1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
4 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
5 */
6
7/* Does not work. Warning may block system in capture mode */
8/* #define USE_VAR48KRATE */
9
10#include <linux/io.h>
11#include <linux/delay.h>
12#include <linux/interrupt.h>
13#include <linux/init.h>
14#include <linux/pci.h>
15#include <linux/slab.h>
16#include <linux/gameport.h>
17#include <linux/module.h>
18#include <linux/mutex.h>
19#include <sound/core.h>
20#include <sound/info.h>
21#include <sound/control.h>
22#include <sound/pcm.h>
23#include <sound/rawmidi.h>
24#include <sound/mpu401.h>
25#include <sound/opl3.h>
26#include <sound/sb.h>
27#include <sound/asoundef.h>
28#include <sound/initval.h>
29
30MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
31MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
32MODULE_LICENSE("GPL");
33
34#if IS_REACHABLE(CONFIG_GAMEPORT)
35#define SUPPORT_JOYSTICK 1
36#endif
37
38static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
39static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
40static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable switches */
41static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1};
42static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
43static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
44#ifdef SUPPORT_JOYSTICK
45static int joystick_port[SNDRV_CARDS];
46#endif
47
48module_param_array(index, int, NULL, 0444);
49MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
50module_param_array(id, charp, NULL, 0444);
51MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
52module_param_array(enable, bool, NULL, 0444);
53MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
54module_param_hw_array(mpu_port, long, ioport, NULL, 0444);
55MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
56module_param_hw_array(fm_port, long, ioport, NULL, 0444);
57MODULE_PARM_DESC(fm_port, "FM port.");
58module_param_array(soft_ac3, bool, NULL, 0444);
59MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
60#ifdef SUPPORT_JOYSTICK
61module_param_hw_array(joystick_port, int, ioport, NULL, 0444);
62MODULE_PARM_DESC(joystick_port, "Joystick port address.");
63#endif
64
65/*
66 * CM8x38 registers definition
67 */
68
69#define CM_REG_FUNCTRL0		0x00
70#define CM_RST_CH1		0x00080000
71#define CM_RST_CH0		0x00040000
72#define CM_CHEN1		0x00020000	/* ch1: enable */
73#define CM_CHEN0		0x00010000	/* ch0: enable */
74#define CM_PAUSE1		0x00000008	/* ch1: pause */
75#define CM_PAUSE0		0x00000004	/* ch0: pause */
76#define CM_CHADC1		0x00000002	/* ch1, 0:playback, 1:record */
77#define CM_CHADC0		0x00000001	/* ch0, 0:playback, 1:record */
78
79#define CM_REG_FUNCTRL1		0x04
80#define CM_DSFC_MASK		0x0000E000	/* channel 1 (DAC?) sampling frequency */
81#define CM_DSFC_SHIFT		13
82#define CM_ASFC_MASK		0x00001C00	/* channel 0 (ADC?) sampling frequency */
83#define CM_ASFC_SHIFT		10
84#define CM_SPDF_1		0x00000200	/* SPDIF IN/OUT at channel B */
85#define CM_SPDF_0		0x00000100	/* SPDIF OUT only channel A */
86#define CM_SPDFLOOP		0x00000080	/* ext. SPDIIF/IN -> OUT loopback */
87#define CM_SPDO2DAC		0x00000040	/* SPDIF/OUT can be heard from internal DAC */
88#define CM_INTRM		0x00000020	/* master control block (MCB) interrupt enabled */
89#define CM_BREQ			0x00000010	/* bus master enabled */
90#define CM_VOICE_EN		0x00000008	/* legacy voice (SB16,FM) */
91#define CM_UART_EN		0x00000004	/* legacy UART */
92#define CM_JYSTK_EN		0x00000002	/* legacy joystick */
93#define CM_ZVPORT		0x00000001	/* ZVPORT */
94
95#define CM_REG_CHFORMAT		0x08
96
97#define CM_CHB3D5C		0x80000000	/* 5,6 channels */
98#define CM_FMOFFSET2		0x40000000	/* initial FM PCM offset 2 when Fmute=1 */
99#define CM_CHB3D		0x20000000	/* 4 channels */
100
101#define CM_CHIP_MASK1		0x1f000000
102#define CM_CHIP_037		0x01000000
103#define CM_SETLAT48		0x00800000	/* set latency timer 48h */
104#define CM_EDGEIRQ		0x00400000	/* emulated edge trigger legacy IRQ */
105#define CM_SPD24SEL39		0x00200000	/* 24-bit spdif: model 039 */
106#define CM_AC3EN1		0x00100000	/* enable AC3: model 037 */
107#define CM_SPDIF_SELECT1	0x00080000	/* for model <= 037 ? */
108#define CM_SPD24SEL		0x00020000	/* 24bit spdif: model 037 */
109/* #define CM_SPDIF_INVERSE	0x00010000 */ /* ??? */
110
111#define CM_ADCBITLEN_MASK	0x0000C000
112#define CM_ADCBITLEN_16		0x00000000
113#define CM_ADCBITLEN_15		0x00004000
114#define CM_ADCBITLEN_14		0x00008000
115#define CM_ADCBITLEN_13		0x0000C000
116
117#define CM_ADCDACLEN_MASK	0x00003000	/* model 037 */
118#define CM_ADCDACLEN_060	0x00000000
119#define CM_ADCDACLEN_066	0x00001000
120#define CM_ADCDACLEN_130	0x00002000
121#define CM_ADCDACLEN_280	0x00003000
122
123#define CM_ADCDLEN_MASK		0x00003000	/* model 039 */
124#define CM_ADCDLEN_ORIGINAL	0x00000000
125#define CM_ADCDLEN_EXTRA	0x00001000
126#define CM_ADCDLEN_24K		0x00002000
127#define CM_ADCDLEN_WEIGHT	0x00003000
128
129#define CM_CH1_SRATE_176K	0x00000800
130#define CM_CH1_SRATE_96K	0x00000800	/* model 055? */
131#define CM_CH1_SRATE_88K	0x00000400
132#define CM_CH0_SRATE_176K	0x00000200
133#define CM_CH0_SRATE_96K	0x00000200	/* model 055? */
134#define CM_CH0_SRATE_88K	0x00000100
135#define CM_CH0_SRATE_128K	0x00000300
136#define CM_CH0_SRATE_MASK	0x00000300
137
138#define CM_SPDIF_INVERSE2	0x00000080	/* model 055? */
139#define CM_DBLSPDS		0x00000040	/* double SPDIF sample rate 88.2/96 */
140#define CM_POLVALID		0x00000020	/* inverse SPDIF/IN valid bit */
141#define CM_SPDLOCKED		0x00000010
142
143#define CM_CH1FMT_MASK		0x0000000C	/* bit 3: 16 bits, bit 2: stereo */
144#define CM_CH1FMT_SHIFT		2
145#define CM_CH0FMT_MASK		0x00000003	/* bit 1: 16 bits, bit 0: stereo */
146#define CM_CH0FMT_SHIFT		0
147
148#define CM_REG_INT_HLDCLR	0x0C
149#define CM_CHIP_MASK2		0xff000000
150#define CM_CHIP_8768		0x20000000
151#define CM_CHIP_055		0x08000000
152#define CM_CHIP_039		0x04000000
153#define CM_CHIP_039_6CH		0x01000000
154#define CM_UNKNOWN_INT_EN	0x00080000	/* ? */
155#define CM_TDMA_INT_EN		0x00040000
156#define CM_CH1_INT_EN		0x00020000
157#define CM_CH0_INT_EN		0x00010000
158
159#define CM_REG_INT_STATUS	0x10
160#define CM_INTR			0x80000000
161#define CM_VCO			0x08000000	/* Voice Control? CMI8738 */
162#define CM_MCBINT		0x04000000	/* Master Control Block abort cond.? */
163#define CM_UARTINT		0x00010000
164#define CM_LTDMAINT		0x00008000
165#define CM_HTDMAINT		0x00004000
166#define CM_XDO46		0x00000080	/* Modell 033? Direct programming EEPROM (read data register) */
167#define CM_LHBTOG		0x00000040	/* High/Low status from DMA ctrl register */
168#define CM_LEG_HDMA		0x00000020	/* Legacy is in High DMA channel */
169#define CM_LEG_STEREO		0x00000010	/* Legacy is in Stereo mode */
170#define CM_CH1BUSY		0x00000008
171#define CM_CH0BUSY		0x00000004
172#define CM_CHINT1		0x00000002
173#define CM_CHINT0		0x00000001
174
175#define CM_REG_LEGACY_CTRL	0x14
176#define CM_NXCHG		0x80000000	/* don't map base reg dword->sample */
177#define CM_VMPU_MASK		0x60000000	/* MPU401 i/o port address */
178#define CM_VMPU_330		0x00000000
179#define CM_VMPU_320		0x20000000
180#define CM_VMPU_310		0x40000000
181#define CM_VMPU_300		0x60000000
182#define CM_ENWR8237		0x10000000	/* enable bus master to write 8237 base reg */
183#define CM_VSBSEL_MASK		0x0C000000	/* SB16 base address */
184#define CM_VSBSEL_220		0x00000000
185#define CM_VSBSEL_240		0x04000000
186#define CM_VSBSEL_260		0x08000000
187#define CM_VSBSEL_280		0x0C000000
188#define CM_FMSEL_MASK		0x03000000	/* FM OPL3 base address */
189#define CM_FMSEL_388		0x00000000
190#define CM_FMSEL_3C8		0x01000000
191#define CM_FMSEL_3E0		0x02000000
192#define CM_FMSEL_3E8		0x03000000
193#define CM_ENSPDOUT		0x00800000	/* enable XSPDIF/OUT to I/O interface */
194#define CM_SPDCOPYRHT		0x00400000	/* spdif in/out copyright bit */
195#define CM_DAC2SPDO		0x00200000	/* enable wave+fm_midi -> SPDIF/OUT */
196#define CM_INVIDWEN		0x00100000	/* internal vendor ID write enable, model 039? */
197#define CM_SETRETRY		0x00100000	/* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
198#define CM_C_EEACCESS		0x00080000	/* direct programming eeprom regs */
199#define CM_C_EECS		0x00040000
200#define CM_C_EEDI46		0x00020000
201#define CM_C_EECK46		0x00010000
202#define CM_CHB3D6C		0x00008000	/* 5.1 channels support */
203#define CM_CENTR2LIN		0x00004000	/* line-in as center out */
204#define CM_BASE2LIN		0x00002000	/* line-in as bass out */
205#define CM_EXBASEN		0x00001000	/* external bass input enable */
206
207#define CM_REG_MISC_CTRL	0x18
208#define CM_PWD			0x80000000	/* power down */
209#define CM_RESET		0x40000000
210#define CM_SFIL_MASK		0x30000000	/* filter control at front end DAC, model 037? */
211#define CM_VMGAIN		0x10000000	/* analog master amp +6dB, model 039? */
212#define CM_TXVX			0x08000000	/* model 037? */
213#define CM_N4SPK3D		0x04000000	/* copy front to rear */
214#define CM_SPDO5V		0x02000000	/* 5V spdif output (1 = 0.5v (coax)) */
215#define CM_SPDIF48K		0x01000000	/* write */
216#define CM_SPATUS48K		0x01000000	/* read */
217#define CM_ENDBDAC		0x00800000	/* enable double dac */
218#define CM_XCHGDAC		0x00400000	/* 0: front=ch0, 1: front=ch1 */
219#define CM_SPD32SEL		0x00200000	/* 0: 16bit SPDIF, 1: 32bit */
220#define CM_SPDFLOOPI		0x00100000	/* int. SPDIF-OUT -> int. IN */
221#define CM_FM_EN		0x00080000	/* enable legacy FM */
222#define CM_AC3EN2		0x00040000	/* enable AC3: model 039 */
223#define CM_ENWRASID		0x00010000	/* choose writable internal SUBID (audio) */
224#define CM_VIDWPDSB		0x00010000	/* model 037? */
225#define CM_SPDF_AC97		0x00008000	/* 0: SPDIF/OUT 44.1K, 1: 48K */
226#define CM_MASK_EN		0x00004000	/* activate channel mask on legacy DMA */
227#define CM_ENWRMSID		0x00002000	/* choose writable internal SUBID (modem) */
228#define CM_VIDWPPRT		0x00002000	/* model 037? */
229#define CM_SFILENB		0x00001000	/* filter stepping at front end DAC, model 037? */
230#define CM_MMODE_MASK		0x00000E00	/* model DAA interface mode */
231#define CM_SPDIF_SELECT2	0x00000100	/* for model > 039 ? */
232#define CM_ENCENTER		0x00000080
233#define CM_FLINKON		0x00000040	/* force modem link detection on, model 037 */
234#define CM_MUTECH1		0x00000040	/* mute PCI ch1 to DAC */
235#define CM_FLINKOFF		0x00000020	/* force modem link detection off, model 037 */
236#define CM_MIDSMP		0x00000010	/* 1/2 interpolation at front end DAC */
237#define CM_UPDDMA_MASK		0x0000000C	/* TDMA position update notification */
238#define CM_UPDDMA_2048		0x00000000
239#define CM_UPDDMA_1024		0x00000004
240#define CM_UPDDMA_512		0x00000008
241#define CM_UPDDMA_256		0x0000000C
242#define CM_TWAIT_MASK		0x00000003	/* model 037 */
243#define CM_TWAIT1		0x00000002	/* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
244#define CM_TWAIT0		0x00000001	/* i/o cycle, 0: 4, 1: 6 PCICLKs */
245
246#define CM_REG_TDMA_POSITION	0x1C
247#define CM_TDMA_CNT_MASK	0xFFFF0000	/* current byte/word count */
248#define CM_TDMA_ADR_MASK	0x0000FFFF	/* current address */
249
250	/* byte */
251#define CM_REG_MIXER0		0x20
252#define CM_REG_SBVR		0x20		/* write: sb16 version */
253#define CM_REG_DEV		0x20		/* read: hardware device version */
254
255#define CM_REG_MIXER21		0x21
256#define CM_UNKNOWN_21_MASK	0x78		/* ? */
257#define CM_X_ADPCM		0x04		/* SB16 ADPCM enable */
258#define CM_PROINV		0x02		/* SBPro left/right channel switching */
259#define CM_X_SB16		0x01		/* SB16 compatible */
260
261#define CM_REG_SB16_DATA	0x22
262#define CM_REG_SB16_ADDR	0x23
263
264#define CM_REFFREQ_XIN		(315*1000*1000)/22	/* 14.31818 Mhz reference clock frequency pin XIN */
265#define CM_ADCMULT_XIN		512			/* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
266#define CM_TOLERANCE_RATE	0.001			/* Tolerance sample rate pitch (1000ppm) */
267#define CM_MAXIMUM_RATE		80000000		/* Note more than 80MHz */
268
269#define CM_REG_MIXER1		0x24
270#define CM_FMMUTE		0x80	/* mute FM */
271#define CM_FMMUTE_SHIFT		7
272#define CM_WSMUTE		0x40	/* mute PCM */
273#define CM_WSMUTE_SHIFT		6
274#define CM_REAR2LIN		0x20	/* lin-in -> rear line out */
275#define CM_REAR2LIN_SHIFT	5
276#define CM_REAR2FRONT		0x10	/* exchange rear/front */
277#define CM_REAR2FRONT_SHIFT	4
278#define CM_WAVEINL		0x08	/* digital wave rec. left chan */
279#define CM_WAVEINL_SHIFT	3
280#define CM_WAVEINR		0x04	/* digical wave rec. right */
281#define CM_WAVEINR_SHIFT	2
282#define CM_X3DEN		0x02	/* 3D surround enable */
283#define CM_X3DEN_SHIFT		1
284#define CM_CDPLAY		0x01	/* enable SPDIF/IN PCM -> DAC */
285#define CM_CDPLAY_SHIFT		0
286
287#define CM_REG_MIXER2		0x25
288#define CM_RAUXREN		0x80	/* AUX right capture */
289#define CM_RAUXREN_SHIFT	7
290#define CM_RAUXLEN		0x40	/* AUX left capture */
291#define CM_RAUXLEN_SHIFT	6
292#define CM_VAUXRM		0x20	/* AUX right mute */
293#define CM_VAUXRM_SHIFT		5
294#define CM_VAUXLM		0x10	/* AUX left mute */
295#define CM_VAUXLM_SHIFT		4
296#define CM_VADMIC_MASK		0x0e	/* mic gain level (0-3) << 1 */
297#define CM_VADMIC_SHIFT		1
298#define CM_MICGAINZ		0x01	/* mic boost */
299#define CM_MICGAINZ_SHIFT	0
300
301#define CM_REG_AUX_VOL		0x26
302#define CM_VAUXL_MASK		0xf0
303#define CM_VAUXR_MASK		0x0f
304
305#define CM_REG_MISC		0x27
306#define CM_UNKNOWN_27_MASK	0xd8	/* ? */
307#define CM_XGPO1		0x20
308// #define CM_XGPBIO		0x04
309#define CM_MIC_CENTER_LFE	0x04	/* mic as center/lfe out? (model 039 or later?) */
310#define CM_SPDIF_INVERSE	0x04	/* spdif input phase inverse (model 037) */
311#define CM_SPDVALID		0x02	/* spdif input valid check */
312#define CM_DMAUTO		0x01	/* SB16 DMA auto detect */
313
314#define CM_REG_AC97		0x28	/* hmmm.. do we have ac97 link? */
315/*
316 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
317 * or identical with AC97 codec?
318 */
319#define CM_REG_EXTERN_CODEC	CM_REG_AC97
320
321/*
322 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
323 */
324#define CM_REG_MPU_PCI		0x40
325
326/*
327 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
328 */
329#define CM_REG_FM_PCI		0x50
330
331/*
332 * access from SB-mixer port
333 */
334#define CM_REG_EXTENT_IND	0xf0
335#define CM_VPHONE_MASK		0xe0	/* Phone volume control (0-3) << 5 */
336#define CM_VPHONE_SHIFT		5
337#define CM_VPHOM		0x10	/* Phone mute control */
338#define CM_VSPKM		0x08	/* Speaker mute control, default high */
339#define CM_RLOOPREN		0x04    /* Rec. R-channel enable */
340#define CM_RLOOPLEN		0x02	/* Rec. L-channel enable */
341#define CM_VADMIC3		0x01	/* Mic record boost */
342
343/*
344 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
345 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
346 * unit (readonly?).
347 */
348#define CM_REG_PLL		0xf8
349
350/*
351 * extended registers
352 */
353#define CM_REG_CH0_FRAME1	0x80	/* write: base address */
354#define CM_REG_CH0_FRAME2	0x84	/* read: current address */
355#define CM_REG_CH1_FRAME1	0x88	/* 0-15: count of samples at bus master; buffer size */
356#define CM_REG_CH1_FRAME2	0x8C	/* 16-31: count of samples at codec; fragment size */
357
358#define CM_REG_EXT_MISC		0x90
359#define CM_ADC48K44K		0x10000000	/* ADC parameters group, 0: 44k, 1: 48k */
360#define CM_CHB3D8C		0x00200000	/* 7.1 channels support */
361#define CM_SPD32FMT		0x00100000	/* SPDIF/IN 32k sample rate */
362#define CM_ADC2SPDIF		0x00080000	/* ADC output to SPDIF/OUT */
363#define CM_SHAREADC		0x00040000	/* DAC in ADC as Center/LFE */
364#define CM_REALTCMP		0x00020000	/* monitor the CMPL/CMPR of ADC */
365#define CM_INVLRCK		0x00010000	/* invert ZVPORT's LRCK */
366#define CM_UNKNOWN_90_MASK	0x0000FFFF	/* ? */
367
368/*
369 * size of i/o region
370 */
371#define CM_EXTENT_CODEC	  0x100
372#define CM_EXTENT_MIDI	  0x2
373#define CM_EXTENT_SYNTH	  0x4
374
375
376/*
377 * channels for playback / capture
378 */
379#define CM_CH_PLAY	0
380#define CM_CH_CAPT	1
381
382/*
383 * flags to check device open/close
384 */
385#define CM_OPEN_NONE	0
386#define CM_OPEN_CH_MASK	0x01
387#define CM_OPEN_DAC	0x10
388#define CM_OPEN_ADC	0x20
389#define CM_OPEN_SPDIF	0x40
390#define CM_OPEN_MCHAN	0x80
391#define CM_OPEN_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC)
392#define CM_OPEN_PLAYBACK2	(CM_CH_CAPT | CM_OPEN_DAC)
393#define CM_OPEN_PLAYBACK_MULTI	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
394#define CM_OPEN_CAPTURE		(CM_CH_CAPT | CM_OPEN_ADC)
395#define CM_OPEN_SPDIF_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
396#define CM_OPEN_SPDIF_CAPTURE	(CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
397
398
399#if CM_CH_PLAY == 1
400#define CM_PLAYBACK_SRATE_176K	CM_CH1_SRATE_176K
401#define CM_PLAYBACK_SPDF	CM_SPDF_1
402#define CM_CAPTURE_SPDF		CM_SPDF_0
403#else
404#define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
405#define CM_PLAYBACK_SPDF	CM_SPDF_0
406#define CM_CAPTURE_SPDF		CM_SPDF_1
407#endif
408
409
410/*
411 * driver data
412 */
413
414struct cmipci_pcm {
415	struct snd_pcm_substream *substream;
416	u8 running;		/* dac/adc running? */
417	u8 fmt;			/* format bits */
418	u8 is_dac;
419	u8 needs_silencing;
420	unsigned int dma_size;	/* in frames */
421	unsigned int shift;
422	unsigned int ch;	/* channel (0/1) */
423	unsigned int offset;	/* physical address of the buffer */
424};
425
426/* mixer elements toggled/resumed during ac3 playback */
427struct cmipci_mixer_auto_switches {
428	const char *name;	/* switch to toggle */
429	int toggle_on;		/* value to change when ac3 mode */
430};
431static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
432	{"PCM Playback Switch", 0},
433	{"IEC958 Output Switch", 1},
434	{"IEC958 Mix Analog", 0},
435	// {"IEC958 Out To DAC", 1}, // no longer used
436	{"IEC958 Loop", 0},
437};
438#define CM_SAVED_MIXERS		ARRAY_SIZE(cm_saved_mixer)
439
440struct cmipci {
441	struct snd_card *card;
442
443	struct pci_dev *pci;
444	unsigned int device;	/* device ID */
445	int irq;
446
447	unsigned long iobase;
448	unsigned int ctrl;	/* FUNCTRL0 current value */
449
450	struct snd_pcm *pcm;		/* DAC/ADC PCM */
451	struct snd_pcm *pcm2;	/* 2nd DAC */
452	struct snd_pcm *pcm_spdif;	/* SPDIF */
453
454	int chip_version;
455	int max_channels;
456	unsigned int can_ac3_sw: 1;
457	unsigned int can_ac3_hw: 1;
458	unsigned int can_multi_ch: 1;
459	unsigned int can_96k: 1;	/* samplerate above 48k */
460	unsigned int do_soft_ac3: 1;
461
462	unsigned int spdif_playback_avail: 1;	/* spdif ready? */
463	unsigned int spdif_playback_enabled: 1;	/* spdif switch enabled? */
464	int spdif_counter;	/* for software AC3 */
465
466	unsigned int dig_status;
467	unsigned int dig_pcm_status;
468
469	struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
470
471	int opened[2];	/* open mode */
472	struct mutex open_mutex;
473
474	unsigned int mixer_insensitive: 1;
475	struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
476	int mixer_res_status[CM_SAVED_MIXERS];
477
478	struct cmipci_pcm channel[2];	/* ch0 - DAC, ch1 - ADC or 2nd DAC */
479
480	/* external MIDI */
481	struct snd_rawmidi *rmidi;
482
483#ifdef SUPPORT_JOYSTICK
484	struct gameport *gameport;
485#endif
486
487	spinlock_t reg_lock;
488
489	unsigned int saved_regs[0x20];
490	unsigned char saved_mixers[0x20];
491};
492
493
494/* read/write operations for dword register */
495static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
496{
497	outl(data, cm->iobase + cmd);
498}
499
500static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
501{
502	return inl(cm->iobase + cmd);
503}
504
505/* read/write operations for word register */
506static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
507{
508	outw(data, cm->iobase + cmd);
509}
510
511static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
512{
513	return inw(cm->iobase + cmd);
514}
515
516/* read/write operations for byte register */
517static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
518{
519	outb(data, cm->iobase + cmd);
520}
521
522static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
523{
524	return inb(cm->iobase + cmd);
525}
526
527/* bit operations for dword register */
528static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
529{
530	unsigned int val, oval;
531	val = oval = inl(cm->iobase + cmd);
532	val |= flag;
533	if (val == oval)
534		return 0;
535	outl(val, cm->iobase + cmd);
536	return 1;
537}
538
539static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
540{
541	unsigned int val, oval;
542	val = oval = inl(cm->iobase + cmd);
543	val &= ~flag;
544	if (val == oval)
545		return 0;
546	outl(val, cm->iobase + cmd);
547	return 1;
548}
549
550/* bit operations for byte register */
551static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
552{
553	unsigned char val, oval;
554	val = oval = inb(cm->iobase + cmd);
555	val |= flag;
556	if (val == oval)
557		return 0;
558	outb(val, cm->iobase + cmd);
559	return 1;
560}
561
562static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
563{
564	unsigned char val, oval;
565	val = oval = inb(cm->iobase + cmd);
566	val &= ~flag;
567	if (val == oval)
568		return 0;
569	outb(val, cm->iobase + cmd);
570	return 1;
571}
572
573
574/*
575 * PCM interface
576 */
577
578/*
579 * calculate frequency
580 */
581
582static const unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
583
584static unsigned int snd_cmipci_rate_freq(unsigned int rate)
585{
586	unsigned int i;
587
588	for (i = 0; i < ARRAY_SIZE(rates); i++) {
589		if (rates[i] == rate)
590			return i;
591	}
592	snd_BUG();
593	return 0;
594}
595
596#ifdef USE_VAR48KRATE
597/*
598 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
599 * does it this way .. maybe not.  Never get any information from C-Media about
600 * that <werner@suse.de>.
601 */
602static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
603{
604	unsigned int delta, tolerance;
605	int xm, xn, xr;
606
607	for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
608		rate <<= 1;
609	*n = -1;
610	if (*r > 0xff)
611		goto out;
612	tolerance = rate*CM_TOLERANCE_RATE;
613
614	for (xn = (1+2); xn < (0x1f+2); xn++) {
615		for (xm = (1+2); xm < (0xff+2); xm++) {
616			xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
617
618			if (xr < rate)
619				delta = rate - xr;
620			else
621				delta = xr - rate;
622
623			/*
624			 * If we found one, remember this,
625			 * and try to find a closer one
626			 */
627			if (delta < tolerance) {
628				tolerance = delta;
629				*m = xm - 2;
630				*n = xn - 2;
631			}
632		}
633	}
634out:
635	return (*n > -1);
636}
637
638/*
639 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
640 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
641 * at the register CM_REG_FUNCTRL1 (0x04).
642 * Problem: other ways are also possible (any information about that?)
643 */
644static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
645{
646	unsigned int reg = CM_REG_PLL + slot;
647	/*
648	 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
649	 * for DSFC/ASFC (000 up to 111).
650	 */
651
652	/* FIXME: Init (Do we've to set an other register first before programming?) */
653
654	/* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
655	snd_cmipci_write_b(cm, reg, rate>>8);
656	snd_cmipci_write_b(cm, reg, rate&0xff);
657
658	/* FIXME: Setup (Do we've to set an other register first to enable this?) */
659}
660#endif /* USE_VAR48KRATE */
661
662static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
663					  struct snd_pcm_hw_params *hw_params)
664{
665	struct cmipci *cm = snd_pcm_substream_chip(substream);
666	if (params_channels(hw_params) > 2) {
667		mutex_lock(&cm->open_mutex);
668		if (cm->opened[CM_CH_PLAY]) {
669			mutex_unlock(&cm->open_mutex);
670			return -EBUSY;
671		}
672		/* reserve the channel A */
673		cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
674		mutex_unlock(&cm->open_mutex);
675	}
676	return 0;
677}
678
679static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
680{
681	int reset = CM_RST_CH0 << (cm->channel[ch].ch);
682	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
683	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
684	udelay(10);
685}
686
687
688/*
689 */
690
691static const unsigned int hw_channels[] = {1, 2, 4, 6, 8};
692static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
693	.count = 3,
694	.list = hw_channels,
695	.mask = 0,
696};
697static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
698	.count = 4,
699	.list = hw_channels,
700	.mask = 0,
701};
702static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
703	.count = 5,
704	.list = hw_channels,
705	.mask = 0,
706};
707
708static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
709{
710	if (channels > 2) {
711		if (!cm->can_multi_ch || !rec->ch)
712			return -EINVAL;
713		if (rec->fmt != 0x03) /* stereo 16bit only */
714			return -EINVAL;
715	}
716
717	if (cm->can_multi_ch) {
718		spin_lock_irq(&cm->reg_lock);
719		if (channels > 2) {
720			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
721			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
722		} else {
723			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
724			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
725		}
726		if (channels == 8)
727			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
728		else
729			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
730		if (channels == 6) {
731			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
732			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
733		} else {
734			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
735			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
736		}
737		if (channels == 4)
738			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
739		else
740			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
741		spin_unlock_irq(&cm->reg_lock);
742	}
743	return 0;
744}
745
746
747/*
748 * prepare playback/capture channel
749 * channel to be used must have been set in rec->ch.
750 */
751static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
752				 struct snd_pcm_substream *substream)
753{
754	unsigned int reg, freq, freq_ext, val;
755	unsigned int period_size;
756	struct snd_pcm_runtime *runtime = substream->runtime;
757
758	rec->fmt = 0;
759	rec->shift = 0;
760	if (snd_pcm_format_width(runtime->format) >= 16) {
761		rec->fmt |= 0x02;
762		if (snd_pcm_format_width(runtime->format) > 16)
763			rec->shift++; /* 24/32bit */
764	}
765	if (runtime->channels > 1)
766		rec->fmt |= 0x01;
767	if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
768		dev_dbg(cm->card->dev, "cannot set dac channels\n");
769		return -EINVAL;
770	}
771
772	rec->offset = runtime->dma_addr;
773	/* buffer and period sizes in frame */
774	rec->dma_size = runtime->buffer_size << rec->shift;
775	period_size = runtime->period_size << rec->shift;
776	if (runtime->channels > 2) {
777		/* multi-channels */
778		rec->dma_size = (rec->dma_size * runtime->channels) / 2;
779		period_size = (period_size * runtime->channels) / 2;
780	}
781
782	spin_lock_irq(&cm->reg_lock);
783
784	/* set buffer address */
785	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
786	snd_cmipci_write(cm, reg, rec->offset);
787	/* program sample counts */
788	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
789	snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
790	snd_cmipci_write_w(cm, reg + 2, period_size - 1);
791
792	/* set adc/dac flag */
793	val = rec->ch ? CM_CHADC1 : CM_CHADC0;
794	if (rec->is_dac)
795		cm->ctrl &= ~val;
796	else
797		cm->ctrl |= val;
798	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
799	/* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
800
801	/* set sample rate */
802	freq = 0;
803	freq_ext = 0;
804	if (runtime->rate > 48000)
805		switch (runtime->rate) {
806		case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
807		case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
808		case 128000: freq_ext = CM_CH0_SRATE_128K; break;
809		default:     snd_BUG(); break;
810		}
811	else
812		freq = snd_cmipci_rate_freq(runtime->rate);
813	val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
814	if (rec->ch) {
815		val &= ~CM_DSFC_MASK;
816		val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
817	} else {
818		val &= ~CM_ASFC_MASK;
819		val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
820	}
821	snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
822	dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
823
824	/* set format */
825	val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
826	if (rec->ch) {
827		val &= ~CM_CH1FMT_MASK;
828		val |= rec->fmt << CM_CH1FMT_SHIFT;
829	} else {
830		val &= ~CM_CH0FMT_MASK;
831		val |= rec->fmt << CM_CH0FMT_SHIFT;
832	}
833	if (cm->can_96k) {
834		val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
835		val |= freq_ext << (rec->ch * 2);
836	}
837	snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
838	dev_dbg(cm->card->dev, "chformat = %08x\n", val);
839
840	if (!rec->is_dac && cm->chip_version) {
841		if (runtime->rate > 44100)
842			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
843		else
844			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
845	}
846
847	rec->running = 0;
848	spin_unlock_irq(&cm->reg_lock);
849
850	return 0;
851}
852
853/*
854 * PCM trigger/stop
855 */
856static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
857				  int cmd)
858{
859	unsigned int inthld, chen, reset, pause;
860	int result = 0;
861
862	inthld = CM_CH0_INT_EN << rec->ch;
863	chen = CM_CHEN0 << rec->ch;
864	reset = CM_RST_CH0 << rec->ch;
865	pause = CM_PAUSE0 << rec->ch;
866
867	spin_lock(&cm->reg_lock);
868	switch (cmd) {
869	case SNDRV_PCM_TRIGGER_START:
870		rec->running = 1;
871		/* set interrupt */
872		snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
873		cm->ctrl |= chen;
874		/* enable channel */
875		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
876		dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
877		break;
878	case SNDRV_PCM_TRIGGER_STOP:
879		rec->running = 0;
880		/* disable interrupt */
881		snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
882		/* reset */
883		cm->ctrl &= ~chen;
884		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
885		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
886		rec->needs_silencing = rec->is_dac;
887		break;
888	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
889	case SNDRV_PCM_TRIGGER_SUSPEND:
890		cm->ctrl |= pause;
891		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
892		break;
893	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
894	case SNDRV_PCM_TRIGGER_RESUME:
895		cm->ctrl &= ~pause;
896		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
897		break;
898	default:
899		result = -EINVAL;
900		break;
901	}
902	spin_unlock(&cm->reg_lock);
903	return result;
904}
905
906/*
907 * return the current pointer
908 */
909static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
910						struct snd_pcm_substream *substream)
911{
912	size_t ptr;
913	unsigned int reg, rem, tries;
914
915	if (!rec->running)
916		return 0;
917#if 1 // this seems better..
918	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
919	for (tries = 0; tries < 3; tries++) {
920		rem = snd_cmipci_read_w(cm, reg);
921		if (rem < rec->dma_size)
922			goto ok;
923	}
924	dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
925	return SNDRV_PCM_POS_XRUN;
926ok:
927	ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
928#else
929	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
930	ptr = snd_cmipci_read(cm, reg) - rec->offset;
931	ptr = bytes_to_frames(substream->runtime, ptr);
932#endif
933	if (substream->runtime->channels > 2)
934		ptr = (ptr * 2) / substream->runtime->channels;
935	return ptr;
936}
937
938/*
939 * playback
940 */
941
942static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
943				       int cmd)
944{
945	struct cmipci *cm = snd_pcm_substream_chip(substream);
946	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
947}
948
949static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
950{
951	struct cmipci *cm = snd_pcm_substream_chip(substream);
952	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
953}
954
955
956
957/*
958 * capture
959 */
960
961static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
962				     int cmd)
963{
964	struct cmipci *cm = snd_pcm_substream_chip(substream);
965	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
966}
967
968static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
969{
970	struct cmipci *cm = snd_pcm_substream_chip(substream);
971	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
972}
973
974
975/*
976 * hw preparation for spdif
977 */
978
979static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
980					 struct snd_ctl_elem_info *uinfo)
981{
982	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
983	uinfo->count = 1;
984	return 0;
985}
986
987static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
988					struct snd_ctl_elem_value *ucontrol)
989{
990	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
991	int i;
992
993	spin_lock_irq(&chip->reg_lock);
994	for (i = 0; i < 4; i++)
995		ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
996	spin_unlock_irq(&chip->reg_lock);
997	return 0;
998}
999
1000static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1001					 struct snd_ctl_elem_value *ucontrol)
1002{
1003	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1004	int i, change;
1005	unsigned int val;
1006
1007	val = 0;
1008	spin_lock_irq(&chip->reg_lock);
1009	for (i = 0; i < 4; i++)
1010		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1011	change = val != chip->dig_status;
1012	chip->dig_status = val;
1013	spin_unlock_irq(&chip->reg_lock);
1014	return change;
1015}
1016
1017static const struct snd_kcontrol_new snd_cmipci_spdif_default =
1018{
1019	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1020	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1021	.info =		snd_cmipci_spdif_default_info,
1022	.get =		snd_cmipci_spdif_default_get,
1023	.put =		snd_cmipci_spdif_default_put
1024};
1025
1026static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1027				      struct snd_ctl_elem_info *uinfo)
1028{
1029	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1030	uinfo->count = 1;
1031	return 0;
1032}
1033
1034static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1035				     struct snd_ctl_elem_value *ucontrol)
1036{
1037	ucontrol->value.iec958.status[0] = 0xff;
1038	ucontrol->value.iec958.status[1] = 0xff;
1039	ucontrol->value.iec958.status[2] = 0xff;
1040	ucontrol->value.iec958.status[3] = 0xff;
1041	return 0;
1042}
1043
1044static const struct snd_kcontrol_new snd_cmipci_spdif_mask =
1045{
1046	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1047	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1048	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1049	.info =		snd_cmipci_spdif_mask_info,
1050	.get =		snd_cmipci_spdif_mask_get,
1051};
1052
1053static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1054					struct snd_ctl_elem_info *uinfo)
1055{
1056	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1057	uinfo->count = 1;
1058	return 0;
1059}
1060
1061static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1062				       struct snd_ctl_elem_value *ucontrol)
1063{
1064	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1065	int i;
1066
1067	spin_lock_irq(&chip->reg_lock);
1068	for (i = 0; i < 4; i++)
1069		ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1070	spin_unlock_irq(&chip->reg_lock);
1071	return 0;
1072}
1073
1074static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1075				       struct snd_ctl_elem_value *ucontrol)
1076{
1077	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1078	int i, change;
1079	unsigned int val;
1080
1081	val = 0;
1082	spin_lock_irq(&chip->reg_lock);
1083	for (i = 0; i < 4; i++)
1084		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1085	change = val != chip->dig_pcm_status;
1086	chip->dig_pcm_status = val;
1087	spin_unlock_irq(&chip->reg_lock);
1088	return change;
1089}
1090
1091static const struct snd_kcontrol_new snd_cmipci_spdif_stream =
1092{
1093	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1094	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1095	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1096	.info =		snd_cmipci_spdif_stream_info,
1097	.get =		snd_cmipci_spdif_stream_get,
1098	.put =		snd_cmipci_spdif_stream_put
1099};
1100
1101/*
1102 */
1103
1104/* save mixer setting and mute for AC3 playback */
1105static int save_mixer_state(struct cmipci *cm)
1106{
1107	if (! cm->mixer_insensitive) {
1108		struct snd_ctl_elem_value *val;
1109		unsigned int i;
1110
1111		val = kmalloc(sizeof(*val), GFP_KERNEL);
1112		if (!val)
1113			return -ENOMEM;
1114		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1115			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1116			if (ctl) {
1117				int event;
1118				memset(val, 0, sizeof(*val));
1119				ctl->get(ctl, val);
1120				cm->mixer_res_status[i] = val->value.integer.value[0];
1121				val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1122				event = SNDRV_CTL_EVENT_MASK_INFO;
1123				if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1124					ctl->put(ctl, val); /* toggle */
1125					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1126				}
1127				ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1128				snd_ctl_notify(cm->card, event, &ctl->id);
1129			}
1130		}
1131		kfree(val);
1132		cm->mixer_insensitive = 1;
1133	}
1134	return 0;
1135}
1136
1137
1138/* restore the previously saved mixer status */
1139static void restore_mixer_state(struct cmipci *cm)
1140{
1141	if (cm->mixer_insensitive) {
1142		struct snd_ctl_elem_value *val;
1143		unsigned int i;
1144
1145		val = kmalloc(sizeof(*val), GFP_KERNEL);
1146		if (!val)
1147			return;
1148		cm->mixer_insensitive = 0; /* at first clear this;
1149					      otherwise the changes will be ignored */
1150		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1151			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1152			if (ctl) {
1153				int event;
1154
1155				memset(val, 0, sizeof(*val));
1156				ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1157				ctl->get(ctl, val);
1158				event = SNDRV_CTL_EVENT_MASK_INFO;
1159				if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1160					val->value.integer.value[0] = cm->mixer_res_status[i];
1161					ctl->put(ctl, val);
1162					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1163				}
1164				snd_ctl_notify(cm->card, event, &ctl->id);
1165			}
1166		}
1167		kfree(val);
1168	}
1169}
1170
1171/* spinlock held! */
1172static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1173{
1174	if (do_ac3) {
1175		/* AC3EN for 037 */
1176		snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1177		/* AC3EN for 039 */
1178		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1179
1180		if (cm->can_ac3_hw) {
1181			/* SPD24SEL for 037, 0x02 */
1182			/* SPD24SEL for 039, 0x20, but cannot be set */
1183			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1184			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1185		} else { /* can_ac3_sw */
1186			/* SPD32SEL for 037 & 039, 0x20 */
1187			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1188			/* set 176K sample rate to fix 033 HW bug */
1189			if (cm->chip_version == 33) {
1190				if (rate >= 48000) {
1191					snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1192				} else {
1193					snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1194				}
1195			}
1196		}
1197
1198	} else {
1199		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1200		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1201
1202		if (cm->can_ac3_hw) {
1203			/* chip model >= 37 */
1204			if (snd_pcm_format_width(subs->runtime->format) > 16) {
1205				snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1206				snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1207			} else {
1208				snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1209				snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1210			}
1211		} else {
1212			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1213			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1214			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1215		}
1216	}
1217}
1218
1219static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1220{
1221	int rate, err;
1222
1223	rate = subs->runtime->rate;
1224
1225	if (up && do_ac3) {
1226		err = save_mixer_state(cm);
1227		if (err < 0)
1228			return err;
1229	}
1230
1231	spin_lock_irq(&cm->reg_lock);
1232	cm->spdif_playback_avail = up;
1233	if (up) {
1234		/* they are controlled via "IEC958 Output Switch" */
1235		/* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1236		/* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1237		if (cm->spdif_playback_enabled)
1238			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1239		setup_ac3(cm, subs, do_ac3, rate);
1240
1241		if (rate == 48000 || rate == 96000)
1242			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1243		else
1244			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1245		if (rate > 48000)
1246			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1247		else
1248			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1249	} else {
1250		/* they are controlled via "IEC958 Output Switch" */
1251		/* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1252		/* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1253		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1254		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1255		setup_ac3(cm, subs, 0, 0);
1256	}
1257	spin_unlock_irq(&cm->reg_lock);
1258	return 0;
1259}
1260
1261
1262/*
1263 * preparation
1264 */
1265
1266/* playback - enable spdif only on the certain condition */
1267static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1268{
1269	struct cmipci *cm = snd_pcm_substream_chip(substream);
1270	int rate = substream->runtime->rate;
1271	int err, do_spdif, do_ac3 = 0;
1272
1273	do_spdif = (rate >= 44100 && rate <= 96000 &&
1274		    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1275		    substream->runtime->channels == 2);
1276	if (do_spdif && cm->can_ac3_hw)
1277		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1278	err = setup_spdif_playback(cm, substream, do_spdif, do_ac3);
1279	if (err < 0)
1280		return err;
1281	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1282}
1283
1284/* playback  (via device #2) - enable spdif always */
1285static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1286{
1287	struct cmipci *cm = snd_pcm_substream_chip(substream);
1288	int err, do_ac3;
1289
1290	if (cm->can_ac3_hw)
1291		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1292	else
1293		do_ac3 = 1; /* doesn't matter */
1294	err = setup_spdif_playback(cm, substream, 1, do_ac3);
1295	if (err < 0)
1296		return err;
1297	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1298}
1299
1300/*
1301 * Apparently, the samples last played on channel A stay in some buffer, even
1302 * after the channel is reset, and get added to the data for the rear DACs when
1303 * playing a multichannel stream on channel B.  This is likely to generate
1304 * wraparounds and thus distortions.
1305 * To avoid this, we play at least one zero sample after the actual stream has
1306 * stopped.
1307 */
1308static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1309{
1310	struct snd_pcm_runtime *runtime = rec->substream->runtime;
1311	unsigned int reg, val;
1312
1313	if (rec->needs_silencing && runtime && runtime->dma_area) {
1314		/* set up a small silence buffer */
1315		memset(runtime->dma_area, 0, PAGE_SIZE);
1316		reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1317		val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1318		snd_cmipci_write(cm, reg, val);
1319
1320		/* configure for 16 bits, 2 channels, 8 kHz */
1321		if (runtime->channels > 2)
1322			set_dac_channels(cm, rec, 2);
1323		spin_lock_irq(&cm->reg_lock);
1324		val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1325		val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1326		val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1327		snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1328		val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1329		val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1330		val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1331		if (cm->can_96k)
1332			val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1333		snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1334
1335		/* start stream (we don't need interrupts) */
1336		cm->ctrl |= CM_CHEN0 << rec->ch;
1337		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1338		spin_unlock_irq(&cm->reg_lock);
1339
1340		msleep(1);
1341
1342		/* stop and reset stream */
1343		spin_lock_irq(&cm->reg_lock);
1344		cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1345		val = CM_RST_CH0 << rec->ch;
1346		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1347		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1348		spin_unlock_irq(&cm->reg_lock);
1349
1350		rec->needs_silencing = 0;
1351	}
1352}
1353
1354static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1355{
1356	struct cmipci *cm = snd_pcm_substream_chip(substream);
1357	setup_spdif_playback(cm, substream, 0, 0);
1358	restore_mixer_state(cm);
1359	snd_cmipci_silence_hack(cm, &cm->channel[0]);
1360	return 0;
1361}
1362
1363static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1364{
1365	struct cmipci *cm = snd_pcm_substream_chip(substream);
1366	snd_cmipci_silence_hack(cm, &cm->channel[1]);
1367	return 0;
1368}
1369
1370/* capture */
1371static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1372{
1373	struct cmipci *cm = snd_pcm_substream_chip(substream);
1374	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1375}
1376
1377/* capture with spdif (via device #2) */
1378static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1379{
1380	struct cmipci *cm = snd_pcm_substream_chip(substream);
1381
1382	spin_lock_irq(&cm->reg_lock);
1383	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1384	if (cm->can_96k) {
1385		if (substream->runtime->rate > 48000)
1386			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1387		else
1388			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1389	}
1390	if (snd_pcm_format_width(substream->runtime->format) > 16)
1391		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1392	else
1393		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1394
1395	spin_unlock_irq(&cm->reg_lock);
1396
1397	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1398}
1399
1400static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1401{
1402	struct cmipci *cm = snd_pcm_substream_chip(subs);
1403
1404	spin_lock_irq(&cm->reg_lock);
1405	snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1406	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1407	spin_unlock_irq(&cm->reg_lock);
1408
1409	return 0;
1410}
1411
1412
1413/*
1414 * interrupt handler
1415 */
1416static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1417{
1418	struct cmipci *cm = dev_id;
1419	unsigned int status, mask = 0;
1420
1421	/* fastpath out, to ease interrupt sharing */
1422	status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1423	if (!(status & CM_INTR))
1424		return IRQ_NONE;
1425
1426	/* acknowledge interrupt */
1427	spin_lock(&cm->reg_lock);
1428	if (status & CM_CHINT0)
1429		mask |= CM_CH0_INT_EN;
1430	if (status & CM_CHINT1)
1431		mask |= CM_CH1_INT_EN;
1432	snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1433	snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1434	spin_unlock(&cm->reg_lock);
1435
1436	if (cm->rmidi && (status & CM_UARTINT))
1437		snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1438
1439	if (cm->pcm) {
1440		if ((status & CM_CHINT0) && cm->channel[0].running)
1441			snd_pcm_period_elapsed(cm->channel[0].substream);
1442		if ((status & CM_CHINT1) && cm->channel[1].running)
1443			snd_pcm_period_elapsed(cm->channel[1].substream);
1444	}
1445	return IRQ_HANDLED;
1446}
1447
1448/*
1449 * h/w infos
1450 */
1451
1452/* playback on channel A */
1453static const struct snd_pcm_hardware snd_cmipci_playback =
1454{
1455	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1456				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1457				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1458	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1459	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1460	.rate_min =		5512,
1461	.rate_max =		48000,
1462	.channels_min =		1,
1463	.channels_max =		2,
1464	.buffer_bytes_max =	(128*1024),
1465	.period_bytes_min =	64,
1466	.period_bytes_max =	(128*1024),
1467	.periods_min =		2,
1468	.periods_max =		1024,
1469	.fifo_size =		0,
1470};
1471
1472/* capture on channel B */
1473static const struct snd_pcm_hardware snd_cmipci_capture =
1474{
1475	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1476				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1477				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1478	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1479	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1480	.rate_min =		5512,
1481	.rate_max =		48000,
1482	.channels_min =		1,
1483	.channels_max =		2,
1484	.buffer_bytes_max =	(128*1024),
1485	.period_bytes_min =	64,
1486	.period_bytes_max =	(128*1024),
1487	.periods_min =		2,
1488	.periods_max =		1024,
1489	.fifo_size =		0,
1490};
1491
1492/* playback on channel B - stereo 16bit only? */
1493static const struct snd_pcm_hardware snd_cmipci_playback2 =
1494{
1495	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1496				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1497				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1498	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1499	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1500	.rate_min =		5512,
1501	.rate_max =		48000,
1502	.channels_min =		2,
1503	.channels_max =		2,
1504	.buffer_bytes_max =	(128*1024),
1505	.period_bytes_min =	64,
1506	.period_bytes_max =	(128*1024),
1507	.periods_min =		2,
1508	.periods_max =		1024,
1509	.fifo_size =		0,
1510};
1511
1512/* spdif playback on channel A */
1513static const struct snd_pcm_hardware snd_cmipci_playback_spdif =
1514{
1515	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1516				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1517				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1518	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1519	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1520	.rate_min =		44100,
1521	.rate_max =		48000,
1522	.channels_min =		2,
1523	.channels_max =		2,
1524	.buffer_bytes_max =	(128*1024),
1525	.period_bytes_min =	64,
1526	.period_bytes_max =	(128*1024),
1527	.periods_min =		2,
1528	.periods_max =		1024,
1529	.fifo_size =		0,
1530};
1531
1532/* spdif playback on channel A (32bit, IEC958 subframes) */
1533static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1534{
1535	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1536				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1537				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1538	.formats =		SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1539	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1540	.rate_min =		44100,
1541	.rate_max =		48000,
1542	.channels_min =		2,
1543	.channels_max =		2,
1544	.buffer_bytes_max =	(128*1024),
1545	.period_bytes_min =	64,
1546	.period_bytes_max =	(128*1024),
1547	.periods_min =		2,
1548	.periods_max =		1024,
1549	.fifo_size =		0,
1550};
1551
1552/* spdif capture on channel B */
1553static const struct snd_pcm_hardware snd_cmipci_capture_spdif =
1554{
1555	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1556				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1557				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1558	.formats =	        SNDRV_PCM_FMTBIT_S16_LE |
1559				SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1560	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1561	.rate_min =		44100,
1562	.rate_max =		48000,
1563	.channels_min =		2,
1564	.channels_max =		2,
1565	.buffer_bytes_max =	(128*1024),
1566	.period_bytes_min =	64,
1567	.period_bytes_max =	(128*1024),
1568	.periods_min =		2,
1569	.periods_max =		1024,
1570	.fifo_size =		0,
1571};
1572
1573static const unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1574			32000, 44100, 48000, 88200, 96000, 128000 };
1575static const struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1576		.count = ARRAY_SIZE(rate_constraints),
1577		.list = rate_constraints,
1578		.mask = 0,
1579};
1580
1581/*
1582 * check device open/close
1583 */
1584static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1585{
1586	int ch = mode & CM_OPEN_CH_MASK;
1587
1588	/* FIXME: a file should wait until the device becomes free
1589	 * when it's opened on blocking mode.  however, since the current
1590	 * pcm framework doesn't pass file pointer before actually opened,
1591	 * we can't know whether blocking mode or not in open callback..
1592	 */
1593	mutex_lock(&cm->open_mutex);
1594	if (cm->opened[ch]) {
1595		mutex_unlock(&cm->open_mutex);
1596		return -EBUSY;
1597	}
1598	cm->opened[ch] = mode;
1599	cm->channel[ch].substream = subs;
1600	if (! (mode & CM_OPEN_DAC)) {
1601		/* disable dual DAC mode */
1602		cm->channel[ch].is_dac = 0;
1603		spin_lock_irq(&cm->reg_lock);
1604		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1605		spin_unlock_irq(&cm->reg_lock);
1606	}
1607	mutex_unlock(&cm->open_mutex);
1608	return 0;
1609}
1610
1611static void close_device_check(struct cmipci *cm, int mode)
1612{
1613	int ch = mode & CM_OPEN_CH_MASK;
1614
1615	mutex_lock(&cm->open_mutex);
1616	if (cm->opened[ch] == mode) {
1617		if (cm->channel[ch].substream) {
1618			snd_cmipci_ch_reset(cm, ch);
1619			cm->channel[ch].running = 0;
1620			cm->channel[ch].substream = NULL;
1621		}
1622		cm->opened[ch] = 0;
1623		if (! cm->channel[ch].is_dac) {
1624			/* enable dual DAC mode again */
1625			cm->channel[ch].is_dac = 1;
1626			spin_lock_irq(&cm->reg_lock);
1627			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1628			spin_unlock_irq(&cm->reg_lock);
1629		}
1630	}
1631	mutex_unlock(&cm->open_mutex);
1632}
1633
1634/*
1635 */
1636
1637static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1638{
1639	struct cmipci *cm = snd_pcm_substream_chip(substream);
1640	struct snd_pcm_runtime *runtime = substream->runtime;
1641	int err;
1642
1643	err = open_device_check(cm, CM_OPEN_PLAYBACK, substream);
1644	if (err < 0)
1645		return err;
1646	runtime->hw = snd_cmipci_playback;
1647	if (cm->chip_version == 68) {
1648		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1649				     SNDRV_PCM_RATE_96000;
1650		runtime->hw.rate_max = 96000;
1651	} else if (cm->chip_version == 55) {
1652		err = snd_pcm_hw_constraint_list(runtime, 0,
1653			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1654		if (err < 0)
1655			return err;
1656		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1657		runtime->hw.rate_max = 128000;
1658	}
1659	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1660	cm->dig_pcm_status = cm->dig_status;
1661	return 0;
1662}
1663
1664static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1665{
1666	struct cmipci *cm = snd_pcm_substream_chip(substream);
1667	struct snd_pcm_runtime *runtime = substream->runtime;
1668	int err;
1669
1670	err = open_device_check(cm, CM_OPEN_CAPTURE, substream);
1671	if (err < 0)
1672		return err;
1673	runtime->hw = snd_cmipci_capture;
1674	if (cm->chip_version == 68) {	// 8768 only supports 44k/48k recording
1675		runtime->hw.rate_min = 41000;
1676		runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1677	} else if (cm->chip_version == 55) {
1678		err = snd_pcm_hw_constraint_list(runtime, 0,
1679			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1680		if (err < 0)
1681			return err;
1682		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1683		runtime->hw.rate_max = 128000;
1684	}
1685	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1686	return 0;
1687}
1688
1689static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1690{
1691	struct cmipci *cm = snd_pcm_substream_chip(substream);
1692	struct snd_pcm_runtime *runtime = substream->runtime;
1693	int err;
1694
1695	/* use channel B */
1696	err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream);
1697	if (err < 0)
1698		return err;
1699	runtime->hw = snd_cmipci_playback2;
1700	mutex_lock(&cm->open_mutex);
1701	if (! cm->opened[CM_CH_PLAY]) {
1702		if (cm->can_multi_ch) {
1703			runtime->hw.channels_max = cm->max_channels;
1704			if (cm->max_channels == 4)
1705				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1706			else if (cm->max_channels == 6)
1707				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1708			else if (cm->max_channels == 8)
1709				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1710		}
1711	}
1712	mutex_unlock(&cm->open_mutex);
1713	if (cm->chip_version == 68) {
1714		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1715				     SNDRV_PCM_RATE_96000;
1716		runtime->hw.rate_max = 96000;
1717	} else if (cm->chip_version == 55) {
1718		err = snd_pcm_hw_constraint_list(runtime, 0,
1719			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1720		if (err < 0)
1721			return err;
1722		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1723		runtime->hw.rate_max = 128000;
1724	}
1725	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1726	return 0;
1727}
1728
1729static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1730{
1731	struct cmipci *cm = snd_pcm_substream_chip(substream);
1732	struct snd_pcm_runtime *runtime = substream->runtime;
1733	int err;
1734
1735	/* use channel A */
1736	err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream);
1737	if (err < 0)
1738		return err;
1739	if (cm->can_ac3_hw) {
1740		runtime->hw = snd_cmipci_playback_spdif;
1741		if (cm->chip_version >= 37) {
1742			runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1743			snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1744		}
1745		if (cm->can_96k) {
1746			runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1747					     SNDRV_PCM_RATE_96000;
1748			runtime->hw.rate_max = 96000;
1749		}
1750	} else {
1751		runtime->hw = snd_cmipci_playback_iec958_subframe;
1752	}
1753	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1754	cm->dig_pcm_status = cm->dig_status;
1755	return 0;
1756}
1757
1758static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1759{
1760	struct cmipci *cm = snd_pcm_substream_chip(substream);
1761	struct snd_pcm_runtime *runtime = substream->runtime;
1762	int err;
1763
1764	/* use channel B */
1765	err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream);
1766	if (err < 0)
1767		return err;
1768	runtime->hw = snd_cmipci_capture_spdif;
1769	if (cm->can_96k && !(cm->chip_version == 68)) {
1770		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1771				     SNDRV_PCM_RATE_96000;
1772		runtime->hw.rate_max = 96000;
1773	}
1774	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1775	return 0;
1776}
1777
1778
1779/*
1780 */
1781
1782static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1783{
1784	struct cmipci *cm = snd_pcm_substream_chip(substream);
1785	close_device_check(cm, CM_OPEN_PLAYBACK);
1786	return 0;
1787}
1788
1789static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1790{
1791	struct cmipci *cm = snd_pcm_substream_chip(substream);
1792	close_device_check(cm, CM_OPEN_CAPTURE);
1793	return 0;
1794}
1795
1796static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1797{
1798	struct cmipci *cm = snd_pcm_substream_chip(substream);
1799	close_device_check(cm, CM_OPEN_PLAYBACK2);
1800	close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1801	return 0;
1802}
1803
1804static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1805{
1806	struct cmipci *cm = snd_pcm_substream_chip(substream);
1807	close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1808	return 0;
1809}
1810
1811static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1812{
1813	struct cmipci *cm = snd_pcm_substream_chip(substream);
1814	close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1815	return 0;
1816}
1817
1818
1819/*
1820 */
1821
1822static const struct snd_pcm_ops snd_cmipci_playback_ops = {
1823	.open =		snd_cmipci_playback_open,
1824	.close =	snd_cmipci_playback_close,
1825	.hw_free =	snd_cmipci_playback_hw_free,
1826	.prepare =	snd_cmipci_playback_prepare,
1827	.trigger =	snd_cmipci_playback_trigger,
1828	.pointer =	snd_cmipci_playback_pointer,
1829};
1830
1831static const struct snd_pcm_ops snd_cmipci_capture_ops = {
1832	.open =		snd_cmipci_capture_open,
1833	.close =	snd_cmipci_capture_close,
1834	.prepare =	snd_cmipci_capture_prepare,
1835	.trigger =	snd_cmipci_capture_trigger,
1836	.pointer =	snd_cmipci_capture_pointer,
1837};
1838
1839static const struct snd_pcm_ops snd_cmipci_playback2_ops = {
1840	.open =		snd_cmipci_playback2_open,
1841	.close =	snd_cmipci_playback2_close,
1842	.hw_params =	snd_cmipci_playback2_hw_params,
1843	.hw_free =	snd_cmipci_playback2_hw_free,
1844	.prepare =	snd_cmipci_capture_prepare,	/* channel B */
1845	.trigger =	snd_cmipci_capture_trigger,	/* channel B */
1846	.pointer =	snd_cmipci_capture_pointer,	/* channel B */
1847};
1848
1849static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1850	.open =		snd_cmipci_playback_spdif_open,
1851	.close =	snd_cmipci_playback_spdif_close,
1852	.hw_free =	snd_cmipci_playback_hw_free,
1853	.prepare =	snd_cmipci_playback_spdif_prepare,	/* set up rate */
1854	.trigger =	snd_cmipci_playback_trigger,
1855	.pointer =	snd_cmipci_playback_pointer,
1856};
1857
1858static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1859	.open =		snd_cmipci_capture_spdif_open,
1860	.close =	snd_cmipci_capture_spdif_close,
1861	.hw_free =	snd_cmipci_capture_spdif_hw_free,
1862	.prepare =	snd_cmipci_capture_spdif_prepare,
1863	.trigger =	snd_cmipci_capture_trigger,
1864	.pointer =	snd_cmipci_capture_pointer,
1865};
1866
1867
1868/*
1869 */
1870
1871static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1872{
1873	struct snd_pcm *pcm;
1874	int err;
1875
1876	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1877	if (err < 0)
1878		return err;
1879
1880	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1881	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1882
1883	pcm->private_data = cm;
1884	pcm->info_flags = 0;
1885	strcpy(pcm->name, "C-Media PCI DAC/ADC");
1886	cm->pcm = pcm;
1887
1888	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1889				       &cm->pci->dev, 64*1024, 128*1024);
1890
1891	return 0;
1892}
1893
1894static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1895{
1896	struct snd_pcm *pcm;
1897	int err;
1898
1899	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1900	if (err < 0)
1901		return err;
1902
1903	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1904
1905	pcm->private_data = cm;
1906	pcm->info_flags = 0;
1907	strcpy(pcm->name, "C-Media PCI 2nd DAC");
1908	cm->pcm2 = pcm;
1909
1910	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1911				       &cm->pci->dev, 64*1024, 128*1024);
1912
1913	return 0;
1914}
1915
1916static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1917{
1918	struct snd_pcm *pcm;
1919	int err;
1920
1921	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1922	if (err < 0)
1923		return err;
1924
1925	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1926	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1927
1928	pcm->private_data = cm;
1929	pcm->info_flags = 0;
1930	strcpy(pcm->name, "C-Media PCI IEC958");
1931	cm->pcm_spdif = pcm;
1932
1933	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1934				       &cm->pci->dev, 64*1024, 128*1024);
1935
1936	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1937				     snd_pcm_alt_chmaps, cm->max_channels, 0,
1938				     NULL);
1939	if (err < 0)
1940		return err;
1941
1942	return 0;
1943}
1944
1945/*
1946 * mixer interface:
1947 * - CM8338/8738 has a compatible mixer interface with SB16, but
1948 *   lack of some elements like tone control, i/o gain and AGC.
1949 * - Access to native registers:
1950 *   - A 3D switch
1951 *   - Output mute switches
1952 */
1953
1954static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1955{
1956	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1957	outb(data, s->iobase + CM_REG_SB16_DATA);
1958}
1959
1960static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1961{
1962	unsigned char v;
1963
1964	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1965	v = inb(s->iobase + CM_REG_SB16_DATA);
1966	return v;
1967}
1968
1969/*
1970 * general mixer element
1971 */
1972struct cmipci_sb_reg {
1973	unsigned int left_reg, right_reg;
1974	unsigned int left_shift, right_shift;
1975	unsigned int mask;
1976	unsigned int invert: 1;
1977	unsigned int stereo: 1;
1978};
1979
1980#define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1981 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1982
1983#define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1984{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1985  .info = snd_cmipci_info_volume, \
1986  .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1987  .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1988}
1989
1990#define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1991#define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1992#define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1993#define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1994
1995static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
1996{
1997	r->left_reg = val & 0xff;
1998	r->right_reg = (val >> 8) & 0xff;
1999	r->left_shift = (val >> 16) & 0x07;
2000	r->right_shift = (val >> 19) & 0x07;
2001	r->invert = (val >> 22) & 1;
2002	r->stereo = (val >> 23) & 1;
2003	r->mask = (val >> 24) & 0xff;
2004}
2005
2006static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2007				  struct snd_ctl_elem_info *uinfo)
2008{
2009	struct cmipci_sb_reg reg;
2010
2011	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2012	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2013	uinfo->count = reg.stereo + 1;
2014	uinfo->value.integer.min = 0;
2015	uinfo->value.integer.max = reg.mask;
2016	return 0;
2017}
2018
2019static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2020				 struct snd_ctl_elem_value *ucontrol)
2021{
2022	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2023	struct cmipci_sb_reg reg;
2024	int val;
2025
2026	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2027	spin_lock_irq(&cm->reg_lock);
2028	val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2029	if (reg.invert)
2030		val = reg.mask - val;
2031	ucontrol->value.integer.value[0] = val;
2032	if (reg.stereo) {
2033		val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2034		if (reg.invert)
2035			val = reg.mask - val;
2036		ucontrol->value.integer.value[1] = val;
2037	}
2038	spin_unlock_irq(&cm->reg_lock);
2039	return 0;
2040}
2041
2042static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2043				 struct snd_ctl_elem_value *ucontrol)
2044{
2045	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2046	struct cmipci_sb_reg reg;
2047	int change;
2048	int left, right, oleft, oright;
2049
2050	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2051	left = ucontrol->value.integer.value[0] & reg.mask;
2052	if (reg.invert)
2053		left = reg.mask - left;
2054	left <<= reg.left_shift;
2055	if (reg.stereo) {
2056		right = ucontrol->value.integer.value[1] & reg.mask;
2057		if (reg.invert)
2058			right = reg.mask - right;
2059		right <<= reg.right_shift;
2060	} else
2061		right = 0;
2062	spin_lock_irq(&cm->reg_lock);
2063	oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2064	left |= oleft & ~(reg.mask << reg.left_shift);
2065	change = left != oleft;
2066	if (reg.stereo) {
2067		if (reg.left_reg != reg.right_reg) {
2068			snd_cmipci_mixer_write(cm, reg.left_reg, left);
2069			oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2070		} else
2071			oright = left;
2072		right |= oright & ~(reg.mask << reg.right_shift);
2073		change |= right != oright;
2074		snd_cmipci_mixer_write(cm, reg.right_reg, right);
2075	} else
2076		snd_cmipci_mixer_write(cm, reg.left_reg, left);
2077	spin_unlock_irq(&cm->reg_lock);
2078	return change;
2079}
2080
2081/*
2082 * input route (left,right) -> (left,right)
2083 */
2084#define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2085{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2086  .info = snd_cmipci_info_input_sw, \
2087  .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2088  .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2089}
2090
2091static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2092				    struct snd_ctl_elem_info *uinfo)
2093{
2094	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2095	uinfo->count = 4;
2096	uinfo->value.integer.min = 0;
2097	uinfo->value.integer.max = 1;
2098	return 0;
2099}
2100
2101static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2102				   struct snd_ctl_elem_value *ucontrol)
2103{
2104	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2105	struct cmipci_sb_reg reg;
2106	int val1, val2;
2107
2108	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2109	spin_lock_irq(&cm->reg_lock);
2110	val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2111	val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2112	spin_unlock_irq(&cm->reg_lock);
2113	ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2114	ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2115	ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2116	ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2117	return 0;
2118}
2119
2120static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2121				   struct snd_ctl_elem_value *ucontrol)
2122{
2123	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2124	struct cmipci_sb_reg reg;
2125	int change;
2126	int val1, val2, oval1, oval2;
2127
2128	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2129	spin_lock_irq(&cm->reg_lock);
2130	oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2131	oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2132	val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2133	val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2134	val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2135	val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2136	val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2137	val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2138	change = val1 != oval1 || val2 != oval2;
2139	snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2140	snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2141	spin_unlock_irq(&cm->reg_lock);
2142	return change;
2143}
2144
2145/*
2146 * native mixer switches/volumes
2147 */
2148
2149#define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2150{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2151  .info = snd_cmipci_info_native_mixer, \
2152  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2153  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2154}
2155
2156#define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2157{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2158  .info = snd_cmipci_info_native_mixer, \
2159  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2160  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2161}
2162
2163#define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2164{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2165  .info = snd_cmipci_info_native_mixer, \
2166  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2167  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2168}
2169
2170#define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2171{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2172  .info = snd_cmipci_info_native_mixer, \
2173  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2174  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2175}
2176
2177static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2178					struct snd_ctl_elem_info *uinfo)
2179{
2180	struct cmipci_sb_reg reg;
2181
2182	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2183	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2184	uinfo->count = reg.stereo + 1;
2185	uinfo->value.integer.min = 0;
2186	uinfo->value.integer.max = reg.mask;
2187	return 0;
2188
2189}
2190
2191static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2192				       struct snd_ctl_elem_value *ucontrol)
2193{
2194	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2195	struct cmipci_sb_reg reg;
2196	unsigned char oreg, val;
2197
2198	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2199	spin_lock_irq(&cm->reg_lock);
2200	oreg = inb(cm->iobase + reg.left_reg);
2201	val = (oreg >> reg.left_shift) & reg.mask;
2202	if (reg.invert)
2203		val = reg.mask - val;
2204	ucontrol->value.integer.value[0] = val;
2205	if (reg.stereo) {
2206		val = (oreg >> reg.right_shift) & reg.mask;
2207		if (reg.invert)
2208			val = reg.mask - val;
2209		ucontrol->value.integer.value[1] = val;
2210	}
2211	spin_unlock_irq(&cm->reg_lock);
2212	return 0;
2213}
2214
2215static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2216				       struct snd_ctl_elem_value *ucontrol)
2217{
2218	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2219	struct cmipci_sb_reg reg;
2220	unsigned char oreg, nreg, val;
2221
2222	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2223	spin_lock_irq(&cm->reg_lock);
2224	oreg = inb(cm->iobase + reg.left_reg);
2225	val = ucontrol->value.integer.value[0] & reg.mask;
2226	if (reg.invert)
2227		val = reg.mask - val;
2228	nreg = oreg & ~(reg.mask << reg.left_shift);
2229	nreg |= (val << reg.left_shift);
2230	if (reg.stereo) {
2231		val = ucontrol->value.integer.value[1] & reg.mask;
2232		if (reg.invert)
2233			val = reg.mask - val;
2234		nreg &= ~(reg.mask << reg.right_shift);
2235		nreg |= (val << reg.right_shift);
2236	}
2237	outb(nreg, cm->iobase + reg.left_reg);
2238	spin_unlock_irq(&cm->reg_lock);
2239	return (nreg != oreg);
2240}
2241
2242/*
2243 * special case - check mixer sensitivity
2244 */
2245static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2246						 struct snd_ctl_elem_value *ucontrol)
2247{
2248	//struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2249	return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2250}
2251
2252static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2253						 struct snd_ctl_elem_value *ucontrol)
2254{
2255	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2256	if (cm->mixer_insensitive) {
2257		/* ignored */
2258		return 0;
2259	}
2260	return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2261}
2262
2263
2264static const struct snd_kcontrol_new snd_cmipci_mixers[] = {
2265	CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2266	CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2267	CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2268	//CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2269	{ /* switch with sensitivity */
2270		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2271		.name = "PCM Playback Switch",
2272		.info = snd_cmipci_info_native_mixer,
2273		.get = snd_cmipci_get_native_mixer_sensitive,
2274		.put = snd_cmipci_put_native_mixer_sensitive,
2275		.private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2276	},
2277	CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2278	CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2279	CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2280	CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2281	CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2282	CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2283	CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2284	CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2285	CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2286	CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2287	CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2288	CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2289	CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2290	CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2291	CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2292	CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2293	CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2294	CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2295	CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2296	CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2297	CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2298	CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2299	CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2300};
2301
2302/*
2303 * other switches
2304 */
2305
2306struct cmipci_switch_args {
2307	int reg;		/* register index */
2308	unsigned int mask;	/* mask bits */
2309	unsigned int mask_on;	/* mask bits to turn on */
2310	unsigned int is_byte: 1;		/* byte access? */
2311	unsigned int ac3_sensitive: 1;	/* access forbidden during
2312					 * non-audio operation?
2313					 */
2314};
2315
2316#define snd_cmipci_uswitch_info		snd_ctl_boolean_mono_info
2317
2318static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2319				   struct snd_ctl_elem_value *ucontrol,
2320				   struct cmipci_switch_args *args)
2321{
2322	unsigned int val;
2323	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2324
2325	spin_lock_irq(&cm->reg_lock);
2326	if (args->ac3_sensitive && cm->mixer_insensitive) {
2327		ucontrol->value.integer.value[0] = 0;
2328		spin_unlock_irq(&cm->reg_lock);
2329		return 0;
2330	}
2331	if (args->is_byte)
2332		val = inb(cm->iobase + args->reg);
2333	else
2334		val = snd_cmipci_read(cm, args->reg);
2335	ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2336	spin_unlock_irq(&cm->reg_lock);
2337	return 0;
2338}
2339
2340static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2341				  struct snd_ctl_elem_value *ucontrol)
2342{
2343	struct cmipci_switch_args *args;
2344	args = (struct cmipci_switch_args *)kcontrol->private_value;
2345	if (snd_BUG_ON(!args))
2346		return -EINVAL;
2347	return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2348}
2349
2350static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2351				   struct snd_ctl_elem_value *ucontrol,
2352				   struct cmipci_switch_args *args)
2353{
2354	unsigned int val;
2355	int change;
2356	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2357
2358	spin_lock_irq(&cm->reg_lock);
2359	if (args->ac3_sensitive && cm->mixer_insensitive) {
2360		/* ignored */
2361		spin_unlock_irq(&cm->reg_lock);
2362		return 0;
2363	}
2364	if (args->is_byte)
2365		val = inb(cm->iobase + args->reg);
2366	else
2367		val = snd_cmipci_read(cm, args->reg);
2368	change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2369			args->mask_on : (args->mask & ~args->mask_on));
2370	if (change) {
2371		val &= ~args->mask;
2372		if (ucontrol->value.integer.value[0])
2373			val |= args->mask_on;
2374		else
2375			val |= (args->mask & ~args->mask_on);
2376		if (args->is_byte)
2377			outb((unsigned char)val, cm->iobase + args->reg);
2378		else
2379			snd_cmipci_write(cm, args->reg, val);
2380	}
2381	spin_unlock_irq(&cm->reg_lock);
2382	return change;
2383}
2384
2385static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2386				  struct snd_ctl_elem_value *ucontrol)
2387{
2388	struct cmipci_switch_args *args;
2389	args = (struct cmipci_switch_args *)kcontrol->private_value;
2390	if (snd_BUG_ON(!args))
2391		return -EINVAL;
2392	return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2393}
2394
2395#define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2396static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2397  .reg = xreg, \
2398  .mask = xmask, \
2399  .mask_on = xmask_on, \
2400  .is_byte = xis_byte, \
2401  .ac3_sensitive = xac3, \
2402}
2403
2404#define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2405	DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2406
2407#if 0 /* these will be controlled in pcm device */
2408DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2409DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2410#endif
2411DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2412DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2413DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2414DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2415DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2416DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2417DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2418DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2419// DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2420DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2421DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2422/* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2423DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2424DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2425#if CM_CH_PLAY == 1
2426DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2427#else
2428DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2429#endif
2430DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2431// DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2432// DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2433// DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2434DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2435
2436#define DEFINE_SWITCH(sname, stype, sarg) \
2437{ .name = sname, \
2438  .iface = stype, \
2439  .info = snd_cmipci_uswitch_info, \
2440  .get = snd_cmipci_uswitch_get, \
2441  .put = snd_cmipci_uswitch_put, \
2442  .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2443}
2444
2445#define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2446#define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2447
2448
2449/*
2450 * callbacks for spdif output switch
2451 * needs toggle two registers..
2452 */
2453static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2454					struct snd_ctl_elem_value *ucontrol)
2455{
2456	int changed;
2457	changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2458	changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2459	return changed;
2460}
2461
2462static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2463					struct snd_ctl_elem_value *ucontrol)
2464{
2465	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2466	int changed;
2467	changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2468	changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2469	if (changed) {
2470		if (ucontrol->value.integer.value[0]) {
2471			if (chip->spdif_playback_avail)
2472				snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2473		} else {
2474			if (chip->spdif_playback_avail)
2475				snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2476		}
2477	}
2478	chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2479	return changed;
2480}
2481
2482
2483static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2484					struct snd_ctl_elem_info *uinfo)
2485{
2486	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2487	static const char *const texts[3] = {
2488		"Line-In", "Rear Output", "Bass Output"
2489	};
2490
2491	return snd_ctl_enum_info(uinfo, 1,
2492				 cm->chip_version >= 39 ? 3 : 2, texts);
2493}
2494
2495static inline unsigned int get_line_in_mode(struct cmipci *cm)
2496{
2497	unsigned int val;
2498	if (cm->chip_version >= 39) {
2499		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2500		if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2501			return 2;
2502	}
2503	val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2504	if (val & CM_REAR2LIN)
2505		return 1;
2506	return 0;
2507}
2508
2509static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2510				       struct snd_ctl_elem_value *ucontrol)
2511{
2512	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2513
2514	spin_lock_irq(&cm->reg_lock);
2515	ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2516	spin_unlock_irq(&cm->reg_lock);
2517	return 0;
2518}
2519
2520static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2521				       struct snd_ctl_elem_value *ucontrol)
2522{
2523	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2524	int change;
2525
2526	spin_lock_irq(&cm->reg_lock);
2527	if (ucontrol->value.enumerated.item[0] == 2)
2528		change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2529	else
2530		change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2531	if (ucontrol->value.enumerated.item[0] == 1)
2532		change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2533	else
2534		change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2535	spin_unlock_irq(&cm->reg_lock);
2536	return change;
2537}
2538
2539static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2540				       struct snd_ctl_elem_info *uinfo)
2541{
2542	static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2543
2544	return snd_ctl_enum_info(uinfo, 1, 2, texts);
2545}
2546
2547static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2548				      struct snd_ctl_elem_value *ucontrol)
2549{
2550	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2551	/* same bit as spdi_phase */
2552	spin_lock_irq(&cm->reg_lock);
2553	ucontrol->value.enumerated.item[0] =
2554		(snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2555	spin_unlock_irq(&cm->reg_lock);
2556	return 0;
2557}
2558
2559static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2560				      struct snd_ctl_elem_value *ucontrol)
2561{
2562	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2563	int change;
2564
2565	spin_lock_irq(&cm->reg_lock);
2566	if (ucontrol->value.enumerated.item[0])
2567		change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2568	else
2569		change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2570	spin_unlock_irq(&cm->reg_lock);
2571	return change;
2572}
2573
2574/* both for CM8338/8738 */
2575static const struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2576	DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2577	{
2578		.name = "Line-In Mode",
2579		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2580		.info = snd_cmipci_line_in_mode_info,
2581		.get = snd_cmipci_line_in_mode_get,
2582		.put = snd_cmipci_line_in_mode_put,
2583	},
2584};
2585
2586/* for non-multichannel chips */
2587static const struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2588DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2589
2590/* only for CM8738 */
2591static const struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2592#if 0 /* controlled in pcm device */
2593	DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2594	DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2595	DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2596#endif
2597	// DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2598	{ .name = "IEC958 Output Switch",
2599	  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2600	  .info = snd_cmipci_uswitch_info,
2601	  .get = snd_cmipci_spdout_enable_get,
2602	  .put = snd_cmipci_spdout_enable_put,
2603	},
2604	DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2605	DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2606	DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2607//	DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2608	DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2609	DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2610};
2611
2612/* only for model 033/037 */
2613static const struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2614	DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2615	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2616	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2617};
2618
2619/* only for model 039 or later */
2620static const struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2621	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2622	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2623	{
2624		.name = "Mic-In Mode",
2625		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2626		.info = snd_cmipci_mic_in_mode_info,
2627		.get = snd_cmipci_mic_in_mode_get,
2628		.put = snd_cmipci_mic_in_mode_put,
2629	}
2630};
2631
2632/* card control switches */
2633static const struct snd_kcontrol_new snd_cmipci_modem_switch =
2634DEFINE_CARD_SWITCH("Modem", modem);
2635
2636
2637static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2638{
2639	struct snd_card *card;
2640	const struct snd_kcontrol_new *sw;
2641	struct snd_kcontrol *kctl;
2642	unsigned int idx;
2643	int err;
2644
2645	if (snd_BUG_ON(!cm || !cm->card))
2646		return -EINVAL;
2647
2648	card = cm->card;
2649
2650	strcpy(card->mixername, "CMedia PCI");
2651
2652	spin_lock_irq(&cm->reg_lock);
2653	snd_cmipci_mixer_write(cm, 0x00, 0x00);		/* mixer reset */
2654	spin_unlock_irq(&cm->reg_lock);
2655
2656	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2657		if (cm->chip_version == 68) {	// 8768 has no PCM volume
2658			if (!strcmp(snd_cmipci_mixers[idx].name,
2659				"PCM Playback Volume"))
2660				continue;
2661		}
2662		err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm));
2663		if (err < 0)
2664			return err;
2665	}
2666
2667	/* mixer switches */
2668	sw = snd_cmipci_mixer_switches;
2669	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2670		err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2671		if (err < 0)
2672			return err;
2673	}
2674	if (! cm->can_multi_ch) {
2675		err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2676		if (err < 0)
2677			return err;
2678	}
2679	if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2680	    cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2681		sw = snd_cmipci_8738_mixer_switches;
2682		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2683			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2684			if (err < 0)
2685				return err;
2686		}
2687		if (cm->can_ac3_hw) {
2688			kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm);
2689			kctl->id.device = pcm_spdif_device;
2690			err = snd_ctl_add(card, kctl);
2691			if (err < 0)
2692				return err;
2693			kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm);
2694			kctl->id.device = pcm_spdif_device;
2695			err = snd_ctl_add(card, kctl);
2696			if (err < 0)
2697				return err;
2698			kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm);
2699			kctl->id.device = pcm_spdif_device;
2700			err = snd_ctl_add(card, kctl);
2701			if (err < 0)
2702				return err;
2703		}
2704		if (cm->chip_version <= 37) {
2705			sw = snd_cmipci_old_mixer_switches;
2706			for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2707				err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2708				if (err < 0)
2709					return err;
2710			}
2711		}
2712	}
2713	if (cm->chip_version >= 39) {
2714		sw = snd_cmipci_extra_mixer_switches;
2715		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2716			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2717			if (err < 0)
2718				return err;
2719		}
2720	}
2721
2722	/* card switches */
2723	/*
2724	 * newer chips don't have the register bits to force modem link
2725	 * detection; the bit that was FLINKON now mutes CH1
2726	 */
2727	if (cm->chip_version < 39) {
2728		err = snd_ctl_add(cm->card,
2729				  snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2730		if (err < 0)
2731			return err;
2732	}
2733
2734	for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2735		struct snd_kcontrol *ctl;
2736		ctl = snd_ctl_find_id_mixer(cm->card, cm_saved_mixer[idx].name);
2737		if (ctl)
2738			cm->mixer_res_ctl[idx] = ctl;
2739	}
2740
2741	return 0;
2742}
2743
2744
2745/*
2746 * proc interface
2747 */
2748
2749static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2750				 struct snd_info_buffer *buffer)
2751{
2752	struct cmipci *cm = entry->private_data;
2753	int i, v;
2754
2755	snd_iprintf(buffer, "%s\n", cm->card->longname);
2756	for (i = 0; i < 0x94; i++) {
2757		if (i == 0x28)
2758			i = 0x90;
2759		v = inb(cm->iobase + i);
2760		if (i % 4 == 0)
2761			snd_iprintf(buffer, "\n%02x:", i);
2762		snd_iprintf(buffer, " %02x", v);
2763	}
2764	snd_iprintf(buffer, "\n");
2765}
2766
2767static void snd_cmipci_proc_init(struct cmipci *cm)
2768{
2769	snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read);
2770}
2771
2772static const struct pci_device_id snd_cmipci_ids[] = {
2773	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2774	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2775	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2776	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2777	{PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2778	{0,},
2779};
2780
2781
2782/*
2783 * check chip version and capabilities
2784 * driver name is modified according to the chip model
2785 */
2786static void query_chip(struct cmipci *cm)
2787{
2788	unsigned int detect;
2789
2790	/* check reg 0Ch, bit 24-31 */
2791	detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2792	if (! detect) {
2793		/* check reg 08h, bit 24-28 */
2794		detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2795		switch (detect) {
2796		case 0:
2797			cm->chip_version = 33;
2798			if (cm->do_soft_ac3)
2799				cm->can_ac3_sw = 1;
2800			else
2801				cm->can_ac3_hw = 1;
2802			break;
2803		case CM_CHIP_037:
2804			cm->chip_version = 37;
2805			cm->can_ac3_hw = 1;
2806			break;
2807		default:
2808			cm->chip_version = 39;
2809			cm->can_ac3_hw = 1;
2810			break;
2811		}
2812		cm->max_channels = 2;
2813	} else {
2814		if (detect & CM_CHIP_039) {
2815			cm->chip_version = 39;
2816			if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2817				cm->max_channels = 6;
2818			else
2819				cm->max_channels = 4;
2820		} else if (detect & CM_CHIP_8768) {
2821			cm->chip_version = 68;
2822			cm->max_channels = 8;
2823			cm->can_96k = 1;
2824		} else {
2825			cm->chip_version = 55;
2826			cm->max_channels = 6;
2827			cm->can_96k = 1;
2828		}
2829		cm->can_ac3_hw = 1;
2830		cm->can_multi_ch = 1;
2831	}
2832}
2833
2834#ifdef SUPPORT_JOYSTICK
2835static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2836{
2837	static const int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2838	struct gameport *gp;
2839	struct resource *r = NULL;
2840	int i, io_port = 0;
2841
2842	if (joystick_port[dev] == 0)
2843		return -ENODEV;
2844
2845	if (joystick_port[dev] == 1) { /* auto-detect */
2846		for (i = 0; ports[i]; i++) {
2847			io_port = ports[i];
2848			r = devm_request_region(&cm->pci->dev, io_port, 1,
2849						"CMIPCI gameport");
2850			if (r)
2851				break;
2852		}
2853	} else {
2854		io_port = joystick_port[dev];
2855		r = devm_request_region(&cm->pci->dev, io_port, 1,
2856					"CMIPCI gameport");
2857	}
2858
2859	if (!r) {
2860		dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2861		return -EBUSY;
2862	}
2863
2864	cm->gameport = gp = gameport_allocate_port();
2865	if (!gp) {
2866		dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2867		return -ENOMEM;
2868	}
2869	gameport_set_name(gp, "C-Media Gameport");
2870	gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2871	gameport_set_dev_parent(gp, &cm->pci->dev);
2872	gp->io = io_port;
2873
2874	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2875
2876	gameport_register_port(cm->gameport);
2877
2878	return 0;
2879}
2880
2881static void snd_cmipci_free_gameport(struct cmipci *cm)
2882{
2883	if (cm->gameport) {
2884		gameport_unregister_port(cm->gameport);
2885		cm->gameport = NULL;
2886
2887		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2888	}
2889}
2890#else
2891static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2892static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2893#endif
2894
2895static void snd_cmipci_free(struct snd_card *card)
2896{
2897	struct cmipci *cm = card->private_data;
2898
2899	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2900	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2901	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2902	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2903	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2904	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2905	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2906
2907	/* reset mixer */
2908	snd_cmipci_mixer_write(cm, 0, 0);
2909
2910	snd_cmipci_free_gameport(cm);
2911}
2912
2913static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2914{
2915	long iosynth;
2916	unsigned int val;
2917	struct snd_opl3 *opl3;
2918	int err;
2919
2920	if (!fm_port)
2921		goto disable_fm;
2922
2923	if (cm->chip_version >= 39) {
2924		/* first try FM regs in PCI port range */
2925		iosynth = cm->iobase + CM_REG_FM_PCI;
2926		err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2927				      OPL3_HW_OPL3, 1, &opl3);
2928	} else {
2929		err = -EIO;
2930	}
2931	if (err < 0) {
2932		/* then try legacy ports */
2933		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2934		iosynth = fm_port;
2935		switch (iosynth) {
2936		case 0x3E8: val |= CM_FMSEL_3E8; break;
2937		case 0x3E0: val |= CM_FMSEL_3E0; break;
2938		case 0x3C8: val |= CM_FMSEL_3C8; break;
2939		case 0x388: val |= CM_FMSEL_388; break;
2940		default:
2941			goto disable_fm;
2942		}
2943		snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2944		/* enable FM */
2945		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2946
2947		if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2948				    OPL3_HW_OPL3, 0, &opl3) < 0) {
2949			dev_err(cm->card->dev,
2950				"no OPL device at %#lx, skipping...\n",
2951				iosynth);
2952			goto disable_fm;
2953		}
2954	}
2955	err = snd_opl3_hwdep_new(opl3, 0, 1, NULL);
2956	if (err < 0) {
2957		dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
2958		return err;
2959	}
2960	return 0;
2961
2962 disable_fm:
2963	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2964	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2965	return 0;
2966}
2967
2968static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2969			     int dev)
2970{
2971	struct cmipci *cm = card->private_data;
2972	int err;
2973	unsigned int val;
2974	long iomidi = 0;
2975	int integrated_midi = 0;
2976	char modelstr[16];
2977	int pcm_index, pcm_spdif_index;
2978	static const struct pci_device_id intel_82437vx[] = {
2979		{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
2980		{ },
2981	};
2982
2983	err = pcim_enable_device(pci);
2984	if (err < 0)
2985		return err;
2986
2987	spin_lock_init(&cm->reg_lock);
2988	mutex_init(&cm->open_mutex);
2989	cm->device = pci->device;
2990	cm->card = card;
2991	cm->pci = pci;
2992	cm->irq = -1;
2993	cm->channel[0].ch = 0;
2994	cm->channel[1].ch = 1;
2995	cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
2996
2997	err = pci_request_regions(pci, card->driver);
2998	if (err < 0)
2999		return err;
3000	cm->iobase = pci_resource_start(pci, 0);
3001
3002	if (devm_request_irq(&pci->dev, pci->irq, snd_cmipci_interrupt,
3003			     IRQF_SHARED, KBUILD_MODNAME, cm)) {
3004		dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
3005		return -EBUSY;
3006	}
3007	cm->irq = pci->irq;
3008	card->sync_irq = cm->irq;
3009	card->private_free = snd_cmipci_free;
3010
3011	pci_set_master(cm->pci);
3012
3013	/*
3014	 * check chip version, max channels and capabilities
3015	 */
3016
3017	cm->chip_version = 0;
3018	cm->max_channels = 2;
3019	cm->do_soft_ac3 = soft_ac3[dev];
3020
3021	if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3022	    pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3023		query_chip(cm);
3024	/* added -MCx suffix for chip supporting multi-channels */
3025	if (cm->can_multi_ch)
3026		sprintf(cm->card->driver + strlen(cm->card->driver),
3027			"-MC%d", cm->max_channels);
3028	else if (cm->can_ac3_sw)
3029		strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3030
3031	cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3032	cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3033
3034#if CM_CH_PLAY == 1
3035	cm->ctrl = CM_CHADC0;	/* default FUNCNTRL0 */
3036#else
3037	cm->ctrl = CM_CHADC1;	/* default FUNCNTRL0 */
3038#endif
3039
3040	/* initialize codec registers */
3041	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3042	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3043	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);	/* disable ints */
3044	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3045	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3046	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);	/* disable channels */
3047	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3048
3049	snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3050	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3051#if CM_CH_PLAY == 1
3052	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3053#else
3054	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3055#endif
3056	if (cm->chip_version) {
3057		snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3058		snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3059	}
3060	/* Set Bus Master Request */
3061	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3062
3063	/* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3064	switch (pci->device) {
3065	case PCI_DEVICE_ID_CMEDIA_CM8738:
3066	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3067		if (!pci_dev_present(intel_82437vx))
3068			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3069		break;
3070	default:
3071		break;
3072	}
3073
3074	if (cm->chip_version < 68) {
3075		val = pci->device < 0x110 ? 8338 : 8738;
3076	} else {
3077		switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3078		case 0:
3079			val = 8769;
3080			break;
3081		case 2:
3082			val = 8762;
3083			break;
3084		default:
3085			switch ((pci->subsystem_vendor << 16) |
3086				pci->subsystem_device) {
3087			case 0x13f69761:
3088			case 0x584d3741:
3089			case 0x584d3751:
3090			case 0x584d3761:
3091			case 0x584d3771:
3092			case 0x72848384:
3093				val = 8770;
3094				break;
3095			default:
3096				val = 8768;
3097				break;
3098			}
3099		}
3100	}
3101	sprintf(card->shortname, "C-Media CMI%d", val);
3102	if (cm->chip_version < 68)
3103		scnprintf(modelstr, sizeof(modelstr),
3104			  " (model %d)", cm->chip_version);
3105	else
3106		modelstr[0] = '\0';
3107	scnprintf(card->longname, sizeof(card->longname),
3108		  "%s%s at %#lx, irq %i",
3109		  card->shortname, modelstr, cm->iobase, cm->irq);
3110
3111	if (cm->chip_version >= 39) {
3112		val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3113		if (val != 0x00 && val != 0xff) {
3114			if (mpu_port[dev])
3115				iomidi = cm->iobase + CM_REG_MPU_PCI;
3116			integrated_midi = 1;
3117		}
3118	}
3119	if (!integrated_midi) {
3120		val = 0;
3121		iomidi = mpu_port[dev];
3122		switch (iomidi) {
3123		case 0x320: val = CM_VMPU_320; break;
3124		case 0x310: val = CM_VMPU_310; break;
3125		case 0x300: val = CM_VMPU_300; break;
3126		case 0x330: val = CM_VMPU_330; break;
3127		default:
3128			    iomidi = 0; break;
3129		}
3130		if (iomidi > 0) {
3131			snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3132			/* enable UART */
3133			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3134			if (inb(iomidi + 1) == 0xff) {
3135				dev_err(cm->card->dev,
3136					"cannot enable MPU-401 port at %#lx\n",
3137					iomidi);
3138				snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3139						     CM_UART_EN);
3140				iomidi = 0;
3141			}
3142		}
3143	}
3144
3145	if (cm->chip_version < 68) {
3146		err = snd_cmipci_create_fm(cm, fm_port[dev]);
3147		if (err < 0)
3148			return err;
3149	}
3150
3151	/* reset mixer */
3152	snd_cmipci_mixer_write(cm, 0, 0);
3153
3154	snd_cmipci_proc_init(cm);
3155
3156	/* create pcm devices */
3157	pcm_index = pcm_spdif_index = 0;
3158	err = snd_cmipci_pcm_new(cm, pcm_index);
3159	if (err < 0)
3160		return err;
3161	pcm_index++;
3162	err = snd_cmipci_pcm2_new(cm, pcm_index);
3163	if (err < 0)
3164		return err;
3165	pcm_index++;
3166	if (cm->can_ac3_hw || cm->can_ac3_sw) {
3167		pcm_spdif_index = pcm_index;
3168		err = snd_cmipci_pcm_spdif_new(cm, pcm_index);
3169		if (err < 0)
3170			return err;
3171	}
3172
3173	/* create mixer interface & switches */
3174	err = snd_cmipci_mixer_new(cm, pcm_spdif_index);
3175	if (err < 0)
3176		return err;
3177
3178	if (iomidi > 0) {
3179		err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3180					  iomidi,
3181					  (integrated_midi ?
3182					   MPU401_INFO_INTEGRATED : 0) |
3183					  MPU401_INFO_IRQ_HOOK,
3184					  -1, &cm->rmidi);
3185		if (err < 0)
3186			dev_err(cm->card->dev,
3187				"no UART401 device at 0x%lx\n", iomidi);
3188	}
3189
3190#ifdef USE_VAR48KRATE
3191	for (val = 0; val < ARRAY_SIZE(rates); val++)
3192		snd_cmipci_set_pll(cm, rates[val], val);
3193
3194	/*
3195	 * (Re-)Enable external switch spdo_48k
3196	 */
3197	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3198#endif /* USE_VAR48KRATE */
3199
3200	if (snd_cmipci_create_gameport(cm, dev) < 0)
3201		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3202
3203	return 0;
3204}
3205
3206/*
3207 */
3208
3209MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3210
3211static int snd_cmipci_probe(struct pci_dev *pci,
3212			    const struct pci_device_id *pci_id)
3213{
3214	static int dev;
3215	struct snd_card *card;
3216	int err;
3217
3218	if (dev >= SNDRV_CARDS)
3219		return -ENODEV;
3220	if (! enable[dev]) {
3221		dev++;
3222		return -ENOENT;
3223	}
3224
3225	err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3226				sizeof(struct cmipci), &card);
3227	if (err < 0)
3228		return err;
3229
3230	switch (pci->device) {
3231	case PCI_DEVICE_ID_CMEDIA_CM8738:
3232	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3233		strcpy(card->driver, "CMI8738");
3234		break;
3235	case PCI_DEVICE_ID_CMEDIA_CM8338A:
3236	case PCI_DEVICE_ID_CMEDIA_CM8338B:
3237		strcpy(card->driver, "CMI8338");
3238		break;
3239	default:
3240		strcpy(card->driver, "CMIPCI");
3241		break;
3242	}
3243
3244	err = snd_cmipci_create(card, pci, dev);
3245	if (err < 0)
3246		goto error;
3247
3248	err = snd_card_register(card);
3249	if (err < 0)
3250		goto error;
3251
3252	pci_set_drvdata(pci, card);
3253	dev++;
3254	return 0;
3255
3256 error:
3257	snd_card_free(card);
3258	return err;
3259}
3260
3261/*
3262 * power management
3263 */
3264static const unsigned char saved_regs[] = {
3265	CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3266	CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_AUX_VOL, CM_REG_PLL,
3267	CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3268	CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3269	CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3270};
3271
3272static const unsigned char saved_mixers[] = {
3273	SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3274	SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3275	SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3276	SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3277	SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3278	SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3279	CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3280	SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3281};
3282
3283static int snd_cmipci_suspend(struct device *dev)
3284{
3285	struct snd_card *card = dev_get_drvdata(dev);
3286	struct cmipci *cm = card->private_data;
3287	int i;
3288
3289	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3290
3291	/* save registers */
3292	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3293		cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3294	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3295		cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3296
3297	/* disable ints */
3298	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3299	return 0;
3300}
3301
3302static int snd_cmipci_resume(struct device *dev)
3303{
3304	struct snd_card *card = dev_get_drvdata(dev);
3305	struct cmipci *cm = card->private_data;
3306	int i;
3307
3308	/* reset / initialize to a sane state */
3309	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3310	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3311	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3312	snd_cmipci_mixer_write(cm, 0, 0);
3313
3314	/* restore registers */
3315	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3316		snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3317	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3318		snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3319
3320	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3321	return 0;
3322}
3323
3324static DEFINE_SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3325
3326static struct pci_driver cmipci_driver = {
3327	.name = KBUILD_MODNAME,
3328	.id_table = snd_cmipci_ids,
3329	.probe = snd_cmipci_probe,
3330	.driver = {
3331		.pm = &snd_cmipci_pm,
3332	},
3333};
3334
3335module_pci_driver(cmipci_driver);
3336