1// SPDX-License-Identifier: GPL-2.0
2//
3// peb2466.c  --  Infineon PEB2466 ALSA SoC driver
4//
5// Copyright 2023 CS GROUP France
6//
7// Author: Herve Codina <herve.codina@bootlin.com>
8
9#include <asm/unaligned.h>
10#include <linux/clk.h>
11#include <linux/firmware.h>
12#include <linux/gpio/consumer.h>
13#include <linux/gpio/driver.h>
14#include <linux/module.h>
15#include <linux/mutex.h>
16#include <linux/slab.h>
17#include <linux/spi/spi.h>
18#include <sound/pcm_params.h>
19#include <sound/soc.h>
20#include <sound/tlv.h>
21
22#define PEB2466_NB_CHANNEL	4
23
24struct peb2466_lookup {
25	u8 (*table)[4];
26	unsigned int count;
27};
28
29#define PEB2466_TLV_SIZE  (sizeof((unsigned int []){TLV_DB_SCALE_ITEM(0, 0, 0)}) / \
30			   sizeof(unsigned int))
31
32struct peb2466_lkup_ctrl {
33	int reg;
34	unsigned int index;
35	const struct peb2466_lookup *lookup;
36	unsigned int tlv_array[PEB2466_TLV_SIZE];
37};
38
39struct peb2466 {
40	struct spi_device *spi;
41	struct clk *mclk;
42	struct gpio_desc *reset_gpio;
43	u8 spi_tx_buf[2 + 8]; /* Cannot use stack area for SPI (dma-safe memory) */
44	u8 spi_rx_buf[2 + 8]; /* Cannot use stack area for SPI (dma-safe memory) */
45	struct regmap *regmap;
46	struct {
47		struct peb2466_lookup ax_lookup;
48		struct peb2466_lookup ar_lookup;
49		struct peb2466_lkup_ctrl ax_lkup_ctrl;
50		struct peb2466_lkup_ctrl ar_lkup_ctrl;
51		unsigned int tg1_freq_item;
52		unsigned int tg2_freq_item;
53	} ch[PEB2466_NB_CHANNEL];
54	int max_chan_playback;
55	int max_chan_capture;
56	struct {
57		struct gpio_chip gpio_chip;
58		struct mutex lock;
59		struct {
60			unsigned int xr0;
61			unsigned int xr1;
62			unsigned int xr2;
63			unsigned int xr3;
64		} cache;
65	} gpio;
66};
67
68#define PEB2466_CMD_R	(1 << 5)
69#define PEB2466_CMD_W	(0 << 5)
70
71#define PEB2466_CMD_MASK 0x18
72#define PEB2466_CMD_XOP  0x18  /* XOP is 0bxxx11xxx */
73#define PEB2466_CMD_SOP  0x10  /* SOP is 0bxxx10xxx */
74#define PEB2466_CMD_COP  0x00  /* COP is 0bxxx0xxxx, handle 0bxxx00xxx */
75#define PEB2466_CMD_COP1 0x08  /* COP is 0bxxx0xxxx, handle 0bxxx01xxx */
76
77#define PEB2466_MAKE_XOP(_lsel)      (PEB2466_CMD_XOP | (_lsel))
78#define PEB2466_MAKE_SOP(_ad, _lsel) (PEB2466_CMD_SOP | ((_ad) << 6) | (_lsel))
79#define PEB2466_MAKE_COP(_ad, _code) (PEB2466_CMD_COP | ((_ad) << 6) | (_code))
80
81#define PEB2466_CR0(_ch)	PEB2466_MAKE_SOP(_ch, 0x0)
82#define   PEB2466_CR0_TH		(1 << 7)
83#define   PEB2466_CR0_IMR1		(1 << 6)
84#define   PEB2466_CR0_FRX		(1 << 5)
85#define   PEB2466_CR0_FRR		(1 << 4)
86#define   PEB2466_CR0_AX		(1 << 3)
87#define   PEB2466_CR0_AR		(1 << 2)
88#define   PEB2466_CR0_THSEL_MASK	(0x3 << 0)
89#define   PEB2466_CR0_THSEL(_set)	((_set) << 0)
90
91#define PEB2466_CR1(_ch)	PEB2466_MAKE_SOP(_ch, 0x1)
92#define   PEB2466_CR1_ETG2		(1 << 7)
93#define   PEB2466_CR1_ETG1		(1 << 6)
94#define   PEB2466_CR1_PTG2		(1 << 5)
95#define   PEB2466_CR1_PTG1		(1 << 4)
96#define   PEB2466_CR1_LAW_MASK		(1 << 3)
97#define   PEB2466_CR1_LAW_ALAW		(0 << 3)
98#define   PEB2466_CR1_LAW_MULAW		(1 << 3)
99#define   PEB2466_CR1_PU		(1 << 0)
100
101#define PEB2466_CR2(_ch)	PEB2466_MAKE_SOP(_ch, 0x2)
102#define PEB2466_CR3(_ch)	PEB2466_MAKE_SOP(_ch, 0x3)
103#define PEB2466_CR4(_ch)	PEB2466_MAKE_SOP(_ch, 0x4)
104#define PEB2466_CR5(_ch)	PEB2466_MAKE_SOP(_ch, 0x5)
105
106#define PEB2466_XR0		PEB2466_MAKE_XOP(0x0)
107#define PEB2466_XR1		PEB2466_MAKE_XOP(0x1)
108#define PEB2466_XR2		PEB2466_MAKE_XOP(0x2)
109#define PEB2466_XR3		PEB2466_MAKE_XOP(0x3)
110#define PEB2466_XR4		PEB2466_MAKE_XOP(0x4)
111#define PEB2466_XR5		PEB2466_MAKE_XOP(0x5)
112#define   PEB2466_XR5_MCLK_1536		(0x0 << 6)
113#define   PEB2466_XR5_MCLK_2048		(0x1 << 6)
114#define   PEB2466_XR5_MCLK_4096		(0x2 << 6)
115#define   PEB2466_XR5_MCLK_8192		(0x3 << 6)
116
117#define PEB2466_XR6		PEB2466_MAKE_XOP(0x6)
118#define   PEB2466_XR6_PCM_OFFSET(_off)	((_off) << 0)
119
120#define PEB2466_XR7		PEB2466_MAKE_XOP(0x7)
121
122#define PEB2466_TH_FILTER_P1(_ch)	PEB2466_MAKE_COP(_ch, 0x0)
123#define PEB2466_TH_FILTER_P2(_ch)	PEB2466_MAKE_COP(_ch, 0x1)
124#define PEB2466_TH_FILTER_P3(_ch)	PEB2466_MAKE_COP(_ch, 0x2)
125#define PEB2466_IMR1_FILTER_P1(_ch)	PEB2466_MAKE_COP(_ch, 0x4)
126#define PEB2466_IMR1_FILTER_P2(_ch)	PEB2466_MAKE_COP(_ch, 0x5)
127#define PEB2466_FRX_FILTER(_ch)		PEB2466_MAKE_COP(_ch, 0x6)
128#define PEB2466_FRR_FILTER(_ch)		PEB2466_MAKE_COP(_ch, 0x7)
129#define PEB2466_AX_FILTER(_ch)		PEB2466_MAKE_COP(_ch, 0x8)
130#define PEB2466_AR_FILTER(_ch)		PEB2466_MAKE_COP(_ch, 0x9)
131#define PEB2466_TG1(_ch)		PEB2466_MAKE_COP(_ch, 0xc)
132#define PEB2466_TG2(_ch)		PEB2466_MAKE_COP(_ch, 0xd)
133
134static int peb2466_write_byte(struct peb2466 *peb2466, u8 cmd, u8 val)
135{
136	struct spi_transfer xfer = {
137		.tx_buf = &peb2466->spi_tx_buf,
138		.len = 2,
139	};
140
141	peb2466->spi_tx_buf[0] = cmd | PEB2466_CMD_W;
142	peb2466->spi_tx_buf[1] = val;
143
144	dev_dbg(&peb2466->spi->dev, "write byte (cmd %02x) %02x\n",
145		peb2466->spi_tx_buf[0], peb2466->spi_tx_buf[1]);
146
147	return spi_sync_transfer(peb2466->spi, &xfer, 1);
148}
149
150static int peb2466_read_byte(struct peb2466 *peb2466, u8 cmd, u8 *val)
151{
152	struct spi_transfer xfer = {
153		.tx_buf = &peb2466->spi_tx_buf,
154		.rx_buf = &peb2466->spi_rx_buf,
155		.len = 3,
156	};
157	int ret;
158
159	peb2466->spi_tx_buf[0] = cmd | PEB2466_CMD_R;
160
161	ret = spi_sync_transfer(peb2466->spi, &xfer, 1);
162	if (ret)
163		return ret;
164
165	if (peb2466->spi_rx_buf[1] != 0x81) {
166		dev_err(&peb2466->spi->dev,
167			"spi xfer rd (cmd %02x) invalid ident byte (0x%02x)\n",
168			peb2466->spi_tx_buf[0], peb2466->spi_rx_buf[1]);
169		return -EILSEQ;
170	}
171
172	*val = peb2466->spi_rx_buf[2];
173
174	dev_dbg(&peb2466->spi->dev, "read byte (cmd %02x) %02x\n",
175		peb2466->spi_tx_buf[0], *val);
176
177	return 0;
178}
179
180static int peb2466_write_buf(struct peb2466 *peb2466, u8 cmd, const u8 *buf, unsigned int len)
181{
182	struct spi_transfer xfer = {
183		.tx_buf = &peb2466->spi_tx_buf,
184		.len = len + 1,
185	};
186
187	if (len > 8)
188		return -EINVAL;
189
190	peb2466->spi_tx_buf[0] = cmd | PEB2466_CMD_W;
191	memcpy(&peb2466->spi_tx_buf[1], buf, len);
192
193	dev_dbg(&peb2466->spi->dev, "write buf (cmd %02x, %u) %*ph\n",
194		peb2466->spi_tx_buf[0], len, len, &peb2466->spi_tx_buf[1]);
195
196	return spi_sync_transfer(peb2466->spi, &xfer, 1);
197}
198
199static int peb2466_reg_write(void *context, unsigned int reg, unsigned int val)
200{
201	struct peb2466 *peb2466 = context;
202	int ret;
203
204	/*
205	 * Only XOP and SOP commands can be handled as registers.
206	 * COP commands are handled using direct peb2466_write_buf() calls.
207	 */
208	switch (reg & PEB2466_CMD_MASK) {
209	case PEB2466_CMD_XOP:
210	case PEB2466_CMD_SOP:
211		ret = peb2466_write_byte(peb2466, reg, val);
212		break;
213	default:
214		dev_err(&peb2466->spi->dev, "Not a XOP or SOP command\n");
215		ret = -EINVAL;
216		break;
217	}
218	return ret;
219}
220
221static int peb2466_reg_read(void *context, unsigned int reg, unsigned int *val)
222{
223	struct peb2466 *peb2466 = context;
224	int ret;
225	u8 tmp;
226
227	/* Only XOP and SOP commands can be handled as registers */
228	switch (reg & PEB2466_CMD_MASK) {
229	case PEB2466_CMD_XOP:
230	case PEB2466_CMD_SOP:
231		ret = peb2466_read_byte(peb2466, reg, &tmp);
232		*val = tmp;
233		break;
234	default:
235		dev_err(&peb2466->spi->dev, "Not a XOP or SOP command\n");
236		ret = -EINVAL;
237		break;
238	}
239	return ret;
240}
241
242static const struct regmap_config peb2466_regmap_config = {
243	.reg_bits = 8,
244	.val_bits = 8,
245	.max_register = 0xFF,
246	.reg_write = peb2466_reg_write,
247	.reg_read = peb2466_reg_read,
248	.cache_type = REGCACHE_NONE,
249};
250
251static int peb2466_lkup_ctrl_info(struct snd_kcontrol *kcontrol,
252				  struct snd_ctl_elem_info *uinfo)
253{
254	struct peb2466_lkup_ctrl *lkup_ctrl =
255		(struct peb2466_lkup_ctrl *)kcontrol->private_value;
256
257	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
258	uinfo->count = 1;
259	uinfo->value.integer.min = 0;
260	uinfo->value.integer.max = lkup_ctrl->lookup->count - 1;
261	return 0;
262}
263
264static int peb2466_lkup_ctrl_get(struct snd_kcontrol *kcontrol,
265				 struct snd_ctl_elem_value *ucontrol)
266{
267	struct peb2466_lkup_ctrl *lkup_ctrl =
268		(struct peb2466_lkup_ctrl *)kcontrol->private_value;
269
270	ucontrol->value.integer.value[0] = lkup_ctrl->index;
271	return 0;
272}
273
274static int peb2466_lkup_ctrl_put(struct snd_kcontrol *kcontrol,
275				 struct snd_ctl_elem_value *ucontrol)
276{
277	struct peb2466_lkup_ctrl *lkup_ctrl =
278		(struct peb2466_lkup_ctrl *)kcontrol->private_value;
279	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
280	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
281	unsigned int index;
282	int ret;
283
284	index = ucontrol->value.integer.value[0];
285	if (index >= lkup_ctrl->lookup->count)
286		return -EINVAL;
287
288	if (index == lkup_ctrl->index)
289		return 0;
290
291	ret = peb2466_write_buf(peb2466, lkup_ctrl->reg,
292				lkup_ctrl->lookup->table[index], 4);
293	if (ret)
294		return ret;
295
296	lkup_ctrl->index = index;
297	return 1; /* The value changed */
298}
299
300static int peb2466_add_lkup_ctrl(struct snd_soc_component *component,
301				 struct peb2466_lkup_ctrl *lkup_ctrl,
302				 const char *name, int min_val, int step)
303{
304	DECLARE_TLV_DB_SCALE(tlv_array, min_val, step, 0);
305	struct snd_kcontrol_new control = {0};
306
307	BUILD_BUG_ON(sizeof(lkup_ctrl->tlv_array) < sizeof(tlv_array));
308	memcpy(lkup_ctrl->tlv_array, tlv_array, sizeof(tlv_array));
309
310	control.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
311	control.name = name;
312	control.access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |
313			 SNDRV_CTL_ELEM_ACCESS_READWRITE;
314	control.tlv.p = lkup_ctrl->tlv_array;
315	control.info = peb2466_lkup_ctrl_info;
316	control.get = peb2466_lkup_ctrl_get;
317	control.put = peb2466_lkup_ctrl_put;
318	control.private_value = (unsigned long)lkup_ctrl;
319
320	return snd_soc_add_component_controls(component, &control, 1);
321}
322
323enum peb2466_tone_freq {
324	PEB2466_TONE_697HZ,
325	PEB2466_TONE_800HZ,
326	PEB2466_TONE_950HZ,
327	PEB2466_TONE_1000HZ,
328	PEB2466_TONE_1008HZ,
329	PEB2466_TONE_2000HZ,
330};
331
332static const u8 peb2466_tone_lookup[][4] = {
333	[PEB2466_TONE_697HZ] = {0x0a, 0x33, 0x5a, 0x2c},
334	[PEB2466_TONE_800HZ] = {0x12, 0xD6, 0x5a, 0xc0},
335	[PEB2466_TONE_950HZ] = {0x1c, 0xf0, 0x5c, 0xc0},
336	[PEB2466_TONE_1000HZ] = {0}, /* lookup value not used for 1000Hz */
337	[PEB2466_TONE_1008HZ] = {0x1a, 0xae, 0x57, 0x70},
338	[PEB2466_TONE_2000HZ] = {0x00, 0x80, 0x50, 0x09},
339};
340
341static const char * const peb2466_tone_freq_txt[] = {
342	[PEB2466_TONE_697HZ] = "697Hz",
343	[PEB2466_TONE_800HZ] = "800Hz",
344	[PEB2466_TONE_950HZ] = "950Hz",
345	[PEB2466_TONE_1000HZ] = "1000Hz",
346	[PEB2466_TONE_1008HZ] = "1008Hz",
347	[PEB2466_TONE_2000HZ] = "2000Hz"
348};
349
350static const struct soc_enum peb2466_tg_freq[][2] = {
351	[0] = {
352		SOC_ENUM_SINGLE(PEB2466_TG1(0), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
353				peb2466_tone_freq_txt),
354		SOC_ENUM_SINGLE(PEB2466_TG2(0), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
355				peb2466_tone_freq_txt)
356	},
357	[1] = {
358		SOC_ENUM_SINGLE(PEB2466_TG1(1), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
359				peb2466_tone_freq_txt),
360		SOC_ENUM_SINGLE(PEB2466_TG2(1), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
361				peb2466_tone_freq_txt)
362	},
363	[2] = {
364		SOC_ENUM_SINGLE(PEB2466_TG1(2), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
365				peb2466_tone_freq_txt),
366		SOC_ENUM_SINGLE(PEB2466_TG2(2), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
367				peb2466_tone_freq_txt)
368	},
369	[3] = {
370		SOC_ENUM_SINGLE(PEB2466_TG1(3), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
371				peb2466_tone_freq_txt),
372		SOC_ENUM_SINGLE(PEB2466_TG2(3), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
373				peb2466_tone_freq_txt)
374	}
375};
376
377static int peb2466_tg_freq_get(struct snd_kcontrol *kcontrol,
378			       struct snd_ctl_elem_value *ucontrol)
379{
380	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
381	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
382	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
383
384	switch (e->reg) {
385	case PEB2466_TG1(0):
386		ucontrol->value.enumerated.item[0] = peb2466->ch[0].tg1_freq_item;
387		break;
388	case PEB2466_TG2(0):
389		ucontrol->value.enumerated.item[0] = peb2466->ch[0].tg2_freq_item;
390		break;
391	case PEB2466_TG1(1):
392		ucontrol->value.enumerated.item[0] = peb2466->ch[1].tg1_freq_item;
393		break;
394	case PEB2466_TG2(1):
395		ucontrol->value.enumerated.item[0] = peb2466->ch[1].tg2_freq_item;
396		break;
397	case PEB2466_TG1(2):
398		ucontrol->value.enumerated.item[0] = peb2466->ch[2].tg1_freq_item;
399		break;
400	case PEB2466_TG2(2):
401		ucontrol->value.enumerated.item[0] = peb2466->ch[2].tg2_freq_item;
402		break;
403	case PEB2466_TG1(3):
404		ucontrol->value.enumerated.item[0] = peb2466->ch[3].tg1_freq_item;
405		break;
406	case PEB2466_TG2(3):
407		ucontrol->value.enumerated.item[0] = peb2466->ch[3].tg2_freq_item;
408		break;
409	default:
410		return -EINVAL;
411	}
412	return 0;
413}
414
415static int peb2466_tg_freq_put(struct snd_kcontrol *kcontrol,
416			       struct snd_ctl_elem_value *ucontrol)
417{
418	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
419	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
420	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
421	unsigned int *tg_freq_item;
422	u8 cr1_reg, cr1_mask;
423	unsigned int index;
424	int ret;
425
426	index = ucontrol->value.enumerated.item[0];
427
428	if (index >= ARRAY_SIZE(peb2466_tone_lookup))
429		return -EINVAL;
430
431	switch (e->reg) {
432	case PEB2466_TG1(0):
433		tg_freq_item = &peb2466->ch[0].tg1_freq_item;
434		cr1_reg = PEB2466_CR1(0);
435		cr1_mask = PEB2466_CR1_PTG1;
436		break;
437	case PEB2466_TG2(0):
438		tg_freq_item = &peb2466->ch[0].tg2_freq_item;
439		cr1_reg = PEB2466_CR1(0);
440		cr1_mask = PEB2466_CR1_PTG2;
441		break;
442	case PEB2466_TG1(1):
443		tg_freq_item = &peb2466->ch[1].tg1_freq_item;
444		cr1_reg = PEB2466_CR1(1);
445		cr1_mask = PEB2466_CR1_PTG1;
446		break;
447	case PEB2466_TG2(1):
448		tg_freq_item = &peb2466->ch[1].tg2_freq_item;
449		cr1_reg = PEB2466_CR1(1);
450		cr1_mask = PEB2466_CR1_PTG2;
451		break;
452	case PEB2466_TG1(2):
453		tg_freq_item = &peb2466->ch[2].tg1_freq_item;
454		cr1_reg = PEB2466_CR1(2);
455		cr1_mask = PEB2466_CR1_PTG1;
456		break;
457	case PEB2466_TG2(2):
458		tg_freq_item = &peb2466->ch[2].tg2_freq_item;
459		cr1_reg = PEB2466_CR1(2);
460		cr1_mask = PEB2466_CR1_PTG2;
461		break;
462	case PEB2466_TG1(3):
463		tg_freq_item = &peb2466->ch[3].tg1_freq_item;
464		cr1_reg = PEB2466_CR1(3);
465		cr1_mask = PEB2466_CR1_PTG1;
466		break;
467	case PEB2466_TG2(3):
468		tg_freq_item = &peb2466->ch[3].tg2_freq_item;
469		cr1_reg = PEB2466_CR1(3);
470		cr1_mask = PEB2466_CR1_PTG2;
471		break;
472	default:
473		return -EINVAL;
474	}
475
476	if (index == *tg_freq_item)
477		return 0;
478
479	if (index == PEB2466_TONE_1000HZ) {
480		ret = regmap_update_bits(peb2466->regmap, cr1_reg, cr1_mask, 0);
481		if (ret)
482			return ret;
483	} else {
484		ret = peb2466_write_buf(peb2466, e->reg, peb2466_tone_lookup[index], 4);
485		if (ret)
486			return ret;
487		ret = regmap_update_bits(peb2466->regmap, cr1_reg, cr1_mask, cr1_mask);
488		if (ret)
489			return ret;
490	}
491
492	*tg_freq_item = index;
493	return 1; /* The value changed */
494}
495
496static const struct snd_kcontrol_new peb2466_ch0_out_mix_controls[] = {
497	SOC_DAPM_SINGLE("TG1 Switch", PEB2466_CR1(0), 6, 1, 0),
498	SOC_DAPM_SINGLE("TG2 Switch", PEB2466_CR1(0), 7, 1, 0),
499	SOC_DAPM_SINGLE("Voice Switch", PEB2466_CR2(0), 0, 1, 0)
500};
501
502static const struct snd_kcontrol_new peb2466_ch1_out_mix_controls[] = {
503	SOC_DAPM_SINGLE("TG1 Switch", PEB2466_CR1(1), 6, 1, 0),
504	SOC_DAPM_SINGLE("TG2 Switch", PEB2466_CR1(1), 7, 1, 0),
505	SOC_DAPM_SINGLE("Voice Switch", PEB2466_CR2(1), 0, 1, 0)
506};
507
508static const struct snd_kcontrol_new peb2466_ch2_out_mix_controls[] = {
509	SOC_DAPM_SINGLE("TG1 Switch", PEB2466_CR1(2), 6, 1, 0),
510	SOC_DAPM_SINGLE("TG2 Switch", PEB2466_CR1(2), 7, 1, 0),
511	SOC_DAPM_SINGLE("Voice Switch", PEB2466_CR2(2), 0, 1, 0)
512};
513
514static const struct snd_kcontrol_new peb2466_ch3_out_mix_controls[] = {
515	SOC_DAPM_SINGLE("TG1 Switch", PEB2466_CR1(3), 6, 1, 0),
516	SOC_DAPM_SINGLE("TG2 Switch", PEB2466_CR1(3), 7, 1, 0),
517	SOC_DAPM_SINGLE("Voice Switch", PEB2466_CR2(3), 0, 1, 0)
518};
519
520static const struct snd_kcontrol_new peb2466_controls[] = {
521	/* Attenuators */
522	SOC_SINGLE("DAC0 -6dB Playback Switch", PEB2466_CR3(0), 2, 1, 0),
523	SOC_SINGLE("DAC1 -6dB Playback Switch", PEB2466_CR3(1), 2, 1, 0),
524	SOC_SINGLE("DAC2 -6dB Playback Switch", PEB2466_CR3(2), 2, 1, 0),
525	SOC_SINGLE("DAC3 -6dB Playback Switch", PEB2466_CR3(3), 2, 1, 0),
526
527	/* Amplifiers */
528	SOC_SINGLE("ADC0 +6dB Capture Switch", PEB2466_CR3(0), 3, 1, 0),
529	SOC_SINGLE("ADC1 +6dB Capture Switch", PEB2466_CR3(1), 3, 1, 0),
530	SOC_SINGLE("ADC2 +6dB Capture Switch", PEB2466_CR3(2), 3, 1, 0),
531	SOC_SINGLE("ADC3 +6dB Capture Switch", PEB2466_CR3(3), 3, 1, 0),
532
533	/* Tone generators */
534	SOC_ENUM_EXT("DAC0 TG1 Freq", peb2466_tg_freq[0][0],
535		     peb2466_tg_freq_get, peb2466_tg_freq_put),
536	SOC_ENUM_EXT("DAC1 TG1 Freq", peb2466_tg_freq[1][0],
537		     peb2466_tg_freq_get, peb2466_tg_freq_put),
538	SOC_ENUM_EXT("DAC2 TG1 Freq", peb2466_tg_freq[2][0],
539		     peb2466_tg_freq_get, peb2466_tg_freq_put),
540	SOC_ENUM_EXT("DAC3 TG1 Freq", peb2466_tg_freq[3][0],
541		     peb2466_tg_freq_get, peb2466_tg_freq_put),
542
543	SOC_ENUM_EXT("DAC0 TG2 Freq", peb2466_tg_freq[0][1],
544		     peb2466_tg_freq_get, peb2466_tg_freq_put),
545	SOC_ENUM_EXT("DAC1 TG2 Freq", peb2466_tg_freq[1][1],
546		     peb2466_tg_freq_get, peb2466_tg_freq_put),
547	SOC_ENUM_EXT("DAC2 TG2 Freq", peb2466_tg_freq[2][1],
548		     peb2466_tg_freq_get, peb2466_tg_freq_put),
549	SOC_ENUM_EXT("DAC3 TG2 Freq", peb2466_tg_freq[3][1],
550		     peb2466_tg_freq_get, peb2466_tg_freq_put),
551};
552
553static const struct snd_soc_dapm_widget peb2466_dapm_widgets[] = {
554	SND_SOC_DAPM_SUPPLY("CH0 PWR", PEB2466_CR1(0), 0, 0, NULL, 0),
555	SND_SOC_DAPM_SUPPLY("CH1 PWR", PEB2466_CR1(1), 0, 0, NULL, 0),
556	SND_SOC_DAPM_SUPPLY("CH2 PWR", PEB2466_CR1(2), 0, 0, NULL, 0),
557	SND_SOC_DAPM_SUPPLY("CH3 PWR", PEB2466_CR1(3), 0, 0, NULL, 0),
558
559	SND_SOC_DAPM_DAC("CH0 DIN", "Playback", SND_SOC_NOPM, 0, 0),
560	SND_SOC_DAPM_DAC("CH1 DIN", "Playback", SND_SOC_NOPM, 0, 0),
561	SND_SOC_DAPM_DAC("CH2 DIN", "Playback", SND_SOC_NOPM, 0, 0),
562	SND_SOC_DAPM_DAC("CH3 DIN", "Playback", SND_SOC_NOPM, 0, 0),
563
564	SND_SOC_DAPM_SIGGEN("CH0 TG1"),
565	SND_SOC_DAPM_SIGGEN("CH1 TG1"),
566	SND_SOC_DAPM_SIGGEN("CH2 TG1"),
567	SND_SOC_DAPM_SIGGEN("CH3 TG1"),
568
569	SND_SOC_DAPM_SIGGEN("CH0 TG2"),
570	SND_SOC_DAPM_SIGGEN("CH1 TG2"),
571	SND_SOC_DAPM_SIGGEN("CH2 TG2"),
572	SND_SOC_DAPM_SIGGEN("CH3 TG2"),
573
574	SND_SOC_DAPM_MIXER("DAC0 Mixer", SND_SOC_NOPM, 0, 0,
575			   peb2466_ch0_out_mix_controls,
576			   ARRAY_SIZE(peb2466_ch0_out_mix_controls)),
577	SND_SOC_DAPM_MIXER("DAC1 Mixer", SND_SOC_NOPM, 0, 0,
578			   peb2466_ch1_out_mix_controls,
579			   ARRAY_SIZE(peb2466_ch1_out_mix_controls)),
580	SND_SOC_DAPM_MIXER("DAC2 Mixer", SND_SOC_NOPM, 0, 0,
581			   peb2466_ch2_out_mix_controls,
582			   ARRAY_SIZE(peb2466_ch2_out_mix_controls)),
583	SND_SOC_DAPM_MIXER("DAC3 Mixer", SND_SOC_NOPM, 0, 0,
584			   peb2466_ch3_out_mix_controls,
585			   ARRAY_SIZE(peb2466_ch3_out_mix_controls)),
586
587	SND_SOC_DAPM_PGA("DAC0 PGA", SND_SOC_NOPM, 0, 0, NULL, 0),
588	SND_SOC_DAPM_PGA("DAC1 PGA", SND_SOC_NOPM, 0, 0, NULL, 0),
589	SND_SOC_DAPM_PGA("DAC2 PGA", SND_SOC_NOPM, 0, 0, NULL, 0),
590	SND_SOC_DAPM_PGA("DAC3 PGA", SND_SOC_NOPM, 0, 0, NULL, 0),
591
592	SND_SOC_DAPM_OUTPUT("OUT0"),
593	SND_SOC_DAPM_OUTPUT("OUT1"),
594	SND_SOC_DAPM_OUTPUT("OUT2"),
595	SND_SOC_DAPM_OUTPUT("OUT3"),
596
597	SND_SOC_DAPM_INPUT("IN0"),
598	SND_SOC_DAPM_INPUT("IN1"),
599	SND_SOC_DAPM_INPUT("IN2"),
600	SND_SOC_DAPM_INPUT("IN3"),
601
602	SND_SOC_DAPM_DAC("ADC0", "Capture", SND_SOC_NOPM, 0, 0),
603	SND_SOC_DAPM_DAC("ADC1", "Capture", SND_SOC_NOPM, 0, 0),
604	SND_SOC_DAPM_DAC("ADC2", "Capture", SND_SOC_NOPM, 0, 0),
605	SND_SOC_DAPM_DAC("ADC3", "Capture", SND_SOC_NOPM, 0, 0),
606};
607
608static const struct snd_soc_dapm_route peb2466_dapm_routes[] = {
609	{ "CH0 DIN", NULL, "CH0 PWR" },
610	{ "CH1 DIN", NULL, "CH1 PWR" },
611	{ "CH2 DIN", NULL, "CH2 PWR" },
612	{ "CH3 DIN", NULL, "CH3 PWR" },
613
614	{ "CH0 TG1", NULL, "CH0 PWR" },
615	{ "CH1 TG1", NULL, "CH1 PWR" },
616	{ "CH2 TG1", NULL, "CH2 PWR" },
617	{ "CH3 TG1", NULL, "CH3 PWR" },
618
619	{ "CH0 TG2", NULL, "CH0 PWR" },
620	{ "CH1 TG2", NULL, "CH1 PWR" },
621	{ "CH2 TG2", NULL, "CH2 PWR" },
622	{ "CH3 TG2", NULL, "CH3 PWR" },
623
624	{ "DAC0 Mixer", "TG1 Switch", "CH0 TG1" },
625	{ "DAC0 Mixer", "TG2 Switch", "CH0 TG2" },
626	{ "DAC0 Mixer", "Voice Switch", "CH0 DIN" },
627	{ "DAC0 Mixer", NULL, "CH0 DIN" },
628
629	{ "DAC1 Mixer", "TG1 Switch", "CH1 TG1" },
630	{ "DAC1 Mixer", "TG2 Switch", "CH1 TG2" },
631	{ "DAC1 Mixer", "Voice Switch", "CH1 DIN" },
632	{ "DAC1 Mixer", NULL, "CH1 DIN" },
633
634	{ "DAC2 Mixer", "TG1 Switch", "CH2 TG1" },
635	{ "DAC2 Mixer", "TG2 Switch", "CH2 TG2" },
636	{ "DAC2 Mixer", "Voice Switch", "CH2 DIN" },
637	{ "DAC2 Mixer", NULL, "CH2 DIN" },
638
639	{ "DAC3 Mixer", "TG1 Switch", "CH3 TG1" },
640	{ "DAC3 Mixer", "TG2 Switch", "CH3 TG2" },
641	{ "DAC3 Mixer", "Voice Switch", "CH3 DIN" },
642	{ "DAC3 Mixer", NULL, "CH3 DIN" },
643
644	{ "DAC0 PGA", NULL, "DAC0 Mixer" },
645	{ "DAC1 PGA", NULL, "DAC1 Mixer" },
646	{ "DAC2 PGA", NULL, "DAC2 Mixer" },
647	{ "DAC3 PGA", NULL, "DAC3 Mixer" },
648
649	{ "OUT0", NULL, "DAC0 PGA" },
650	{ "OUT1", NULL, "DAC1 PGA" },
651	{ "OUT2", NULL, "DAC2 PGA" },
652	{ "OUT3", NULL, "DAC3 PGA" },
653
654	{ "ADC0", NULL, "IN0" },
655	{ "ADC1", NULL, "IN1" },
656	{ "ADC2", NULL, "IN2" },
657	{ "ADC3", NULL, "IN3" },
658
659	{ "ADC0", NULL, "CH0 PWR" },
660	{ "ADC1", NULL, "CH1 PWR" },
661	{ "ADC2", NULL, "CH2 PWR" },
662	{ "ADC3", NULL, "CH3 PWR" },
663};
664
665static int peb2466_dai_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask,
666				    unsigned int rx_mask, int slots, int width)
667{
668	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(dai->component);
669	unsigned int chan;
670	unsigned int mask;
671	u8 slot;
672	int ret;
673
674	switch (width) {
675	case 0:
676		/* Not set -> default 8 */
677	case 8:
678		break;
679	default:
680		dev_err(dai->dev, "tdm slot width %d not supported\n", width);
681		return -EINVAL;
682	}
683
684	mask = tx_mask;
685	slot = 0;
686	chan = 0;
687	while (mask && chan < PEB2466_NB_CHANNEL) {
688		if (mask & 0x1) {
689			ret = regmap_write(peb2466->regmap, PEB2466_CR5(chan), slot);
690			if (ret) {
691				dev_err(dai->dev, "chan %d set tx tdm slot failed (%d)\n",
692					chan, ret);
693				return ret;
694			}
695			chan++;
696		}
697		mask >>= 1;
698		slot++;
699	}
700	if (mask) {
701		dev_err(dai->dev, "too much tx slots defined (mask = 0x%x) support max %d\n",
702			tx_mask, PEB2466_NB_CHANNEL);
703		return -EINVAL;
704	}
705	peb2466->max_chan_playback = chan;
706
707	mask = rx_mask;
708	slot = 0;
709	chan = 0;
710	while (mask && chan < PEB2466_NB_CHANNEL) {
711		if (mask & 0x1) {
712			ret = regmap_write(peb2466->regmap, PEB2466_CR4(chan), slot);
713			if (ret) {
714				dev_err(dai->dev, "chan %d set rx tdm slot failed (%d)\n",
715					chan, ret);
716				return ret;
717			}
718			chan++;
719		}
720		mask >>= 1;
721		slot++;
722	}
723	if (mask) {
724		dev_err(dai->dev, "too much rx slots defined (mask = 0x%x) support max %d\n",
725			rx_mask, PEB2466_NB_CHANNEL);
726		return -EINVAL;
727	}
728	peb2466->max_chan_capture = chan;
729
730	return 0;
731}
732
733static int peb2466_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
734{
735	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(dai->component);
736	u8 xr6;
737
738	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
739	case SND_SOC_DAIFMT_DSP_A:
740		xr6 = PEB2466_XR6_PCM_OFFSET(1);
741		break;
742	case SND_SOC_DAIFMT_DSP_B:
743		xr6 = PEB2466_XR6_PCM_OFFSET(0);
744		break;
745	default:
746		dev_err(dai->dev, "Unsupported format 0x%x\n",
747			fmt & SND_SOC_DAIFMT_FORMAT_MASK);
748		return -EINVAL;
749	}
750	return regmap_write(peb2466->regmap, PEB2466_XR6, xr6);
751}
752
753static int peb2466_dai_hw_params(struct snd_pcm_substream *substream,
754				 struct snd_pcm_hw_params *params,
755				 struct snd_soc_dai *dai)
756{
757	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(dai->component);
758	unsigned int ch;
759	int ret;
760	u8 cr1;
761
762	switch (params_format(params)) {
763	case SNDRV_PCM_FORMAT_MU_LAW:
764		cr1 = PEB2466_CR1_LAW_MULAW;
765		break;
766	case SNDRV_PCM_FORMAT_A_LAW:
767		cr1 = PEB2466_CR1_LAW_ALAW;
768		break;
769	default:
770		dev_err(&peb2466->spi->dev, "Unsupported format 0x%x\n",
771			params_format(params));
772		return -EINVAL;
773	}
774
775	for (ch = 0; ch < PEB2466_NB_CHANNEL; ch++) {
776		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR1(ch),
777					 PEB2466_CR1_LAW_MASK, cr1);
778		if (ret)
779			return ret;
780	}
781
782	return 0;
783}
784
785static const unsigned int peb2466_sample_bits[] = {8};
786
787static struct snd_pcm_hw_constraint_list peb2466_sample_bits_constr = {
788	.list = peb2466_sample_bits,
789	.count = ARRAY_SIZE(peb2466_sample_bits),
790};
791
792static int peb2466_dai_startup(struct snd_pcm_substream *substream,
793			       struct snd_soc_dai *dai)
794{
795	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(dai->component);
796	unsigned int max_ch;
797	int ret;
798
799	max_ch = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
800		peb2466->max_chan_playback : peb2466->max_chan_capture;
801
802	/*
803	 * Disable stream support (min = 0, max = 0) if no timeslots were
804	 * configured.
805	 */
806	ret = snd_pcm_hw_constraint_minmax(substream->runtime,
807					   SNDRV_PCM_HW_PARAM_CHANNELS,
808					   max_ch ? 1 : 0, max_ch);
809	if (ret < 0)
810		return ret;
811
812	return snd_pcm_hw_constraint_list(substream->runtime, 0,
813					  SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
814					  &peb2466_sample_bits_constr);
815}
816
817static u64 peb2466_dai_formats[] = {
818	SND_SOC_POSSIBLE_DAIFMT_DSP_A	|
819	SND_SOC_POSSIBLE_DAIFMT_DSP_B,
820};
821
822static const struct snd_soc_dai_ops peb2466_dai_ops = {
823	.startup = peb2466_dai_startup,
824	.hw_params = peb2466_dai_hw_params,
825	.set_tdm_slot = peb2466_dai_set_tdm_slot,
826	.set_fmt = peb2466_dai_set_fmt,
827	.auto_selectable_formats     = peb2466_dai_formats,
828	.num_auto_selectable_formats = ARRAY_SIZE(peb2466_dai_formats),
829};
830
831static struct snd_soc_dai_driver peb2466_dai_driver = {
832	.name = "peb2466",
833	.playback = {
834		.stream_name = "Playback",
835		.channels_min = 1,
836		.channels_max = PEB2466_NB_CHANNEL,
837		.rates = SNDRV_PCM_RATE_8000,
838		.formats = SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
839	},
840	.capture = {
841		.stream_name = "Capture",
842		.channels_min = 1,
843		.channels_max = PEB2466_NB_CHANNEL,
844		.rates = SNDRV_PCM_RATE_8000,
845		.formats = SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
846	},
847	.ops = &peb2466_dai_ops,
848};
849
850static int peb2466_reset_audio(struct peb2466 *peb2466)
851{
852	static const struct reg_sequence reg_reset[] = {
853		{  .reg = PEB2466_XR6,    .def = 0x00 },
854
855		{  .reg = PEB2466_CR5(0), .def = 0x00 },
856		{  .reg = PEB2466_CR4(0), .def = 0x00 },
857		{  .reg = PEB2466_CR3(0), .def = 0x00 },
858		{  .reg = PEB2466_CR2(0), .def = 0x00 },
859		{  .reg = PEB2466_CR1(0), .def = 0x00 },
860		{  .reg = PEB2466_CR0(0), .def = PEB2466_CR0_IMR1 },
861
862		{  .reg = PEB2466_CR5(1), .def = 0x00 },
863		{  .reg = PEB2466_CR4(1), .def = 0x00 },
864		{  .reg = PEB2466_CR3(1), .def = 0x00 },
865		{  .reg = PEB2466_CR2(1), .def = 0x00 },
866		{  .reg = PEB2466_CR1(1), .def = 0x00 },
867		{  .reg = PEB2466_CR0(1), .def = PEB2466_CR0_IMR1 },
868
869		{  .reg = PEB2466_CR5(2), .def = 0x00 },
870		{  .reg = PEB2466_CR4(2), .def = 0x00 },
871		{  .reg = PEB2466_CR3(2), .def = 0x00 },
872		{  .reg = PEB2466_CR2(2), .def = 0x00 },
873		{  .reg = PEB2466_CR1(2), .def = 0x00 },
874		{  .reg = PEB2466_CR0(2), .def = PEB2466_CR0_IMR1 },
875
876		{  .reg = PEB2466_CR5(3), .def = 0x00 },
877		{  .reg = PEB2466_CR4(3), .def = 0x00 },
878		{  .reg = PEB2466_CR3(3), .def = 0x00 },
879		{  .reg = PEB2466_CR2(3), .def = 0x00 },
880		{  .reg = PEB2466_CR1(3), .def = 0x00 },
881		{  .reg = PEB2466_CR0(3), .def = PEB2466_CR0_IMR1 },
882	};
883	static const u8 imr1_p1[8] = {0x00, 0x90, 0x09, 0x00, 0x90, 0x09, 0x00, 0x00};
884	static const u8 imr1_p2[8] = {0x7F, 0xFF, 0x00, 0x00, 0x90, 0x14, 0x40, 0x08};
885	static const u8 zero[8] = {0};
886	int ret;
887	int i;
888
889	for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
890		peb2466->ch[i].tg1_freq_item = PEB2466_TONE_1000HZ;
891		peb2466->ch[i].tg2_freq_item = PEB2466_TONE_1000HZ;
892
893		/*
894		 * Even if not used, disabling IM/R1 filter is not recommended.
895		 * Instead, we must configure it with default coefficients and
896		 * enable it.
897		 * The filter will be enabled right after (in the following
898		 * regmap_multi_reg_write() call).
899		 */
900		ret = peb2466_write_buf(peb2466, PEB2466_IMR1_FILTER_P1(i), imr1_p1, 8);
901		if (ret)
902			return ret;
903		ret = peb2466_write_buf(peb2466, PEB2466_IMR1_FILTER_P2(i), imr1_p2, 8);
904		if (ret)
905			return ret;
906
907		/* Set all other filters coefficients to zero */
908		ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P1(i), zero, 8);
909		if (ret)
910			return ret;
911		ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P2(i), zero, 8);
912		if (ret)
913			return ret;
914		ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P3(i), zero, 8);
915		if (ret)
916			return ret;
917		ret = peb2466_write_buf(peb2466, PEB2466_FRX_FILTER(i), zero, 8);
918		if (ret)
919			return ret;
920		ret = peb2466_write_buf(peb2466, PEB2466_FRR_FILTER(i), zero, 8);
921		if (ret)
922			return ret;
923		ret = peb2466_write_buf(peb2466, PEB2466_AX_FILTER(i), zero, 4);
924		if (ret)
925			return ret;
926		ret = peb2466_write_buf(peb2466, PEB2466_AR_FILTER(i), zero, 4);
927		if (ret)
928			return ret;
929	}
930
931	return regmap_multi_reg_write(peb2466->regmap, reg_reset, ARRAY_SIZE(reg_reset));
932}
933
934static int peb2466_fw_parse_thfilter(struct snd_soc_component *component,
935				     u16 tag, u32 lng, const u8 *data)
936{
937	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
938	u8 mask;
939	int ret;
940	int i;
941
942	dev_info(component->dev, "fw TH filter: mask %x, %*phN\n", *data,
943		 lng - 1, data + 1);
944
945	/*
946	 * TH_FILTER TLV data:
947	 *   - @0  1 byte:  Chan mask (bit set means related channel is concerned)
948	 *   - @1  8 bytes: TH-Filter coefficients part1
949	 *   - @9  8 bytes: TH-Filter coefficients part2
950	 *   - @17 8 bytes: TH-Filter coefficients part3
951	 */
952	mask = *data;
953	for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
954		if (!(mask & (1 << i)))
955			continue;
956
957		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
958					 PEB2466_CR0_TH, 0);
959		if (ret)
960			return ret;
961
962		ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P1(i), data + 1, 8);
963		if (ret)
964			return ret;
965
966		ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P2(i), data + 9, 8);
967		if (ret)
968			return ret;
969
970		ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P3(i), data + 17, 8);
971		if (ret)
972			return ret;
973
974		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
975					 PEB2466_CR0_TH | PEB2466_CR0_THSEL_MASK,
976					 PEB2466_CR0_TH | PEB2466_CR0_THSEL(i));
977		if (ret)
978			return ret;
979	}
980	return 0;
981}
982
983static int peb2466_fw_parse_imr1filter(struct snd_soc_component *component,
984				       u16 tag, u32 lng, const u8 *data)
985{
986	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
987	u8 mask;
988	int ret;
989	int i;
990
991	dev_info(component->dev, "fw IM/R1 filter: mask %x, %*phN\n", *data,
992		 lng - 1, data + 1);
993
994	/*
995	 * IMR1_FILTER TLV data:
996	 *   - @0 1 byte:  Chan mask (bit set means related channel is concerned)
997	 *   - @1 8 bytes: IM/R1-Filter coefficients part1
998	 *   - @9 8 bytes: IM/R1-Filter coefficients part2
999	 */
1000	mask = *data;
1001	for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
1002		if (!(mask & (1 << i)))
1003			continue;
1004
1005		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1006					 PEB2466_CR0_IMR1, 0);
1007		if (ret)
1008			return ret;
1009
1010		ret = peb2466_write_buf(peb2466, PEB2466_IMR1_FILTER_P1(i), data + 1, 8);
1011		if (ret)
1012			return ret;
1013
1014		ret = peb2466_write_buf(peb2466, PEB2466_IMR1_FILTER_P2(i), data + 9, 8);
1015		if (ret)
1016			return ret;
1017
1018		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1019					 PEB2466_CR0_IMR1, PEB2466_CR0_IMR1);
1020		if (ret)
1021			return ret;
1022	}
1023	return 0;
1024}
1025
1026static int peb2466_fw_parse_frxfilter(struct snd_soc_component *component,
1027				      u16 tag, u32 lng, const u8 *data)
1028{
1029	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
1030	u8 mask;
1031	int ret;
1032	int i;
1033
1034	dev_info(component->dev, "fw FRX filter: mask %x, %*phN\n", *data,
1035		 lng - 1, data + 1);
1036
1037	/*
1038	 * FRX_FILTER TLV data:
1039	 *   - @0 1 byte:  Chan mask (bit set means related channel is concerned)
1040	 *   - @1 8 bytes: FRX-Filter coefficients
1041	 */
1042	mask = *data;
1043	for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
1044		if (!(mask & (1 << i)))
1045			continue;
1046
1047		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1048					 PEB2466_CR0_FRX, 0);
1049		if (ret)
1050			return ret;
1051
1052		ret = peb2466_write_buf(peb2466, PEB2466_FRX_FILTER(i), data + 1, 8);
1053		if (ret)
1054			return ret;
1055
1056		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1057					 PEB2466_CR0_FRX, PEB2466_CR0_FRX);
1058		if (ret)
1059			return ret;
1060	}
1061	return 0;
1062}
1063
1064static int peb2466_fw_parse_frrfilter(struct snd_soc_component *component,
1065				      u16 tag, u32 lng, const u8 *data)
1066{
1067	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
1068	u8 mask;
1069	int ret;
1070	int i;
1071
1072	dev_info(component->dev, "fw FRR filter: mask %x, %*phN\n", *data,
1073		 lng - 1, data + 1);
1074
1075	/*
1076	 * FRR_FILTER TLV data:
1077	 *   - @0 1 byte:  Chan mask (bit set means related channel is concerned)
1078	 *   - @1 8 bytes: FRR-Filter coefficients
1079	 */
1080	mask = *data;
1081	for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
1082		if (!(mask & (1 << i)))
1083			continue;
1084
1085		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1086					 PEB2466_CR0_FRR, 0);
1087		if (ret)
1088			return ret;
1089
1090		ret = peb2466_write_buf(peb2466, PEB2466_FRR_FILTER(i), data + 1, 8);
1091		if (ret)
1092			return ret;
1093
1094		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1095					 PEB2466_CR0_FRR, PEB2466_CR0_FRR);
1096		if (ret)
1097			return ret;
1098	}
1099	return 0;
1100}
1101
1102static int peb2466_fw_parse_axfilter(struct snd_soc_component *component,
1103				     u16 tag, u32 lng, const u8 *data)
1104{
1105	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
1106	u8 mask;
1107	int ret;
1108	int i;
1109
1110	dev_info(component->dev, "fw AX filter: mask %x, %*phN\n", *data,
1111		 lng - 1, data + 1);
1112
1113	/*
1114	 * AX_FILTER TLV data:
1115	 *   - @0 1 byte:  Chan mask (bit set means related channel is concerned)
1116	 *   - @1 4 bytes: AX-Filter coefficients
1117	 */
1118	mask = *data;
1119	for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
1120		if (!(mask & (1 << i)))
1121			continue;
1122
1123		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1124					 PEB2466_CR0_AX, 0);
1125		if (ret)
1126			return ret;
1127
1128		ret = peb2466_write_buf(peb2466, PEB2466_AX_FILTER(i), data + 1, 4);
1129		if (ret)
1130			return ret;
1131
1132		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1133					 PEB2466_CR0_AX, PEB2466_CR0_AX);
1134		if (ret)
1135			return ret;
1136	}
1137	return 0;
1138}
1139
1140static int peb2466_fw_parse_arfilter(struct snd_soc_component *component,
1141				     u16 tag, u32 lng, const u8 *data)
1142{
1143	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
1144	u8 mask;
1145	int ret;
1146	int i;
1147
1148	dev_info(component->dev, "fw AR filter: mask %x, %*phN\n", *data,
1149		 lng - 1, data + 1);
1150
1151	/*
1152	 * AR_FILTER TLV data:
1153	 *   - @0 1 byte:  Chan mask (bit set means related channel is concerned)
1154	 *   - @1 4 bytes: AR-Filter coefficients
1155	 */
1156	mask = *data;
1157	for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
1158		if (!(mask & (1 << i)))
1159			continue;
1160
1161		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1162					 PEB2466_CR0_AR, 0);
1163		if (ret)
1164			return ret;
1165
1166		ret = peb2466_write_buf(peb2466, PEB2466_AR_FILTER(i), data + 1, 4);
1167		if (ret)
1168			return ret;
1169
1170		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1171					 PEB2466_CR0_AR, PEB2466_CR0_AR);
1172		if (ret)
1173			return ret;
1174	}
1175	return 0;
1176}
1177
1178static const char * const peb2466_ax_ctrl_names[] = {
1179	"ADC0 Capture Volume",
1180	"ADC1 Capture Volume",
1181	"ADC2 Capture Volume",
1182	"ADC3 Capture Volume",
1183};
1184
1185static int peb2466_fw_parse_axtable(struct snd_soc_component *component,
1186				    u16 tag, u32 lng, const u8 *data)
1187{
1188	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
1189	struct peb2466_lkup_ctrl *lkup_ctrl;
1190	struct peb2466_lookup *lookup;
1191	u8 (*table)[4];
1192	u32 table_size;
1193	u32 init_index;
1194	s32 min_val;
1195	s32 step;
1196	u8 mask;
1197	int ret;
1198	int i;
1199
1200	/*
1201	 * AX_TABLE TLV data:
1202	 *   - @0 1 byte:  Chan mask (bit set means related channel is concerned)
1203	 *   - @1 32bits signed: Min table value in centi dB (MinVal)
1204	 *                       ie -300 means -3.0 dB
1205	 *   - @5 32bits signed: Step from on item to other item in centi dB (Step)
1206	 *                       ie 25 means 0.25 dB)
1207	 *   - @9 32bits unsigned: Item index in the table to use for the initial
1208	 *                         value
1209	 *   - @13 N*4 bytes: Table composed of 4 bytes items.
1210	 *                    Each item correspond to an AX filter value.
1211	 *
1212	 * The conversion from raw value item in the table to/from the value in
1213	 * dB is: Raw value at index i <-> (MinVal + i * Step) in centi dB.
1214	 */
1215
1216	/* Check Lng and extract the table size. */
1217	if (lng < 13 || ((lng - 13) % 4)) {
1218		dev_err(component->dev, "fw AX table lng %u invalid\n", lng);
1219		return -EINVAL;
1220	}
1221	table_size = lng - 13;
1222
1223	min_val = get_unaligned_be32(data + 1);
1224	step = get_unaligned_be32(data + 5);
1225	init_index = get_unaligned_be32(data + 9);
1226	if (init_index >= (table_size / 4)) {
1227		dev_err(component->dev, "fw AX table index %u out of table[%u]\n",
1228			init_index, table_size / 4);
1229		return -EINVAL;
1230	}
1231
1232	dev_info(component->dev,
1233		 "fw AX table: mask %x, min %d, step %d, %u items, tbl[%u] %*phN\n",
1234		 *data, min_val, step, table_size / 4, init_index,
1235		 4, data + 13 + (init_index * 4));
1236
1237	BUILD_BUG_ON(sizeof(*table) != 4);
1238	table = devm_kzalloc(&peb2466->spi->dev, table_size, GFP_KERNEL);
1239	if (!table)
1240		return -ENOMEM;
1241	memcpy(table, data + 13, table_size);
1242
1243	mask = *data;
1244	BUILD_BUG_ON(ARRAY_SIZE(peb2466_ax_ctrl_names) != ARRAY_SIZE(peb2466->ch));
1245	for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
1246		if (!(mask & (1 << i)))
1247			continue;
1248
1249		lookup = &peb2466->ch[i].ax_lookup;
1250		lookup->table = table;
1251		lookup->count = table_size / 4;
1252
1253		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1254					 PEB2466_CR0_AX, 0);
1255		if (ret)
1256			return ret;
1257
1258		ret = peb2466_write_buf(peb2466, PEB2466_AX_FILTER(i),
1259					lookup->table[init_index], 4);
1260		if (ret)
1261			return ret;
1262
1263		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1264					 PEB2466_CR0_AX, PEB2466_CR0_AX);
1265		if (ret)
1266			return ret;
1267
1268		lkup_ctrl = &peb2466->ch[i].ax_lkup_ctrl;
1269		lkup_ctrl->lookup = lookup;
1270		lkup_ctrl->reg = PEB2466_AX_FILTER(i);
1271		lkup_ctrl->index = init_index;
1272
1273		ret = peb2466_add_lkup_ctrl(component, lkup_ctrl,
1274					    peb2466_ax_ctrl_names[i],
1275					    min_val, step);
1276		if (ret)
1277			return ret;
1278	}
1279	return 0;
1280}
1281
1282static const char * const peb2466_ar_ctrl_names[] = {
1283	"DAC0 Playback Volume",
1284	"DAC1 Playback Volume",
1285	"DAC2 Playback Volume",
1286	"DAC3 Playback Volume",
1287};
1288
1289static int peb2466_fw_parse_artable(struct snd_soc_component *component,
1290				    u16 tag, u32 lng, const u8 *data)
1291{
1292	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
1293	struct peb2466_lkup_ctrl *lkup_ctrl;
1294	struct peb2466_lookup *lookup;
1295	u8 (*table)[4];
1296	u32 table_size;
1297	u32 init_index;
1298	s32 min_val;
1299	s32 step;
1300	u8 mask;
1301	int ret;
1302	int i;
1303
1304	/*
1305	 * AR_TABLE TLV data:
1306	 *   - @0 1 byte:  Chan mask (bit set means related channel is concerned)
1307	 *   - @1 32bits signed: Min table value in centi dB (MinVal)
1308	 *                       ie -300 means -3.0 dB
1309	 *   - @5 32bits signed: Step from on item to other item in centi dB (Step)
1310	 *                       ie 25 means 0.25 dB)
1311	 *   - @9 32bits unsigned: Item index in the table to use for the initial
1312	 *                         value
1313	 *   - @13 N*4 bytes: Table composed of 4 bytes items.
1314	 *                    Each item correspond to an AR filter value.
1315	 *
1316	 * The conversion from raw value item in the table to/from the value in
1317	 * dB is: Raw value at index i <-> (MinVal + i * Step) in centi dB.
1318	 */
1319
1320	/* Check Lng and extract the table size. */
1321	if (lng < 13 || ((lng - 13) % 4)) {
1322		dev_err(component->dev, "fw AR table lng %u invalid\n", lng);
1323		return -EINVAL;
1324	}
1325	table_size = lng - 13;
1326
1327	min_val = get_unaligned_be32(data + 1);
1328	step = get_unaligned_be32(data + 5);
1329	init_index = get_unaligned_be32(data + 9);
1330	if (init_index >= (table_size / 4)) {
1331		dev_err(component->dev, "fw AR table index %u out of table[%u]\n",
1332			init_index, table_size / 4);
1333		return -EINVAL;
1334	}
1335
1336	dev_info(component->dev,
1337		 "fw AR table: mask %x, min %d, step %d, %u items, tbl[%u] %*phN\n",
1338		 *data, min_val, step, table_size / 4, init_index,
1339		 4, data + 13 + (init_index * 4));
1340
1341	BUILD_BUG_ON(sizeof(*table) != 4);
1342	table = devm_kzalloc(&peb2466->spi->dev, table_size, GFP_KERNEL);
1343	if (!table)
1344		return -ENOMEM;
1345	memcpy(table, data + 13, table_size);
1346
1347	mask = *data;
1348	BUILD_BUG_ON(ARRAY_SIZE(peb2466_ar_ctrl_names) != ARRAY_SIZE(peb2466->ch));
1349	for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
1350		if (!(mask & (1 << i)))
1351			continue;
1352
1353		lookup = &peb2466->ch[i].ar_lookup;
1354		lookup->table = table;
1355		lookup->count = table_size / 4;
1356
1357		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1358					 PEB2466_CR0_AR, 0);
1359		if (ret)
1360			return ret;
1361
1362		ret = peb2466_write_buf(peb2466, PEB2466_AR_FILTER(i),
1363					lookup->table[init_index], 4);
1364		if (ret)
1365			return ret;
1366
1367		ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1368					 PEB2466_CR0_AR, PEB2466_CR0_AR);
1369		if (ret)
1370			return ret;
1371
1372		lkup_ctrl = &peb2466->ch[i].ar_lkup_ctrl;
1373		lkup_ctrl->lookup = lookup;
1374		lkup_ctrl->reg = PEB2466_AR_FILTER(i);
1375		lkup_ctrl->index = init_index;
1376
1377		ret = peb2466_add_lkup_ctrl(component, lkup_ctrl,
1378					    peb2466_ar_ctrl_names[i],
1379					    min_val, step);
1380		if (ret)
1381			return ret;
1382	}
1383	return 0;
1384}
1385
1386struct peb2466_fw_tag_def {
1387	u16 tag;
1388	u32 lng_min;
1389	u32 lng_max;
1390	int (*parse)(struct snd_soc_component *component,
1391		     u16 tag, u32 lng, const u8 *data);
1392};
1393
1394#define PEB2466_TAG_DEF_LNG_EQ(__tag, __lng, __parse) { \
1395	.tag = __tag,		\
1396	.lng_min = __lng,	\
1397	.lng_max = __lng,	\
1398	.parse = __parse,	\
1399}
1400
1401#define PEB2466_TAG_DEF_LNG_MIN(__tag, __lng_min, __parse) { \
1402	.tag = __tag,		\
1403	.lng_min = __lng_min,	\
1404	.lng_max = U32_MAX,	\
1405	.parse = __parse,	\
1406}
1407
1408static const struct peb2466_fw_tag_def peb2466_fw_tag_defs[] = {
1409	/* TH FILTER */
1410	PEB2466_TAG_DEF_LNG_EQ(0x0001, 1 + 3 * 8, peb2466_fw_parse_thfilter),
1411	/* IMR1 FILTER */
1412	PEB2466_TAG_DEF_LNG_EQ(0x0002, 1 + 2 * 8, peb2466_fw_parse_imr1filter),
1413	/* FRX FILTER */
1414	PEB2466_TAG_DEF_LNG_EQ(0x0003, 1 + 8, peb2466_fw_parse_frxfilter),
1415	/* FRR FILTER */
1416	PEB2466_TAG_DEF_LNG_EQ(0x0004, 1 + 8, peb2466_fw_parse_frrfilter),
1417	/* AX FILTER */
1418	PEB2466_TAG_DEF_LNG_EQ(0x0005, 1 + 4, peb2466_fw_parse_axfilter),
1419	/* AR FILTER */
1420	PEB2466_TAG_DEF_LNG_EQ(0x0006, 1 + 4, peb2466_fw_parse_arfilter),
1421	/* AX TABLE */
1422	PEB2466_TAG_DEF_LNG_MIN(0x0105, 1 + 3 * 4, peb2466_fw_parse_axtable),
1423	/* AR TABLE */
1424	PEB2466_TAG_DEF_LNG_MIN(0x0106, 1 + 3 * 4, peb2466_fw_parse_artable),
1425};
1426
1427static const struct peb2466_fw_tag_def *peb2466_fw_get_tag_def(u16 tag)
1428{
1429	int i;
1430
1431	for (i = 0; i < ARRAY_SIZE(peb2466_fw_tag_defs); i++) {
1432		if (peb2466_fw_tag_defs[i].tag == tag)
1433			return &peb2466_fw_tag_defs[i];
1434	}
1435	return NULL;
1436}
1437
1438static int peb2466_fw_parse(struct snd_soc_component *component,
1439			    const u8 *data, size_t size)
1440{
1441	const struct peb2466_fw_tag_def *tag_def;
1442	size_t left;
1443	const u8 *buf;
1444	u16 val16;
1445	u16 tag;
1446	u32 lng;
1447	int ret;
1448
1449	/*
1450	 * Coefficients firmware binary structure (16bits and 32bits are
1451	 * big-endian values).
1452	 *
1453	 * @0, 16bits: Magic (0x2466)
1454	 * @2, 16bits: Version (0x0100 for version 1.0)
1455	 * @4, 2+4+N bytes: TLV block
1456	 * @4+(2+4+N) bytes: Next TLV block
1457	 * ...
1458	 *
1459	 * Detail of a TLV block:
1460	 *   @0, 16bits: Tag
1461	 *   @2, 32bits: Lng
1462	 *   @6, lng bytes: Data
1463	 *
1464	 * The detail the Data for a given TLV Tag is provided in the related
1465	 * parser.
1466	 */
1467
1468	left = size;
1469	buf = data;
1470
1471	if (left < 4) {
1472		dev_err(component->dev, "fw size %zu, exp at least 4\n", left);
1473		return -EINVAL;
1474	}
1475
1476	/* Check magic */
1477	val16 = get_unaligned_be16(buf);
1478	if (val16 != 0x2466) {
1479		dev_err(component->dev, "fw magic 0x%04x exp 0x2466\n", val16);
1480		return -EINVAL;
1481	}
1482	buf += 2;
1483	left -= 2;
1484
1485	/* Check version */
1486	val16 = get_unaligned_be16(buf);
1487	if (val16 != 0x0100) {
1488		dev_err(component->dev, "fw magic 0x%04x exp 0x0100\n", val16);
1489		return -EINVAL;
1490	}
1491	buf += 2;
1492	left -= 2;
1493
1494	while (left) {
1495		if (left < 6) {
1496			dev_err(component->dev, "fw %td/%zu left %zu, exp at least 6\n",
1497				buf - data, size, left);
1498			return -EINVAL;
1499		}
1500		/* Check tag and lng */
1501		tag = get_unaligned_be16(buf);
1502		lng = get_unaligned_be32(buf + 2);
1503		tag_def = peb2466_fw_get_tag_def(tag);
1504		if (!tag_def) {
1505			dev_err(component->dev, "fw %td/%zu tag 0x%04x unknown\n",
1506				buf - data, size, tag);
1507			return -EINVAL;
1508		}
1509		if (lng < tag_def->lng_min || lng > tag_def->lng_max) {
1510			dev_err(component->dev, "fw %td/%zu tag 0x%04x lng %u, exp [%u;%u]\n",
1511				buf - data, size, tag, lng, tag_def->lng_min, tag_def->lng_max);
1512			return -EINVAL;
1513		}
1514		buf += 6;
1515		left -= 6;
1516		if (left < lng) {
1517			dev_err(component->dev, "fw %td/%zu tag 0x%04x lng %u, left %zu\n",
1518				buf - data, size, tag, lng, left);
1519			return -EINVAL;
1520		}
1521
1522		/* TLV block is valid -> parse the data part */
1523		ret = tag_def->parse(component, tag, lng, buf);
1524		if (ret) {
1525			dev_err(component->dev, "fw %td/%zu tag 0x%04x lng %u parse failed\n",
1526				buf - data, size, tag, lng);
1527			return ret;
1528		}
1529
1530		buf += lng;
1531		left -= lng;
1532	}
1533	return 0;
1534}
1535
1536static int peb2466_load_coeffs(struct snd_soc_component *component, const char *fw_name)
1537{
1538	const struct firmware *fw;
1539	int ret;
1540
1541	ret = request_firmware(&fw, fw_name, component->dev);
1542	if (ret)
1543		return ret;
1544
1545	ret = peb2466_fw_parse(component, fw->data, fw->size);
1546	release_firmware(fw);
1547
1548	return ret;
1549}
1550
1551static int peb2466_component_probe(struct snd_soc_component *component)
1552{
1553	struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
1554	const char *firmware_name;
1555	int ret;
1556
1557	/* reset peb2466 audio part */
1558	ret = peb2466_reset_audio(peb2466);
1559	if (ret)
1560		return ret;
1561
1562	ret = of_property_read_string(peb2466->spi->dev.of_node,
1563				      "firmware-name", &firmware_name);
1564	if (ret)
1565		return (ret == -EINVAL) ? 0 : ret;
1566
1567	return peb2466_load_coeffs(component, firmware_name);
1568}
1569
1570static const struct snd_soc_component_driver peb2466_component_driver = {
1571	.probe			= peb2466_component_probe,
1572	.controls		= peb2466_controls,
1573	.num_controls		= ARRAY_SIZE(peb2466_controls),
1574	.dapm_widgets		= peb2466_dapm_widgets,
1575	.num_dapm_widgets	= ARRAY_SIZE(peb2466_dapm_widgets),
1576	.dapm_routes		= peb2466_dapm_routes,
1577	.num_dapm_routes	= ARRAY_SIZE(peb2466_dapm_routes),
1578	.endianness		= 1,
1579};
1580
1581/*
1582 * The mapping used for the relationship between the gpio offset and the
1583 * physical pin is the following:
1584 *
1585 * offset     pin
1586 *      0     SI1_0
1587 *      1     SI1_1
1588 *      2     SI2_0
1589 *      3     SI2_1
1590 *      4     SI3_0
1591 *      5     SI3_1
1592 *      6     SI4_0
1593 *      7     SI4_1
1594 *      8     SO1_0
1595 *      9     SO1_1
1596 *     10     SO2_0
1597 *     11     SO2_1
1598 *     12     SO3_0
1599 *     13     SO3_1
1600 *     14     SO4_0
1601 *     15     SO4_1
1602 *     16     SB1_0
1603 *     17     SB1_1
1604 *     18     SB2_0
1605 *     19     SB2_1
1606 *     20     SB3_0
1607 *     21     SB3_1
1608 *     22     SB4_0
1609 *     23     SB4_1
1610 *     24     SB1_2
1611 *     25     SB2_2
1612 *     26     SB3_2
1613 *     27     SB4_2
1614 */
1615
1616static int peb2466_chip_gpio_offset_to_data_regmask(unsigned int offset,
1617						    unsigned int *xr_reg,
1618						    unsigned int *mask)
1619{
1620	if (offset < 16) {
1621		/*
1622		 * SIx_{0,1} and SOx_{0,1}
1623		 *   Read accesses read SIx_{0,1} values
1624		 *   Write accesses write SOx_{0,1} values
1625		 */
1626		*xr_reg = PEB2466_XR0;
1627		*mask = (1 << (offset % 8));
1628		return 0;
1629	}
1630	if (offset < 24) {
1631		/* SBx_{0,1} */
1632		*xr_reg = PEB2466_XR1;
1633		*mask = (1 << (offset - 16));
1634		return 0;
1635	}
1636	if (offset < 28) {
1637		/* SBx_2 */
1638		*xr_reg = PEB2466_XR3;
1639		*mask = (1 << (offset - 24 + 4));
1640		return 0;
1641	}
1642	return -EINVAL;
1643}
1644
1645static int peb2466_chip_gpio_offset_to_dir_regmask(unsigned int offset,
1646						   unsigned int *xr_reg,
1647						   unsigned int *mask)
1648{
1649	if (offset < 16) {
1650		/* Direction cannot be changed for these GPIOs */
1651		return -EINVAL;
1652	}
1653	if (offset < 24) {
1654		*xr_reg = PEB2466_XR2;
1655		*mask = (1 << (offset - 16));
1656		return 0;
1657	}
1658	if (offset < 28) {
1659		*xr_reg = PEB2466_XR3;
1660		*mask = (1 << (offset - 24));
1661		return 0;
1662	}
1663	return -EINVAL;
1664}
1665
1666static unsigned int *peb2466_chip_gpio_get_cache(struct peb2466 *peb2466,
1667						 unsigned int xr_reg)
1668{
1669	unsigned int *cache;
1670
1671	switch (xr_reg) {
1672	case PEB2466_XR0:
1673		cache = &peb2466->gpio.cache.xr0;
1674		break;
1675	case PEB2466_XR1:
1676		cache = &peb2466->gpio.cache.xr1;
1677		break;
1678	case PEB2466_XR2:
1679		cache = &peb2466->gpio.cache.xr2;
1680		break;
1681	case PEB2466_XR3:
1682		cache = &peb2466->gpio.cache.xr3;
1683		break;
1684	default:
1685		cache = NULL;
1686		break;
1687	}
1688	return cache;
1689}
1690
1691static int peb2466_chip_gpio_update_bits(struct peb2466 *peb2466, unsigned int xr_reg,
1692					 unsigned int mask, unsigned int val)
1693{
1694	unsigned int tmp;
1695	unsigned int *cache;
1696	int ret;
1697
1698	/*
1699	 * Read and write accesses use different peb2466 internal signals (input
1700	 * signals on reads and output signals on writes). regmap_update_bits
1701	 * cannot be used to read/modify/write the value.
1702	 * So, a specific cache value is used.
1703	 */
1704
1705	mutex_lock(&peb2466->gpio.lock);
1706
1707	cache = peb2466_chip_gpio_get_cache(peb2466, xr_reg);
1708	if (!cache) {
1709		ret = -EINVAL;
1710		goto end;
1711	}
1712
1713	tmp = *cache;
1714	tmp &= ~mask;
1715	tmp |= val;
1716
1717	ret = regmap_write(peb2466->regmap, xr_reg, tmp);
1718	if (ret)
1719		goto end;
1720
1721	*cache = tmp;
1722	ret = 0;
1723
1724end:
1725	mutex_unlock(&peb2466->gpio.lock);
1726	return ret;
1727}
1728
1729static void peb2466_chip_gpio_set(struct gpio_chip *c, unsigned int offset, int val)
1730{
1731	struct peb2466 *peb2466 = gpiochip_get_data(c);
1732	unsigned int xr_reg;
1733	unsigned int mask;
1734	int ret;
1735
1736	if (offset < 8) {
1737		/*
1738		 * SIx_{0,1} signals cannot be set and writing the related
1739		 * register will change the SOx_{0,1} signals
1740		 */
1741		dev_warn(&peb2466->spi->dev, "cannot set gpio %d (read-only)\n",
1742			 offset);
1743		return;
1744	}
1745
1746	ret = peb2466_chip_gpio_offset_to_data_regmask(offset, &xr_reg, &mask);
1747	if (ret) {
1748		dev_err(&peb2466->spi->dev, "cannot set gpio %d (%d)\n",
1749			offset, ret);
1750		return;
1751	}
1752
1753	ret = peb2466_chip_gpio_update_bits(peb2466, xr_reg, mask, val ? mask : 0);
1754	if (ret) {
1755		dev_err(&peb2466->spi->dev, "set gpio %d (0x%x, 0x%x) failed (%d)\n",
1756			offset, xr_reg, mask, ret);
1757	}
1758}
1759
1760static int peb2466_chip_gpio_get(struct gpio_chip *c, unsigned int offset)
1761{
1762	struct peb2466 *peb2466 = gpiochip_get_data(c);
1763	bool use_cache = false;
1764	unsigned int *cache;
1765	unsigned int xr_reg;
1766	unsigned int mask;
1767	unsigned int val;
1768	int ret;
1769
1770	if (offset >= 8 && offset < 16) {
1771		/*
1772		 * SOx_{0,1} signals cannot be read. Reading the related
1773		 * register will read the SIx_{0,1} signals.
1774		 * Use the cache to get value;
1775		 */
1776		use_cache = true;
1777	}
1778
1779	ret = peb2466_chip_gpio_offset_to_data_regmask(offset, &xr_reg, &mask);
1780	if (ret) {
1781		dev_err(&peb2466->spi->dev, "cannot get gpio %d (%d)\n",
1782			offset, ret);
1783		return -EINVAL;
1784	}
1785
1786	if (use_cache) {
1787		cache = peb2466_chip_gpio_get_cache(peb2466, xr_reg);
1788		if (!cache)
1789			return -EINVAL;
1790		val = *cache;
1791	} else {
1792		ret = regmap_read(peb2466->regmap, xr_reg, &val);
1793		if (ret) {
1794			dev_err(&peb2466->spi->dev, "get gpio %d (0x%x, 0x%x) failed (%d)\n",
1795				offset, xr_reg, mask, ret);
1796			return ret;
1797		}
1798	}
1799
1800	return !!(val & mask);
1801}
1802
1803static int peb2466_chip_get_direction(struct gpio_chip *c, unsigned int offset)
1804{
1805	struct peb2466 *peb2466 = gpiochip_get_data(c);
1806	unsigned int xr_reg;
1807	unsigned int mask;
1808	unsigned int val;
1809	int ret;
1810
1811	if (offset < 8) {
1812		/* SIx_{0,1} */
1813		return GPIO_LINE_DIRECTION_IN;
1814	}
1815	if (offset < 16) {
1816		/* SOx_{0,1} */
1817		return GPIO_LINE_DIRECTION_OUT;
1818	}
1819
1820	ret = peb2466_chip_gpio_offset_to_dir_regmask(offset, &xr_reg, &mask);
1821	if (ret) {
1822		dev_err(&peb2466->spi->dev, "cannot get gpio %d direction (%d)\n",
1823			offset, ret);
1824		return ret;
1825	}
1826
1827	ret = regmap_read(peb2466->regmap, xr_reg, &val);
1828	if (ret) {
1829		dev_err(&peb2466->spi->dev, "get dir gpio %d (0x%x, 0x%x) failed (%d)\n",
1830			offset, xr_reg, mask, ret);
1831		return ret;
1832	}
1833
1834	return val & mask ? GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1835}
1836
1837static int peb2466_chip_direction_input(struct gpio_chip *c, unsigned int offset)
1838{
1839	struct peb2466 *peb2466 = gpiochip_get_data(c);
1840	unsigned int xr_reg;
1841	unsigned int mask;
1842	int ret;
1843
1844	if (offset < 8) {
1845		/* SIx_{0,1} */
1846		return 0;
1847	}
1848	if (offset < 16) {
1849		/* SOx_{0,1} */
1850		return -EINVAL;
1851	}
1852
1853	ret = peb2466_chip_gpio_offset_to_dir_regmask(offset, &xr_reg, &mask);
1854	if (ret) {
1855		dev_err(&peb2466->spi->dev, "cannot set gpio %d direction (%d)\n",
1856			offset, ret);
1857		return ret;
1858	}
1859
1860	ret = peb2466_chip_gpio_update_bits(peb2466, xr_reg, mask, 0);
1861	if (ret) {
1862		dev_err(&peb2466->spi->dev, "Set dir in gpio %d (0x%x, 0x%x) failed (%d)\n",
1863			offset, xr_reg, mask, ret);
1864		return ret;
1865	}
1866
1867	return 0;
1868}
1869
1870static int peb2466_chip_direction_output(struct gpio_chip *c, unsigned int offset, int val)
1871{
1872	struct peb2466 *peb2466 = gpiochip_get_data(c);
1873	unsigned int xr_reg;
1874	unsigned int mask;
1875	int ret;
1876
1877	if (offset < 8) {
1878		/* SIx_{0,1} */
1879		return -EINVAL;
1880	}
1881
1882	peb2466_chip_gpio_set(c, offset, val);
1883
1884	if (offset < 16) {
1885		/* SOx_{0,1} */
1886		return 0;
1887	}
1888
1889	ret = peb2466_chip_gpio_offset_to_dir_regmask(offset, &xr_reg, &mask);
1890	if (ret) {
1891		dev_err(&peb2466->spi->dev, "cannot set gpio %d direction (%d)\n",
1892			offset, ret);
1893		return ret;
1894	}
1895
1896	ret = peb2466_chip_gpio_update_bits(peb2466, xr_reg, mask, mask);
1897	if (ret) {
1898		dev_err(&peb2466->spi->dev, "Set dir in gpio %d (0x%x, 0x%x) failed (%d)\n",
1899			offset, xr_reg, mask, ret);
1900		return ret;
1901	}
1902
1903	return 0;
1904}
1905
1906static int peb2466_reset_gpio(struct peb2466 *peb2466)
1907{
1908	static const struct reg_sequence reg_reset[] = {
1909		/* Output pins at 0, input/output pins as input */
1910		{  .reg = PEB2466_XR0, .def = 0 },
1911		{  .reg = PEB2466_XR1, .def = 0 },
1912		{  .reg = PEB2466_XR2, .def = 0 },
1913		{  .reg = PEB2466_XR3, .def = 0 },
1914	};
1915
1916	peb2466->gpio.cache.xr0 = 0;
1917	peb2466->gpio.cache.xr1 = 0;
1918	peb2466->gpio.cache.xr2 = 0;
1919	peb2466->gpio.cache.xr3 = 0;
1920
1921	return regmap_multi_reg_write(peb2466->regmap, reg_reset, ARRAY_SIZE(reg_reset));
1922}
1923
1924static int peb2466_gpio_init(struct peb2466 *peb2466)
1925{
1926	int ret;
1927
1928	mutex_init(&peb2466->gpio.lock);
1929
1930	ret = peb2466_reset_gpio(peb2466);
1931	if (ret)
1932		return ret;
1933
1934	peb2466->gpio.gpio_chip.owner = THIS_MODULE;
1935	peb2466->gpio.gpio_chip.label = dev_name(&peb2466->spi->dev);
1936	peb2466->gpio.gpio_chip.parent = &peb2466->spi->dev;
1937	peb2466->gpio.gpio_chip.base = -1;
1938	peb2466->gpio.gpio_chip.ngpio = 28;
1939	peb2466->gpio.gpio_chip.get_direction = peb2466_chip_get_direction;
1940	peb2466->gpio.gpio_chip.direction_input = peb2466_chip_direction_input;
1941	peb2466->gpio.gpio_chip.direction_output = peb2466_chip_direction_output;
1942	peb2466->gpio.gpio_chip.get = peb2466_chip_gpio_get;
1943	peb2466->gpio.gpio_chip.set = peb2466_chip_gpio_set;
1944	peb2466->gpio.gpio_chip.can_sleep = true;
1945
1946	return devm_gpiochip_add_data(&peb2466->spi->dev, &peb2466->gpio.gpio_chip,
1947				      peb2466);
1948}
1949
1950static int peb2466_spi_probe(struct spi_device *spi)
1951{
1952	struct peb2466 *peb2466;
1953	unsigned long mclk_rate;
1954	int ret;
1955	u8 xr5;
1956
1957	spi->bits_per_word = 8;
1958	ret = spi_setup(spi);
1959	if (ret < 0)
1960		return ret;
1961
1962	peb2466 = devm_kzalloc(&spi->dev, sizeof(*peb2466), GFP_KERNEL);
1963	if (!peb2466)
1964		return -ENOMEM;
1965
1966	peb2466->spi = spi;
1967
1968	peb2466->regmap = devm_regmap_init(&peb2466->spi->dev, NULL, peb2466,
1969					   &peb2466_regmap_config);
1970	if (IS_ERR(peb2466->regmap))
1971		return PTR_ERR(peb2466->regmap);
1972
1973	peb2466->reset_gpio = devm_gpiod_get_optional(&peb2466->spi->dev,
1974						      "reset", GPIOD_OUT_LOW);
1975	if (IS_ERR(peb2466->reset_gpio))
1976		return PTR_ERR(peb2466->reset_gpio);
1977
1978	peb2466->mclk = devm_clk_get(&peb2466->spi->dev, "mclk");
1979	if (IS_ERR(peb2466->mclk))
1980		return PTR_ERR(peb2466->mclk);
1981	ret = clk_prepare_enable(peb2466->mclk);
1982	if (ret)
1983		return ret;
1984
1985	if (peb2466->reset_gpio) {
1986		gpiod_set_value_cansleep(peb2466->reset_gpio, 1);
1987		udelay(4);
1988		gpiod_set_value_cansleep(peb2466->reset_gpio, 0);
1989		udelay(4);
1990	}
1991
1992	spi_set_drvdata(spi, peb2466);
1993
1994	mclk_rate = clk_get_rate(peb2466->mclk);
1995	switch (mclk_rate) {
1996	case 1536000:
1997		xr5 = PEB2466_XR5_MCLK_1536;
1998		break;
1999	case 2048000:
2000		xr5 = PEB2466_XR5_MCLK_2048;
2001		break;
2002	case 4096000:
2003		xr5 = PEB2466_XR5_MCLK_4096;
2004		break;
2005	case 8192000:
2006		xr5 = PEB2466_XR5_MCLK_8192;
2007		break;
2008	default:
2009		dev_err(&peb2466->spi->dev, "Unsupported clock rate %lu\n",
2010			mclk_rate);
2011		ret = -EINVAL;
2012		goto failed;
2013	}
2014	ret = regmap_write(peb2466->regmap, PEB2466_XR5, xr5);
2015	if (ret) {
2016		dev_err(&peb2466->spi->dev, "Setting MCLK failed (%d)\n", ret);
2017		goto failed;
2018	}
2019
2020	ret = devm_snd_soc_register_component(&spi->dev, &peb2466_component_driver,
2021					      &peb2466_dai_driver, 1);
2022	if (ret)
2023		goto failed;
2024
2025	if (IS_ENABLED(CONFIG_GPIOLIB)) {
2026		ret = peb2466_gpio_init(peb2466);
2027		if (ret)
2028			goto failed;
2029	}
2030
2031	return 0;
2032
2033failed:
2034	clk_disable_unprepare(peb2466->mclk);
2035	return ret;
2036}
2037
2038static void peb2466_spi_remove(struct spi_device *spi)
2039{
2040	struct peb2466 *peb2466 = spi_get_drvdata(spi);
2041
2042	clk_disable_unprepare(peb2466->mclk);
2043}
2044
2045static const struct of_device_id peb2466_of_match[] = {
2046	{ .compatible = "infineon,peb2466", },
2047	{ }
2048};
2049MODULE_DEVICE_TABLE(of, peb2466_of_match);
2050
2051static const struct spi_device_id peb2466_id_table[] = {
2052	{ "peb2466", 0 },
2053	{ }
2054};
2055MODULE_DEVICE_TABLE(spi, peb2466_id_table);
2056
2057static struct spi_driver peb2466_spi_driver = {
2058	.driver  = {
2059		.name   = "peb2466",
2060		.of_match_table = peb2466_of_match,
2061	},
2062	.id_table = peb2466_id_table,
2063	.probe  = peb2466_spi_probe,
2064	.remove = peb2466_spi_remove,
2065};
2066
2067module_spi_driver(peb2466_spi_driver);
2068
2069MODULE_AUTHOR("Herve Codina <herve.codina@bootlin.com>");
2070MODULE_DESCRIPTION("PEB2466 ALSA SoC driver");
2071MODULE_LICENSE("GPL");
2072