1// SPDX-License-Identifier: GPL-2.0
2//
3// sgtl5000.c  --  SGTL5000 ALSA SoC Audio driver
4//
5// Copyright 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved.
6
7#include <linux/module.h>
8#include <linux/moduleparam.h>
9#include <linux/init.h>
10#include <linux/delay.h>
11#include <linux/slab.h>
12#include <linux/pm.h>
13#include <linux/i2c.h>
14#include <linux/clk.h>
15#include <linux/log2.h>
16#include <linux/of.h>
17#include <linux/regmap.h>
18#include <linux/regulator/driver.h>
19#include <linux/regulator/machine.h>
20#include <linux/regulator/consumer.h>
21#include <sound/core.h>
22#include <sound/tlv.h>
23#include <sound/pcm.h>
24#include <sound/pcm_params.h>
25#include <sound/soc.h>
26#include <sound/soc-dapm.h>
27#include <sound/initval.h>
28
29#include "sgtl5000.h"
30
31#define SGTL5000_DAP_REG_OFFSET	0x0100
32#define SGTL5000_MAX_REG_OFFSET	0x013A
33
34/* Delay for the VAG ramp up */
35#define SGTL5000_VAG_POWERUP_DELAY 500 /* ms */
36/* Delay for the VAG ramp down */
37#define SGTL5000_VAG_POWERDOWN_DELAY 500 /* ms */
38
39#define SGTL5000_OUTPUTS_MUTE (SGTL5000_HP_MUTE | SGTL5000_LINE_OUT_MUTE)
40
41/* default value of sgtl5000 registers */
42static const struct reg_default sgtl5000_reg_defaults[] = {
43	{ SGTL5000_CHIP_DIG_POWER,		0x0000 },
44	{ SGTL5000_CHIP_I2S_CTRL,		0x0010 },
45	{ SGTL5000_CHIP_SSS_CTRL,		0x0010 },
46	{ SGTL5000_CHIP_ADCDAC_CTRL,		0x020c },
47	{ SGTL5000_CHIP_DAC_VOL,		0x3c3c },
48	{ SGTL5000_CHIP_PAD_STRENGTH,		0x015f },
49	{ SGTL5000_CHIP_ANA_ADC_CTRL,		0x0000 },
50	{ SGTL5000_CHIP_ANA_HP_CTRL,		0x1818 },
51	{ SGTL5000_CHIP_ANA_CTRL,		0x0111 },
52	{ SGTL5000_CHIP_REF_CTRL,		0x0000 },
53	{ SGTL5000_CHIP_MIC_CTRL,		0x0000 },
54	{ SGTL5000_CHIP_LINE_OUT_CTRL,		0x0000 },
55	{ SGTL5000_CHIP_LINE_OUT_VOL,		0x0404 },
56	{ SGTL5000_CHIP_PLL_CTRL,		0x5000 },
57	{ SGTL5000_CHIP_CLK_TOP_CTRL,		0x0000 },
58	{ SGTL5000_CHIP_ANA_STATUS,		0x0000 },
59	{ SGTL5000_CHIP_SHORT_CTRL,		0x0000 },
60	{ SGTL5000_CHIP_ANA_TEST2,		0x0000 },
61	{ SGTL5000_DAP_CTRL,			0x0000 },
62	{ SGTL5000_DAP_PEQ,			0x0000 },
63	{ SGTL5000_DAP_BASS_ENHANCE,		0x0040 },
64	{ SGTL5000_DAP_BASS_ENHANCE_CTRL,	0x051f },
65	{ SGTL5000_DAP_AUDIO_EQ,		0x0000 },
66	{ SGTL5000_DAP_SURROUND,		0x0040 },
67	{ SGTL5000_DAP_EQ_BASS_BAND0,		0x002f },
68	{ SGTL5000_DAP_EQ_BASS_BAND1,		0x002f },
69	{ SGTL5000_DAP_EQ_BASS_BAND2,		0x002f },
70	{ SGTL5000_DAP_EQ_BASS_BAND3,		0x002f },
71	{ SGTL5000_DAP_EQ_BASS_BAND4,		0x002f },
72	{ SGTL5000_DAP_MAIN_CHAN,		0x8000 },
73	{ SGTL5000_DAP_MIX_CHAN,		0x0000 },
74	{ SGTL5000_DAP_AVC_CTRL,		0x5100 },
75	{ SGTL5000_DAP_AVC_THRESHOLD,		0x1473 },
76	{ SGTL5000_DAP_AVC_ATTACK,		0x0028 },
77	{ SGTL5000_DAP_AVC_DECAY,		0x0050 },
78};
79
80/* AVC: Threshold dB -> register: pre-calculated values */
81static const u16 avc_thr_db2reg[97] = {
82	0x5168, 0x488E, 0x40AA, 0x39A1, 0x335D, 0x2DC7, 0x28CC, 0x245D, 0x2068,
83	0x1CE2, 0x19BE, 0x16F1, 0x1472, 0x1239, 0x103E, 0x0E7A, 0x0CE6, 0x0B7F,
84	0x0A3F, 0x0922, 0x0824, 0x0741, 0x0677, 0x05C3, 0x0522, 0x0493, 0x0414,
85	0x03A2, 0x033D, 0x02E3, 0x0293, 0x024B, 0x020B, 0x01D2, 0x019F, 0x0172,
86	0x014A, 0x0126, 0x0106, 0x00E9, 0x00D0, 0x00B9, 0x00A5, 0x0093, 0x0083,
87	0x0075, 0x0068, 0x005D, 0x0052, 0x0049, 0x0041, 0x003A, 0x0034, 0x002E,
88	0x0029, 0x0025, 0x0021, 0x001D, 0x001A, 0x0017, 0x0014, 0x0012, 0x0010,
89	0x000E, 0x000D, 0x000B, 0x000A, 0x0009, 0x0008, 0x0007, 0x0006, 0x0005,
90	0x0005, 0x0004, 0x0004, 0x0003, 0x0003, 0x0002, 0x0002, 0x0002, 0x0002,
91	0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0000, 0x0000, 0x0000,
92	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000};
93
94/* regulator supplies for sgtl5000, VDDD is an optional external supply */
95enum sgtl5000_regulator_supplies {
96	VDDA,
97	VDDIO,
98	VDDD,
99	SGTL5000_SUPPLY_NUM
100};
101
102/* vddd is optional supply */
103static const char *supply_names[SGTL5000_SUPPLY_NUM] = {
104	"VDDA",
105	"VDDIO",
106	"VDDD"
107};
108
109#define LDO_VOLTAGE		1200000
110#define LINREG_VDDD	((1600 - LDO_VOLTAGE / 1000) / 50)
111
112enum sgtl5000_micbias_resistor {
113	SGTL5000_MICBIAS_OFF = 0,
114	SGTL5000_MICBIAS_2K = 2,
115	SGTL5000_MICBIAS_4K = 4,
116	SGTL5000_MICBIAS_8K = 8,
117};
118
119enum  {
120	I2S_LRCLK_STRENGTH_DISABLE,
121	I2S_LRCLK_STRENGTH_LOW,
122	I2S_LRCLK_STRENGTH_MEDIUM,
123	I2S_LRCLK_STRENGTH_HIGH,
124};
125
126enum  {
127	I2S_SCLK_STRENGTH_DISABLE,
128	I2S_SCLK_STRENGTH_LOW,
129	I2S_SCLK_STRENGTH_MEDIUM,
130	I2S_SCLK_STRENGTH_HIGH,
131};
132
133enum {
134	HP_POWER_EVENT,
135	DAC_POWER_EVENT,
136	ADC_POWER_EVENT,
137	LAST_POWER_EVENT = ADC_POWER_EVENT
138};
139
140/* sgtl5000 private structure in codec */
141struct sgtl5000_priv {
142	int sysclk;	/* sysclk rate */
143	int master;	/* i2s master or not */
144	int fmt;	/* i2s data format */
145	struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM];
146	int num_supplies;
147	struct regmap *regmap;
148	struct clk *mclk;
149	int revision;
150	u8 micbias_resistor;
151	u8 micbias_voltage;
152	u8 lrclk_strength;
153	u8 sclk_strength;
154	u16 mute_state[LAST_POWER_EVENT + 1];
155};
156
157static inline int hp_sel_input(struct snd_soc_component *component)
158{
159	return (snd_soc_component_read(component, SGTL5000_CHIP_ANA_CTRL) &
160		SGTL5000_HP_SEL_MASK) >> SGTL5000_HP_SEL_SHIFT;
161}
162
163static inline u16 mute_output(struct snd_soc_component *component,
164			      u16 mute_mask)
165{
166	u16 mute_reg = snd_soc_component_read(component,
167					      SGTL5000_CHIP_ANA_CTRL);
168
169	snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL,
170			    mute_mask, mute_mask);
171	return mute_reg;
172}
173
174static inline void restore_output(struct snd_soc_component *component,
175				  u16 mute_mask, u16 mute_reg)
176{
177	snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL,
178		mute_mask, mute_reg);
179}
180
181static void vag_power_on(struct snd_soc_component *component, u32 source)
182{
183	if (snd_soc_component_read(component, SGTL5000_CHIP_ANA_POWER) &
184	    SGTL5000_VAG_POWERUP)
185		return;
186
187	snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
188			    SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP);
189
190	/* When VAG powering on to get local loop from Line-In, the sleep
191	 * is required to avoid loud pop.
192	 */
193	if (hp_sel_input(component) == SGTL5000_HP_SEL_LINE_IN &&
194	    source == HP_POWER_EVENT)
195		msleep(SGTL5000_VAG_POWERUP_DELAY);
196}
197
198static int vag_power_consumers(struct snd_soc_component *component,
199			       u16 ana_pwr_reg, u32 source)
200{
201	int consumers = 0;
202
203	/* count dac/adc consumers unconditional */
204	if (ana_pwr_reg & SGTL5000_DAC_POWERUP)
205		consumers++;
206	if (ana_pwr_reg & SGTL5000_ADC_POWERUP)
207		consumers++;
208
209	/*
210	 * If the event comes from HP and Line-In is selected,
211	 * current action is 'DAC to be powered down'.
212	 * As HP_POWERUP is not set when HP muxed to line-in,
213	 * we need to keep VAG power ON.
214	 */
215	if (source == HP_POWER_EVENT) {
216		if (hp_sel_input(component) == SGTL5000_HP_SEL_LINE_IN)
217			consumers++;
218	} else {
219		if (ana_pwr_reg & SGTL5000_HP_POWERUP)
220			consumers++;
221	}
222
223	return consumers;
224}
225
226static void vag_power_off(struct snd_soc_component *component, u32 source)
227{
228	u16 ana_pwr = snd_soc_component_read(component,
229					     SGTL5000_CHIP_ANA_POWER);
230
231	if (!(ana_pwr & SGTL5000_VAG_POWERUP))
232		return;
233
234	/*
235	 * This function calls when any of VAG power consumers is disappearing.
236	 * Thus, if there is more than one consumer at the moment, as minimum
237	 * one consumer will definitely stay after the end of the current
238	 * event.
239	 * Don't clear VAG_POWERUP if 2 or more consumers of VAG present:
240	 * - LINE_IN (for HP events) / HP (for DAC/ADC events)
241	 * - DAC
242	 * - ADC
243	 * (the current consumer is disappearing right now)
244	 */
245	if (vag_power_consumers(component, ana_pwr, source) >= 2)
246		return;
247
248	snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
249		SGTL5000_VAG_POWERUP, 0);
250	/* In power down case, we need wait 400-1000 ms
251	 * when VAG fully ramped down.
252	 * As longer we wait, as smaller pop we've got.
253	 */
254	msleep(SGTL5000_VAG_POWERDOWN_DELAY);
255}
256
257/*
258 * mic_bias power on/off share the same register bits with
259 * output impedance of mic bias, when power on mic bias, we
260 * need reclaim it to impedance value.
261 * 0x0 = Powered off
262 * 0x1 = 2Kohm
263 * 0x2 = 4Kohm
264 * 0x3 = 8Kohm
265 */
266static int mic_bias_event(struct snd_soc_dapm_widget *w,
267	struct snd_kcontrol *kcontrol, int event)
268{
269	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
270	struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
271
272	switch (event) {
273	case SND_SOC_DAPM_POST_PMU:
274		/* change mic bias resistor */
275		snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
276			SGTL5000_BIAS_R_MASK,
277			sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
278		break;
279
280	case SND_SOC_DAPM_PRE_PMD:
281		snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
282				SGTL5000_BIAS_R_MASK, 0);
283		break;
284	}
285	return 0;
286}
287
288static int vag_and_mute_control(struct snd_soc_component *component,
289				 int event, int event_source)
290{
291	static const u16 mute_mask[] = {
292		/*
293		 * Mask for HP_POWER_EVENT.
294		 * Muxing Headphones have to be wrapped with mute/unmute
295		 * headphones only.
296		 */
297		SGTL5000_HP_MUTE,
298		/*
299		 * Masks for DAC_POWER_EVENT/ADC_POWER_EVENT.
300		 * Muxing DAC or ADC block have to wrapped with mute/unmute
301		 * both headphones and line-out.
302		 */
303		SGTL5000_OUTPUTS_MUTE,
304		SGTL5000_OUTPUTS_MUTE
305	};
306
307	struct sgtl5000_priv *sgtl5000 =
308		snd_soc_component_get_drvdata(component);
309
310	switch (event) {
311	case SND_SOC_DAPM_PRE_PMU:
312		sgtl5000->mute_state[event_source] =
313			mute_output(component, mute_mask[event_source]);
314		break;
315	case SND_SOC_DAPM_POST_PMU:
316		vag_power_on(component, event_source);
317		restore_output(component, mute_mask[event_source],
318			       sgtl5000->mute_state[event_source]);
319		break;
320	case SND_SOC_DAPM_PRE_PMD:
321		sgtl5000->mute_state[event_source] =
322			mute_output(component, mute_mask[event_source]);
323		vag_power_off(component, event_source);
324		break;
325	case SND_SOC_DAPM_POST_PMD:
326		restore_output(component, mute_mask[event_source],
327			       sgtl5000->mute_state[event_source]);
328		break;
329	default:
330		break;
331	}
332
333	return 0;
334}
335
336/*
337 * Mute Headphone when power it up/down.
338 * Control VAG power on HP power path.
339 */
340static int headphone_pga_event(struct snd_soc_dapm_widget *w,
341	struct snd_kcontrol *kcontrol, int event)
342{
343	struct snd_soc_component *component =
344		snd_soc_dapm_to_component(w->dapm);
345
346	return vag_and_mute_control(component, event, HP_POWER_EVENT);
347}
348
349/* As manual describes, ADC/DAC powering up/down requires
350 * to mute outputs to avoid pops.
351 * Control VAG power on ADC/DAC power path.
352 */
353static int adc_updown_depop(struct snd_soc_dapm_widget *w,
354	struct snd_kcontrol *kcontrol, int event)
355{
356	struct snd_soc_component *component =
357		snd_soc_dapm_to_component(w->dapm);
358
359	return vag_and_mute_control(component, event, ADC_POWER_EVENT);
360}
361
362static int dac_updown_depop(struct snd_soc_dapm_widget *w,
363	struct snd_kcontrol *kcontrol, int event)
364{
365	struct snd_soc_component *component =
366		snd_soc_dapm_to_component(w->dapm);
367
368	return vag_and_mute_control(component, event, DAC_POWER_EVENT);
369}
370
371/* input sources for ADC */
372static const char *adc_mux_text[] = {
373	"MIC_IN", "LINE_IN"
374};
375
376static SOC_ENUM_SINGLE_DECL(adc_enum,
377			    SGTL5000_CHIP_ANA_CTRL, 2,
378			    adc_mux_text);
379
380static const struct snd_kcontrol_new adc_mux =
381SOC_DAPM_ENUM("Capture Mux", adc_enum);
382
383/* input sources for headphone */
384static const char *hp_mux_text[] = {
385	"DAC", "LINE_IN"
386};
387
388static SOC_ENUM_SINGLE_DECL(hp_enum,
389			    SGTL5000_CHIP_ANA_CTRL, 6,
390			    hp_mux_text);
391
392static const struct snd_kcontrol_new hp_mux =
393SOC_DAPM_ENUM("Headphone Mux", hp_enum);
394
395/* input sources for DAC */
396static const char *dac_mux_text[] = {
397	"ADC", "I2S", "Rsvrd", "DAP"
398};
399
400static SOC_ENUM_SINGLE_DECL(dac_enum,
401			    SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAC_SEL_SHIFT,
402			    dac_mux_text);
403
404static const struct snd_kcontrol_new dac_mux =
405SOC_DAPM_ENUM("Digital Input Mux", dac_enum);
406
407/* input sources for DAP */
408static const char *dap_mux_text[] = {
409	"ADC", "I2S"
410};
411
412static SOC_ENUM_SINGLE_DECL(dap_enum,
413			    SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAP_SEL_SHIFT,
414			    dap_mux_text);
415
416static const struct snd_kcontrol_new dap_mux =
417SOC_DAPM_ENUM("DAP Mux", dap_enum);
418
419/* input sources for DAP mix */
420static const char *dapmix_mux_text[] = {
421	"ADC", "I2S"
422};
423
424static SOC_ENUM_SINGLE_DECL(dapmix_enum,
425			    SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAP_MIX_SEL_SHIFT,
426			    dapmix_mux_text);
427
428static const struct snd_kcontrol_new dapmix_mux =
429SOC_DAPM_ENUM("DAP MIX Mux", dapmix_enum);
430
431
432static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = {
433	SND_SOC_DAPM_INPUT("LINE_IN"),
434	SND_SOC_DAPM_INPUT("MIC_IN"),
435
436	SND_SOC_DAPM_OUTPUT("HP_OUT"),
437	SND_SOC_DAPM_OUTPUT("LINE_OUT"),
438
439	SND_SOC_DAPM_SUPPLY("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0,
440			    mic_bias_event,
441			    SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
442
443	SND_SOC_DAPM_PGA_E("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0,
444			   headphone_pga_event,
445			   SND_SOC_DAPM_PRE_POST_PMU |
446			   SND_SOC_DAPM_PRE_POST_PMD),
447	SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0),
448
449	SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux),
450	SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &hp_mux),
451	SND_SOC_DAPM_MUX("Digital Input Mux", SND_SOC_NOPM, 0, 0, &dac_mux),
452	SND_SOC_DAPM_MUX("DAP Mux", SGTL5000_DAP_CTRL, 0, 0, &dap_mux),
453	SND_SOC_DAPM_MUX("DAP MIX Mux", SGTL5000_DAP_CTRL, 4, 0, &dapmix_mux),
454	SND_SOC_DAPM_MIXER("DAP", SGTL5000_CHIP_DIG_POWER, 4, 0, NULL, 0),
455
456
457	/* aif for i2s input */
458	SND_SOC_DAPM_AIF_IN("AIFIN", "Playback",
459				0, SGTL5000_CHIP_DIG_POWER,
460				0, 0),
461
462	/* aif for i2s output */
463	SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture",
464				0, SGTL5000_CHIP_DIG_POWER,
465				1, 0),
466
467	SND_SOC_DAPM_ADC_E("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0,
468			   adc_updown_depop, SND_SOC_DAPM_PRE_POST_PMU |
469			   SND_SOC_DAPM_PRE_POST_PMD),
470	SND_SOC_DAPM_DAC_E("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0,
471			   dac_updown_depop, SND_SOC_DAPM_PRE_POST_PMU |
472			   SND_SOC_DAPM_PRE_POST_PMD),
473};
474
475/* routes for sgtl5000 */
476static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = {
477	{"Capture Mux", "LINE_IN", "LINE_IN"},	/* line_in --> adc_mux */
478	{"Capture Mux", "MIC_IN", "MIC_IN"},	/* mic_in --> adc_mux */
479
480	{"ADC", NULL, "Capture Mux"},		/* adc_mux --> adc */
481	{"AIFOUT", NULL, "ADC"},		/* adc --> i2s_out */
482
483	{"DAP Mux", "ADC", "ADC"},		/* adc --> DAP mux */
484	{"DAP Mux", NULL, "AIFIN"},		/* i2s --> DAP mux */
485	{"DAP", NULL, "DAP Mux"},		/* DAP mux --> dap */
486
487	{"DAP MIX Mux", "ADC", "ADC"},		/* adc --> DAP MIX mux */
488	{"DAP MIX Mux", NULL, "AIFIN"},		/* i2s --> DAP MIX mux */
489	{"DAP", NULL, "DAP MIX Mux"},		/* DAP MIX mux --> dap */
490
491	{"Digital Input Mux", "ADC", "ADC"},	/* adc --> audio mux */
492	{"Digital Input Mux", NULL, "AIFIN"},	/* i2s --> audio mux */
493	{"Digital Input Mux", NULL, "DAP"},	/* dap --> audio mux */
494	{"DAC", NULL, "Digital Input Mux"},	/* audio mux --> dac */
495
496	{"Headphone Mux", "DAC", "DAC"},	/* dac --> hp_mux */
497	{"LO", NULL, "DAC"},			/* dac --> line_out */
498
499	{"Headphone Mux", "LINE_IN", "LINE_IN"},/* line_in --> hp_mux */
500	{"HP", NULL, "Headphone Mux"},		/* hp_mux --> hp */
501
502	{"LINE_OUT", NULL, "LO"},
503	{"HP_OUT", NULL, "HP"},
504};
505
506/* custom function to fetch info of PCM playback volume */
507static int dac_info_volsw(struct snd_kcontrol *kcontrol,
508			  struct snd_ctl_elem_info *uinfo)
509{
510	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
511	uinfo->count = 2;
512	uinfo->value.integer.min = 0;
513	uinfo->value.integer.max = 0xfc - 0x3c;
514	return 0;
515}
516
517/*
518 * custom function to get of PCM playback volume
519 *
520 * dac volume register
521 * 15-------------8-7--------------0
522 * | R channel vol | L channel vol |
523 *  -------------------------------
524 *
525 * PCM volume with 0.5017 dB steps from 0 to -90 dB
526 *
527 * register values map to dB
528 * 0x3B and less = Reserved
529 * 0x3C = 0 dB
530 * 0x3D = -0.5 dB
531 * 0xF0 = -90 dB
532 * 0xFC and greater = Muted
533 *
534 * register value map to userspace value
535 *
536 * register value	0x3c(0dB)	  0xf0(-90dB)0xfc
537 *			------------------------------
538 * userspace value	0xc0			     0
539 */
540static int dac_get_volsw(struct snd_kcontrol *kcontrol,
541			 struct snd_ctl_elem_value *ucontrol)
542{
543	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
544	int reg;
545	int l;
546	int r;
547
548	reg = snd_soc_component_read(component, SGTL5000_CHIP_DAC_VOL);
549
550	/* get left channel volume */
551	l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT;
552
553	/* get right channel volume */
554	r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT;
555
556	/* make sure value fall in (0x3c,0xfc) */
557	l = clamp(l, 0x3c, 0xfc);
558	r = clamp(r, 0x3c, 0xfc);
559
560	/* invert it and map to userspace value */
561	l = 0xfc - l;
562	r = 0xfc - r;
563
564	ucontrol->value.integer.value[0] = l;
565	ucontrol->value.integer.value[1] = r;
566
567	return 0;
568}
569
570/*
571 * custom function to put of PCM playback volume
572 *
573 * dac volume register
574 * 15-------------8-7--------------0
575 * | R channel vol | L channel vol |
576 *  -------------------------------
577 *
578 * PCM volume with 0.5017 dB steps from 0 to -90 dB
579 *
580 * register values map to dB
581 * 0x3B and less = Reserved
582 * 0x3C = 0 dB
583 * 0x3D = -0.5 dB
584 * 0xF0 = -90 dB
585 * 0xFC and greater = Muted
586 *
587 * userspace value map to register value
588 *
589 * userspace value	0xc0			     0
590 *			------------------------------
591 * register value	0x3c(0dB)	0xf0(-90dB)0xfc
592 */
593static int dac_put_volsw(struct snd_kcontrol *kcontrol,
594			 struct snd_ctl_elem_value *ucontrol)
595{
596	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
597	int reg;
598	int l;
599	int r;
600
601	l = ucontrol->value.integer.value[0];
602	r = ucontrol->value.integer.value[1];
603
604	/* make sure userspace volume fall in (0, 0xfc-0x3c) */
605	l = clamp(l, 0, 0xfc - 0x3c);
606	r = clamp(r, 0, 0xfc - 0x3c);
607
608	/* invert it, get the value can be set to register */
609	l = 0xfc - l;
610	r = 0xfc - r;
611
612	/* shift to get the register value */
613	reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT |
614		r << SGTL5000_DAC_VOL_RIGHT_SHIFT;
615
616	snd_soc_component_write(component, SGTL5000_CHIP_DAC_VOL, reg);
617
618	return 0;
619}
620
621/*
622 * custom function to get AVC threshold
623 *
624 * The threshold dB is calculated by rearranging the calculation from the
625 * avc_put_threshold function: register_value = 10^(dB/20) * 0.636 * 2^15 ==>
626 * dB = ( fls(register_value) - 14.347 ) * 6.02
627 *
628 * As this calculation is expensive and the threshold dB values may not exceed
629 * 0 to 96 we use pre-calculated values.
630 */
631static int avc_get_threshold(struct snd_kcontrol *kcontrol,
632			     struct snd_ctl_elem_value *ucontrol)
633{
634	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
635	int db, i;
636	u16 reg = snd_soc_component_read(component, SGTL5000_DAP_AVC_THRESHOLD);
637
638	/* register value 0 => -96dB */
639	if (!reg) {
640		ucontrol->value.integer.value[0] = 96;
641		ucontrol->value.integer.value[1] = 96;
642		return 0;
643	}
644
645	/* get dB from register value (rounded down) */
646	for (i = 0; avc_thr_db2reg[i] > reg; i++)
647		;
648	db = i;
649
650	ucontrol->value.integer.value[0] = db;
651	ucontrol->value.integer.value[1] = db;
652
653	return 0;
654}
655
656/*
657 * custom function to put AVC threshold
658 *
659 * The register value is calculated by following formula:
660 *                                    register_value = 10^(dB/20) * 0.636 * 2^15
661 * As this calculation is expensive and the threshold dB values may not exceed
662 * 0 to 96 we use pre-calculated values.
663 */
664static int avc_put_threshold(struct snd_kcontrol *kcontrol,
665			     struct snd_ctl_elem_value *ucontrol)
666{
667	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
668	int db;
669	u16 reg;
670
671	db = (int)ucontrol->value.integer.value[0];
672	if (db < 0 || db > 96)
673		return -EINVAL;
674	reg = avc_thr_db2reg[db];
675	snd_soc_component_write(component, SGTL5000_DAP_AVC_THRESHOLD, reg);
676
677	return 0;
678}
679
680static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0);
681
682/* tlv for mic gain, 0db 20db 30db 40db */
683static const DECLARE_TLV_DB_RANGE(mic_gain_tlv,
684	0, 0, TLV_DB_SCALE_ITEM(0, 0, 0),
685	1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0)
686);
687
688/* tlv for DAP channels, 0% - 100% - 200% */
689static const DECLARE_TLV_DB_SCALE(dap_volume, 0, 1, 0);
690
691/* tlv for bass bands, -11.75db to 12.0db, step .25db */
692static const DECLARE_TLV_DB_SCALE(bass_band, -1175, 25, 0);
693
694/* tlv for hp volume, -51.5db to 12.0db, step .5db */
695static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0);
696
697/* tlv for lineout volume, 31 steps of .5db each */
698static const DECLARE_TLV_DB_SCALE(lineout_volume, -1550, 50, 0);
699
700/* tlv for dap avc max gain, 0db, 6db, 12db */
701static const DECLARE_TLV_DB_SCALE(avc_max_gain, 0, 600, 0);
702
703/* tlv for dap avc threshold, */
704static const DECLARE_TLV_DB_MINMAX(avc_threshold, 0, 9600);
705
706static const struct snd_kcontrol_new sgtl5000_snd_controls[] = {
707	/* SOC_DOUBLE_S8_TLV with invert */
708	{
709		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
710		.name = "PCM Playback Volume",
711		.access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |
712			SNDRV_CTL_ELEM_ACCESS_READWRITE,
713		.info = dac_info_volsw,
714		.get = dac_get_volsw,
715		.put = dac_put_volsw,
716	},
717
718	SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0),
719	SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)",
720			SGTL5000_CHIP_ANA_ADC_CTRL,
721			8, 1, 0, capture_6db_attenuate),
722	SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0),
723	SOC_SINGLE("Capture Switch", SGTL5000_CHIP_ANA_CTRL, 0, 1, 1),
724
725	SOC_DOUBLE_TLV("Headphone Playback Volume",
726			SGTL5000_CHIP_ANA_HP_CTRL,
727			0, 8,
728			0x7f, 1,
729			headphone_volume),
730	SOC_SINGLE("Headphone Playback Switch", SGTL5000_CHIP_ANA_CTRL,
731			4, 1, 1),
732	SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL,
733			5, 1, 0),
734
735	SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL,
736			0, 3, 0, mic_gain_tlv),
737
738	SOC_DOUBLE_TLV("Lineout Playback Volume",
739			SGTL5000_CHIP_LINE_OUT_VOL,
740			SGTL5000_LINE_OUT_VOL_LEFT_SHIFT,
741			SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT,
742			0x1f, 1,
743			lineout_volume),
744	SOC_SINGLE("Lineout Playback Switch", SGTL5000_CHIP_ANA_CTRL, 8, 1, 1),
745
746	SOC_SINGLE_TLV("DAP Main channel", SGTL5000_DAP_MAIN_CHAN,
747	0, 0xffff, 0, dap_volume),
748
749	SOC_SINGLE_TLV("DAP Mix channel", SGTL5000_DAP_MIX_CHAN,
750	0, 0xffff, 0, dap_volume),
751	/* Automatic Volume Control (DAP AVC) */
752	SOC_SINGLE("AVC Switch", SGTL5000_DAP_AVC_CTRL, 0, 1, 0),
753	SOC_SINGLE("AVC Hard Limiter Switch", SGTL5000_DAP_AVC_CTRL, 5, 1, 0),
754	SOC_SINGLE_TLV("AVC Max Gain Volume", SGTL5000_DAP_AVC_CTRL, 12, 2, 0,
755			avc_max_gain),
756	SOC_SINGLE("AVC Integrator Response", SGTL5000_DAP_AVC_CTRL, 8, 3, 0),
757	SOC_SINGLE_EXT_TLV("AVC Threshold Volume", SGTL5000_DAP_AVC_THRESHOLD,
758			0, 96, 0, avc_get_threshold, avc_put_threshold,
759			avc_threshold),
760
761	SOC_SINGLE_TLV("BASS 0", SGTL5000_DAP_EQ_BASS_BAND0,
762	0, 0x5F, 0, bass_band),
763
764	SOC_SINGLE_TLV("BASS 1", SGTL5000_DAP_EQ_BASS_BAND1,
765	0, 0x5F, 0, bass_band),
766
767	SOC_SINGLE_TLV("BASS 2", SGTL5000_DAP_EQ_BASS_BAND2,
768	0, 0x5F, 0, bass_band),
769
770	SOC_SINGLE_TLV("BASS 3", SGTL5000_DAP_EQ_BASS_BAND3,
771	0, 0x5F, 0, bass_band),
772
773	SOC_SINGLE_TLV("BASS 4", SGTL5000_DAP_EQ_BASS_BAND4,
774	0, 0x5F, 0, bass_band),
775};
776
777/* mute the codec used by alsa core */
778static int sgtl5000_mute_stream(struct snd_soc_dai *codec_dai, int mute, int direction)
779{
780	struct snd_soc_component *component = codec_dai->component;
781	u16 i2s_pwr = SGTL5000_I2S_IN_POWERUP;
782
783	/*
784	 * During 'digital mute' do not mute DAC
785	 * because LINE_IN would be muted aswell. We want to mute
786	 * only I2S block - this can be done by powering it off
787	 */
788	snd_soc_component_update_bits(component, SGTL5000_CHIP_DIG_POWER,
789			i2s_pwr, mute ? 0 : i2s_pwr);
790
791	return 0;
792}
793
794/* set codec format */
795static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
796{
797	struct snd_soc_component *component = codec_dai->component;
798	struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
799	u16 i2sctl = 0;
800
801	sgtl5000->master = 0;
802	/*
803	 * i2s clock and frame master setting.
804	 * ONLY support:
805	 *  - clock and frame slave,
806	 *  - clock and frame master
807	 */
808	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
809	case SND_SOC_DAIFMT_CBS_CFS:
810		break;
811	case SND_SOC_DAIFMT_CBM_CFM:
812		i2sctl |= SGTL5000_I2S_MASTER;
813		sgtl5000->master = 1;
814		break;
815	default:
816		return -EINVAL;
817	}
818
819	/* setting i2s data format */
820	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
821	case SND_SOC_DAIFMT_DSP_A:
822		i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
823		break;
824	case SND_SOC_DAIFMT_DSP_B:
825		i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
826		i2sctl |= SGTL5000_I2S_LRALIGN;
827		break;
828	case SND_SOC_DAIFMT_I2S:
829		i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
830		break;
831	case SND_SOC_DAIFMT_RIGHT_J:
832		i2sctl |= SGTL5000_I2S_MODE_RJ << SGTL5000_I2S_MODE_SHIFT;
833		i2sctl |= SGTL5000_I2S_LRPOL;
834		break;
835	case SND_SOC_DAIFMT_LEFT_J:
836		i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
837		i2sctl |= SGTL5000_I2S_LRALIGN;
838		break;
839	default:
840		return -EINVAL;
841	}
842
843	sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
844
845	/* Clock inversion */
846	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
847	case SND_SOC_DAIFMT_NB_NF:
848		break;
849	case SND_SOC_DAIFMT_IB_NF:
850		i2sctl |= SGTL5000_I2S_SCLK_INV;
851		break;
852	default:
853		return -EINVAL;
854	}
855
856	snd_soc_component_write(component, SGTL5000_CHIP_I2S_CTRL, i2sctl);
857
858	return 0;
859}
860
861/* set codec sysclk */
862static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai,
863				   int clk_id, unsigned int freq, int dir)
864{
865	struct snd_soc_component *component = codec_dai->component;
866	struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
867
868	switch (clk_id) {
869	case SGTL5000_SYSCLK:
870		sgtl5000->sysclk = freq;
871		break;
872	default:
873		return -EINVAL;
874	}
875
876	return 0;
877}
878
879/*
880 * set clock according to i2s frame clock,
881 * sgtl5000 provides 2 clock sources:
882 * 1. sys_mclk: sample freq can only be configured to
883 *	1/256, 1/384, 1/512 of sys_mclk.
884 * 2. pll: can derive any audio clocks.
885 *
886 * clock setting rules:
887 * 1. in slave mode, only sys_mclk can be used
888 * 2. as constraint by sys_mclk, sample freq should be set to 32 kHz, 44.1 kHz
889 * and above.
890 * 3. usage of sys_mclk is preferred over pll to save power.
891 */
892static int sgtl5000_set_clock(struct snd_soc_component *component, int frame_rate)
893{
894	struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
895	int clk_ctl = 0;
896	int sys_fs;	/* sample freq */
897
898	/*
899	 * sample freq should be divided by frame clock,
900	 * if frame clock is lower than 44.1 kHz, sample freq should be set to
901	 * 32 kHz or 44.1 kHz.
902	 */
903	switch (frame_rate) {
904	case 8000:
905	case 16000:
906		sys_fs = 32000;
907		break;
908	case 11025:
909	case 22050:
910		sys_fs = 44100;
911		break;
912	default:
913		sys_fs = frame_rate;
914		break;
915	}
916
917	/* set divided factor of frame clock */
918	switch (sys_fs / frame_rate) {
919	case 4:
920		clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT;
921		break;
922	case 2:
923		clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT;
924		break;
925	case 1:
926		clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT;
927		break;
928	default:
929		return -EINVAL;
930	}
931
932	/* set the sys_fs according to frame rate */
933	switch (sys_fs) {
934	case 32000:
935		clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT;
936		break;
937	case 44100:
938		clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT;
939		break;
940	case 48000:
941		clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT;
942		break;
943	case 96000:
944		clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT;
945		break;
946	default:
947		dev_err(component->dev, "frame rate %d not supported\n",
948			frame_rate);
949		return -EINVAL;
950	}
951
952	/*
953	 * calculate the divider of mclk/sample_freq,
954	 * factor of freq = 96 kHz can only be 256, since mclk is in the range
955	 * of 8 MHz - 27 MHz
956	 */
957	switch (sgtl5000->sysclk / frame_rate) {
958	case 256:
959		clk_ctl |= SGTL5000_MCLK_FREQ_256FS <<
960			SGTL5000_MCLK_FREQ_SHIFT;
961		break;
962	case 384:
963		clk_ctl |= SGTL5000_MCLK_FREQ_384FS <<
964			SGTL5000_MCLK_FREQ_SHIFT;
965		break;
966	case 512:
967		clk_ctl |= SGTL5000_MCLK_FREQ_512FS <<
968			SGTL5000_MCLK_FREQ_SHIFT;
969		break;
970	default:
971		/* if mclk does not satisfy the divider, use pll */
972		if (sgtl5000->master) {
973			clk_ctl |= SGTL5000_MCLK_FREQ_PLL <<
974				SGTL5000_MCLK_FREQ_SHIFT;
975		} else {
976			dev_err(component->dev,
977				"PLL not supported in slave mode\n");
978			dev_err(component->dev, "%d ratio is not supported. "
979				"SYS_MCLK needs to be 256, 384 or 512 * fs\n",
980				sgtl5000->sysclk / frame_rate);
981			return -EINVAL;
982		}
983	}
984
985	/* if using pll, please check manual 6.4.2 for detail */
986	if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) {
987		u64 out, t;
988		int div2;
989		int pll_ctl;
990		unsigned int in, int_div, frac_div;
991
992		if (sgtl5000->sysclk > 17000000) {
993			div2 = 1;
994			in = sgtl5000->sysclk / 2;
995		} else {
996			div2 = 0;
997			in = sgtl5000->sysclk;
998		}
999		if (sys_fs == 44100)
1000			out = 180633600;
1001		else
1002			out = 196608000;
1003		t = do_div(out, in);
1004		int_div = out;
1005		t *= 2048;
1006		do_div(t, in);
1007		frac_div = t;
1008		pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT |
1009		    frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT;
1010
1011		snd_soc_component_write(component, SGTL5000_CHIP_PLL_CTRL, pll_ctl);
1012		if (div2)
1013			snd_soc_component_update_bits(component,
1014				SGTL5000_CHIP_CLK_TOP_CTRL,
1015				SGTL5000_INPUT_FREQ_DIV2,
1016				SGTL5000_INPUT_FREQ_DIV2);
1017		else
1018			snd_soc_component_update_bits(component,
1019				SGTL5000_CHIP_CLK_TOP_CTRL,
1020				SGTL5000_INPUT_FREQ_DIV2,
1021				0);
1022
1023		/* power up pll */
1024		snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
1025			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
1026			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP);
1027
1028		/* if using pll, clk_ctrl must be set after pll power up */
1029		snd_soc_component_write(component, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
1030	} else {
1031		/* otherwise, clk_ctrl must be set before pll power down */
1032		snd_soc_component_write(component, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
1033
1034		/* power down pll */
1035		snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
1036			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
1037			0);
1038	}
1039
1040	return 0;
1041}
1042
1043/*
1044 * Set PCM DAI bit size and sample rate.
1045 * input: params_rate, params_fmt
1046 */
1047static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream,
1048				  struct snd_pcm_hw_params *params,
1049				  struct snd_soc_dai *dai)
1050{
1051	struct snd_soc_component *component = dai->component;
1052	struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
1053	int channels = params_channels(params);
1054	int i2s_ctl = 0;
1055	int stereo;
1056	int ret;
1057
1058	/* sysclk should already set */
1059	if (!sgtl5000->sysclk) {
1060		dev_err(component->dev, "%s: set sysclk first!\n", __func__);
1061		return -EFAULT;
1062	}
1063
1064	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1065		stereo = SGTL5000_DAC_STEREO;
1066	else
1067		stereo = SGTL5000_ADC_STEREO;
1068
1069	/* set mono to save power */
1070	snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, stereo,
1071			channels == 1 ? 0 : stereo);
1072
1073	/* set codec clock base on lrclk */
1074	ret = sgtl5000_set_clock(component, params_rate(params));
1075	if (ret)
1076		return ret;
1077
1078	/* set i2s data format */
1079	switch (params_width(params)) {
1080	case 16:
1081		if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
1082			return -EINVAL;
1083		i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT;
1084		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS <<
1085		    SGTL5000_I2S_SCLKFREQ_SHIFT;
1086		break;
1087	case 20:
1088		i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT;
1089		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
1090		    SGTL5000_I2S_SCLKFREQ_SHIFT;
1091		break;
1092	case 24:
1093		i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT;
1094		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
1095		    SGTL5000_I2S_SCLKFREQ_SHIFT;
1096		break;
1097	case 32:
1098		if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
1099			return -EINVAL;
1100		i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT;
1101		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
1102		    SGTL5000_I2S_SCLKFREQ_SHIFT;
1103		break;
1104	default:
1105		return -EINVAL;
1106	}
1107
1108	snd_soc_component_update_bits(component, SGTL5000_CHIP_I2S_CTRL,
1109			    SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK,
1110			    i2s_ctl);
1111
1112	return 0;
1113}
1114
1115/*
1116 * set dac bias
1117 * common state changes:
1118 * startup:
1119 * off --> standby --> prepare --> on
1120 * standby --> prepare --> on
1121 *
1122 * stop:
1123 * on --> prepare --> standby
1124 */
1125static int sgtl5000_set_bias_level(struct snd_soc_component *component,
1126				   enum snd_soc_bias_level level)
1127{
1128	struct sgtl5000_priv *sgtl = snd_soc_component_get_drvdata(component);
1129	int ret;
1130
1131	switch (level) {
1132	case SND_SOC_BIAS_ON:
1133	case SND_SOC_BIAS_PREPARE:
1134	case SND_SOC_BIAS_STANDBY:
1135		regcache_cache_only(sgtl->regmap, false);
1136		ret = regcache_sync(sgtl->regmap);
1137		if (ret) {
1138			regcache_cache_only(sgtl->regmap, true);
1139			return ret;
1140		}
1141
1142		snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
1143				    SGTL5000_REFTOP_POWERUP,
1144				    SGTL5000_REFTOP_POWERUP);
1145		break;
1146	case SND_SOC_BIAS_OFF:
1147		regcache_cache_only(sgtl->regmap, true);
1148		snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
1149				    SGTL5000_REFTOP_POWERUP, 0);
1150		break;
1151	}
1152
1153	return 0;
1154}
1155
1156#define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
1157			SNDRV_PCM_FMTBIT_S20_3LE |\
1158			SNDRV_PCM_FMTBIT_S24_LE |\
1159			SNDRV_PCM_FMTBIT_S32_LE)
1160
1161static const struct snd_soc_dai_ops sgtl5000_ops = {
1162	.hw_params = sgtl5000_pcm_hw_params,
1163	.mute_stream = sgtl5000_mute_stream,
1164	.set_fmt = sgtl5000_set_dai_fmt,
1165	.set_sysclk = sgtl5000_set_dai_sysclk,
1166	.no_capture_mute = 1,
1167};
1168
1169static struct snd_soc_dai_driver sgtl5000_dai = {
1170	.name = "sgtl5000",
1171	.playback = {
1172		.stream_name = "Playback",
1173		.channels_min = 1,
1174		.channels_max = 2,
1175		/*
1176		 * only support 8~48K + 96K,
1177		 * TODO modify hw_param to support more
1178		 */
1179		.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
1180		.formats = SGTL5000_FORMATS,
1181	},
1182	.capture = {
1183		.stream_name = "Capture",
1184		.channels_min = 1,
1185		.channels_max = 2,
1186		.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
1187		.formats = SGTL5000_FORMATS,
1188	},
1189	.ops = &sgtl5000_ops,
1190	.symmetric_rate = 1,
1191};
1192
1193static bool sgtl5000_volatile(struct device *dev, unsigned int reg)
1194{
1195	switch (reg) {
1196	case SGTL5000_CHIP_ID:
1197	case SGTL5000_CHIP_ADCDAC_CTRL:
1198	case SGTL5000_CHIP_ANA_STATUS:
1199		return true;
1200	}
1201
1202	return false;
1203}
1204
1205static bool sgtl5000_readable(struct device *dev, unsigned int reg)
1206{
1207	switch (reg) {
1208	case SGTL5000_CHIP_ID:
1209	case SGTL5000_CHIP_DIG_POWER:
1210	case SGTL5000_CHIP_CLK_CTRL:
1211	case SGTL5000_CHIP_I2S_CTRL:
1212	case SGTL5000_CHIP_SSS_CTRL:
1213	case SGTL5000_CHIP_ADCDAC_CTRL:
1214	case SGTL5000_CHIP_DAC_VOL:
1215	case SGTL5000_CHIP_PAD_STRENGTH:
1216	case SGTL5000_CHIP_ANA_ADC_CTRL:
1217	case SGTL5000_CHIP_ANA_HP_CTRL:
1218	case SGTL5000_CHIP_ANA_CTRL:
1219	case SGTL5000_CHIP_LINREG_CTRL:
1220	case SGTL5000_CHIP_REF_CTRL:
1221	case SGTL5000_CHIP_MIC_CTRL:
1222	case SGTL5000_CHIP_LINE_OUT_CTRL:
1223	case SGTL5000_CHIP_LINE_OUT_VOL:
1224	case SGTL5000_CHIP_ANA_POWER:
1225	case SGTL5000_CHIP_PLL_CTRL:
1226	case SGTL5000_CHIP_CLK_TOP_CTRL:
1227	case SGTL5000_CHIP_ANA_STATUS:
1228	case SGTL5000_CHIP_SHORT_CTRL:
1229	case SGTL5000_CHIP_ANA_TEST2:
1230	case SGTL5000_DAP_CTRL:
1231	case SGTL5000_DAP_PEQ:
1232	case SGTL5000_DAP_BASS_ENHANCE:
1233	case SGTL5000_DAP_BASS_ENHANCE_CTRL:
1234	case SGTL5000_DAP_AUDIO_EQ:
1235	case SGTL5000_DAP_SURROUND:
1236	case SGTL5000_DAP_FLT_COEF_ACCESS:
1237	case SGTL5000_DAP_COEF_WR_B0_MSB:
1238	case SGTL5000_DAP_COEF_WR_B0_LSB:
1239	case SGTL5000_DAP_EQ_BASS_BAND0:
1240	case SGTL5000_DAP_EQ_BASS_BAND1:
1241	case SGTL5000_DAP_EQ_BASS_BAND2:
1242	case SGTL5000_DAP_EQ_BASS_BAND3:
1243	case SGTL5000_DAP_EQ_BASS_BAND4:
1244	case SGTL5000_DAP_MAIN_CHAN:
1245	case SGTL5000_DAP_MIX_CHAN:
1246	case SGTL5000_DAP_AVC_CTRL:
1247	case SGTL5000_DAP_AVC_THRESHOLD:
1248	case SGTL5000_DAP_AVC_ATTACK:
1249	case SGTL5000_DAP_AVC_DECAY:
1250	case SGTL5000_DAP_COEF_WR_B1_MSB:
1251	case SGTL5000_DAP_COEF_WR_B1_LSB:
1252	case SGTL5000_DAP_COEF_WR_B2_MSB:
1253	case SGTL5000_DAP_COEF_WR_B2_LSB:
1254	case SGTL5000_DAP_COEF_WR_A1_MSB:
1255	case SGTL5000_DAP_COEF_WR_A1_LSB:
1256	case SGTL5000_DAP_COEF_WR_A2_MSB:
1257	case SGTL5000_DAP_COEF_WR_A2_LSB:
1258		return true;
1259
1260	default:
1261		return false;
1262	}
1263}
1264
1265/*
1266 * This precalculated table contains all (vag_val * 100 / lo_calcntrl) results
1267 * to select an appropriate lo_vol_* in SGTL5000_CHIP_LINE_OUT_VOL
1268 * The calculatation was done for all possible register values which
1269 * is the array index and the following formula: 10^((idx���15)/40) * 100
1270 */
1271static const u8 vol_quot_table[] = {
1272	42, 45, 47, 50, 53, 56, 60, 63,
1273	67, 71, 75, 79, 84, 89, 94, 100,
1274	106, 112, 119, 126, 133, 141, 150, 158,
1275	168, 178, 188, 200, 211, 224, 237, 251
1276};
1277
1278/*
1279 * sgtl5000 has 3 internal power supplies:
1280 * 1. VAG, normally set to vdda/2
1281 * 2. charge pump, set to different value
1282 *	according to voltage of vdda and vddio
1283 * 3. line out VAG, normally set to vddio/2
1284 *
1285 * and should be set according to:
1286 * 1. vddd provided by external or not
1287 * 2. vdda and vddio voltage value. > 3.1v or not
1288 */
1289static int sgtl5000_set_power_regs(struct snd_soc_component *component)
1290{
1291	int vddd;
1292	int vdda;
1293	int vddio;
1294	u16 ana_pwr;
1295	u16 lreg_ctrl;
1296	int vag;
1297	int lo_vag;
1298	int vol_quot;
1299	int lo_vol;
1300	size_t i;
1301	struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
1302
1303	vdda  = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer);
1304	vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer);
1305	vddd  = (sgtl5000->num_supplies > VDDD)
1306		? regulator_get_voltage(sgtl5000->supplies[VDDD].consumer)
1307		: LDO_VOLTAGE;
1308
1309	vdda  = vdda / 1000;
1310	vddio = vddio / 1000;
1311	vddd  = vddd / 1000;
1312
1313	if (vdda <= 0 || vddio <= 0 || vddd < 0) {
1314		dev_err(component->dev, "regulator voltage not set correctly\n");
1315
1316		return -EINVAL;
1317	}
1318
1319	/* according to datasheet, maximum voltage of supplies */
1320	if (vdda > 3600 || vddio > 3600 || vddd > 1980) {
1321		dev_err(component->dev,
1322			"exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n",
1323			vdda, vddio, vddd);
1324
1325		return -EINVAL;
1326	}
1327
1328	/* reset value */
1329	ana_pwr = snd_soc_component_read(component, SGTL5000_CHIP_ANA_POWER);
1330	ana_pwr |= SGTL5000_DAC_STEREO |
1331			SGTL5000_ADC_STEREO |
1332			SGTL5000_REFTOP_POWERUP;
1333	lreg_ctrl = snd_soc_component_read(component, SGTL5000_CHIP_LINREG_CTRL);
1334
1335	if (vddio < 3100 && vdda < 3100) {
1336		/* enable internal oscillator used for charge pump */
1337		snd_soc_component_update_bits(component, SGTL5000_CHIP_CLK_TOP_CTRL,
1338					SGTL5000_INT_OSC_EN,
1339					SGTL5000_INT_OSC_EN);
1340		/* Enable VDDC charge pump */
1341		ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP;
1342	} else {
1343		ana_pwr &= ~SGTL5000_VDDC_CHRGPMP_POWERUP;
1344		/*
1345		 * if vddio == vdda the source of charge pump should be
1346		 * assigned manually to VDDIO
1347		 */
1348		if (regulator_is_equal(sgtl5000->supplies[VDDA].consumer,
1349				       sgtl5000->supplies[VDDIO].consumer)) {
1350			lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD;
1351			lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO <<
1352				    SGTL5000_VDDC_MAN_ASSN_SHIFT;
1353		}
1354	}
1355
1356	snd_soc_component_write(component, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl);
1357
1358	snd_soc_component_write(component, SGTL5000_CHIP_ANA_POWER, ana_pwr);
1359
1360	/*
1361	 * set ADC/DAC VAG to vdda / 2,
1362	 * should stay in range (0.8v, 1.575v)
1363	 */
1364	vag = vdda / 2;
1365	if (vag <= SGTL5000_ANA_GND_BASE)
1366		vag = 0;
1367	else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP *
1368		 (SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT))
1369		vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT;
1370	else
1371		vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP;
1372
1373	snd_soc_component_update_bits(component, SGTL5000_CHIP_REF_CTRL,
1374			SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT);
1375
1376	/* set line out VAG to vddio / 2, in range (0.8v, 1.675v) */
1377	lo_vag = vddio / 2;
1378	if (lo_vag <= SGTL5000_LINE_OUT_GND_BASE)
1379		lo_vag = 0;
1380	else if (lo_vag >= SGTL5000_LINE_OUT_GND_BASE +
1381		SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX)
1382		lo_vag = SGTL5000_LINE_OUT_GND_MAX;
1383	else
1384		lo_vag = (lo_vag - SGTL5000_LINE_OUT_GND_BASE) /
1385		    SGTL5000_LINE_OUT_GND_STP;
1386
1387	snd_soc_component_update_bits(component, SGTL5000_CHIP_LINE_OUT_CTRL,
1388			SGTL5000_LINE_OUT_CURRENT_MASK |
1389			SGTL5000_LINE_OUT_GND_MASK,
1390			lo_vag << SGTL5000_LINE_OUT_GND_SHIFT |
1391			SGTL5000_LINE_OUT_CURRENT_360u <<
1392				SGTL5000_LINE_OUT_CURRENT_SHIFT);
1393
1394	/*
1395	 * Set lineout output level in range (0..31)
1396	 * the same value is used for right and left channel
1397	 *
1398	 * Searching for a suitable index solving this formula:
1399	 * idx = 40 * log10(vag_val / lo_cagcntrl) + 15
1400	 */
1401	vol_quot = lo_vag ? (vag * 100) / lo_vag : 0;
1402	lo_vol = 0;
1403	for (i = 0; i < ARRAY_SIZE(vol_quot_table); i++) {
1404		if (vol_quot >= vol_quot_table[i])
1405			lo_vol = i;
1406		else
1407			break;
1408	}
1409
1410	snd_soc_component_update_bits(component, SGTL5000_CHIP_LINE_OUT_VOL,
1411		SGTL5000_LINE_OUT_VOL_RIGHT_MASK |
1412		SGTL5000_LINE_OUT_VOL_LEFT_MASK,
1413		lo_vol << SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT |
1414		lo_vol << SGTL5000_LINE_OUT_VOL_LEFT_SHIFT);
1415
1416	return 0;
1417}
1418
1419static int sgtl5000_enable_regulators(struct i2c_client *client)
1420{
1421	int ret;
1422	int i;
1423	int external_vddd = 0;
1424	struct regulator *vddd;
1425	struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1426
1427	for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++)
1428		sgtl5000->supplies[i].supply = supply_names[i];
1429
1430	vddd = regulator_get_optional(&client->dev, "VDDD");
1431	if (IS_ERR(vddd)) {
1432		/* See if it's just not registered yet */
1433		if (PTR_ERR(vddd) == -EPROBE_DEFER)
1434			return -EPROBE_DEFER;
1435	} else {
1436		external_vddd = 1;
1437		regulator_put(vddd);
1438	}
1439
1440	sgtl5000->num_supplies = ARRAY_SIZE(sgtl5000->supplies)
1441				 - 1 + external_vddd;
1442	ret = regulator_bulk_get(&client->dev, sgtl5000->num_supplies,
1443				 sgtl5000->supplies);
1444	if (ret)
1445		return ret;
1446
1447	ret = regulator_bulk_enable(sgtl5000->num_supplies,
1448				    sgtl5000->supplies);
1449	if (!ret)
1450		usleep_range(10, 20);
1451	else
1452		regulator_bulk_free(sgtl5000->num_supplies,
1453				    sgtl5000->supplies);
1454
1455	return ret;
1456}
1457
1458static int sgtl5000_probe(struct snd_soc_component *component)
1459{
1460	int ret;
1461	u16 reg;
1462	struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
1463	unsigned int zcd_mask = SGTL5000_HP_ZCD_EN | SGTL5000_ADC_ZCD_EN;
1464
1465	/* power up sgtl5000 */
1466	ret = sgtl5000_set_power_regs(component);
1467	if (ret)
1468		goto err;
1469
1470	/* enable small pop, introduce 400ms delay in turning off */
1471	snd_soc_component_update_bits(component, SGTL5000_CHIP_REF_CTRL,
1472				SGTL5000_SMALL_POP, SGTL5000_SMALL_POP);
1473
1474	/* disable short cut detector */
1475	snd_soc_component_write(component, SGTL5000_CHIP_SHORT_CTRL, 0);
1476
1477	snd_soc_component_write(component, SGTL5000_CHIP_DIG_POWER,
1478			SGTL5000_ADC_EN | SGTL5000_DAC_EN);
1479
1480	/* enable dac volume ramp by default */
1481	snd_soc_component_write(component, SGTL5000_CHIP_ADCDAC_CTRL,
1482			SGTL5000_DAC_VOL_RAMP_EN |
1483			SGTL5000_DAC_MUTE_RIGHT |
1484			SGTL5000_DAC_MUTE_LEFT);
1485
1486	reg = ((sgtl5000->lrclk_strength) << SGTL5000_PAD_I2S_LRCLK_SHIFT |
1487	       (sgtl5000->sclk_strength) << SGTL5000_PAD_I2S_SCLK_SHIFT |
1488	       0x1f);
1489	snd_soc_component_write(component, SGTL5000_CHIP_PAD_STRENGTH, reg);
1490
1491	snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL,
1492		zcd_mask, zcd_mask);
1493
1494	snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
1495			SGTL5000_BIAS_R_MASK,
1496			sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
1497
1498	snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
1499			SGTL5000_BIAS_VOLT_MASK,
1500			sgtl5000->micbias_voltage << SGTL5000_BIAS_VOLT_SHIFT);
1501	/*
1502	 * enable DAP Graphic EQ
1503	 * TODO:
1504	 * Add control for changing between PEQ/Tone Control/GEQ
1505	 */
1506	snd_soc_component_write(component, SGTL5000_DAP_AUDIO_EQ, SGTL5000_DAP_SEL_GEQ);
1507
1508	/* Unmute DAC after start */
1509	snd_soc_component_update_bits(component, SGTL5000_CHIP_ADCDAC_CTRL,
1510		SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT, 0);
1511
1512	return 0;
1513
1514err:
1515	return ret;
1516}
1517
1518static int sgtl5000_of_xlate_dai_id(struct snd_soc_component *component,
1519				    struct device_node *endpoint)
1520{
1521	/* return dai id 0, whatever the endpoint index */
1522	return 0;
1523}
1524
1525static const struct snd_soc_component_driver sgtl5000_driver = {
1526	.probe			= sgtl5000_probe,
1527	.set_bias_level		= sgtl5000_set_bias_level,
1528	.controls		= sgtl5000_snd_controls,
1529	.num_controls		= ARRAY_SIZE(sgtl5000_snd_controls),
1530	.dapm_widgets		= sgtl5000_dapm_widgets,
1531	.num_dapm_widgets	= ARRAY_SIZE(sgtl5000_dapm_widgets),
1532	.dapm_routes		= sgtl5000_dapm_routes,
1533	.num_dapm_routes	= ARRAY_SIZE(sgtl5000_dapm_routes),
1534	.of_xlate_dai_id	= sgtl5000_of_xlate_dai_id,
1535	.suspend_bias_off	= 1,
1536	.idle_bias_on		= 1,
1537	.use_pmdown_time	= 1,
1538	.endianness		= 1,
1539};
1540
1541static const struct regmap_config sgtl5000_regmap = {
1542	.reg_bits = 16,
1543	.val_bits = 16,
1544	.reg_stride = 2,
1545
1546	.max_register = SGTL5000_MAX_REG_OFFSET,
1547	.volatile_reg = sgtl5000_volatile,
1548	.readable_reg = sgtl5000_readable,
1549
1550	.cache_type = REGCACHE_RBTREE,
1551	.reg_defaults = sgtl5000_reg_defaults,
1552	.num_reg_defaults = ARRAY_SIZE(sgtl5000_reg_defaults),
1553};
1554
1555/*
1556 * Write all the default values from sgtl5000_reg_defaults[] array into the
1557 * sgtl5000 registers, to make sure we always start with the sane registers
1558 * values as stated in the datasheet.
1559 *
1560 * Since sgtl5000 does not have a reset line, nor a reset command in software,
1561 * we follow this approach to guarantee we always start from the default values
1562 * and avoid problems like, not being able to probe after an audio playback
1563 * followed by a system reset or a 'reboot' command in Linux
1564 */
1565static void sgtl5000_fill_defaults(struct i2c_client *client)
1566{
1567	struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1568	int i, ret, val, index;
1569
1570	for (i = 0; i < ARRAY_SIZE(sgtl5000_reg_defaults); i++) {
1571		val = sgtl5000_reg_defaults[i].def;
1572		index = sgtl5000_reg_defaults[i].reg;
1573		ret = regmap_write(sgtl5000->regmap, index, val);
1574		if (ret)
1575			dev_err(&client->dev,
1576				"%s: error %d setting reg 0x%02x to 0x%04x\n",
1577				__func__, ret, index, val);
1578	}
1579}
1580
1581static int sgtl5000_i2c_probe(struct i2c_client *client)
1582{
1583	struct sgtl5000_priv *sgtl5000;
1584	int ret, reg, rev;
1585	struct device_node *np = client->dev.of_node;
1586	u32 value;
1587	u16 ana_pwr;
1588
1589	sgtl5000 = devm_kzalloc(&client->dev, sizeof(*sgtl5000), GFP_KERNEL);
1590	if (!sgtl5000)
1591		return -ENOMEM;
1592
1593	i2c_set_clientdata(client, sgtl5000);
1594
1595	ret = sgtl5000_enable_regulators(client);
1596	if (ret)
1597		return ret;
1598
1599	sgtl5000->regmap = devm_regmap_init_i2c(client, &sgtl5000_regmap);
1600	if (IS_ERR(sgtl5000->regmap)) {
1601		ret = PTR_ERR(sgtl5000->regmap);
1602		dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
1603		goto disable_regs;
1604	}
1605
1606	sgtl5000->mclk = devm_clk_get(&client->dev, NULL);
1607	if (IS_ERR(sgtl5000->mclk)) {
1608		ret = PTR_ERR(sgtl5000->mclk);
1609		/* Defer the probe to see if the clk will be provided later */
1610		if (ret == -ENOENT)
1611			ret = -EPROBE_DEFER;
1612
1613		dev_err_probe(&client->dev, ret, "Failed to get mclock\n");
1614
1615		goto disable_regs;
1616	}
1617
1618	ret = clk_prepare_enable(sgtl5000->mclk);
1619	if (ret) {
1620		dev_err(&client->dev, "Error enabling clock %d\n", ret);
1621		goto disable_regs;
1622	}
1623
1624	/* Need 8 clocks before I2C accesses */
1625	udelay(1);
1626
1627	/* read chip information */
1628	ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, &reg);
1629	if (ret) {
1630		dev_err(&client->dev, "Error reading chip id %d\n", ret);
1631		goto disable_clk;
1632	}
1633
1634	if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) !=
1635	    SGTL5000_PARTID_PART_ID) {
1636		dev_err(&client->dev,
1637			"Device with ID register %x is not a sgtl5000\n", reg);
1638		ret = -ENODEV;
1639		goto disable_clk;
1640	}
1641
1642	rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT;
1643	dev_info(&client->dev, "sgtl5000 revision 0x%x\n", rev);
1644	sgtl5000->revision = rev;
1645
1646	/* reconfigure the clocks in case we're using the PLL */
1647	ret = regmap_write(sgtl5000->regmap,
1648			   SGTL5000_CHIP_CLK_CTRL,
1649			   SGTL5000_CHIP_CLK_CTRL_DEFAULT);
1650	if (ret)
1651		dev_err(&client->dev,
1652			"Error %d initializing CHIP_CLK_CTRL\n", ret);
1653
1654	/* Mute everything to avoid pop from the following power-up */
1655	ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_CTRL,
1656			   SGTL5000_CHIP_ANA_CTRL_DEFAULT);
1657	if (ret) {
1658		dev_err(&client->dev,
1659			"Error %d muting outputs via CHIP_ANA_CTRL\n", ret);
1660		goto disable_clk;
1661	}
1662
1663	/*
1664	 * If VAG is powered-on (e.g. from previous boot), it would be disabled
1665	 * by the write to ANA_POWER in later steps of the probe code. This
1666	 * may create a loud pop even with all outputs muted. The proper way
1667	 * to circumvent this is disabling the bit first and waiting the proper
1668	 * cool-down time.
1669	 */
1670	ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, &value);
1671	if (ret) {
1672		dev_err(&client->dev, "Failed to read ANA_POWER: %d\n", ret);
1673		goto disable_clk;
1674	}
1675	if (value & SGTL5000_VAG_POWERUP) {
1676		ret = regmap_update_bits(sgtl5000->regmap,
1677					 SGTL5000_CHIP_ANA_POWER,
1678					 SGTL5000_VAG_POWERUP,
1679					 0);
1680		if (ret) {
1681			dev_err(&client->dev, "Error %d disabling VAG\n", ret);
1682			goto disable_clk;
1683		}
1684
1685		msleep(SGTL5000_VAG_POWERDOWN_DELAY);
1686	}
1687
1688	/* Follow section 2.2.1.1 of AN3663 */
1689	ana_pwr = SGTL5000_ANA_POWER_DEFAULT;
1690	if (sgtl5000->num_supplies <= VDDD) {
1691		/* internal VDDD at 1.2V */
1692		ret = regmap_update_bits(sgtl5000->regmap,
1693					 SGTL5000_CHIP_LINREG_CTRL,
1694					 SGTL5000_LINREG_VDDD_MASK,
1695					 LINREG_VDDD);
1696		if (ret)
1697			dev_err(&client->dev,
1698				"Error %d setting LINREG_VDDD\n", ret);
1699
1700		ana_pwr |= SGTL5000_LINEREG_D_POWERUP;
1701		dev_info(&client->dev,
1702			 "Using internal LDO instead of VDDD: check ER1 erratum\n");
1703	} else {
1704		/* using external LDO for VDDD
1705		 * Clear startup powerup and simple powerup
1706		 * bits to save power
1707		 */
1708		ana_pwr &= ~(SGTL5000_STARTUP_POWERUP
1709			     | SGTL5000_LINREG_SIMPLE_POWERUP);
1710		dev_dbg(&client->dev, "Using external VDDD\n");
1711	}
1712	ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, ana_pwr);
1713	if (ret)
1714		dev_err(&client->dev,
1715			"Error %d setting CHIP_ANA_POWER to %04x\n",
1716			ret, ana_pwr);
1717
1718	if (np) {
1719		if (!of_property_read_u32(np,
1720			"micbias-resistor-k-ohms", &value)) {
1721			switch (value) {
1722			case SGTL5000_MICBIAS_OFF:
1723				sgtl5000->micbias_resistor = 0;
1724				break;
1725			case SGTL5000_MICBIAS_2K:
1726				sgtl5000->micbias_resistor = 1;
1727				break;
1728			case SGTL5000_MICBIAS_4K:
1729				sgtl5000->micbias_resistor = 2;
1730				break;
1731			case SGTL5000_MICBIAS_8K:
1732				sgtl5000->micbias_resistor = 3;
1733				break;
1734			default:
1735				sgtl5000->micbias_resistor = 2;
1736				dev_err(&client->dev,
1737					"Unsuitable MicBias resistor\n");
1738			}
1739		} else {
1740			/* default is 4Kohms */
1741			sgtl5000->micbias_resistor = 2;
1742		}
1743		if (!of_property_read_u32(np,
1744			"micbias-voltage-m-volts", &value)) {
1745			/* 1250mV => 0 */
1746			/* steps of 250mV */
1747			if ((value >= 1250) && (value <= 3000))
1748				sgtl5000->micbias_voltage = (value / 250) - 5;
1749			else {
1750				sgtl5000->micbias_voltage = 0;
1751				dev_err(&client->dev,
1752					"Unsuitable MicBias voltage\n");
1753			}
1754		} else {
1755			sgtl5000->micbias_voltage = 0;
1756		}
1757	}
1758
1759	sgtl5000->lrclk_strength = I2S_LRCLK_STRENGTH_LOW;
1760	if (!of_property_read_u32(np, "lrclk-strength", &value)) {
1761		if (value > I2S_LRCLK_STRENGTH_HIGH)
1762			value = I2S_LRCLK_STRENGTH_LOW;
1763		sgtl5000->lrclk_strength = value;
1764	}
1765
1766	sgtl5000->sclk_strength = I2S_SCLK_STRENGTH_LOW;
1767	if (!of_property_read_u32(np, "sclk-strength", &value)) {
1768		if (value > I2S_SCLK_STRENGTH_HIGH)
1769			value = I2S_SCLK_STRENGTH_LOW;
1770		sgtl5000->sclk_strength = value;
1771	}
1772
1773	/* Ensure sgtl5000 will start with sane register values */
1774	sgtl5000_fill_defaults(client);
1775
1776	ret = devm_snd_soc_register_component(&client->dev,
1777			&sgtl5000_driver, &sgtl5000_dai, 1);
1778	if (ret)
1779		goto disable_clk;
1780
1781	return 0;
1782
1783disable_clk:
1784	clk_disable_unprepare(sgtl5000->mclk);
1785
1786disable_regs:
1787	regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies);
1788	regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies);
1789
1790	return ret;
1791}
1792
1793static void sgtl5000_i2c_remove(struct i2c_client *client)
1794{
1795	struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1796
1797	regmap_write(sgtl5000->regmap, SGTL5000_CHIP_CLK_CTRL, SGTL5000_CHIP_CLK_CTRL_DEFAULT);
1798	regmap_write(sgtl5000->regmap, SGTL5000_CHIP_DIG_POWER, SGTL5000_DIG_POWER_DEFAULT);
1799	regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, SGTL5000_ANA_POWER_DEFAULT);
1800
1801	clk_disable_unprepare(sgtl5000->mclk);
1802	regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies);
1803	regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies);
1804}
1805
1806static void sgtl5000_i2c_shutdown(struct i2c_client *client)
1807{
1808	sgtl5000_i2c_remove(client);
1809}
1810
1811static const struct i2c_device_id sgtl5000_id[] = {
1812	{"sgtl5000", 0},
1813	{},
1814};
1815
1816MODULE_DEVICE_TABLE(i2c, sgtl5000_id);
1817
1818static const struct of_device_id sgtl5000_dt_ids[] = {
1819	{ .compatible = "fsl,sgtl5000", },
1820	{ /* sentinel */ }
1821};
1822MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids);
1823
1824static struct i2c_driver sgtl5000_i2c_driver = {
1825	.driver = {
1826		.name = "sgtl5000",
1827		.of_match_table = sgtl5000_dt_ids,
1828	},
1829	.probe = sgtl5000_i2c_probe,
1830	.remove = sgtl5000_i2c_remove,
1831	.shutdown = sgtl5000_i2c_shutdown,
1832	.id_table = sgtl5000_id,
1833};
1834
1835module_i2c_driver(sgtl5000_i2c_driver);
1836
1837MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver");
1838MODULE_AUTHOR("Zeng Zhaoming <zengzm.kernel@gmail.com>");
1839MODULE_LICENSE("GPL");
1840