1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Codec driver for ST STA350 2.1-channel high-efficiency digital audio system
4 *
5 * Copyright: 2014 Raumfeld GmbH
6 * Author: Sven Brandau <info@brandau.biz>
7 *
8 * based on code from:
9 *	Raumfeld GmbH
10 *	  Johannes Stezenbach <js@sig21.net>
11 *	Wolfson Microelectronics PLC.
12 *	  Mark Brown <broonie@opensource.wolfsonmicro.com>
13 *	Freescale Semiconductor, Inc.
14 *	  Timur Tabi <timur@freescale.com>
15 */
16
17#define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
18
19#include <linux/module.h>
20#include <linux/moduleparam.h>
21#include <linux/init.h>
22#include <linux/delay.h>
23#include <linux/pm.h>
24#include <linux/i2c.h>
25#include <linux/of.h>
26#include <linux/regmap.h>
27#include <linux/regulator/consumer.h>
28#include <linux/gpio/consumer.h>
29#include <linux/slab.h>
30#include <sound/core.h>
31#include <sound/pcm.h>
32#include <sound/pcm_params.h>
33#include <sound/soc.h>
34#include <sound/soc-dapm.h>
35#include <sound/initval.h>
36#include <sound/tlv.h>
37
38#include <sound/sta350.h>
39#include "sta350.h"
40
41#define STA350_RATES (SNDRV_PCM_RATE_32000 | \
42		      SNDRV_PCM_RATE_44100 | \
43		      SNDRV_PCM_RATE_48000 | \
44		      SNDRV_PCM_RATE_88200 | \
45		      SNDRV_PCM_RATE_96000 | \
46		      SNDRV_PCM_RATE_176400 | \
47		      SNDRV_PCM_RATE_192000)
48
49#define STA350_FORMATS \
50	(SNDRV_PCM_FMTBIT_S16_LE  | SNDRV_PCM_FMTBIT_S18_3LE | \
51	 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S24_3LE | \
52	 SNDRV_PCM_FMTBIT_S24_LE  | SNDRV_PCM_FMTBIT_S32_LE)
53
54/* Power-up register defaults */
55static const struct reg_default sta350_regs[] = {
56	{  0x0, 0x63 },
57	{  0x1, 0x80 },
58	{  0x2, 0xdf },
59	{  0x3, 0x40 },
60	{  0x4, 0xc2 },
61	{  0x5, 0x5c },
62	{  0x6, 0x00 },
63	{  0x7, 0xff },
64	{  0x8, 0x60 },
65	{  0x9, 0x60 },
66	{  0xa, 0x60 },
67	{  0xb, 0x00 },
68	{  0xc, 0x00 },
69	{  0xd, 0x00 },
70	{  0xe, 0x00 },
71	{  0xf, 0x40 },
72	{ 0x10, 0x80 },
73	{ 0x11, 0x77 },
74	{ 0x12, 0x6a },
75	{ 0x13, 0x69 },
76	{ 0x14, 0x6a },
77	{ 0x15, 0x69 },
78	{ 0x16, 0x00 },
79	{ 0x17, 0x00 },
80	{ 0x18, 0x00 },
81	{ 0x19, 0x00 },
82	{ 0x1a, 0x00 },
83	{ 0x1b, 0x00 },
84	{ 0x1c, 0x00 },
85	{ 0x1d, 0x00 },
86	{ 0x1e, 0x00 },
87	{ 0x1f, 0x00 },
88	{ 0x20, 0x00 },
89	{ 0x21, 0x00 },
90	{ 0x22, 0x00 },
91	{ 0x23, 0x00 },
92	{ 0x24, 0x00 },
93	{ 0x25, 0x00 },
94	{ 0x26, 0x00 },
95	{ 0x27, 0x2a },
96	{ 0x28, 0xc0 },
97	{ 0x29, 0xf3 },
98	{ 0x2a, 0x33 },
99	{ 0x2b, 0x00 },
100	{ 0x2c, 0x0c },
101	{ 0x31, 0x00 },
102	{ 0x36, 0x00 },
103	{ 0x37, 0x00 },
104	{ 0x38, 0x00 },
105	{ 0x39, 0x01 },
106	{ 0x3a, 0xee },
107	{ 0x3b, 0xff },
108	{ 0x3c, 0x7e },
109	{ 0x3d, 0xc0 },
110	{ 0x3e, 0x26 },
111	{ 0x3f, 0x00 },
112	{ 0x48, 0x00 },
113	{ 0x49, 0x00 },
114	{ 0x4a, 0x00 },
115	{ 0x4b, 0x04 },
116	{ 0x4c, 0x00 },
117};
118
119static const struct regmap_range sta350_write_regs_range[] = {
120	regmap_reg_range(STA350_CONFA,  STA350_AUTO2),
121	regmap_reg_range(STA350_C1CFG,  STA350_FDRC2),
122	regmap_reg_range(STA350_EQCFG,  STA350_EVOLRES),
123	regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
124};
125
126static const struct regmap_range sta350_read_regs_range[] = {
127	regmap_reg_range(STA350_CONFA,  STA350_AUTO2),
128	regmap_reg_range(STA350_C1CFG,  STA350_STATUS),
129	regmap_reg_range(STA350_EQCFG,  STA350_EVOLRES),
130	regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
131};
132
133static const struct regmap_range sta350_volatile_regs_range[] = {
134	regmap_reg_range(STA350_CFADDR2, STA350_CFUD),
135	regmap_reg_range(STA350_STATUS,  STA350_STATUS),
136};
137
138static const struct regmap_access_table sta350_write_regs = {
139	.yes_ranges =	sta350_write_regs_range,
140	.n_yes_ranges =	ARRAY_SIZE(sta350_write_regs_range),
141};
142
143static const struct regmap_access_table sta350_read_regs = {
144	.yes_ranges =	sta350_read_regs_range,
145	.n_yes_ranges =	ARRAY_SIZE(sta350_read_regs_range),
146};
147
148static const struct regmap_access_table sta350_volatile_regs = {
149	.yes_ranges =	sta350_volatile_regs_range,
150	.n_yes_ranges =	ARRAY_SIZE(sta350_volatile_regs_range),
151};
152
153/* regulator power supply names */
154static const char * const sta350_supply_names[] = {
155	"vdd-dig",	/* digital supply, 3.3V */
156	"vdd-pll",	/* pll supply, 3.3V */
157	"vcc"		/* power amp supply, 5V - 26V */
158};
159
160/* codec private data */
161struct sta350_priv {
162	struct regmap *regmap;
163	struct regulator_bulk_data supplies[ARRAY_SIZE(sta350_supply_names)];
164	struct sta350_platform_data *pdata;
165
166	unsigned int mclk;
167	unsigned int format;
168
169	u32 coef_shadow[STA350_COEF_COUNT];
170	int shutdown;
171
172	struct gpio_desc *gpiod_nreset;
173	struct gpio_desc *gpiod_power_down;
174
175	struct mutex coeff_lock;
176};
177
178static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12750, 50, 1);
179static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
180static const DECLARE_TLV_DB_SCALE(tone_tlv, -1200, 200, 0);
181
182static const char * const sta350_drc_ac[] = {
183	"Anti-Clipping", "Dynamic Range Compression"
184};
185static const char * const sta350_auto_gc_mode[] = {
186	"User", "AC no clipping", "AC limited clipping (10%)",
187	"DRC nighttime listening mode"
188};
189static const char * const sta350_auto_xo_mode[] = {
190	"User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz",
191	"200Hz", "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz",
192	"340Hz", "360Hz"
193};
194static const char * const sta350_binary_output[] = {
195	"FFX 3-state output - normal operation", "Binary output"
196};
197static const char * const sta350_limiter_select[] = {
198	"Limiter Disabled", "Limiter #1", "Limiter #2"
199};
200static const char * const sta350_limiter_attack_rate[] = {
201	"3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
202	"0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
203	"0.0645", "0.0564", "0.0501", "0.0451"
204};
205static const char * const sta350_limiter_release_rate[] = {
206	"0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
207	"0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
208	"0.0134", "0.0117", "0.0110", "0.0104"
209};
210static const char * const sta350_noise_shaper_type[] = {
211	"Third order", "Fourth order"
212};
213
214static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_attack_tlv,
215	0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
216	8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
217);
218
219static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_release_tlv,
220	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
221	1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
222	2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
223	3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
224	8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
225);
226
227static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_attack_tlv,
228	0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
229	8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
230	14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
231);
232
233static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_release_tlv,
234	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
235	1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
236	3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
237	5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
238	13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
239);
240
241static SOC_ENUM_SINGLE_DECL(sta350_drc_ac_enum,
242			    STA350_CONFD, STA350_CONFD_DRC_SHIFT,
243			    sta350_drc_ac);
244static SOC_ENUM_SINGLE_DECL(sta350_noise_shaper_enum,
245			    STA350_CONFE, STA350_CONFE_NSBW_SHIFT,
246			    sta350_noise_shaper_type);
247static SOC_ENUM_SINGLE_DECL(sta350_auto_gc_enum,
248			    STA350_AUTO1, STA350_AUTO1_AMGC_SHIFT,
249			    sta350_auto_gc_mode);
250static SOC_ENUM_SINGLE_DECL(sta350_auto_xo_enum,
251			    STA350_AUTO2, STA350_AUTO2_XO_SHIFT,
252			    sta350_auto_xo_mode);
253static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch1_enum,
254			    STA350_C1CFG, STA350_CxCFG_BO_SHIFT,
255			    sta350_binary_output);
256static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch2_enum,
257			    STA350_C2CFG, STA350_CxCFG_BO_SHIFT,
258			    sta350_binary_output);
259static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch3_enum,
260			    STA350_C3CFG, STA350_CxCFG_BO_SHIFT,
261			    sta350_binary_output);
262static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch1_enum,
263			    STA350_C1CFG, STA350_CxCFG_LS_SHIFT,
264			    sta350_limiter_select);
265static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch2_enum,
266			    STA350_C2CFG, STA350_CxCFG_LS_SHIFT,
267			    sta350_limiter_select);
268static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch3_enum,
269			    STA350_C3CFG, STA350_CxCFG_LS_SHIFT,
270			    sta350_limiter_select);
271static SOC_ENUM_SINGLE_DECL(sta350_limiter1_attack_rate_enum,
272			    STA350_L1AR, STA350_LxA_SHIFT,
273			    sta350_limiter_attack_rate);
274static SOC_ENUM_SINGLE_DECL(sta350_limiter2_attack_rate_enum,
275			    STA350_L2AR, STA350_LxA_SHIFT,
276			    sta350_limiter_attack_rate);
277static SOC_ENUM_SINGLE_DECL(sta350_limiter1_release_rate_enum,
278			    STA350_L1AR, STA350_LxR_SHIFT,
279			    sta350_limiter_release_rate);
280static SOC_ENUM_SINGLE_DECL(sta350_limiter2_release_rate_enum,
281			    STA350_L2AR, STA350_LxR_SHIFT,
282			    sta350_limiter_release_rate);
283
284/*
285 * byte array controls for setting biquad, mixer, scaling coefficients;
286 * for biquads all five coefficients need to be set in one go,
287 * mixer and pre/postscale coefs can be set individually;
288 * each coef is 24bit, the bytes are ordered in the same way
289 * as given in the STA350 data sheet (big endian; b1, b2, a1, a2, b0)
290 */
291
292static int sta350_coefficient_info(struct snd_kcontrol *kcontrol,
293				   struct snd_ctl_elem_info *uinfo)
294{
295	int numcoef = kcontrol->private_value >> 16;
296	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
297	uinfo->count = 3 * numcoef;
298	return 0;
299}
300
301static int sta350_coefficient_get(struct snd_kcontrol *kcontrol,
302				  struct snd_ctl_elem_value *ucontrol)
303{
304	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
305	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
306	int numcoef = kcontrol->private_value >> 16;
307	int index = kcontrol->private_value & 0xffff;
308	unsigned int cfud, val;
309	int i, ret = 0;
310
311	mutex_lock(&sta350->coeff_lock);
312
313	/* preserve reserved bits in STA350_CFUD */
314	regmap_read(sta350->regmap, STA350_CFUD, &cfud);
315	cfud &= 0xf0;
316	/*
317	 * chip documentation does not say if the bits are self clearing,
318	 * so do it explicitly
319	 */
320	regmap_write(sta350->regmap, STA350_CFUD, cfud);
321
322	regmap_write(sta350->regmap, STA350_CFADDR2, index);
323	if (numcoef == 1) {
324		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x04);
325	} else if (numcoef == 5) {
326		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x08);
327	} else {
328		ret = -EINVAL;
329		goto exit_unlock;
330	}
331
332	for (i = 0; i < 3 * numcoef; i++) {
333		regmap_read(sta350->regmap, STA350_B1CF1 + i, &val);
334		ucontrol->value.bytes.data[i] = val;
335	}
336
337exit_unlock:
338	mutex_unlock(&sta350->coeff_lock);
339
340	return ret;
341}
342
343static int sta350_coefficient_put(struct snd_kcontrol *kcontrol,
344				  struct snd_ctl_elem_value *ucontrol)
345{
346	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
347	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
348	int numcoef = kcontrol->private_value >> 16;
349	int index = kcontrol->private_value & 0xffff;
350	unsigned int cfud;
351	int i;
352
353	/* preserve reserved bits in STA350_CFUD */
354	regmap_read(sta350->regmap, STA350_CFUD, &cfud);
355	cfud &= 0xf0;
356	/*
357	 * chip documentation does not say if the bits are self clearing,
358	 * so do it explicitly
359	 */
360	regmap_write(sta350->regmap, STA350_CFUD, cfud);
361
362	regmap_write(sta350->regmap, STA350_CFADDR2, index);
363	for (i = 0; i < numcoef && (index + i < STA350_COEF_COUNT); i++)
364		sta350->coef_shadow[index + i] =
365			  (ucontrol->value.bytes.data[3 * i] << 16)
366			| (ucontrol->value.bytes.data[3 * i + 1] << 8)
367			| (ucontrol->value.bytes.data[3 * i + 2]);
368	for (i = 0; i < 3 * numcoef; i++)
369		regmap_write(sta350->regmap, STA350_B1CF1 + i,
370			     ucontrol->value.bytes.data[i]);
371	if (numcoef == 1)
372		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
373	else if (numcoef == 5)
374		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x02);
375	else
376		return -EINVAL;
377
378	return 0;
379}
380
381static int sta350_sync_coef_shadow(struct snd_soc_component *component)
382{
383	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
384	unsigned int cfud;
385	int i;
386
387	/* preserve reserved bits in STA350_CFUD */
388	regmap_read(sta350->regmap, STA350_CFUD, &cfud);
389	cfud &= 0xf0;
390
391	for (i = 0; i < STA350_COEF_COUNT; i++) {
392		regmap_write(sta350->regmap, STA350_CFADDR2, i);
393		regmap_write(sta350->regmap, STA350_B1CF1,
394			     (sta350->coef_shadow[i] >> 16) & 0xff);
395		regmap_write(sta350->regmap, STA350_B1CF2,
396			     (sta350->coef_shadow[i] >> 8) & 0xff);
397		regmap_write(sta350->regmap, STA350_B1CF3,
398			     (sta350->coef_shadow[i]) & 0xff);
399		/*
400		 * chip documentation does not say if the bits are
401		 * self-clearing, so do it explicitly
402		 */
403		regmap_write(sta350->regmap, STA350_CFUD, cfud);
404		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
405	}
406	return 0;
407}
408
409static int sta350_cache_sync(struct snd_soc_component *component)
410{
411	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
412	unsigned int mute;
413	int rc;
414
415	/* mute during register sync */
416	regmap_read(sta350->regmap, STA350_CFUD, &mute);
417	regmap_write(sta350->regmap, STA350_MMUTE, mute | STA350_MMUTE_MMUTE);
418	sta350_sync_coef_shadow(component);
419	rc = regcache_sync(sta350->regmap);
420	regmap_write(sta350->regmap, STA350_MMUTE, mute);
421	return rc;
422}
423
424#define SINGLE_COEF(xname, index) \
425{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
426	.info = sta350_coefficient_info, \
427	.get = sta350_coefficient_get,\
428	.put = sta350_coefficient_put, \
429	.private_value = index | (1 << 16) }
430
431#define BIQUAD_COEFS(xname, index) \
432{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
433	.info = sta350_coefficient_info, \
434	.get = sta350_coefficient_get,\
435	.put = sta350_coefficient_put, \
436	.private_value = index | (5 << 16) }
437
438static const struct snd_kcontrol_new sta350_snd_controls[] = {
439SOC_SINGLE_TLV("Master Volume", STA350_MVOL, 0, 0xff, 1, mvol_tlv),
440/* VOL */
441SOC_SINGLE_TLV("Ch1 Volume", STA350_C1VOL, 0, 0xff, 1, chvol_tlv),
442SOC_SINGLE_TLV("Ch2 Volume", STA350_C2VOL, 0, 0xff, 1, chvol_tlv),
443SOC_SINGLE_TLV("Ch3 Volume", STA350_C3VOL, 0, 0xff, 1, chvol_tlv),
444/* CONFD */
445SOC_SINGLE("High Pass Filter Bypass Switch",
446	   STA350_CONFD, STA350_CONFD_HPB_SHIFT, 1, 1),
447SOC_SINGLE("De-emphasis Filter Switch",
448	   STA350_CONFD, STA350_CONFD_DEMP_SHIFT, 1, 0),
449SOC_SINGLE("DSP Bypass Switch",
450	   STA350_CONFD, STA350_CONFD_DSPB_SHIFT, 1, 0),
451SOC_SINGLE("Post-scale Link Switch",
452	   STA350_CONFD, STA350_CONFD_PSL_SHIFT, 1, 0),
453SOC_SINGLE("Biquad Coefficient Link Switch",
454	   STA350_CONFD, STA350_CONFD_BQL_SHIFT, 1, 0),
455SOC_ENUM("Compressor/Limiter Switch", sta350_drc_ac_enum),
456SOC_ENUM("Noise Shaper Bandwidth", sta350_noise_shaper_enum),
457SOC_SINGLE("Zero-detect Mute Enable Switch",
458	   STA350_CONFD, STA350_CONFD_ZDE_SHIFT, 1, 0),
459SOC_SINGLE("Submix Mode Switch",
460	   STA350_CONFD, STA350_CONFD_SME_SHIFT, 1, 0),
461/* CONFE */
462SOC_SINGLE("Zero Cross Switch", STA350_CONFE, STA350_CONFE_ZCE_SHIFT, 1, 0),
463SOC_SINGLE("Soft Ramp Switch", STA350_CONFE, STA350_CONFE_SVE_SHIFT, 1, 0),
464/* MUTE */
465SOC_SINGLE("Master Switch", STA350_MMUTE, STA350_MMUTE_MMUTE_SHIFT, 1, 1),
466SOC_SINGLE("Ch1 Switch", STA350_MMUTE, STA350_MMUTE_C1M_SHIFT, 1, 1),
467SOC_SINGLE("Ch2 Switch", STA350_MMUTE, STA350_MMUTE_C2M_SHIFT, 1, 1),
468SOC_SINGLE("Ch3 Switch", STA350_MMUTE, STA350_MMUTE_C3M_SHIFT, 1, 1),
469/* AUTOx */
470SOC_ENUM("Automode GC", sta350_auto_gc_enum),
471SOC_ENUM("Automode XO", sta350_auto_xo_enum),
472/* CxCFG */
473SOC_SINGLE("Ch1 Tone Control Bypass Switch",
474	   STA350_C1CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
475SOC_SINGLE("Ch2 Tone Control Bypass Switch",
476	   STA350_C2CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
477SOC_SINGLE("Ch1 EQ Bypass Switch",
478	   STA350_C1CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
479SOC_SINGLE("Ch2 EQ Bypass Switch",
480	   STA350_C2CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
481SOC_SINGLE("Ch1 Master Volume Bypass Switch",
482	   STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
483SOC_SINGLE("Ch2 Master Volume Bypass Switch",
484	   STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
485SOC_SINGLE("Ch3 Master Volume Bypass Switch",
486	   STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
487SOC_ENUM("Ch1 Binary Output Select", sta350_binary_output_ch1_enum),
488SOC_ENUM("Ch2 Binary Output Select", sta350_binary_output_ch2_enum),
489SOC_ENUM("Ch3 Binary Output Select", sta350_binary_output_ch3_enum),
490SOC_ENUM("Ch1 Limiter Select", sta350_limiter_ch1_enum),
491SOC_ENUM("Ch2 Limiter Select", sta350_limiter_ch2_enum),
492SOC_ENUM("Ch3 Limiter Select", sta350_limiter_ch3_enum),
493/* TONE */
494SOC_SINGLE_RANGE_TLV("Bass Tone Control Volume",
495		     STA350_TONE, STA350_TONE_BTC_SHIFT, 1, 13, 0, tone_tlv),
496SOC_SINGLE_RANGE_TLV("Treble Tone Control Volume",
497		     STA350_TONE, STA350_TONE_TTC_SHIFT, 1, 13, 0, tone_tlv),
498SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta350_limiter1_attack_rate_enum),
499SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta350_limiter2_attack_rate_enum),
500SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta350_limiter1_release_rate_enum),
501SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta350_limiter2_release_rate_enum),
502
503/*
504 * depending on mode, the attack/release thresholds have
505 * two different enum definitions; provide both
506 */
507SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)",
508	       STA350_L1ATRT, STA350_LxA_SHIFT,
509	       16, 0, sta350_limiter_ac_attack_tlv),
510SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)",
511	       STA350_L2ATRT, STA350_LxA_SHIFT,
512	       16, 0, sta350_limiter_ac_attack_tlv),
513SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)",
514	       STA350_L1ATRT, STA350_LxR_SHIFT,
515	       16, 0, sta350_limiter_ac_release_tlv),
516SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)",
517	       STA350_L2ATRT, STA350_LxR_SHIFT,
518	       16, 0, sta350_limiter_ac_release_tlv),
519SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)",
520	       STA350_L1ATRT, STA350_LxA_SHIFT,
521	       16, 0, sta350_limiter_drc_attack_tlv),
522SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)",
523	       STA350_L2ATRT, STA350_LxA_SHIFT,
524	       16, 0, sta350_limiter_drc_attack_tlv),
525SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)",
526	       STA350_L1ATRT, STA350_LxR_SHIFT,
527	       16, 0, sta350_limiter_drc_release_tlv),
528SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)",
529	       STA350_L2ATRT, STA350_LxR_SHIFT,
530	       16, 0, sta350_limiter_drc_release_tlv),
531
532BIQUAD_COEFS("Ch1 - Biquad 1", 0),
533BIQUAD_COEFS("Ch1 - Biquad 2", 5),
534BIQUAD_COEFS("Ch1 - Biquad 3", 10),
535BIQUAD_COEFS("Ch1 - Biquad 4", 15),
536BIQUAD_COEFS("Ch2 - Biquad 1", 20),
537BIQUAD_COEFS("Ch2 - Biquad 2", 25),
538BIQUAD_COEFS("Ch2 - Biquad 3", 30),
539BIQUAD_COEFS("Ch2 - Biquad 4", 35),
540BIQUAD_COEFS("High-pass", 40),
541BIQUAD_COEFS("Low-pass", 45),
542SINGLE_COEF("Ch1 - Prescale", 50),
543SINGLE_COEF("Ch2 - Prescale", 51),
544SINGLE_COEF("Ch1 - Postscale", 52),
545SINGLE_COEF("Ch2 - Postscale", 53),
546SINGLE_COEF("Ch3 - Postscale", 54),
547SINGLE_COEF("Thermal warning - Postscale", 55),
548SINGLE_COEF("Ch1 - Mix 1", 56),
549SINGLE_COEF("Ch1 - Mix 2", 57),
550SINGLE_COEF("Ch2 - Mix 1", 58),
551SINGLE_COEF("Ch2 - Mix 2", 59),
552SINGLE_COEF("Ch3 - Mix 1", 60),
553SINGLE_COEF("Ch3 - Mix 2", 61),
554};
555
556static const struct snd_soc_dapm_widget sta350_dapm_widgets[] = {
557SND_SOC_DAPM_DAC("DAC", NULL, SND_SOC_NOPM, 0, 0),
558SND_SOC_DAPM_OUTPUT("LEFT"),
559SND_SOC_DAPM_OUTPUT("RIGHT"),
560SND_SOC_DAPM_OUTPUT("SUB"),
561};
562
563static const struct snd_soc_dapm_route sta350_dapm_routes[] = {
564	{ "LEFT", NULL, "DAC" },
565	{ "RIGHT", NULL, "DAC" },
566	{ "SUB", NULL, "DAC" },
567	{ "DAC", NULL, "Playback" },
568};
569
570/* MCLK interpolation ratio per fs */
571static struct {
572	int fs;
573	int ir;
574} interpolation_ratios[] = {
575	{ 32000, 0 },
576	{ 44100, 0 },
577	{ 48000, 0 },
578	{ 88200, 1 },
579	{ 96000, 1 },
580	{ 176400, 2 },
581	{ 192000, 2 },
582};
583
584/* MCLK to fs clock ratios */
585static int mcs_ratio_table[3][6] = {
586	{ 768, 512, 384, 256, 128, 576 },
587	{ 384, 256, 192, 128,  64,   0 },
588	{ 192, 128,  96,  64,  32,   0 },
589};
590
591/**
592 * sta350_set_dai_sysclk - configure MCLK
593 * @codec_dai: the codec DAI
594 * @clk_id: the clock ID (ignored)
595 * @freq: the MCLK input frequency
596 * @dir: the clock direction (ignored)
597 *
598 * The value of MCLK is used to determine which sample rates are supported
599 * by the STA350, based on the mcs_ratio_table.
600 *
601 * This function must be called by the machine driver's 'startup' function,
602 * otherwise the list of supported sample rates will not be available in
603 * time for ALSA.
604 */
605static int sta350_set_dai_sysclk(struct snd_soc_dai *codec_dai,
606				 int clk_id, unsigned int freq, int dir)
607{
608	struct snd_soc_component *component = codec_dai->component;
609	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
610
611	dev_dbg(component->dev, "mclk=%u\n", freq);
612	sta350->mclk = freq;
613
614	return 0;
615}
616
617/**
618 * sta350_set_dai_fmt - configure the codec for the selected audio format
619 * @codec_dai: the codec DAI
620 * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
621 *
622 * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
623 * codec accordingly.
624 */
625static int sta350_set_dai_fmt(struct snd_soc_dai *codec_dai,
626			      unsigned int fmt)
627{
628	struct snd_soc_component *component = codec_dai->component;
629	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
630	unsigned int confb = 0;
631
632	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
633	case SND_SOC_DAIFMT_CBC_CFC:
634		break;
635	default:
636		return -EINVAL;
637	}
638
639	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
640	case SND_SOC_DAIFMT_I2S:
641	case SND_SOC_DAIFMT_RIGHT_J:
642	case SND_SOC_DAIFMT_LEFT_J:
643		sta350->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
644		break;
645	default:
646		return -EINVAL;
647	}
648
649	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
650	case SND_SOC_DAIFMT_NB_NF:
651		confb |= STA350_CONFB_C2IM;
652		break;
653	case SND_SOC_DAIFMT_NB_IF:
654		confb |= STA350_CONFB_C1IM;
655		break;
656	default:
657		return -EINVAL;
658	}
659
660	return regmap_update_bits(sta350->regmap, STA350_CONFB,
661				  STA350_CONFB_C1IM | STA350_CONFB_C2IM, confb);
662}
663
664/**
665 * sta350_hw_params - program the STA350 with the given hardware parameters.
666 * @substream: the audio stream
667 * @params: the hardware parameters to set
668 * @dai: the SOC DAI (ignored)
669 *
670 * This function programs the hardware with the values provided.
671 * Specifically, the sample rate and the data format.
672 */
673static int sta350_hw_params(struct snd_pcm_substream *substream,
674			    struct snd_pcm_hw_params *params,
675			    struct snd_soc_dai *dai)
676{
677	struct snd_soc_component *component = dai->component;
678	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
679	int i, mcs = -EINVAL, ir = -EINVAL;
680	unsigned int confa, confb;
681	unsigned int rate, ratio;
682	int ret;
683
684	if (!sta350->mclk) {
685		dev_err(component->dev,
686			"sta350->mclk is unset. Unable to determine ratio\n");
687		return -EIO;
688	}
689
690	rate = params_rate(params);
691	ratio = sta350->mclk / rate;
692	dev_dbg(component->dev, "rate: %u, ratio: %u\n", rate, ratio);
693
694	for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
695		if (interpolation_ratios[i].fs == rate) {
696			ir = interpolation_ratios[i].ir;
697			break;
698		}
699	}
700
701	if (ir < 0) {
702		dev_err(component->dev, "Unsupported samplerate: %u\n", rate);
703		return -EINVAL;
704	}
705
706	for (i = 0; i < 6; i++) {
707		if (mcs_ratio_table[ir][i] == ratio) {
708			mcs = i;
709			break;
710		}
711	}
712
713	if (mcs < 0) {
714		dev_err(component->dev, "Unresolvable ratio: %u\n", ratio);
715		return -EINVAL;
716	}
717
718	confa = (ir << STA350_CONFA_IR_SHIFT) |
719		(mcs << STA350_CONFA_MCS_SHIFT);
720	confb = 0;
721
722	switch (params_width(params)) {
723	case 24:
724		dev_dbg(component->dev, "24bit\n");
725		fallthrough;
726	case 32:
727		dev_dbg(component->dev, "24bit or 32bit\n");
728		switch (sta350->format) {
729		case SND_SOC_DAIFMT_I2S:
730			confb |= 0x0;
731			break;
732		case SND_SOC_DAIFMT_LEFT_J:
733			confb |= 0x1;
734			break;
735		case SND_SOC_DAIFMT_RIGHT_J:
736			confb |= 0x2;
737			break;
738		}
739
740		break;
741	case 20:
742		dev_dbg(component->dev, "20bit\n");
743		switch (sta350->format) {
744		case SND_SOC_DAIFMT_I2S:
745			confb |= 0x4;
746			break;
747		case SND_SOC_DAIFMT_LEFT_J:
748			confb |= 0x5;
749			break;
750		case SND_SOC_DAIFMT_RIGHT_J:
751			confb |= 0x6;
752			break;
753		}
754
755		break;
756	case 18:
757		dev_dbg(component->dev, "18bit\n");
758		switch (sta350->format) {
759		case SND_SOC_DAIFMT_I2S:
760			confb |= 0x8;
761			break;
762		case SND_SOC_DAIFMT_LEFT_J:
763			confb |= 0x9;
764			break;
765		case SND_SOC_DAIFMT_RIGHT_J:
766			confb |= 0xa;
767			break;
768		}
769
770		break;
771	case 16:
772		dev_dbg(component->dev, "16bit\n");
773		switch (sta350->format) {
774		case SND_SOC_DAIFMT_I2S:
775			confb |= 0x0;
776			break;
777		case SND_SOC_DAIFMT_LEFT_J:
778			confb |= 0xd;
779			break;
780		case SND_SOC_DAIFMT_RIGHT_J:
781			confb |= 0xe;
782			break;
783		}
784
785		break;
786	default:
787		return -EINVAL;
788	}
789
790	ret = regmap_update_bits(sta350->regmap, STA350_CONFA,
791				 STA350_CONFA_MCS_MASK | STA350_CONFA_IR_MASK,
792				 confa);
793	if (ret < 0)
794		return ret;
795
796	ret = regmap_update_bits(sta350->regmap, STA350_CONFB,
797				 STA350_CONFB_SAI_MASK | STA350_CONFB_SAIFB,
798				 confb);
799	if (ret < 0)
800		return ret;
801
802	return 0;
803}
804
805static int sta350_startup_sequence(struct sta350_priv *sta350)
806{
807	if (sta350->gpiod_power_down)
808		gpiod_set_value(sta350->gpiod_power_down, 1);
809
810	if (sta350->gpiod_nreset) {
811		gpiod_set_value(sta350->gpiod_nreset, 0);
812		mdelay(1);
813		gpiod_set_value(sta350->gpiod_nreset, 1);
814		mdelay(1);
815	}
816
817	return 0;
818}
819
820/**
821 * sta350_set_bias_level - DAPM callback
822 * @component: the component device
823 * @level: DAPM power level
824 *
825 * This is called by ALSA to put the component into low power mode
826 * or to wake it up.  If the component is powered off completely
827 * all registers must be restored after power on.
828 */
829static int sta350_set_bias_level(struct snd_soc_component *component,
830				 enum snd_soc_bias_level level)
831{
832	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
833	int ret;
834
835	dev_dbg(component->dev, "level = %d\n", level);
836	switch (level) {
837	case SND_SOC_BIAS_ON:
838		break;
839
840	case SND_SOC_BIAS_PREPARE:
841		/* Full power on */
842		regmap_update_bits(sta350->regmap, STA350_CONFF,
843				   STA350_CONFF_PWDN | STA350_CONFF_EAPD,
844				   STA350_CONFF_PWDN | STA350_CONFF_EAPD);
845		break;
846
847	case SND_SOC_BIAS_STANDBY:
848		if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
849			ret = regulator_bulk_enable(
850				ARRAY_SIZE(sta350->supplies),
851				sta350->supplies);
852			if (ret < 0) {
853				dev_err(component->dev,
854					"Failed to enable supplies: %d\n",
855					ret);
856				return ret;
857			}
858			sta350_startup_sequence(sta350);
859			sta350_cache_sync(component);
860		}
861
862		/* Power down */
863		regmap_update_bits(sta350->regmap, STA350_CONFF,
864				   STA350_CONFF_PWDN | STA350_CONFF_EAPD,
865				   0);
866
867		break;
868
869	case SND_SOC_BIAS_OFF:
870		/* The chip runs through the power down sequence for us */
871		regmap_update_bits(sta350->regmap, STA350_CONFF,
872				   STA350_CONFF_PWDN | STA350_CONFF_EAPD, 0);
873
874		/* power down: low */
875		if (sta350->gpiod_power_down)
876			gpiod_set_value(sta350->gpiod_power_down, 0);
877
878		if (sta350->gpiod_nreset)
879			gpiod_set_value(sta350->gpiod_nreset, 0);
880
881		regulator_bulk_disable(ARRAY_SIZE(sta350->supplies),
882				       sta350->supplies);
883		break;
884	}
885	return 0;
886}
887
888static const struct snd_soc_dai_ops sta350_dai_ops = {
889	.hw_params	= sta350_hw_params,
890	.set_sysclk	= sta350_set_dai_sysclk,
891	.set_fmt	= sta350_set_dai_fmt,
892};
893
894static struct snd_soc_dai_driver sta350_dai = {
895	.name = "sta350-hifi",
896	.playback = {
897		.stream_name = "Playback",
898		.channels_min = 2,
899		.channels_max = 2,
900		.rates = STA350_RATES,
901		.formats = STA350_FORMATS,
902	},
903	.ops = &sta350_dai_ops,
904};
905
906static int sta350_probe(struct snd_soc_component *component)
907{
908	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
909	struct sta350_platform_data *pdata = sta350->pdata;
910	int i, ret = 0, thermal = 0;
911
912	ret = regulator_bulk_enable(ARRAY_SIZE(sta350->supplies),
913				    sta350->supplies);
914	if (ret < 0) {
915		dev_err(component->dev, "Failed to enable supplies: %d\n", ret);
916		return ret;
917	}
918
919	ret = sta350_startup_sequence(sta350);
920	if (ret < 0) {
921		dev_err(component->dev, "Failed to startup device\n");
922		return ret;
923	}
924
925	/* CONFA */
926	if (!pdata->thermal_warning_recovery)
927		thermal |= STA350_CONFA_TWAB;
928	if (!pdata->thermal_warning_adjustment)
929		thermal |= STA350_CONFA_TWRB;
930	if (!pdata->fault_detect_recovery)
931		thermal |= STA350_CONFA_FDRB;
932	regmap_update_bits(sta350->regmap, STA350_CONFA,
933			   STA350_CONFA_TWAB | STA350_CONFA_TWRB |
934			   STA350_CONFA_FDRB,
935			   thermal);
936
937	/* CONFC */
938	regmap_update_bits(sta350->regmap, STA350_CONFC,
939			   STA350_CONFC_OM_MASK,
940			   pdata->ffx_power_output_mode
941				<< STA350_CONFC_OM_SHIFT);
942	regmap_update_bits(sta350->regmap, STA350_CONFC,
943			   STA350_CONFC_CSZ_MASK,
944			   pdata->drop_compensation_ns
945				<< STA350_CONFC_CSZ_SHIFT);
946	regmap_update_bits(sta350->regmap,
947			   STA350_CONFC,
948			   STA350_CONFC_OCRB,
949			   pdata->oc_warning_adjustment ?
950				STA350_CONFC_OCRB : 0);
951
952	/* CONFE */
953	regmap_update_bits(sta350->regmap, STA350_CONFE,
954			   STA350_CONFE_MPCV,
955			   pdata->max_power_use_mpcc ?
956				STA350_CONFE_MPCV : 0);
957	regmap_update_bits(sta350->regmap, STA350_CONFE,
958			   STA350_CONFE_MPC,
959			   pdata->max_power_correction ?
960				STA350_CONFE_MPC : 0);
961	regmap_update_bits(sta350->regmap, STA350_CONFE,
962			   STA350_CONFE_AME,
963			   pdata->am_reduction_mode ?
964				STA350_CONFE_AME : 0);
965	regmap_update_bits(sta350->regmap, STA350_CONFE,
966			   STA350_CONFE_PWMS,
967			   pdata->odd_pwm_speed_mode ?
968				STA350_CONFE_PWMS : 0);
969	regmap_update_bits(sta350->regmap, STA350_CONFE,
970			   STA350_CONFE_DCCV,
971			   pdata->distortion_compensation ?
972				STA350_CONFE_DCCV : 0);
973	/*  CONFF */
974	regmap_update_bits(sta350->regmap, STA350_CONFF,
975			   STA350_CONFF_IDE,
976			   pdata->invalid_input_detect_mute ?
977				STA350_CONFF_IDE : 0);
978	regmap_update_bits(sta350->regmap, STA350_CONFF,
979			   STA350_CONFF_OCFG_MASK,
980			   pdata->output_conf
981				<< STA350_CONFF_OCFG_SHIFT);
982
983	/* channel to output mapping */
984	regmap_update_bits(sta350->regmap, STA350_C1CFG,
985			   STA350_CxCFG_OM_MASK,
986			   pdata->ch1_output_mapping
987				<< STA350_CxCFG_OM_SHIFT);
988	regmap_update_bits(sta350->regmap, STA350_C2CFG,
989			   STA350_CxCFG_OM_MASK,
990			   pdata->ch2_output_mapping
991				<< STA350_CxCFG_OM_SHIFT);
992	regmap_update_bits(sta350->regmap, STA350_C3CFG,
993			   STA350_CxCFG_OM_MASK,
994			   pdata->ch3_output_mapping
995				<< STA350_CxCFG_OM_SHIFT);
996
997	/* miscellaneous registers */
998	regmap_update_bits(sta350->regmap, STA350_MISC1,
999			   STA350_MISC1_CPWMEN,
1000			   pdata->activate_mute_output ?
1001				STA350_MISC1_CPWMEN : 0);
1002	regmap_update_bits(sta350->regmap, STA350_MISC1,
1003			   STA350_MISC1_BRIDGOFF,
1004			   pdata->bridge_immediate_off ?
1005				STA350_MISC1_BRIDGOFF : 0);
1006	regmap_update_bits(sta350->regmap, STA350_MISC1,
1007			   STA350_MISC1_NSHHPEN,
1008			   pdata->noise_shape_dc_cut ?
1009				STA350_MISC1_NSHHPEN : 0);
1010	regmap_update_bits(sta350->regmap, STA350_MISC1,
1011			   STA350_MISC1_RPDNEN,
1012			   pdata->powerdown_master_vol ?
1013				STA350_MISC1_RPDNEN: 0);
1014
1015	regmap_update_bits(sta350->regmap, STA350_MISC2,
1016			   STA350_MISC2_PNDLSL_MASK,
1017			   pdata->powerdown_delay_divider
1018				<< STA350_MISC2_PNDLSL_SHIFT);
1019
1020	/* initialize coefficient shadow RAM with reset values */
1021	for (i = 4; i <= 49; i += 5)
1022		sta350->coef_shadow[i] = 0x400000;
1023	for (i = 50; i <= 54; i++)
1024		sta350->coef_shadow[i] = 0x7fffff;
1025	sta350->coef_shadow[55] = 0x5a9df7;
1026	sta350->coef_shadow[56] = 0x7fffff;
1027	sta350->coef_shadow[59] = 0x7fffff;
1028	sta350->coef_shadow[60] = 0x400000;
1029	sta350->coef_shadow[61] = 0x400000;
1030
1031	snd_soc_component_force_bias_level(component, SND_SOC_BIAS_STANDBY);
1032	/* Bias level configuration will have done an extra enable */
1033	regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1034
1035	return 0;
1036}
1037
1038static void sta350_remove(struct snd_soc_component *component)
1039{
1040	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
1041
1042	regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1043}
1044
1045static const struct snd_soc_component_driver sta350_component = {
1046	.probe			= sta350_probe,
1047	.remove			= sta350_remove,
1048	.set_bias_level		= sta350_set_bias_level,
1049	.controls		= sta350_snd_controls,
1050	.num_controls		= ARRAY_SIZE(sta350_snd_controls),
1051	.dapm_widgets		= sta350_dapm_widgets,
1052	.num_dapm_widgets	= ARRAY_SIZE(sta350_dapm_widgets),
1053	.dapm_routes		= sta350_dapm_routes,
1054	.num_dapm_routes	= ARRAY_SIZE(sta350_dapm_routes),
1055	.suspend_bias_off	= 1,
1056	.idle_bias_on		= 1,
1057	.use_pmdown_time	= 1,
1058	.endianness		= 1,
1059};
1060
1061static const struct regmap_config sta350_regmap = {
1062	.reg_bits =		8,
1063	.val_bits =		8,
1064	.max_register =		STA350_MISC2,
1065	.reg_defaults =		sta350_regs,
1066	.num_reg_defaults =	ARRAY_SIZE(sta350_regs),
1067	.cache_type =		REGCACHE_MAPLE,
1068	.wr_table =		&sta350_write_regs,
1069	.rd_table =		&sta350_read_regs,
1070	.volatile_table =	&sta350_volatile_regs,
1071};
1072
1073#ifdef CONFIG_OF
1074static const struct of_device_id st350_dt_ids[] = {
1075	{ .compatible = "st,sta350", },
1076	{ }
1077};
1078MODULE_DEVICE_TABLE(of, st350_dt_ids);
1079
1080static const char * const sta350_ffx_modes[] = {
1081	[STA350_FFX_PM_DROP_COMP]		= "drop-compensation",
1082	[STA350_FFX_PM_TAPERED_COMP]		= "tapered-compensation",
1083	[STA350_FFX_PM_FULL_POWER]		= "full-power-mode",
1084	[STA350_FFX_PM_VARIABLE_DROP_COMP]	= "variable-drop-compensation",
1085};
1086
1087static int sta350_probe_dt(struct device *dev, struct sta350_priv *sta350)
1088{
1089	struct device_node *np = dev->of_node;
1090	struct sta350_platform_data *pdata;
1091	const char *ffx_power_mode;
1092	u16 tmp;
1093	u8 tmp8;
1094
1095	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1096	if (!pdata)
1097		return -ENOMEM;
1098
1099	of_property_read_u8(np, "st,output-conf",
1100			    &pdata->output_conf);
1101	of_property_read_u8(np, "st,ch1-output-mapping",
1102			    &pdata->ch1_output_mapping);
1103	of_property_read_u8(np, "st,ch2-output-mapping",
1104			    &pdata->ch2_output_mapping);
1105	of_property_read_u8(np, "st,ch3-output-mapping",
1106			    &pdata->ch3_output_mapping);
1107
1108	pdata->thermal_warning_recovery =
1109		of_property_read_bool(np, "st,thermal-warning-recovery");
1110	pdata->thermal_warning_adjustment =
1111		of_property_read_bool(np, "st,thermal-warning-adjustment");
1112	pdata->fault_detect_recovery =
1113		of_property_read_bool(np, "st,fault-detect-recovery");
1114
1115	pdata->ffx_power_output_mode = STA350_FFX_PM_VARIABLE_DROP_COMP;
1116	if (!of_property_read_string(np, "st,ffx-power-output-mode",
1117				     &ffx_power_mode)) {
1118		int i, mode = -EINVAL;
1119
1120		for (i = 0; i < ARRAY_SIZE(sta350_ffx_modes); i++)
1121			if (!strcasecmp(ffx_power_mode, sta350_ffx_modes[i]))
1122				mode = i;
1123
1124		if (mode < 0)
1125			dev_warn(dev, "Unsupported ffx output mode: %s\n",
1126				 ffx_power_mode);
1127		else
1128			pdata->ffx_power_output_mode = mode;
1129	}
1130
1131	tmp = 140;
1132	of_property_read_u16(np, "st,drop-compensation-ns", &tmp);
1133	pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20;
1134
1135	pdata->oc_warning_adjustment =
1136		of_property_read_bool(np, "st,overcurrent-warning-adjustment");
1137
1138	/* CONFE */
1139	pdata->max_power_use_mpcc =
1140		of_property_read_bool(np, "st,max-power-use-mpcc");
1141	pdata->max_power_correction =
1142		of_property_read_bool(np, "st,max-power-correction");
1143	pdata->am_reduction_mode =
1144		of_property_read_bool(np, "st,am-reduction-mode");
1145	pdata->odd_pwm_speed_mode =
1146		of_property_read_bool(np, "st,odd-pwm-speed-mode");
1147	pdata->distortion_compensation =
1148		of_property_read_bool(np, "st,distortion-compensation");
1149
1150	/* CONFF */
1151	pdata->invalid_input_detect_mute =
1152		of_property_read_bool(np, "st,invalid-input-detect-mute");
1153
1154	/* MISC */
1155	pdata->activate_mute_output =
1156		of_property_read_bool(np, "st,activate-mute-output");
1157	pdata->bridge_immediate_off =
1158		of_property_read_bool(np, "st,bridge-immediate-off");
1159	pdata->noise_shape_dc_cut =
1160		of_property_read_bool(np, "st,noise-shape-dc-cut");
1161	pdata->powerdown_master_vol =
1162		of_property_read_bool(np, "st,powerdown-master-volume");
1163
1164	if (!of_property_read_u8(np, "st,powerdown-delay-divider", &tmp8)) {
1165		if (is_power_of_2(tmp8) && tmp8 >= 1 && tmp8 <= 128)
1166			pdata->powerdown_delay_divider = ilog2(tmp8);
1167		else
1168			dev_warn(dev, "Unsupported powerdown delay divider %d\n",
1169				 tmp8);
1170	}
1171
1172	sta350->pdata = pdata;
1173
1174	return 0;
1175}
1176#endif
1177
1178static int sta350_i2c_probe(struct i2c_client *i2c)
1179{
1180	struct device *dev = &i2c->dev;
1181	struct sta350_priv *sta350;
1182	int ret, i;
1183
1184	sta350 = devm_kzalloc(dev, sizeof(struct sta350_priv), GFP_KERNEL);
1185	if (!sta350)
1186		return -ENOMEM;
1187
1188	mutex_init(&sta350->coeff_lock);
1189	sta350->pdata = dev_get_platdata(dev);
1190
1191#ifdef CONFIG_OF
1192	if (dev->of_node) {
1193		ret = sta350_probe_dt(dev, sta350);
1194		if (ret < 0)
1195			return ret;
1196	}
1197#endif
1198
1199	/* GPIOs */
1200	sta350->gpiod_nreset = devm_gpiod_get_optional(dev, "reset",
1201						       GPIOD_OUT_LOW);
1202	if (IS_ERR(sta350->gpiod_nreset))
1203		return PTR_ERR(sta350->gpiod_nreset);
1204
1205	sta350->gpiod_power_down = devm_gpiod_get_optional(dev, "power-down",
1206							   GPIOD_OUT_LOW);
1207	if (IS_ERR(sta350->gpiod_power_down))
1208		return PTR_ERR(sta350->gpiod_power_down);
1209
1210	/* regulators */
1211	for (i = 0; i < ARRAY_SIZE(sta350->supplies); i++)
1212		sta350->supplies[i].supply = sta350_supply_names[i];
1213
1214	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(sta350->supplies),
1215				      sta350->supplies);
1216	if (ret < 0) {
1217		dev_err(dev, "Failed to request supplies: %d\n", ret);
1218		return ret;
1219	}
1220
1221	sta350->regmap = devm_regmap_init_i2c(i2c, &sta350_regmap);
1222	if (IS_ERR(sta350->regmap)) {
1223		ret = PTR_ERR(sta350->regmap);
1224		dev_err(dev, "Failed to init regmap: %d\n", ret);
1225		return ret;
1226	}
1227
1228	i2c_set_clientdata(i2c, sta350);
1229
1230	ret = devm_snd_soc_register_component(dev, &sta350_component, &sta350_dai, 1);
1231	if (ret < 0)
1232		dev_err(dev, "Failed to register component (%d)\n", ret);
1233
1234	return ret;
1235}
1236
1237static void sta350_i2c_remove(struct i2c_client *client)
1238{}
1239
1240static const struct i2c_device_id sta350_i2c_id[] = {
1241	{ "sta350", 0 },
1242	{ }
1243};
1244MODULE_DEVICE_TABLE(i2c, sta350_i2c_id);
1245
1246static struct i2c_driver sta350_i2c_driver = {
1247	.driver = {
1248		.name = "sta350",
1249		.of_match_table = of_match_ptr(st350_dt_ids),
1250	},
1251	.probe =    sta350_i2c_probe,
1252	.remove =   sta350_i2c_remove,
1253	.id_table = sta350_i2c_id,
1254};
1255
1256module_i2c_driver(sta350_i2c_driver);
1257
1258MODULE_DESCRIPTION("ASoC STA350 driver");
1259MODULE_AUTHOR("Sven Brandau <info@brandau.biz>");
1260MODULE_LICENSE("GPL");
1261