI_SCR_RE);
630
631	regmap_write(regs, REG_SSI_SOR, SSI_SOR_WAIT(3));
632}
633
634static int fsl_ssi_startup(struct snd_pcm_substream *substream,
635			   struct snd_soc_dai *dai)
636{
637	struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
638	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0));
639	int ret;
640
641	ret = clk_prepare_enable(ssi->clk);
642	if (ret)
643		return ret;
644
645	/*
646	 * When using dual fifo mode, it is safer to ensure an even period
647	 * size. If appearing to an odd number while DMA always starts its
648	 * task from fifo0, fifo1 would be neglected at the end of each
649	 * period. But SSI would still access fifo1 with an invalid data.
650	 */
651	if (ssi->use_dual_fifo || ssi->use_dyna_fifo)
652		snd_pcm_hw_constraint_step(substream->runtime, 0,
653					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
654
655	return 0;
656}
657
658static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
659			     struct snd_soc_dai *dai)
660{
661	struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
662	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0));
663
664	clk_disable_unprepare(ssi->clk);
665}
666
667/**
668 * fsl_ssi_set_bclk - Configure Digital Audio Interface bit clock
669 * @substream: ASoC substream
670 * @dai: pointer to DAI
671 * @hw_params: pointers to hw_params
672 *
673 * Notes: This function can be only called when using SSI as DAI master
674 *
675 * Quick instruction for parameters:
676 * freq: Output BCLK frequency = samplerate * slots * slot_width
677 *       (In 2-channel I2S Master mode, slot_width is fixed 32)
678 */
679static int fsl_ssi_set_bclk(struct snd_pcm_substream *substream,
680			    struct snd_soc_dai *dai,
681			    struct snd_pcm_hw_params *hw_params)
682{
683	bool tx2, tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
684	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
685	struct regmap *regs = ssi->regs;
686	u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
687	unsigned long clkrate, baudrate, tmprate;
688	unsigned int channels = params_channels(hw_params);
689	unsigned int slot_width = params_width(hw_params);
690	unsigned int slots = 2;
691	u64 sub, savesub = 100000;
692	unsigned int freq;
693	bool baudclk_is_used;
694	int ret;
695
696	/* Override slots and slot_width if being specifically set... */
697	if (ssi->slots)
698		slots = ssi->slots;
699	if (ssi->slot_width)
700		slot_width = ssi->slot_width;
701
702	/* ...but force 32 bits for stereo audio using I2S Master Mode */
703	if (channels == 2 &&
704	    (ssi->i2s_net & SSI_SCR_I2S_MODE_MASK) == SSI_SCR_I2S_MODE_MASTER)
705		slot_width = 32;
706
707	/* Generate bit clock based on the slot number and slot width */
708	freq = slots * slot_width * params_rate(hw_params);
709
710	/* Don't apply it to any non-baudclk circumstance */
711	if (IS_ERR(ssi->baudclk))
712		return -EINVAL;
713
714	/*
715	 * Hardware limitation: The bclk rate must be
716	 * never greater than 1/5 IPG clock rate
717	 */
718	if (freq * 5 > clk_get_rate(ssi->clk)) {
719		dev_err(dai->dev, "bitclk > ipgclk / 5\n");
720		return -EINVAL;
721	}
722
723	baudclk_is_used = ssi->baudclk_streams & ~(BIT(substream->stream));
724
725	/* It should be already enough to divide clock by setting pm alone */
726	psr = 0;
727	div2 = 0;
728
729	factor = (div2 + 1) * (7 * psr + 1) * 2;
730
731	for (i = 0; i < 255; i++) {
732		tmprate = freq * factor * (i + 1);
733
734		if (baudclk_is_used)
735			clkrate = clk_get_rate(ssi->baudclk);
736		else
737			clkrate = clk_round_rate(ssi->baudclk, tmprate);
738
739		clkrate /= factor;
740		afreq = clkrate / (i + 1);
741
742		if (freq == afreq)
743			sub = 0;
744		else if (freq / afreq == 1)
745			sub = freq - afreq;
746		else if (afreq / freq == 1)
747			sub = afreq - freq;
748		else
749			continue;
750
751		/* Calculate the fraction */
752		sub *= 100000;
753		do_div(sub, freq);
754
755		if (sub < savesub && !(i == 0)) {
756			baudrate = tmprate;
757			savesub = sub;
758			pm = i;
759		}
760
761		/* We are lucky */
762		if (savesub == 0)
763			break;
764	}
765
766	/* No proper pm found if it is still remaining the initial value */
767	if (pm == 999) {
768		dev_err(dai->dev, "failed to handle the required sysclk\n");
769		return -EINVAL;
770	}
771
772	stccr = SSI_SxCCR_PM(pm + 1);
773	mask = SSI_SxCCR_PM_MASK | SSI_SxCCR_DIV2 | SSI_SxCCR_PSR;
774
775	/* STCCR is used for RX in synchronous mode */
776	tx2 = tx || ssi->synchronous;
777	regmap_update_bits(regs, REG_SSI_SxCCR(tx2), mask, stccr);
778
779	if (!baudclk_is_used) {
780		ret = clk_set_rate(ssi->baudclk, baudrate);
781		if (ret) {
782			dev_err(dai->dev, "failed to set baudclk rate\n");
783			return -EINVAL;
784		}
785	}
786
787	return 0;
788}
789
790/**
791 * fsl_ssi_hw_params - Configure SSI based on PCM hardware parameters
792 * @substream: ASoC substream
793 * @hw_params: pointers to hw_params
794 * @dai: pointer to DAI
795 *
796 * Notes:
797 * 1) SxCCR.WL bits are critical bits that require SSI to be temporarily
798 *    disabled on offline_config SoCs. Even for online configurable SoCs
799 *    running in synchronous mode (both TX and RX use STCCR), it is not
800 *    safe to re-configure them when both two streams start running.
801 * 2) SxCCR.PM, SxCCR.DIV2 and SxCCR.PSR bits will be configured in the
802 *    fsl_ssi_set_bclk() if SSI is the DAI clock master.
803 */
804static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
805			     struct snd_pcm_hw_params *hw_params,
806			     struct snd_soc_dai *dai)
807{
808	bool tx2, tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
809	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
810	struct fsl_ssi_regvals *vals = ssi->regvals;
811	struct regmap *regs = ssi->regs;
812	unsigned int channels = params_channels(hw_params);
813	unsigned int sample_size = params_width(hw_params);
814	u32 wl = SSI_SxCCR_WL(sample_size);
815	int ret;
816
817	if (fsl_ssi_is_i2s_clock_provider(ssi)) {
818		ret = fsl_ssi_set_bclk(substream, dai, hw_params);
819		if (ret)
820			return ret;
821
822		/* Do not enable the clock if it is already enabled */
823		if (!(ssi->baudclk_streams & BIT(substream->stream))) {
824			ret = clk_prepare_enable(ssi->baudclk);
825			if (ret)
826				return ret;
827
828			ssi->baudclk_streams |= BIT(substream->stream);
829		}
830	}
831
832	/*
833	 * SSI is properly configured if it is enabled and running in
834	 * the synchronous mode; Note that AC97 mode is an exception
835	 * that should set separate configurations for STCCR and SRCCR
836	 * despite running in the synchronous mode.
837	 */
838	if (ssi->streams && ssi->synchronous)
839		return 0;
840
841	if (!fsl_ssi_is_ac97(ssi)) {
842		/*
843		 * Keep the ssi->i2s_net intact while having a local variable
844		 * to override settings for special use cases. Otherwise, the
845		 * ssi->i2s_net will lose the settings for regular use cases.
846		 */
847		u8 i2s_net = ssi->i2s_net;
848
849		/* Normal + Network mode to send 16-bit data in 32-bit frames */
850		if (fsl_ssi_is_i2s_bc_fp(ssi) && sample_size == 16)
851			i2s_net = SSI_SCR_I2S_MODE_NORMAL | SSI_SCR_NET;
852
853		/* Use Normal mode to send mono data at 1st slot of 2 slots */
854		if (channels == 1)
855			i2s_net = SSI_SCR_I2S_MODE_NORMAL;
856
857		regmap_update_bits(regs, REG_SSI_SCR,
858				   SSI_SCR_I2S_NET_MASK, i2s_net);
859	}
860
861	/* In synchronous mode, the SSI uses STCCR for capture */
862	tx2 = tx || ssi->synchronous;
863	regmap_update_bits(regs, REG_SSI_SxCCR(tx2), SSI_SxCCR_WL_MASK, wl);
864
865	if (ssi->use_dyna_fifo) {
866		if (channels == 1) {
867			ssi->audio_config[0].n_fifos_dst = 1;
868			ssi->audio_config[1].n_fifos_src = 1;
869			vals[RX].srcr &= ~SSI_SRCR_RFEN1;
870			vals[TX].stcr &= ~SSI_STCR_TFEN1;
871			vals[RX].scr  &= ~SSI_SCR_TCH_EN;
872			vals[TX].scr  &= ~SSI_SCR_TCH_EN;
873		} else {
874			ssi->audio_config[0].n_fifos_dst = 2;
875			ssi->audio_config[1].n_fifos_src = 2;
876			vals[RX].srcr |= SSI_SRCR_RFEN1;
877			vals[TX].stcr |= SSI_STCR_TFEN1;
878			vals[RX].scr  |= SSI_SCR_TCH_EN;
879			vals[TX].scr  |= SSI_SCR_TCH_EN;
880		}
881		ssi->dma_params_tx.peripheral_config = &ssi->audio_config[0];
882		ssi->dma_params_tx.peripheral_size = sizeof(ssi->audio_config[0]);
883		ssi->dma_params_rx.peripheral_config = &ssi->audio_config[1];
884		ssi->dma_params_rx.peripheral_size = sizeof(ssi->audio_config[1]);
885	}
886
887	return 0;
888}
889
890static int fsl_ssi_hw_free(struct snd_pcm_substream *substream,
891			   struct snd_soc_dai *dai)
892{
893	struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
894	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0));
895
896	if (fsl_ssi_is_i2s_clock_provider(ssi) &&
897	    ssi->baudclk_streams & BIT(substream->stream)) {
898		clk_disable_unprepare(ssi->baudclk);
899		ssi->baudclk_streams &= ~BIT(substream->stream);
900	}
901
902	return 0;
903}
904
905static int _fsl_ssi_set_dai_fmt(struct fsl_ssi *ssi, unsigned int fmt)
906{
907	u32 strcr = 0, scr = 0, stcr, srcr, mask;
908	unsigned int slots;
909
910	ssi->dai_fmt = fmt;
911
912	/* Synchronize frame sync clock for TE to avoid data slipping */
913	scr |= SSI_SCR_SYNC_TX_FS;
914
915	/* Set to default shifting settings: LSB_ALIGNED */
916	strcr |= SSI_STCR_TXBIT0;
917
918	/* Use Network mode as default */
919	ssi->i2s_net = SSI_SCR_NET;
920	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
921	case SND_SOC_DAIFMT_I2S:
922		switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
923		case SND_SOC_DAIFMT_BP_FP:
924			if (IS_ERR(ssi->baudclk)) {
925				dev_err(ssi->dev,
926					"missing baudclk for master mode\n");
927				return -EINVAL;
928			}
929			fallthrough;
930		case SND_SOC_DAIFMT_BC_FP:
931			ssi->i2s_net |= SSI_SCR_I2S_MODE_MASTER;
932			break;
933		case SND_SOC_DAIFMT_BC_FC:
934			ssi->i2s_net |= SSI_SCR_I2S_MODE_SLAVE;
935			break;
936		default:
937			return -EINVAL;
938		}
939
940		slots = ssi->slots ? : 2;
941		regmap_update_bits(ssi->regs, REG_SSI_STCCR,
942				   SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
943		regmap_update_bits(ssi->regs, REG_SSI_SRCCR,
944				   SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
945
946		/* Data on rising edge of bclk, frame low, 1clk before data */
947		strcr |= SSI_STCR_TFSI | SSI_STCR_TSCKP | SSI_STCR_TEFS;
948		break;
949	case SND_SOC_DAIFMT_LEFT_J:
950		/* Data on rising edge of bclk, frame high */
951		strcr |= SSI_STCR_TSCKP;
952		break;
953	case SND_SOC_DAIFMT_DSP_A:
954		/* Data on rising edge of bclk, frame high, 1clk before data */
955		strcr |= SSI_STCR_TFSL | SSI_STCR_TSCKP | SSI_STCR_TEFS;
956		break;
957	case SND_SOC_DAIFMT_DSP_B:
958		/* Data on rising edge of bclk, frame high */
959		strcr |= SSI_STCR_TFSL | SSI_STCR_TSCKP;
960		break;
961	case SND_SOC_DAIFMT_AC97:
962		/* Data on falling edge of bclk, frame high, 1clk before data */
963		strcr |= SSI_STCR_TEFS;
964		break;
965	default:
966		return -EINVAL;
967	}
968
969	scr |= ssi->i2s_net;
970
971	/* DAI clock inversion */
972	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
973	case SND_SOC_DAIFMT_NB_NF:
974		/* Nothing to do for both normal cases */
975		break;
976	case SND_SOC_DAIFMT_IB_NF:
977		/* Invert bit clock */
978		strcr ^= SSI_STCR_TSCKP;
979		break;
980	case SND_SOC_DAIFMT_NB_IF:
981		/* Invert frame clock */
982		strcr ^= SSI_STCR_TFSI;
983		break;
984	case SND_SOC_DAIFMT_IB_IF:
985		/* Invert both clocks */
986		strcr ^= SSI_STCR_TSCKP;
987		strcr ^= SSI_STCR_TFSI;
988		break;
989	default:
990		return -EINVAL;
991	}
992
993	/* DAI clock provider masks */
994	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
995	case SND_SOC_DAIFMT_BP_FP:
996		/* Output bit and frame sync clocks */
997		strcr |= SSI_STCR_TFDIR | SSI_STCR_TXDIR;
998		scr |= SSI_SCR_SYS_CLK_EN;
999		break;
1000	case SND_SOC_DAIFMT_BC_FC:
1001		/* Input bit or frame sync clocks */
1002		break;
1003	case SND_SOC_DAIFMT_BC_FP:
1004		/* Input bit clock but output frame sync clock */
1005		strcr |= SSI_STCR_TFDIR;
1006		break;
1007	default:
1008		return -EINVAL;
1009	}
1010
1011	stcr = strcr;
1012	srcr = strcr;
1013
1014	/* Set SYN mode and clear RXDIR bit when using SYN or AC97 mode */
1015	if (ssi->synchronous || fsl_ssi_is_ac97(ssi)) {
1016		srcr &= ~SSI_SRCR_RXDIR;
1017		scr |= SSI_SCR_SYN;
1018	}
1019
1020	mask = SSI_STCR_TFDIR | SSI_STCR_TXDIR | SSI_STCR_TSCKP |
1021	       SSI_STCR_TFSL | SSI_STCR_TFSI | SSI_STCR_TEFS | SSI_STCR_TXBIT0;
1022
1023	regmap_update_bits(ssi->regs, REG_SSI_STCR, mask, stcr);
1024	regmap_update_bits(ssi->regs, REG_SSI_SRCR, mask, srcr);
1025
1026	mask = SSI_SCR_SYNC_TX_FS | SSI_SCR_I2S_MODE_MASK |
1027	       SSI_SCR_SYS_CLK_EN | SSI_SCR_SYN;
1028	regmap_update_bits(ssi->regs, REG_SSI_SCR, mask, scr);
1029
1030	return 0;
1031}
1032
1033/**
1034 * fsl_ssi_set_dai_fmt - Configure Digital Audio Interface (DAI) Format
1035 * @dai: pointer to DAI
1036 * @fmt: format mask
1037 */
1038static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
1039{
1040	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
1041
1042	/* AC97 configured DAIFMT earlier in the probe() */
1043	if (fsl_ssi_is_ac97(ssi))
1044		return 0;
1045
1046	return _fsl_ssi_set_dai_fmt(ssi, fmt);
1047}
1048
1049/**
1050 * fsl_ssi_set_dai_tdm_slot - Set TDM slot number and slot width
1051 * @dai: pointer to DAI
1052 * @tx_mask: mask for TX
1053 * @rx_mask: mask for RX
1054 * @slots: number of slots
1055 * @slot_width: number of bits per slot
1056 */
1057static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *dai, u32 tx_mask,
1058				    u32 rx_mask, int slots, int slot_width)
1059{
1060	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
1061	struct regmap *regs = ssi->regs;
1062	u32 val;
1063
1064	/* The word length should be 8, 10, 12, 16, 18, 20, 22 or 24 */
1065	if (slot_width & 1 || slot_width < 8 || slot_width > 24) {
1066		dev_err(dai->dev, "invalid slot width: %d\n", slot_width);
1067		return -EINVAL;
1068	}
1069
1070	/* The slot number should be >= 2 if using Network mode or I2S mode */
1071	if (ssi->i2s_net && slots < 2) {
1072		dev_err(dai->dev, "slot number should be >= 2 in I2S or NET\n");
1073		return -EINVAL;
1074	}
1075
1076	regmap_update_bits(regs, REG_SSI_STCCR,
1077			   SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
1078	regmap_update_bits(regs, REG_SSI_SRCCR,
1079			   SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
1080
1081	/* Save the SCR register value */
1082	regmap_read(regs, REG_SSI_SCR, &val);
1083	/* Temporarily enable SSI to allow SxMSKs to be configurable */
1084	regmap_update_bits(regs, REG_SSI_SCR, SSI_SCR_SSIEN, SSI_SCR_SSIEN);
1085
1086	regmap_write(regs, REG_SSI_STMSK, ~tx_mask);
1087	regmap_write(regs, REG_SSI_SRMSK, ~rx_mask);
1088
1089	/* Restore the value of SSIEN bit */
1090	regmap_update_bits(regs, REG_SSI_SCR, SSI_SCR_SSIEN, val);
1091
1092	ssi->slot_width = slot_width;
1093	ssi->slots = slots;
1094
1095	return 0;
1096}
1097
1098/**
1099 * fsl_ssi_trigger - Start or stop SSI and corresponding DMA transaction.
1100 * @substream: ASoC substream
1101 * @cmd: trigger command
1102 * @dai: pointer to DAI
1103 *
1104 * The DMA channel is in external master start and pause mode, which
1105 * means the SSI completely controls the flow of data.
1106 */
1107static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
1108			   struct snd_soc_dai *dai)
1109{
1110	struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
1111	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0));
1112	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1113
1114	switch (cmd) {
1115	case SNDRV_PCM_TRIGGER_START:
1116	case SNDRV_PCM_TRIGGER_RESUME:
1117	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1118		/*
1119		 * SACCST might be modified via AC Link by a CODEC if it sends
1120		 * extra bits in their SLOTREQ requests, which'll accidentally
1121		 * send valid data to slots other than normal playback slots.
1122		 *
1123		 * To be safe, configure SACCST right before TX starts.
1124		 */
1125		if (tx && fsl_ssi_is_ac97(ssi))
1126			fsl_ssi_tx_ac97_saccst_setup(ssi);
1127		fsl_ssi_config_enable(ssi, tx);
1128		break;
1129
1130	case SNDRV_PCM_TRIGGER_STOP:
1131	case SNDRV_PCM_TRIGGER_SUSPEND:
1132	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1133		fsl_ssi_config_disable(ssi, tx);
1134		break;
1135
1136	default:
1137		return -EINVAL;
1138	}
1139
1140	return 0;
1141}
1142
1143static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
1144{
1145	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
1146
1147	if (ssi->soc->imx && ssi->use_dma)
1148		snd_soc_dai_init_dma_data(dai, &ssi->dma_params_tx,
1149					  &ssi->dma_params_rx);
1150
1151	return 0;
1152}
1153
1154static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
1155	.probe = fsl_ssi_dai_probe,
1156	.startup = fsl_ssi_startup,
1157	.shutdown = fsl_ssi_shutdown,
1158	.hw_params = fsl_ssi_hw_params,
1159	.hw_free = fsl_ssi_hw_free,
1160	.set_fmt = fsl_ssi_set_dai_fmt,
1161	.set_tdm_slot = fsl_ssi_set_dai_tdm_slot,
1162	.trigger = fsl_ssi_trigger,
1163};
1164
1165static struct snd_soc_dai_driver fsl_ssi_dai_template = {
1166	.playback = {
1167		.stream_name = "CPU-Playback",
1168		.channels_min = 1,
1169		.channels_max = 32,
1170		.rates = SNDRV_PCM_RATE_CONTINUOUS,
1171		.formats = FSLSSI_I2S_FORMATS,
1172	},
1173	.capture = {
1174		.stream_name = "CPU-Capture",
1175		.channels_min = 1,
1176		.channels_max = 32,
1177		.rates = SNDRV_PCM_RATE_CONTINUOUS,
1178		.formats = FSLSSI_I2S_FORMATS,
1179	},
1180	.ops = &fsl_ssi_dai_ops,
1181};
1182
1183static const struct snd_soc_component_driver fsl_ssi_component = {
1184	.name = "fsl-ssi",
1185	.legacy_dai_naming = 1,
1186};
1187
1188static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
1189	.symmetric_channels = 1,
1190	.playback = {
1191		.stream_name = "CPU AC97 Playback",
1192		.channels_min = 2,
1193		.channels_max = 2,
1194		.rates = SNDRV_PCM_RATE_8000_48000,
1195		.formats = SNDRV_PCM_FMTBIT_S16 | SNDRV_PCM_FMTBIT_S20,
1196	},
1197	.capture = {
1198		.stream_name = "CPU AC97 Capture",
1199		.channels_min = 2,
1200		.channels_max = 2,
1201		.rates = SNDRV_PCM_RATE_48000,
1202		/* 16-bit capture is broken (errata ERR003778) */
1203		.formats = SNDRV_PCM_FMTBIT_S20,
1204	},
1205	.ops = &fsl_ssi_dai_ops,
1206};
1207
1208static struct fsl_ssi *fsl_ac97_data;
1209
1210static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
1211			       unsigned short val)
1212{
1213	struct regmap *regs = fsl_ac97_data->regs;
1214	unsigned int lreg;
1215	unsigned int lval;
1216	int ret;
1217
1218	if (reg > 0x7f)
1219		return;
1220
1221	mutex_lock(&fsl_ac97_data->ac97_reg_lock);
1222
1223	ret = clk_prepare_enable(fsl_ac97_data->clk);
1224	if (ret) {
1225		pr_err("ac97 write clk_prepare_enable failed: %d\n",
1226			ret);
1227		goto ret_unlock;
1228	}
1229
1230	lreg = reg <<  12;
1231	regmap_write(regs, REG_SSI_SACADD, lreg);
1232
1233	lval = val << 4;
1234	regmap_write(regs, REG_SSI_SACDAT, lval);
1235
1236	regmap_update_bits(regs, REG_SSI_SACNT,
1237			   SSI_SACNT_RDWR_MASK, SSI_SACNT_WR);
1238	udelay(100);
1239
1240	clk_disable_unprepare(fsl_ac97_data->clk);
1241
1242ret_unlock:
1243	mutex_unlock(&fsl_ac97_data->ac97_reg_lock);
1244}
1245
1246static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
1247					unsigned short reg)
1248{
1249	struct regmap *regs = fsl_ac97_data->regs;
1250	unsigned short val = 0;
1251	u32 reg_val;
1252	unsigned int lreg;
1253	int ret;
1254
1255	mutex_lock(&fsl_ac97_data->ac97_reg_lock);
1256
1257	ret = clk_prepare_enable(fsl_ac97_data->clk);
1258	if (ret) {
1259		pr_err("ac97 read clk_prepare_enable failed: %d\n", ret);
1260		goto ret_unlock;
1261	}
1262
1263	lreg = (reg & 0x7f) <<  12;
1264	regmap_write(regs, REG_SSI_SACADD, lreg);
1265	regmap_update_bits(regs, REG_SSI_SACNT,
1266			   SSI_SACNT_RDWR_MASK, SSI_SACNT_RD);
1267
1268	udelay(100);
1269
1270	regmap_read(regs, REG_SSI_SACDAT, &reg_val);
1271	val = (reg_val >> 4) & 0xffff;
1272
1273	clk_disable_unprepare(fsl_ac97_data->clk);
1274
1275ret_unlock:
1276	mutex_unlock(&fsl_ac97_data->ac97_reg_lock);
1277	return val;
1278}
1279
1280static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
1281	.read = fsl_ssi_ac97_read,
1282	.write = fsl_ssi_ac97_write,
1283};
1284
1285/**
1286 * fsl_ssi_hw_init - Initialize SSI registers
1287 * @ssi: SSI context
1288 */
1289static int fsl_ssi_hw_init(struct fsl_ssi *ssi)
1290{
1291	u32 wm = ssi->fifo_watermark;
1292
1293	/* Initialize regvals */
1294	fsl_ssi_setup_regvals(ssi);
1295
1296	/* Set watermarks */
1297	regmap_write(ssi->regs, REG_SSI_SFCSR,
1298		     SSI_SFCSR_TFWM0(wm) | SSI_SFCSR_RFWM0(wm) |
1299		     SSI_SFCSR_TFWM1(wm) | SSI_SFCSR_RFWM1(wm));
1300
1301	/* Enable Dual FIFO mode */
1302	if (ssi->use_dual_fifo)
1303		regmap_update_bits(ssi->regs, REG_SSI_SCR,
1304				   SSI_SCR_TCH_EN, SSI_SCR_TCH_EN);
1305
1306	/* AC97 should start earlier to communicate with CODECs */
1307	if (fsl_ssi_is_ac97(ssi)) {
1308		_fsl_ssi_set_dai_fmt(ssi, ssi->dai_fmt);
1309		fsl_ssi_setup_ac97(ssi);
1310	}
1311
1312	return 0;
1313}
1314
1315/**
1316 * fsl_ssi_hw_clean - Clear SSI registers
1317 * @ssi: SSI context
1318 */
1319static void fsl_ssi_hw_clean(struct fsl_ssi *ssi)
1320{
1321	/* Disable registers for AC97 */
1322	if (fsl_ssi_is_ac97(ssi)) {
1323		/* Disable TE and RE bits first */
1324		regmap_update_bits(ssi->regs, REG_SSI_SCR,
1325				   SSI_SCR_TE | SSI_SCR_RE, 0);
1326		/* Disable AC97 mode */
1327		regmap_write(ssi->regs, REG_SSI_SACNT, 0);
1328		/* Unset WAIT bits */
1329		regmap_write(ssi->regs, REG_SSI_SOR, 0);
1330		/* Disable SSI -- software reset */
1331		regmap_update_bits(ssi->regs, REG_SSI_SCR, SSI_SCR_SSIEN, 0);
1332	}
1333}
1334
1335/*
1336 * Make every character in a string lower-case
1337 */
1338static void make_lowercase(char *s)
1339{
1340	if (!s)
1341		return;
1342	for (; *s; s++)
1343		*s = tolower(*s);
1344}
1345
1346static int fsl_ssi_imx_probe(struct platform_device *pdev,
1347			     struct fsl_ssi *ssi, void __iomem *iomem)
1348{
1349	struct device *dev = &pdev->dev;
1350	int ret;
1351
1352	/* Backward compatible for a DT without ipg clock name assigned */
1353	if (ssi->has_ipg_clk_name)
1354		ssi->clk = devm_clk_get(dev, "ipg");
1355	else
1356		ssi->clk = devm_clk_get(dev, NULL);
1357	if (IS_ERR(ssi->clk)) {
1358		ret = PTR_ERR(ssi->clk);
1359		dev_err(dev, "failed to get clock: %d\n", ret);
1360		return ret;
1361	}
1362
1363	/* Enable the clock since regmap will not handle it in this case */
1364	if (!ssi->has_ipg_clk_name) {
1365		ret = clk_prepare_enable(ssi->clk);
1366		if (ret) {
1367			dev_err(dev, "clk_prepare_enable failed: %d\n", ret);
1368			return ret;
1369		}
1370	}
1371
1372	/* Do not error out for consumer cases that live without a baud clock */
1373	ssi->baudclk = devm_clk_get(dev, "baud");
1374	if (IS_ERR(ssi->baudclk))
1375		dev_dbg(dev, "failed to get baud clock: %ld\n",
1376			 PTR_ERR(ssi->baudclk));
1377
1378	ssi->dma_params_tx.maxburst = ssi->dma_maxburst;
1379	ssi->dma_params_rx.maxburst = ssi->dma_maxburst;
1380	ssi->dma_params_tx.addr = ssi->ssi_phys + REG_SSI_STX0;
1381	ssi->dma_params_rx.addr = ssi->ssi_phys + REG_SSI_SRX0;
1382
1383	/* Use even numbers to avoid channel swap due to SDMA script design */
1384	if (ssi->use_dual_fifo || ssi->use_dyna_fifo) {
1385		ssi->dma_params_tx.maxburst &= ~0x1;
1386		ssi->dma_params_rx.maxburst &= ~0x1;
1387	}
1388
1389	if (!ssi->use_dma) {
1390		/*
1391		 * Some boards use an incompatible codec. Use imx-fiq-pcm-audio
1392		 * to get it working, as DMA is not possible in this situation.
1393		 */
1394		ssi->fiq_params.irq = ssi->irq;
1395		ssi->fiq_params.base = iomem;
1396		ssi->fiq_params.dma_params_rx = &ssi->dma_params_rx;
1397		ssi->fiq_params.dma_params_tx = &ssi->dma_params_tx;
1398
1399		ret = imx_pcm_fiq_init(pdev, &ssi->fiq_params);
1400		if (ret)
1401			goto error_pcm;
1402	} else {
1403		ret = imx_pcm_dma_init(pdev);
1404		if (ret)
1405			goto error_pcm;
1406	}
1407
1408	return 0;
1409
1410error_pcm:
1411	if (!ssi->has_ipg_clk_name)
1412		clk_disable_unprepare(ssi->clk);
1413
1414	return ret;
1415}
1416
1417static void fsl_ssi_imx_clean(struct platform_device *pdev, struct fsl_ssi *ssi)
1418{
1419	if (!ssi->use_dma)
1420		imx_pcm_fiq_exit(pdev);
1421	if (!ssi->has_ipg_clk_name)
1422		clk_disable_unprepare(ssi->clk);
1423}
1424
1425static int fsl_ssi_probe_from_dt(struct fsl_ssi *ssi)
1426{
1427	struct device *dev = ssi->dev;
1428	struct device_node *np = dev->of_node;
1429	const char *p, *sprop;
1430	const __be32 *iprop;
1431	u32 dmas[4];
1432	int ret;
1433
1434	ret = of_property_match_string(np, "clock-names", "ipg");
1435	/* Get error code if not found */
1436	ssi->has_ipg_clk_name = ret >= 0;
1437
1438	/* Check if being used in AC97 mode */
1439	sprop = of_get_property(np, "fsl,mode", NULL);
1440	if (sprop && !strcmp(sprop, "ac97-slave")) {
1441		ssi->dai_fmt = FSLSSI_AC97_DAIFMT;
1442
1443		ret = of_property_read_u32(np, "cell-index", &ssi->card_idx);
1444		if (ret) {
1445			dev_err(dev, "failed to get SSI index property\n");
1446			return -EINVAL;
1447		}
1448		strcpy(ssi->card_name, "ac97-codec");
1449	} else if (!of_property_read_bool(np, "fsl,ssi-asynchronous")) {
1450		/*
1451		 * In synchronous mode, STCK and STFS ports are used by RX
1452		 * as well. So the software should limit the sample rates,
1453		 * sample bits and channels to be symmetric.
1454		 *
1455		 * This is exclusive with FSLSSI_AC97_FORMATS as AC97 runs
1456		 * in the SSI synchronous mode however it does not have to
1457		 * limit symmetric sample rates and sample bits.
1458		 */
1459		ssi->synchronous = true;
1460	}
1461
1462	/* Select DMA or FIQ */
1463	ssi->use_dma = !of_property_read_bool(np, "fsl,fiq-stream-filter");
1464
1465	/* Fetch FIFO depth; Set to 8 for older DT without this property */
1466	iprop = of_get_property(np, "fsl,fifo-depth", NULL);
1467	if (iprop)
1468		ssi->fifo_depth = be32_to_cpup(iprop);
1469	else
1470		ssi->fifo_depth = 8;
1471
1472	/* Use dual FIFO mode depending on the support from SDMA script */
1473	ret = of_property_read_u32_array(np, "dmas", dmas, 4);
1474	if (ssi->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL)
1475		ssi->use_dual_fifo = true;
1476
1477	if (ssi->use_dma && !ret && dmas[2] == IMX_DMATYPE_MULTI_SAI)
1478		ssi->use_dyna_fifo = true;
1479	/*
1480	 * Backward compatible for older bindings by manually triggering the
1481	 * machine driver's probe(). Use /compatible property, including the
1482	 * address of CPU DAI driver structure, as the name of machine driver
1483	 *
1484	 * If card_name is set by AC97 earlier, bypass here since it uses a
1485	 * different name to register the device.
1486	 */
1487	if (!ssi->card_name[0] && of_get_property(np, "codec-handle", NULL)) {
1488		struct device_node *root = of_find_node_by_path("/");
1489
1490		sprop = of_get_property(root, "compatible", NULL);
1491		of_node_put(root);
1492		/* Strip "fsl," in the compatible name if applicable */
1493		p = strrchr(sprop, ',');
1494		if (p)
1495			sprop = p + 1;
1496		snprintf(ssi->card_name, sizeof(ssi->card_name),
1497			 "snd-soc-%s", sprop);
1498		make_lowercase(ssi->card_name);
1499		ssi->card_idx = 0;
1500	}
1501
1502	return 0;
1503}
1504
1505static int fsl_ssi_probe(struct platform_device *pdev)
1506{
1507	struct regmap_config regconfig = fsl_ssi_regconfig;
1508	struct device *dev = &pdev->dev;
1509	struct fsl_ssi *ssi;
1510	struct resource *res;
1511	void __iomem *iomem;
1512	int ret = 0;
1513
1514	ssi = devm_kzalloc(dev, sizeof(*ssi), GFP_KERNEL);
1515	if (!ssi)
1516		return -ENOMEM;
1517
1518	ssi->dev = dev;
1519	ssi->soc = of_device_get_match_data(&pdev->dev);
1520
1521	/* Probe from DT */
1522	ret = fsl_ssi_probe_from_dt(ssi);
1523	if (ret)
1524		return ret;
1525
1526	if (fsl_ssi_is_ac97(ssi)) {
1527		memcpy(&ssi->cpu_dai_drv, &fsl_ssi_ac97_dai,
1528		       sizeof(fsl_ssi_ac97_dai));
1529		fsl_ac97_data = ssi;
1530	} else {
1531		memcpy(&ssi->cpu_dai_drv, &fsl_ssi_dai_template,
1532		       sizeof(fsl_ssi_dai_template));
1533	}
1534	ssi->cpu_dai_drv.name = dev_name(dev);
1535
1536	iomem = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1537	if (IS_ERR(iomem))
1538		return PTR_ERR(iomem);
1539	ssi->ssi_phys = res->start;
1540
1541	if (ssi->soc->imx21regs) {
1542		/* No SACC{ST,EN,DIS} regs in imx21-class SSI */
1543		regconfig.max_register = REG_SSI_SRMSK;
1544		regconfig.num_reg_defaults_raw =
1545			REG_SSI_SRMSK / sizeof(uint32_t) + 1;
1546	}
1547
1548	if (ssi->has_ipg_clk_name)
1549		ssi->regs = devm_regmap_init_mmio_clk(dev, "ipg", iomem,
1550						      &regconfig);
1551	else
1552		ssi->regs = devm_regmap_init_mmio(dev, iomem, &regconfig);
1553	if (IS_ERR(ssi->regs)) {
1554		dev_err(dev, "failed to init register map\n");
1555		return PTR_ERR(ssi->regs);
1556	}
1557
1558	ssi->irq = platform_get_irq(pdev, 0);
1559	if (ssi->irq < 0)
1560		return ssi->irq;
1561
1562	/* Set software limitations for synchronous mode except AC97 */
1563	if (ssi->synchronous && !fsl_ssi_is_ac97(ssi)) {
1564		ssi->cpu_dai_drv.symmetric_rate = 1;
1565		ssi->cpu_dai_drv.symmetric_channels = 1;
1566		ssi->cpu_dai_drv.symmetric_sample_bits = 1;
1567	}
1568
1569	/*
1570	 * Configure TX and RX DMA watermarks -- when to send a DMA request
1571	 *
1572	 * Values should be tested to avoid FIFO under/over run. Set maxburst
1573	 * to fifo_watermark to maxiumize DMA transaction to reduce overhead.
1574	 */
1575	switch (ssi->fifo_depth) {
1576	case 15:
1577		/*
1578		 * Set to 8 as a balanced configuration -- When TX FIFO has 8
1579		 * empty slots, send a DMA request to fill these 8 slots. The
1580		 * remaining 7 slots should be able to allow DMA to finish the
1581		 * transaction before TX FIFO underruns; Same applies to RX.
1582		 *
1583		 * Tested with cases running at 48kHz @ 16 bits x 16 channels
1584		 */
1585		ssi->fifo_watermark = 8;
1586		ssi->dma_maxburst = 8;
1587		break;
1588	case 8:
1589	default:
1590		/* Safely use old watermark configurations for older chips */
1591		ssi->fifo_watermark = ssi->fifo_depth - 2;
1592		ssi->dma_maxburst = ssi->fifo_depth - 2;
1593		break;
1594	}
1595
1596	dev_set_drvdata(dev, ssi);
1597
1598	if (ssi->soc->imx) {
1599		ret = fsl_ssi_imx_probe(pdev, ssi, iomem);
1600		if (ret)
1601			return ret;
1602	}
1603
1604	if (fsl_ssi_is_ac97(ssi)) {
1605		mutex_init(&ssi->ac97_reg_lock);
1606		ret = snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
1607		if (ret) {
1608			dev_err(dev, "failed to set AC'97 ops\n");
1609			goto error_ac97_ops;
1610		}
1611	}
1612
1613	ret = devm_snd_soc_register_component(dev, &fsl_ssi_component,
1614					      &ssi->cpu_dai_drv, 1);
1615	if (ret) {
1616		dev_err(dev, "failed to register DAI: %d\n", ret);
1617		goto error_asoc_register;
1618	}
1619
1620	if (ssi->use_dma) {
1621		ret = devm_request_irq(dev, ssi->irq, fsl_ssi_isr, 0,
1622				       dev_name(dev), ssi);
1623		if (ret < 0) {
1624			dev_err(dev, "failed to claim irq %u\n", ssi->irq);
1625			goto error_asoc_register;
1626		}
1627	}
1628
1629	fsl_ssi_debugfs_create(&ssi->dbg_stats, dev);
1630
1631	/* Initially configures SSI registers */
1632	fsl_ssi_hw_init(ssi);
1633
1634	/* Register a platform device for older bindings or AC97 */
1635	if (ssi->card_name[0]) {
1636		struct device *parent = dev;
1637		/*
1638		 * Do not set SSI dev as the parent of AC97 CODEC device since
1639		 * it does not have a DT node. Otherwise ASoC core will assume
1640		 * CODEC has the same DT node as the SSI, so it may bypass the
1641		 * dai_probe() of SSI and then cause NULL DMA data pointers.
1642		 */
1643		if (fsl_ssi_is_ac97(ssi))
1644			parent = NULL;
1645
1646		ssi->card_pdev = platform_device_register_data(parent,
1647				ssi->card_name, ssi->card_idx, NULL, 0);
1648		if (IS_ERR(ssi->card_pdev)) {
1649			ret = PTR_ERR(ssi->card_pdev);
1650			dev_err(dev, "failed to register %s: %d\n",
1651				ssi->card_name, ret);
1652			goto error_sound_card;
1653		}
1654	}
1655
1656	return 0;
1657
1658error_sound_card:
1659	fsl_ssi_debugfs_remove(&ssi->dbg_stats);
1660error_asoc_register:
1661	if (fsl_ssi_is_ac97(ssi))
1662		snd_soc_set_ac97_ops(NULL);
1663error_ac97_ops:
1664	if (fsl_ssi_is_ac97(ssi))
1665		mutex_destroy(&ssi->ac97_reg_lock);
1666
1667	if (ssi->soc->imx)
1668		fsl_ssi_imx_clean(pdev, ssi);
1669
1670	return ret;
1671}
1672
1673static void fsl_ssi_remove(struct platform_device *pdev)
1674{
1675	struct fsl_ssi *ssi = dev_get_drvdata(&pdev->dev);
1676
1677	fsl_ssi_debugfs_remove(&ssi->dbg_stats);
1678
1679	if (ssi->card_pdev)
1680		platform_device_unregister(ssi->card_pdev);
1681
1682	/* Clean up SSI registers */
1683	fsl_ssi_hw_clean(ssi);
1684
1685	if (ssi->soc->imx)
1686		fsl_ssi_imx_clean(pdev, ssi);
1687
1688	if (fsl_ssi_is_ac97(ssi)) {
1689		snd_soc_set_ac97_ops(NULL);
1690		mutex_destroy(&ssi->ac97_reg_lock);
1691	}
1692}
1693
1694#ifdef CONFIG_PM_SLEEP
1695static int fsl_ssi_suspend(struct device *dev)
1696{
1697	struct fsl_ssi *ssi = dev_get_drvdata(dev);
1698	struct regmap *regs = ssi->regs;
1699
1700	regmap_read(regs, REG_SSI_SFCSR, &ssi->regcache_sfcsr);
1701	regmap_read(regs, REG_SSI_SACNT, &ssi->regcache_sacnt);
1702
1703	regcache_cache_only(regs, true);
1704	regcache_mark_dirty(regs);
1705
1706	return 0;
1707}
1708
1709static int fsl_ssi_resume(struct device *dev)
1710{
1711	struct fsl_ssi *ssi = dev_get_drvdata(dev);
1712	struct regmap *regs = ssi->regs;
1713
1714	regcache_cache_only(regs, false);
1715
1716	regmap_update_bits(regs, REG_SSI_SFCSR,
1717			   SSI_SFCSR_RFWM1_MASK | SSI_SFCSR_TFWM1_MASK |
1718			   SSI_SFCSR_RFWM0_MASK | SSI_SFCSR_TFWM0_MASK,
1719			   ssi->regcache_sfcsr);
1720	regmap_write(regs, REG_SSI_SACNT, ssi->regcache_sacnt);
1721
1722	return regcache_sync(regs);
1723}
1724#endif /* CONFIG_PM_SLEEP */
1725
1726static const struct dev_pm_ops fsl_ssi_pm = {
1727	SET_SYSTEM_SLEEP_PM_OPS(fsl_ssi_suspend, fsl_ssi_resume)
1728};
1729
1730static struct platform_driver fsl_ssi_driver = {
1731	.driver = {
1732		.name = "fsl-ssi-dai",
1733		.of_match_table = fsl_ssi_ids,
1734		.pm = &fsl_ssi_pm,
1735	},
1736	.probe = fsl_ssi_probe,
1737	.remove_new = fsl_ssi_remove,
1738};
1739
1740module_platform_driver(fsl_ssi_driver);
1741
1742MODULE_ALIAS("platform:fsl-ssi-dai");
1743MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
1744MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1745MODULE_LICENSE("GPL v2");
1746