1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * atmel_ssc_dai.c  --  ALSA SoC ATMEL SSC Audio Layer Platform driver
4 *
5 * Copyright (C) 2005 SAN People
6 * Copyright (C) 2008 Atmel
7 *
8 * Author: Sedji Gaouaou <sedji.gaouaou@atmel.com>
9 *         ATMEL CORP.
10 *
11 * Based on at91-ssc.c by
12 * Frank Mandarino <fmandarino@endrelia.com>
13 * Based on pxa2xx Platform drivers by
14 * Liam Girdwood <lrg@slimlogic.co.uk>
15 */
16
17#include <linux/init.h>
18#include <linux/module.h>
19#include <linux/interrupt.h>
20#include <linux/device.h>
21#include <linux/delay.h>
22#include <linux/clk.h>
23#include <linux/atmel_pdc.h>
24
25#include <linux/atmel-ssc.h>
26#include <sound/core.h>
27#include <sound/pcm.h>
28#include <sound/pcm_params.h>
29#include <sound/initval.h>
30#include <sound/soc.h>
31
32#include "atmel-pcm.h"
33#include "atmel_ssc_dai.h"
34
35
36#define NUM_SSC_DEVICES		3
37
38/*
39 * SSC PDC registers required by the PCM DMA engine.
40 */
41static struct atmel_pdc_regs pdc_tx_reg = {
42	.xpr		= ATMEL_PDC_TPR,
43	.xcr		= ATMEL_PDC_TCR,
44	.xnpr		= ATMEL_PDC_TNPR,
45	.xncr		= ATMEL_PDC_TNCR,
46};
47
48static struct atmel_pdc_regs pdc_rx_reg = {
49	.xpr		= ATMEL_PDC_RPR,
50	.xcr		= ATMEL_PDC_RCR,
51	.xnpr		= ATMEL_PDC_RNPR,
52	.xncr		= ATMEL_PDC_RNCR,
53};
54
55/*
56 * SSC & PDC status bits for transmit and receive.
57 */
58static struct atmel_ssc_mask ssc_tx_mask = {
59	.ssc_enable	= SSC_BIT(CR_TXEN),
60	.ssc_disable	= SSC_BIT(CR_TXDIS),
61	.ssc_endx	= SSC_BIT(SR_ENDTX),
62	.ssc_endbuf	= SSC_BIT(SR_TXBUFE),
63	.ssc_error	= SSC_BIT(SR_OVRUN),
64	.pdc_enable	= ATMEL_PDC_TXTEN,
65	.pdc_disable	= ATMEL_PDC_TXTDIS,
66};
67
68static struct atmel_ssc_mask ssc_rx_mask = {
69	.ssc_enable	= SSC_BIT(CR_RXEN),
70	.ssc_disable	= SSC_BIT(CR_RXDIS),
71	.ssc_endx	= SSC_BIT(SR_ENDRX),
72	.ssc_endbuf	= SSC_BIT(SR_RXBUFF),
73	.ssc_error	= SSC_BIT(SR_OVRUN),
74	.pdc_enable	= ATMEL_PDC_RXTEN,
75	.pdc_disable	= ATMEL_PDC_RXTDIS,
76};
77
78
79/*
80 * DMA parameters.
81 */
82static struct atmel_pcm_dma_params ssc_dma_params[NUM_SSC_DEVICES][2] = {
83	{{
84	.name		= "SSC0 PCM out",
85	.pdc		= &pdc_tx_reg,
86	.mask		= &ssc_tx_mask,
87	},
88	{
89	.name		= "SSC0 PCM in",
90	.pdc		= &pdc_rx_reg,
91	.mask		= &ssc_rx_mask,
92	} },
93	{{
94	.name		= "SSC1 PCM out",
95	.pdc		= &pdc_tx_reg,
96	.mask		= &ssc_tx_mask,
97	},
98	{
99	.name		= "SSC1 PCM in",
100	.pdc		= &pdc_rx_reg,
101	.mask		= &ssc_rx_mask,
102	} },
103	{{
104	.name		= "SSC2 PCM out",
105	.pdc		= &pdc_tx_reg,
106	.mask		= &ssc_tx_mask,
107	},
108	{
109	.name		= "SSC2 PCM in",
110	.pdc		= &pdc_rx_reg,
111	.mask		= &ssc_rx_mask,
112	} },
113};
114
115
116static struct atmel_ssc_info ssc_info[NUM_SSC_DEVICES] = {
117	{
118	.name		= "ssc0",
119	.dir_mask	= SSC_DIR_MASK_UNUSED,
120	.initialized	= 0,
121	},
122	{
123	.name		= "ssc1",
124	.dir_mask	= SSC_DIR_MASK_UNUSED,
125	.initialized	= 0,
126	},
127	{
128	.name		= "ssc2",
129	.dir_mask	= SSC_DIR_MASK_UNUSED,
130	.initialized	= 0,
131	},
132};
133
134
135/*
136 * SSC interrupt handler.  Passes PDC interrupts to the DMA
137 * interrupt handler in the PCM driver.
138 */
139static irqreturn_t atmel_ssc_interrupt(int irq, void *dev_id)
140{
141	struct atmel_ssc_info *ssc_p = dev_id;
142	struct atmel_pcm_dma_params *dma_params;
143	u32 ssc_sr;
144	u32 ssc_substream_mask;
145	int i;
146
147	ssc_sr = (unsigned long)ssc_readl(ssc_p->ssc->regs, SR)
148			& (unsigned long)ssc_readl(ssc_p->ssc->regs, IMR);
149
150	/*
151	 * Loop through the substreams attached to this SSC.  If
152	 * a DMA-related interrupt occurred on that substream, call
153	 * the DMA interrupt handler function, if one has been
154	 * registered in the dma_params structure by the PCM driver.
155	 */
156	for (i = 0; i < ARRAY_SIZE(ssc_p->dma_params); i++) {
157		dma_params = ssc_p->dma_params[i];
158
159		if ((dma_params != NULL) &&
160			(dma_params->dma_intr_handler != NULL)) {
161			ssc_substream_mask = (dma_params->mask->ssc_endx |
162					dma_params->mask->ssc_endbuf);
163			if (ssc_sr & ssc_substream_mask) {
164				dma_params->dma_intr_handler(ssc_sr,
165						dma_params->
166						substream);
167			}
168		}
169	}
170
171	return IRQ_HANDLED;
172}
173
174/*
175 * When the bit clock is input, limit the maximum rate according to the
176 * Serial Clock Ratio Considerations section from the SSC documentation:
177 *
178 *   The Transmitter and the Receiver can be programmed to operate
179 *   with the clock signals provided on either the TK or RK pins.
180 *   This allows the SSC to support many slave-mode data transfers.
181 *   In this case, the maximum clock speed allowed on the RK pin is:
182 *   - Peripheral clock divided by 2 if Receiver Frame Synchro is input
183 *   - Peripheral clock divided by 3 if Receiver Frame Synchro is output
184 *   In addition, the maximum clock speed allowed on the TK pin is:
185 *   - Peripheral clock divided by 6 if Transmit Frame Synchro is input
186 *   - Peripheral clock divided by 2 if Transmit Frame Synchro is output
187 *
188 * When the bit clock is output, limit the rate according to the
189 * SSC divider restrictions.
190 */
191static int atmel_ssc_hw_rule_rate(struct snd_pcm_hw_params *params,
192				  struct snd_pcm_hw_rule *rule)
193{
194	struct atmel_ssc_info *ssc_p = rule->private;
195	struct ssc_device *ssc = ssc_p->ssc;
196	struct snd_interval *i = hw_param_interval(params, rule->var);
197	struct snd_interval t;
198	struct snd_ratnum r = {
199		.den_min = 1,
200		.den_max = 4095,
201		.den_step = 1,
202	};
203	unsigned int num = 0, den = 0;
204	int frame_size;
205	int mck_div = 2;
206	int ret;
207
208	frame_size = snd_soc_params_to_frame_size(params);
209	if (frame_size < 0)
210		return frame_size;
211
212	switch (ssc_p->daifmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
213	case SND_SOC_DAIFMT_BC_FP:
214		if ((ssc_p->dir_mask & SSC_DIR_MASK_CAPTURE)
215		    && ssc->clk_from_rk_pin)
216			/* Receiver Frame Synchro (i.e. capture)
217			 * is output (format is _CFS) and the RK pin
218			 * is used for input (format is _CBM_).
219			 */
220			mck_div = 3;
221		break;
222
223	case SND_SOC_DAIFMT_BC_FC:
224		if ((ssc_p->dir_mask & SSC_DIR_MASK_PLAYBACK)
225		    && !ssc->clk_from_rk_pin)
226			/* Transmit Frame Synchro (i.e. playback)
227			 * is input (format is _CFM) and the TK pin
228			 * is used for input (format _CBM_ but not
229			 * using the RK pin).
230			 */
231			mck_div = 6;
232		break;
233	}
234
235	switch (ssc_p->daifmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
236	case SND_SOC_DAIFMT_BP_FP:
237		r.num = ssc_p->mck_rate / mck_div / frame_size;
238
239		ret = snd_interval_ratnum(i, 1, &r, &num, &den);
240		if (ret >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
241			params->rate_num = num;
242			params->rate_den = den;
243		}
244		break;
245
246	case SND_SOC_DAIFMT_BC_FP:
247	case SND_SOC_DAIFMT_BC_FC:
248		t.min = 8000;
249		t.max = ssc_p->mck_rate / mck_div / frame_size;
250		t.openmin = t.openmax = 0;
251		t.integer = 0;
252		ret = snd_interval_refine(i, &t);
253		break;
254
255	default:
256		ret = -EINVAL;
257		break;
258	}
259
260	return ret;
261}
262
263/*-------------------------------------------------------------------------*\
264 * DAI functions
265\*-------------------------------------------------------------------------*/
266/*
267 * Startup.  Only that one substream allowed in each direction.
268 */
269static int atmel_ssc_startup(struct snd_pcm_substream *substream,
270			     struct snd_soc_dai *dai)
271{
272	struct platform_device *pdev = to_platform_device(dai->dev);
273	struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
274	struct atmel_pcm_dma_params *dma_params;
275	int dir, dir_mask;
276	int ret;
277
278	pr_debug("atmel_ssc_startup: SSC_SR=0x%x\n",
279		ssc_readl(ssc_p->ssc->regs, SR));
280
281	/* Enable PMC peripheral clock for this SSC */
282	pr_debug("atmel_ssc_dai: Starting clock\n");
283	ret = clk_enable(ssc_p->ssc->clk);
284	if (ret)
285		return ret;
286
287	ssc_p->mck_rate = clk_get_rate(ssc_p->ssc->clk);
288
289	/* Reset the SSC unless initialized to keep it in a clean state */
290	if (!ssc_p->initialized)
291		ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
292
293	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
294		dir = 0;
295		dir_mask = SSC_DIR_MASK_PLAYBACK;
296	} else {
297		dir = 1;
298		dir_mask = SSC_DIR_MASK_CAPTURE;
299	}
300
301	ret = snd_pcm_hw_rule_add(substream->runtime, 0,
302				  SNDRV_PCM_HW_PARAM_RATE,
303				  atmel_ssc_hw_rule_rate,
304				  ssc_p,
305				  SNDRV_PCM_HW_PARAM_FRAME_BITS,
306				  SNDRV_PCM_HW_PARAM_CHANNELS, -1);
307	if (ret < 0) {
308		dev_err(dai->dev, "Failed to specify rate rule: %d\n", ret);
309		return ret;
310	}
311
312	dma_params = &ssc_dma_params[pdev->id][dir];
313	dma_params->ssc = ssc_p->ssc;
314	dma_params->substream = substream;
315
316	ssc_p->dma_params[dir] = dma_params;
317
318	snd_soc_dai_set_dma_data(dai, substream, dma_params);
319
320	if (ssc_p->dir_mask & dir_mask)
321		return -EBUSY;
322
323	ssc_p->dir_mask |= dir_mask;
324
325	return 0;
326}
327
328/*
329 * Shutdown.  Clear DMA parameters and shutdown the SSC if there
330 * are no other substreams open.
331 */
332static void atmel_ssc_shutdown(struct snd_pcm_substream *substream,
333			       struct snd_soc_dai *dai)
334{
335	struct platform_device *pdev = to_platform_device(dai->dev);
336	struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
337	struct atmel_pcm_dma_params *dma_params;
338	int dir, dir_mask;
339
340	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
341		dir = 0;
342	else
343		dir = 1;
344
345	dma_params = ssc_p->dma_params[dir];
346
347	if (dma_params != NULL) {
348		dma_params->ssc = NULL;
349		dma_params->substream = NULL;
350		ssc_p->dma_params[dir] = NULL;
351	}
352
353	dir_mask = 1 << dir;
354
355	ssc_p->dir_mask &= ~dir_mask;
356	if (!ssc_p->dir_mask) {
357		if (ssc_p->initialized) {
358			free_irq(ssc_p->ssc->irq, ssc_p);
359			ssc_p->initialized = 0;
360		}
361
362		/* Reset the SSC */
363		ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
364		/* Clear the SSC dividers */
365		ssc_p->cmr_div = ssc_p->tcmr_period = ssc_p->rcmr_period = 0;
366		ssc_p->forced_divider = 0;
367	}
368
369	/* Shutdown the SSC clock. */
370	pr_debug("atmel_ssc_dai: Stopping clock\n");
371	clk_disable(ssc_p->ssc->clk);
372}
373
374
375/*
376 * Record the DAI format for use in hw_params().
377 */
378static int atmel_ssc_set_dai_fmt(struct snd_soc_dai *cpu_dai,
379		unsigned int fmt)
380{
381	struct platform_device *pdev = to_platform_device(cpu_dai->dev);
382	struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
383
384	ssc_p->daifmt = fmt;
385	return 0;
386}
387
388/*
389 * Record SSC clock dividers for use in hw_params().
390 */
391static int atmel_ssc_set_dai_clkdiv(struct snd_soc_dai *cpu_dai,
392	int div_id, int div)
393{
394	struct platform_device *pdev = to_platform_device(cpu_dai->dev);
395	struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
396
397	switch (div_id) {
398	case ATMEL_SSC_CMR_DIV:
399		/*
400		 * The same master clock divider is used for both
401		 * transmit and receive, so if a value has already
402		 * been set, it must match this value.
403		 */
404		if (ssc_p->dir_mask !=
405			(SSC_DIR_MASK_PLAYBACK | SSC_DIR_MASK_CAPTURE))
406			ssc_p->cmr_div = div;
407		else if (ssc_p->cmr_div == 0)
408			ssc_p->cmr_div = div;
409		else
410			if (div != ssc_p->cmr_div)
411				return -EBUSY;
412		ssc_p->forced_divider |= BIT(ATMEL_SSC_CMR_DIV);
413		break;
414
415	case ATMEL_SSC_TCMR_PERIOD:
416		ssc_p->tcmr_period = div;
417		ssc_p->forced_divider |= BIT(ATMEL_SSC_TCMR_PERIOD);
418		break;
419
420	case ATMEL_SSC_RCMR_PERIOD:
421		ssc_p->rcmr_period = div;
422		ssc_p->forced_divider |= BIT(ATMEL_SSC_RCMR_PERIOD);
423		break;
424
425	default:
426		return -EINVAL;
427	}
428
429	return 0;
430}
431
432/* Is the cpu-dai master of the frame clock? */
433static int atmel_ssc_cfs(struct atmel_ssc_info *ssc_p)
434{
435	switch (ssc_p->daifmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
436	case SND_SOC_DAIFMT_BC_FP:
437	case SND_SOC_DAIFMT_BP_FP:
438		return 1;
439	}
440	return 0;
441}
442
443/* Is the cpu-dai master of the bit clock? */
444static int atmel_ssc_cbs(struct atmel_ssc_info *ssc_p)
445{
446	switch (ssc_p->daifmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
447	case SND_SOC_DAIFMT_BP_FC:
448	case SND_SOC_DAIFMT_BP_FP:
449		return 1;
450	}
451	return 0;
452}
453
454/*
455 * Configure the SSC.
456 */
457static int atmel_ssc_hw_params(struct snd_pcm_substream *substream,
458	struct snd_pcm_hw_params *params,
459	struct snd_soc_dai *dai)
460{
461	struct platform_device *pdev = to_platform_device(dai->dev);
462	int id = pdev->id;
463	struct atmel_ssc_info *ssc_p = &ssc_info[id];
464	struct ssc_device *ssc = ssc_p->ssc;
465	struct atmel_pcm_dma_params *dma_params;
466	int dir, channels, bits;
467	u32 tfmr, rfmr, tcmr, rcmr;
468	int ret;
469	int fslen, fslen_ext, fs_osync, fs_edge;
470	u32 cmr_div;
471	u32 tcmr_period;
472	u32 rcmr_period;
473
474	/*
475	 * Currently, there is only one set of dma params for
476	 * each direction.  If more are added, this code will
477	 * have to be changed to select the proper set.
478	 */
479	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
480		dir = 0;
481	else
482		dir = 1;
483
484	/*
485	 * If the cpu dai should provide BCLK, but noone has provided the
486	 * divider needed for that to work, fall back to something sensible.
487	 */
488	cmr_div = ssc_p->cmr_div;
489	if (!(ssc_p->forced_divider & BIT(ATMEL_SSC_CMR_DIV)) &&
490	    atmel_ssc_cbs(ssc_p)) {
491		int bclk_rate = snd_soc_params_to_bclk(params);
492
493		if (bclk_rate < 0) {
494			dev_err(dai->dev, "unable to calculate cmr_div: %d\n",
495				bclk_rate);
496			return bclk_rate;
497		}
498
499		cmr_div = DIV_ROUND_CLOSEST(ssc_p->mck_rate, 2 * bclk_rate);
500	}
501
502	/*
503	 * If the cpu dai should provide LRCLK, but noone has provided the
504	 * dividers needed for that to work, fall back to something sensible.
505	 */
506	tcmr_period = ssc_p->tcmr_period;
507	rcmr_period = ssc_p->rcmr_period;
508	if (atmel_ssc_cfs(ssc_p)) {
509		int frame_size = snd_soc_params_to_frame_size(params);
510
511		if (frame_size < 0) {
512			dev_err(dai->dev,
513				"unable to calculate tx/rx cmr_period: %d\n",
514				frame_size);
515			return frame_size;
516		}
517
518		if (!(ssc_p->forced_divider & BIT(ATMEL_SSC_TCMR_PERIOD)))
519			tcmr_period = frame_size / 2 - 1;
520		if (!(ssc_p->forced_divider & BIT(ATMEL_SSC_RCMR_PERIOD)))
521			rcmr_period = frame_size / 2 - 1;
522	}
523
524	dma_params = ssc_p->dma_params[dir];
525
526	channels = params_channels(params);
527
528	/*
529	 * Determine sample size in bits and the PDC increment.
530	 */
531	switch (params_format(params)) {
532	case SNDRV_PCM_FORMAT_S8:
533		bits = 8;
534		dma_params->pdc_xfer_size = 1;
535		break;
536	case SNDRV_PCM_FORMAT_S16_LE:
537		bits = 16;
538		dma_params->pdc_xfer_size = 2;
539		break;
540	case SNDRV_PCM_FORMAT_S24_LE:
541		bits = 24;
542		dma_params->pdc_xfer_size = 4;
543		break;
544	case SNDRV_PCM_FORMAT_S32_LE:
545		bits = 32;
546		dma_params->pdc_xfer_size = 4;
547		break;
548	default:
549		printk(KERN_WARNING "atmel_ssc_dai: unsupported PCM format");
550		return -EINVAL;
551	}
552
553	/*
554	 * Compute SSC register settings.
555	 */
556
557	fslen_ext = (bits - 1) / 16;
558	fslen = (bits - 1) % 16;
559
560	switch (ssc_p->daifmt & SND_SOC_DAIFMT_FORMAT_MASK) {
561
562	case SND_SOC_DAIFMT_LEFT_J:
563		fs_osync = SSC_FSOS_POSITIVE;
564		fs_edge = SSC_START_RISING_RF;
565
566		rcmr =	  SSC_BF(RCMR_STTDLY, 0);
567		tcmr =	  SSC_BF(TCMR_STTDLY, 0);
568
569		break;
570
571	case SND_SOC_DAIFMT_I2S:
572		fs_osync = SSC_FSOS_NEGATIVE;
573		fs_edge = SSC_START_FALLING_RF;
574
575		rcmr =	  SSC_BF(RCMR_STTDLY, 1);
576		tcmr =	  SSC_BF(TCMR_STTDLY, 1);
577
578		break;
579
580	case SND_SOC_DAIFMT_DSP_A:
581		/*
582		 * DSP/PCM Mode A format
583		 *
584		 * Data is transferred on first BCLK after LRC pulse rising
585		 * edge.If stereo, the right channel data is contiguous with
586		 * the left channel data.
587		 */
588		fs_osync = SSC_FSOS_POSITIVE;
589		fs_edge = SSC_START_RISING_RF;
590		fslen = fslen_ext = 0;
591
592		rcmr =	  SSC_BF(RCMR_STTDLY, 1);
593		tcmr =	  SSC_BF(TCMR_STTDLY, 1);
594
595		break;
596
597	default:
598		printk(KERN_WARNING "atmel_ssc_dai: unsupported DAI format 0x%x\n",
599			ssc_p->daifmt);
600		return -EINVAL;
601	}
602
603	if (!atmel_ssc_cfs(ssc_p)) {
604		fslen = fslen_ext = 0;
605		rcmr_period = tcmr_period = 0;
606		fs_osync = SSC_FSOS_NONE;
607	}
608
609	rcmr |=	  SSC_BF(RCMR_START, fs_edge);
610	tcmr |=	  SSC_BF(TCMR_START, fs_edge);
611
612	if (atmel_ssc_cbs(ssc_p)) {
613		/*
614		 * SSC provides BCLK
615		 *
616		 * The SSC transmit and receive clocks are generated from the
617		 * MCK divider, and the BCLK signal is output
618		 * on the SSC TK line.
619		 */
620		rcmr |=	  SSC_BF(RCMR_CKS, SSC_CKS_DIV)
621			| SSC_BF(RCMR_CKO, SSC_CKO_NONE);
622
623		tcmr |=	  SSC_BF(TCMR_CKS, SSC_CKS_DIV)
624			| SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS);
625	} else {
626		rcmr |=	  SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
627					SSC_CKS_PIN : SSC_CKS_CLOCK)
628			| SSC_BF(RCMR_CKO, SSC_CKO_NONE);
629
630		tcmr |=	  SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ?
631					SSC_CKS_CLOCK : SSC_CKS_PIN)
632			| SSC_BF(TCMR_CKO, SSC_CKO_NONE);
633	}
634
635	rcmr |=	  SSC_BF(RCMR_PERIOD, rcmr_period)
636		| SSC_BF(RCMR_CKI, SSC_CKI_RISING);
637
638	tcmr |=   SSC_BF(TCMR_PERIOD, tcmr_period)
639		| SSC_BF(TCMR_CKI, SSC_CKI_FALLING);
640
641	rfmr =    SSC_BF(RFMR_FSLEN_EXT, fslen_ext)
642		| SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
643		| SSC_BF(RFMR_FSOS, fs_osync)
644		| SSC_BF(RFMR_FSLEN, fslen)
645		| SSC_BF(RFMR_DATNB, (channels - 1))
646		| SSC_BIT(RFMR_MSBF)
647		| SSC_BF(RFMR_LOOP, 0)
648		| SSC_BF(RFMR_DATLEN, (bits - 1));
649
650	tfmr =    SSC_BF(TFMR_FSLEN_EXT, fslen_ext)
651		| SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
652		| SSC_BF(TFMR_FSDEN, 0)
653		| SSC_BF(TFMR_FSOS, fs_osync)
654		| SSC_BF(TFMR_FSLEN, fslen)
655		| SSC_BF(TFMR_DATNB, (channels - 1))
656		| SSC_BIT(TFMR_MSBF)
657		| SSC_BF(TFMR_DATDEF, 0)
658		| SSC_BF(TFMR_DATLEN, (bits - 1));
659
660	if (fslen_ext && !ssc->pdata->has_fslen_ext) {
661		dev_err(dai->dev, "sample size %d is too large for SSC device\n",
662			bits);
663		return -EINVAL;
664	}
665
666	pr_debug("atmel_ssc_hw_params: "
667			"RCMR=%08x RFMR=%08x TCMR=%08x TFMR=%08x\n",
668			rcmr, rfmr, tcmr, tfmr);
669
670	if (!ssc_p->initialized) {
671		if (!ssc_p->ssc->pdata->use_dma) {
672			ssc_writel(ssc_p->ssc->regs, PDC_RPR, 0);
673			ssc_writel(ssc_p->ssc->regs, PDC_RCR, 0);
674			ssc_writel(ssc_p->ssc->regs, PDC_RNPR, 0);
675			ssc_writel(ssc_p->ssc->regs, PDC_RNCR, 0);
676
677			ssc_writel(ssc_p->ssc->regs, PDC_TPR, 0);
678			ssc_writel(ssc_p->ssc->regs, PDC_TCR, 0);
679			ssc_writel(ssc_p->ssc->regs, PDC_TNPR, 0);
680			ssc_writel(ssc_p->ssc->regs, PDC_TNCR, 0);
681		}
682
683		ret = request_irq(ssc_p->ssc->irq, atmel_ssc_interrupt, 0,
684				ssc_p->name, ssc_p);
685		if (ret < 0) {
686			printk(KERN_WARNING
687					"atmel_ssc_dai: request_irq failure\n");
688			pr_debug("Atmel_ssc_dai: Stopping clock\n");
689			clk_disable(ssc_p->ssc->clk);
690			return ret;
691		}
692
693		ssc_p->initialized = 1;
694	}
695
696	/* set SSC clock mode register */
697	ssc_writel(ssc_p->ssc->regs, CMR, cmr_div);
698
699	/* set receive clock mode and format */
700	ssc_writel(ssc_p->ssc->regs, RCMR, rcmr);
701	ssc_writel(ssc_p->ssc->regs, RFMR, rfmr);
702
703	/* set transmit clock mode and format */
704	ssc_writel(ssc_p->ssc->regs, TCMR, tcmr);
705	ssc_writel(ssc_p->ssc->regs, TFMR, tfmr);
706
707	pr_debug("atmel_ssc_dai,hw_params: SSC initialized\n");
708	return 0;
709}
710
711
712static int atmel_ssc_prepare(struct snd_pcm_substream *substream,
713			     struct snd_soc_dai *dai)
714{
715	struct platform_device *pdev = to_platform_device(dai->dev);
716	struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
717	struct atmel_pcm_dma_params *dma_params;
718	int dir;
719
720	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
721		dir = 0;
722	else
723		dir = 1;
724
725	dma_params = ssc_p->dma_params[dir];
726
727	ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
728	ssc_writel(ssc_p->ssc->regs, IDR, dma_params->mask->ssc_error);
729
730	pr_debug("%s enabled SSC_SR=0x%08x\n",
731			dir ? "receive" : "transmit",
732			ssc_readl(ssc_p->ssc->regs, SR));
733	return 0;
734}
735
736static int atmel_ssc_trigger(struct snd_pcm_substream *substream,
737			     int cmd, struct snd_soc_dai *dai)
738{
739	struct platform_device *pdev = to_platform_device(dai->dev);
740	struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
741	struct atmel_pcm_dma_params *dma_params;
742	int dir;
743
744	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
745		dir = 0;
746	else
747		dir = 1;
748
749	dma_params = ssc_p->dma_params[dir];
750
751	switch (cmd) {
752	case SNDRV_PCM_TRIGGER_START:
753	case SNDRV_PCM_TRIGGER_RESUME:
754	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
755		ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_enable);
756		break;
757	default:
758		ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
759		break;
760	}
761
762	return 0;
763}
764
765static int atmel_ssc_suspend(struct snd_soc_component *component)
766{
767	struct atmel_ssc_info *ssc_p;
768	struct platform_device *pdev = to_platform_device(component->dev);
769
770	if (!snd_soc_component_active(component))
771		return 0;
772
773	ssc_p = &ssc_info[pdev->id];
774
775	/* Save the status register before disabling transmit and receive */
776	ssc_p->ssc_state.ssc_sr = ssc_readl(ssc_p->ssc->regs, SR);
777	ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_TXDIS) | SSC_BIT(CR_RXDIS));
778
779	/* Save the current interrupt mask, then disable unmasked interrupts */
780	ssc_p->ssc_state.ssc_imr = ssc_readl(ssc_p->ssc->regs, IMR);
781	ssc_writel(ssc_p->ssc->regs, IDR, ssc_p->ssc_state.ssc_imr);
782
783	ssc_p->ssc_state.ssc_cmr = ssc_readl(ssc_p->ssc->regs, CMR);
784	ssc_p->ssc_state.ssc_rcmr = ssc_readl(ssc_p->ssc->regs, RCMR);
785	ssc_p->ssc_state.ssc_rfmr = ssc_readl(ssc_p->ssc->regs, RFMR);
786	ssc_p->ssc_state.ssc_tcmr = ssc_readl(ssc_p->ssc->regs, TCMR);
787	ssc_p->ssc_state.ssc_tfmr = ssc_readl(ssc_p->ssc->regs, TFMR);
788
789	return 0;
790}
791
792static int atmel_ssc_resume(struct snd_soc_component *component)
793{
794	struct atmel_ssc_info *ssc_p;
795	struct platform_device *pdev = to_platform_device(component->dev);
796	u32 cr;
797
798	if (!snd_soc_component_active(component))
799		return 0;
800
801	ssc_p = &ssc_info[pdev->id];
802
803	/* restore SSC register settings */
804	ssc_writel(ssc_p->ssc->regs, TFMR, ssc_p->ssc_state.ssc_tfmr);
805	ssc_writel(ssc_p->ssc->regs, TCMR, ssc_p->ssc_state.ssc_tcmr);
806	ssc_writel(ssc_p->ssc->regs, RFMR, ssc_p->ssc_state.ssc_rfmr);
807	ssc_writel(ssc_p->ssc->regs, RCMR, ssc_p->ssc_state.ssc_rcmr);
808	ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->ssc_state.ssc_cmr);
809
810	/* re-enable interrupts */
811	ssc_writel(ssc_p->ssc->regs, IER, ssc_p->ssc_state.ssc_imr);
812
813	/* Re-enable receive and transmit as appropriate */
814	cr = 0;
815	cr |=
816	    (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_RXEN)) ? SSC_BIT(CR_RXEN) : 0;
817	cr |=
818	    (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_TXEN)) ? SSC_BIT(CR_TXEN) : 0;
819	ssc_writel(ssc_p->ssc->regs, CR, cr);
820
821	return 0;
822}
823
824#define ATMEL_SSC_FORMATS (SNDRV_PCM_FMTBIT_S8     | SNDRV_PCM_FMTBIT_S16_LE |\
825			  SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
826
827static const struct snd_soc_dai_ops atmel_ssc_dai_ops = {
828	.startup	= atmel_ssc_startup,
829	.shutdown	= atmel_ssc_shutdown,
830	.prepare	= atmel_ssc_prepare,
831	.trigger	= atmel_ssc_trigger,
832	.hw_params	= atmel_ssc_hw_params,
833	.set_fmt	= atmel_ssc_set_dai_fmt,
834	.set_clkdiv	= atmel_ssc_set_dai_clkdiv,
835};
836
837static struct snd_soc_dai_driver atmel_ssc_dai = {
838		.playback = {
839			.channels_min = 1,
840			.channels_max = 2,
841			.rates = SNDRV_PCM_RATE_CONTINUOUS,
842			.rate_min = 8000,
843			.rate_max = 384000,
844			.formats = ATMEL_SSC_FORMATS,},
845		.capture = {
846			.channels_min = 1,
847			.channels_max = 2,
848			.rates = SNDRV_PCM_RATE_CONTINUOUS,
849			.rate_min = 8000,
850			.rate_max = 384000,
851			.formats = ATMEL_SSC_FORMATS,},
852		.ops = &atmel_ssc_dai_ops,
853};
854
855static const struct snd_soc_component_driver atmel_ssc_component = {
856	.name			= "atmel-ssc",
857	.suspend		= pm_ptr(atmel_ssc_suspend),
858	.resume			= pm_ptr(atmel_ssc_resume),
859	.legacy_dai_naming	= 1,
860};
861
862static int asoc_ssc_init(struct device *dev)
863{
864	struct ssc_device *ssc = dev_get_drvdata(dev);
865	int ret;
866
867	ret = devm_snd_soc_register_component(dev, &atmel_ssc_component,
868					 &atmel_ssc_dai, 1);
869	if (ret) {
870		dev_err(dev, "Could not register DAI: %d\n", ret);
871		return ret;
872	}
873
874	if (ssc->pdata->use_dma)
875		ret = atmel_pcm_dma_platform_register(dev);
876	else
877		ret = atmel_pcm_pdc_platform_register(dev);
878
879	if (ret) {
880		dev_err(dev, "Could not register PCM: %d\n", ret);
881		return ret;
882	}
883
884	return 0;
885}
886
887/**
888 * atmel_ssc_set_audio - Allocate the specified SSC for audio use.
889 * @ssc_id: SSD ID in [0, NUM_SSC_DEVICES[
890 */
891int atmel_ssc_set_audio(int ssc_id)
892{
893	struct ssc_device *ssc;
894
895	/* If we can grab the SSC briefly to parent the DAI device off it */
896	ssc = ssc_request(ssc_id);
897	if (IS_ERR(ssc)) {
898		pr_err("Unable to parent ASoC SSC DAI on SSC: %ld\n",
899			PTR_ERR(ssc));
900		return PTR_ERR(ssc);
901	} else {
902		ssc_info[ssc_id].ssc = ssc;
903	}
904
905	return asoc_ssc_init(&ssc->pdev->dev);
906}
907EXPORT_SYMBOL_GPL(atmel_ssc_set_audio);
908
909void atmel_ssc_put_audio(int ssc_id)
910{
911	struct ssc_device *ssc = ssc_info[ssc_id].ssc;
912
913	ssc_free(ssc);
914}
915EXPORT_SYMBOL_GPL(atmel_ssc_put_audio);
916
917/* Module information */
918MODULE_AUTHOR("Sedji Gaouaou, sedji.gaouaou@atmel.com, www.atmel.com");
919MODULE_DESCRIPTION("ATMEL SSC ASoC Interface");
920MODULE_LICENSE("GPL");
921