1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Implementation of the security services.
4 *
5 * Authors : Stephen Smalley, <stephen.smalley.work@gmail.com>
6 *	     James Morris <jmorris@redhat.com>
7 *
8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 *
10 *	Support for enhanced MLS infrastructure.
11 *	Support for context based audit filters.
12 *
13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 *
15 *	Added conditional policy language extensions
16 *
17 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 *
19 *      Added support for NetLabel
20 *      Added support for the policy capability bitmap
21 *
22 * Updated: Chad Sellers <csellers@tresys.com>
23 *
24 *  Added validation of kernel classes and permissions
25 *
26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 *
28 *  Added support for bounds domain and audit messaged on masked permissions
29 *
30 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 *
32 *  Added support for runtime switching of the policy type
33 *
34 * Copyright (C) 2008, 2009 NEC Corporation
35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39 */
40#include <linux/kernel.h>
41#include <linux/slab.h>
42#include <linux/string.h>
43#include <linux/spinlock.h>
44#include <linux/rcupdate.h>
45#include <linux/errno.h>
46#include <linux/in.h>
47#include <linux/sched.h>
48#include <linux/audit.h>
49#include <linux/vmalloc.h>
50#include <linux/lsm_hooks.h>
51#include <net/netlabel.h>
52
53#include "flask.h"
54#include "avc.h"
55#include "avc_ss.h"
56#include "security.h"
57#include "context.h"
58#include "policydb.h"
59#include "sidtab.h"
60#include "services.h"
61#include "conditional.h"
62#include "mls.h"
63#include "objsec.h"
64#include "netlabel.h"
65#include "xfrm.h"
66#include "ebitmap.h"
67#include "audit.h"
68#include "policycap_names.h"
69#include "ima.h"
70
71struct selinux_policy_convert_data {
72	struct convert_context_args args;
73	struct sidtab_convert_params sidtab_params;
74};
75
76/* Forward declaration. */
77static int context_struct_to_string(struct policydb *policydb,
78				    struct context *context,
79				    char **scontext,
80				    u32 *scontext_len);
81
82static int sidtab_entry_to_string(struct policydb *policydb,
83				  struct sidtab *sidtab,
84				  struct sidtab_entry *entry,
85				  char **scontext,
86				  u32 *scontext_len);
87
88static void context_struct_compute_av(struct policydb *policydb,
89				      struct context *scontext,
90				      struct context *tcontext,
91				      u16 tclass,
92				      struct av_decision *avd,
93				      struct extended_perms *xperms);
94
95static int selinux_set_mapping(struct policydb *pol,
96			       const struct security_class_mapping *map,
97			       struct selinux_map *out_map)
98{
99	u16 i, j;
100	bool print_unknown_handle = false;
101
102	/* Find number of classes in the input mapping */
103	if (!map)
104		return -EINVAL;
105	i = 0;
106	while (map[i].name)
107		i++;
108
109	/* Allocate space for the class records, plus one for class zero */
110	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
111	if (!out_map->mapping)
112		return -ENOMEM;
113
114	/* Store the raw class and permission values */
115	j = 0;
116	while (map[j].name) {
117		const struct security_class_mapping *p_in = map + (j++);
118		struct selinux_mapping *p_out = out_map->mapping + j;
119		u16 k;
120
121		/* An empty class string skips ahead */
122		if (!strcmp(p_in->name, "")) {
123			p_out->num_perms = 0;
124			continue;
125		}
126
127		p_out->value = string_to_security_class(pol, p_in->name);
128		if (!p_out->value) {
129			pr_info("SELinux:  Class %s not defined in policy.\n",
130			       p_in->name);
131			if (pol->reject_unknown)
132				goto err;
133			p_out->num_perms = 0;
134			print_unknown_handle = true;
135			continue;
136		}
137
138		k = 0;
139		while (p_in->perms[k]) {
140			/* An empty permission string skips ahead */
141			if (!*p_in->perms[k]) {
142				k++;
143				continue;
144			}
145			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
146							    p_in->perms[k]);
147			if (!p_out->perms[k]) {
148				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
149				       p_in->perms[k], p_in->name);
150				if (pol->reject_unknown)
151					goto err;
152				print_unknown_handle = true;
153			}
154
155			k++;
156		}
157		p_out->num_perms = k;
158	}
159
160	if (print_unknown_handle)
161		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
162		       pol->allow_unknown ? "allowed" : "denied");
163
164	out_map->size = i;
165	return 0;
166err:
167	kfree(out_map->mapping);
168	out_map->mapping = NULL;
169	return -EINVAL;
170}
171
172/*
173 * Get real, policy values from mapped values
174 */
175
176static u16 unmap_class(struct selinux_map *map, u16 tclass)
177{
178	if (tclass < map->size)
179		return map->mapping[tclass].value;
180
181	return tclass;
182}
183
184/*
185 * Get kernel value for class from its policy value
186 */
187static u16 map_class(struct selinux_map *map, u16 pol_value)
188{
189	u16 i;
190
191	for (i = 1; i < map->size; i++) {
192		if (map->mapping[i].value == pol_value)
193			return i;
194	}
195
196	return SECCLASS_NULL;
197}
198
199static void map_decision(struct selinux_map *map,
200			 u16 tclass, struct av_decision *avd,
201			 int allow_unknown)
202{
203	if (tclass < map->size) {
204		struct selinux_mapping *mapping = &map->mapping[tclass];
205		unsigned int i, n = mapping->num_perms;
206		u32 result;
207
208		for (i = 0, result = 0; i < n; i++) {
209			if (avd->allowed & mapping->perms[i])
210				result |= (u32)1<<i;
211			if (allow_unknown && !mapping->perms[i])
212				result |= (u32)1<<i;
213		}
214		avd->allowed = result;
215
216		for (i = 0, result = 0; i < n; i++)
217			if (avd->auditallow & mapping->perms[i])
218				result |= (u32)1<<i;
219		avd->auditallow = result;
220
221		for (i = 0, result = 0; i < n; i++) {
222			if (avd->auditdeny & mapping->perms[i])
223				result |= (u32)1<<i;
224			if (!allow_unknown && !mapping->perms[i])
225				result |= (u32)1<<i;
226		}
227		/*
228		 * In case the kernel has a bug and requests a permission
229		 * between num_perms and the maximum permission number, we
230		 * should audit that denial
231		 */
232		for (; i < (sizeof(u32)*8); i++)
233			result |= (u32)1<<i;
234		avd->auditdeny = result;
235	}
236}
237
238int security_mls_enabled(void)
239{
240	int mls_enabled;
241	struct selinux_policy *policy;
242
243	if (!selinux_initialized())
244		return 0;
245
246	rcu_read_lock();
247	policy = rcu_dereference(selinux_state.policy);
248	mls_enabled = policy->policydb.mls_enabled;
249	rcu_read_unlock();
250	return mls_enabled;
251}
252
253/*
254 * Return the boolean value of a constraint expression
255 * when it is applied to the specified source and target
256 * security contexts.
257 *
258 * xcontext is a special beast...  It is used by the validatetrans rules
259 * only.  For these rules, scontext is the context before the transition,
260 * tcontext is the context after the transition, and xcontext is the context
261 * of the process performing the transition.  All other callers of
262 * constraint_expr_eval should pass in NULL for xcontext.
263 */
264static int constraint_expr_eval(struct policydb *policydb,
265				struct context *scontext,
266				struct context *tcontext,
267				struct context *xcontext,
268				struct constraint_expr *cexpr)
269{
270	u32 val1, val2;
271	struct context *c;
272	struct role_datum *r1, *r2;
273	struct mls_level *l1, *l2;
274	struct constraint_expr *e;
275	int s[CEXPR_MAXDEPTH];
276	int sp = -1;
277
278	for (e = cexpr; e; e = e->next) {
279		switch (e->expr_type) {
280		case CEXPR_NOT:
281			BUG_ON(sp < 0);
282			s[sp] = !s[sp];
283			break;
284		case CEXPR_AND:
285			BUG_ON(sp < 1);
286			sp--;
287			s[sp] &= s[sp + 1];
288			break;
289		case CEXPR_OR:
290			BUG_ON(sp < 1);
291			sp--;
292			s[sp] |= s[sp + 1];
293			break;
294		case CEXPR_ATTR:
295			if (sp == (CEXPR_MAXDEPTH - 1))
296				return 0;
297			switch (e->attr) {
298			case CEXPR_USER:
299				val1 = scontext->user;
300				val2 = tcontext->user;
301				break;
302			case CEXPR_TYPE:
303				val1 = scontext->type;
304				val2 = tcontext->type;
305				break;
306			case CEXPR_ROLE:
307				val1 = scontext->role;
308				val2 = tcontext->role;
309				r1 = policydb->role_val_to_struct[val1 - 1];
310				r2 = policydb->role_val_to_struct[val2 - 1];
311				switch (e->op) {
312				case CEXPR_DOM:
313					s[++sp] = ebitmap_get_bit(&r1->dominates,
314								  val2 - 1);
315					continue;
316				case CEXPR_DOMBY:
317					s[++sp] = ebitmap_get_bit(&r2->dominates,
318								  val1 - 1);
319					continue;
320				case CEXPR_INCOMP:
321					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
322								    val2 - 1) &&
323						   !ebitmap_get_bit(&r2->dominates,
324								    val1 - 1));
325					continue;
326				default:
327					break;
328				}
329				break;
330			case CEXPR_L1L2:
331				l1 = &(scontext->range.level[0]);
332				l2 = &(tcontext->range.level[0]);
333				goto mls_ops;
334			case CEXPR_L1H2:
335				l1 = &(scontext->range.level[0]);
336				l2 = &(tcontext->range.level[1]);
337				goto mls_ops;
338			case CEXPR_H1L2:
339				l1 = &(scontext->range.level[1]);
340				l2 = &(tcontext->range.level[0]);
341				goto mls_ops;
342			case CEXPR_H1H2:
343				l1 = &(scontext->range.level[1]);
344				l2 = &(tcontext->range.level[1]);
345				goto mls_ops;
346			case CEXPR_L1H1:
347				l1 = &(scontext->range.level[0]);
348				l2 = &(scontext->range.level[1]);
349				goto mls_ops;
350			case CEXPR_L2H2:
351				l1 = &(tcontext->range.level[0]);
352				l2 = &(tcontext->range.level[1]);
353				goto mls_ops;
354mls_ops:
355				switch (e->op) {
356				case CEXPR_EQ:
357					s[++sp] = mls_level_eq(l1, l2);
358					continue;
359				case CEXPR_NEQ:
360					s[++sp] = !mls_level_eq(l1, l2);
361					continue;
362				case CEXPR_DOM:
363					s[++sp] = mls_level_dom(l1, l2);
364					continue;
365				case CEXPR_DOMBY:
366					s[++sp] = mls_level_dom(l2, l1);
367					continue;
368				case CEXPR_INCOMP:
369					s[++sp] = mls_level_incomp(l2, l1);
370					continue;
371				default:
372					BUG();
373					return 0;
374				}
375				break;
376			default:
377				BUG();
378				return 0;
379			}
380
381			switch (e->op) {
382			case CEXPR_EQ:
383				s[++sp] = (val1 == val2);
384				break;
385			case CEXPR_NEQ:
386				s[++sp] = (val1 != val2);
387				break;
388			default:
389				BUG();
390				return 0;
391			}
392			break;
393		case CEXPR_NAMES:
394			if (sp == (CEXPR_MAXDEPTH-1))
395				return 0;
396			c = scontext;
397			if (e->attr & CEXPR_TARGET)
398				c = tcontext;
399			else if (e->attr & CEXPR_XTARGET) {
400				c = xcontext;
401				if (!c) {
402					BUG();
403					return 0;
404				}
405			}
406			if (e->attr & CEXPR_USER)
407				val1 = c->user;
408			else if (e->attr & CEXPR_ROLE)
409				val1 = c->role;
410			else if (e->attr & CEXPR_TYPE)
411				val1 = c->type;
412			else {
413				BUG();
414				return 0;
415			}
416
417			switch (e->op) {
418			case CEXPR_EQ:
419				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
420				break;
421			case CEXPR_NEQ:
422				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
423				break;
424			default:
425				BUG();
426				return 0;
427			}
428			break;
429		default:
430			BUG();
431			return 0;
432		}
433	}
434
435	BUG_ON(sp != 0);
436	return s[0];
437}
438
439/*
440 * security_dump_masked_av - dumps masked permissions during
441 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
442 */
443static int dump_masked_av_helper(void *k, void *d, void *args)
444{
445	struct perm_datum *pdatum = d;
446	char **permission_names = args;
447
448	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
449
450	permission_names[pdatum->value - 1] = (char *)k;
451
452	return 0;
453}
454
455static void security_dump_masked_av(struct policydb *policydb,
456				    struct context *scontext,
457				    struct context *tcontext,
458				    u16 tclass,
459				    u32 permissions,
460				    const char *reason)
461{
462	struct common_datum *common_dat;
463	struct class_datum *tclass_dat;
464	struct audit_buffer *ab;
465	char *tclass_name;
466	char *scontext_name = NULL;
467	char *tcontext_name = NULL;
468	char *permission_names[32];
469	int index;
470	u32 length;
471	bool need_comma = false;
472
473	if (!permissions)
474		return;
475
476	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
477	tclass_dat = policydb->class_val_to_struct[tclass - 1];
478	common_dat = tclass_dat->comdatum;
479
480	/* init permission_names */
481	if (common_dat &&
482	    hashtab_map(&common_dat->permissions.table,
483			dump_masked_av_helper, permission_names) < 0)
484		goto out;
485
486	if (hashtab_map(&tclass_dat->permissions.table,
487			dump_masked_av_helper, permission_names) < 0)
488		goto out;
489
490	/* get scontext/tcontext in text form */
491	if (context_struct_to_string(policydb, scontext,
492				     &scontext_name, &length) < 0)
493		goto out;
494
495	if (context_struct_to_string(policydb, tcontext,
496				     &tcontext_name, &length) < 0)
497		goto out;
498
499	/* audit a message */
500	ab = audit_log_start(audit_context(),
501			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
502	if (!ab)
503		goto out;
504
505	audit_log_format(ab, "op=security_compute_av reason=%s "
506			 "scontext=%s tcontext=%s tclass=%s perms=",
507			 reason, scontext_name, tcontext_name, tclass_name);
508
509	for (index = 0; index < 32; index++) {
510		u32 mask = (1 << index);
511
512		if ((mask & permissions) == 0)
513			continue;
514
515		audit_log_format(ab, "%s%s",
516				 need_comma ? "," : "",
517				 permission_names[index]
518				 ? permission_names[index] : "????");
519		need_comma = true;
520	}
521	audit_log_end(ab);
522out:
523	/* release scontext/tcontext */
524	kfree(tcontext_name);
525	kfree(scontext_name);
526}
527
528/*
529 * security_boundary_permission - drops violated permissions
530 * on boundary constraint.
531 */
532static void type_attribute_bounds_av(struct policydb *policydb,
533				     struct context *scontext,
534				     struct context *tcontext,
535				     u16 tclass,
536				     struct av_decision *avd)
537{
538	struct context lo_scontext;
539	struct context lo_tcontext, *tcontextp = tcontext;
540	struct av_decision lo_avd;
541	struct type_datum *source;
542	struct type_datum *target;
543	u32 masked = 0;
544
545	source = policydb->type_val_to_struct[scontext->type - 1];
546	BUG_ON(!source);
547
548	if (!source->bounds)
549		return;
550
551	target = policydb->type_val_to_struct[tcontext->type - 1];
552	BUG_ON(!target);
553
554	memset(&lo_avd, 0, sizeof(lo_avd));
555
556	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
557	lo_scontext.type = source->bounds;
558
559	if (target->bounds) {
560		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
561		lo_tcontext.type = target->bounds;
562		tcontextp = &lo_tcontext;
563	}
564
565	context_struct_compute_av(policydb, &lo_scontext,
566				  tcontextp,
567				  tclass,
568				  &lo_avd,
569				  NULL);
570
571	masked = ~lo_avd.allowed & avd->allowed;
572
573	if (likely(!masked))
574		return;		/* no masked permission */
575
576	/* mask violated permissions */
577	avd->allowed &= ~masked;
578
579	/* audit masked permissions */
580	security_dump_masked_av(policydb, scontext, tcontext,
581				tclass, masked, "bounds");
582}
583
584/*
585 * flag which drivers have permissions
586 * only looking for ioctl based extended permissions
587 */
588void services_compute_xperms_drivers(
589		struct extended_perms *xperms,
590		struct avtab_node *node)
591{
592	unsigned int i;
593
594	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
595		/* if one or more driver has all permissions allowed */
596		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
597			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
598	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
599		/* if allowing permissions within a driver */
600		security_xperm_set(xperms->drivers.p,
601					node->datum.u.xperms->driver);
602	}
603
604	xperms->len = 1;
605}
606
607/*
608 * Compute access vectors and extended permissions based on a context
609 * structure pair for the permissions in a particular class.
610 */
611static void context_struct_compute_av(struct policydb *policydb,
612				      struct context *scontext,
613				      struct context *tcontext,
614				      u16 tclass,
615				      struct av_decision *avd,
616				      struct extended_perms *xperms)
617{
618	struct constraint_node *constraint;
619	struct role_allow *ra;
620	struct avtab_key avkey;
621	struct avtab_node *node;
622	struct class_datum *tclass_datum;
623	struct ebitmap *sattr, *tattr;
624	struct ebitmap_node *snode, *tnode;
625	unsigned int i, j;
626
627	avd->allowed = 0;
628	avd->auditallow = 0;
629	avd->auditdeny = 0xffffffff;
630	if (xperms) {
631		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
632		xperms->len = 0;
633	}
634
635	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
636		if (printk_ratelimit())
637			pr_warn("SELinux:  Invalid class %hu\n", tclass);
638		return;
639	}
640
641	tclass_datum = policydb->class_val_to_struct[tclass - 1];
642
643	/*
644	 * If a specific type enforcement rule was defined for
645	 * this permission check, then use it.
646	 */
647	avkey.target_class = tclass;
648	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
649	sattr = &policydb->type_attr_map_array[scontext->type - 1];
650	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
651	ebitmap_for_each_positive_bit(sattr, snode, i) {
652		ebitmap_for_each_positive_bit(tattr, tnode, j) {
653			avkey.source_type = i + 1;
654			avkey.target_type = j + 1;
655			for (node = avtab_search_node(&policydb->te_avtab,
656						      &avkey);
657			     node;
658			     node = avtab_search_node_next(node, avkey.specified)) {
659				if (node->key.specified == AVTAB_ALLOWED)
660					avd->allowed |= node->datum.u.data;
661				else if (node->key.specified == AVTAB_AUDITALLOW)
662					avd->auditallow |= node->datum.u.data;
663				else if (node->key.specified == AVTAB_AUDITDENY)
664					avd->auditdeny &= node->datum.u.data;
665				else if (xperms && (node->key.specified & AVTAB_XPERMS))
666					services_compute_xperms_drivers(xperms, node);
667			}
668
669			/* Check conditional av table for additional permissions */
670			cond_compute_av(&policydb->te_cond_avtab, &avkey,
671					avd, xperms);
672
673		}
674	}
675
676	/*
677	 * Remove any permissions prohibited by a constraint (this includes
678	 * the MLS policy).
679	 */
680	constraint = tclass_datum->constraints;
681	while (constraint) {
682		if ((constraint->permissions & (avd->allowed)) &&
683		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
684					  constraint->expr)) {
685			avd->allowed &= ~(constraint->permissions);
686		}
687		constraint = constraint->next;
688	}
689
690	/*
691	 * If checking process transition permission and the
692	 * role is changing, then check the (current_role, new_role)
693	 * pair.
694	 */
695	if (tclass == policydb->process_class &&
696	    (avd->allowed & policydb->process_trans_perms) &&
697	    scontext->role != tcontext->role) {
698		for (ra = policydb->role_allow; ra; ra = ra->next) {
699			if (scontext->role == ra->role &&
700			    tcontext->role == ra->new_role)
701				break;
702		}
703		if (!ra)
704			avd->allowed &= ~policydb->process_trans_perms;
705	}
706
707	/*
708	 * If the given source and target types have boundary
709	 * constraint, lazy checks have to mask any violated
710	 * permission and notice it to userspace via audit.
711	 */
712	type_attribute_bounds_av(policydb, scontext, tcontext,
713				 tclass, avd);
714}
715
716static int security_validtrans_handle_fail(struct selinux_policy *policy,
717					struct sidtab_entry *oentry,
718					struct sidtab_entry *nentry,
719					struct sidtab_entry *tentry,
720					u16 tclass)
721{
722	struct policydb *p = &policy->policydb;
723	struct sidtab *sidtab = policy->sidtab;
724	char *o = NULL, *n = NULL, *t = NULL;
725	u32 olen, nlen, tlen;
726
727	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
728		goto out;
729	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
730		goto out;
731	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
732		goto out;
733	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
734		  "op=security_validate_transition seresult=denied"
735		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
736		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
737out:
738	kfree(o);
739	kfree(n);
740	kfree(t);
741
742	if (!enforcing_enabled())
743		return 0;
744	return -EPERM;
745}
746
747static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
748					  u16 orig_tclass, bool user)
749{
750	struct selinux_policy *policy;
751	struct policydb *policydb;
752	struct sidtab *sidtab;
753	struct sidtab_entry *oentry;
754	struct sidtab_entry *nentry;
755	struct sidtab_entry *tentry;
756	struct class_datum *tclass_datum;
757	struct constraint_node *constraint;
758	u16 tclass;
759	int rc = 0;
760
761
762	if (!selinux_initialized())
763		return 0;
764
765	rcu_read_lock();
766
767	policy = rcu_dereference(selinux_state.policy);
768	policydb = &policy->policydb;
769	sidtab = policy->sidtab;
770
771	if (!user)
772		tclass = unmap_class(&policy->map, orig_tclass);
773	else
774		tclass = orig_tclass;
775
776	if (!tclass || tclass > policydb->p_classes.nprim) {
777		rc = -EINVAL;
778		goto out;
779	}
780	tclass_datum = policydb->class_val_to_struct[tclass - 1];
781
782	oentry = sidtab_search_entry(sidtab, oldsid);
783	if (!oentry) {
784		pr_err("SELinux: %s:  unrecognized SID %d\n",
785			__func__, oldsid);
786		rc = -EINVAL;
787		goto out;
788	}
789
790	nentry = sidtab_search_entry(sidtab, newsid);
791	if (!nentry) {
792		pr_err("SELinux: %s:  unrecognized SID %d\n",
793			__func__, newsid);
794		rc = -EINVAL;
795		goto out;
796	}
797
798	tentry = sidtab_search_entry(sidtab, tasksid);
799	if (!tentry) {
800		pr_err("SELinux: %s:  unrecognized SID %d\n",
801			__func__, tasksid);
802		rc = -EINVAL;
803		goto out;
804	}
805
806	constraint = tclass_datum->validatetrans;
807	while (constraint) {
808		if (!constraint_expr_eval(policydb, &oentry->context,
809					  &nentry->context, &tentry->context,
810					  constraint->expr)) {
811			if (user)
812				rc = -EPERM;
813			else
814				rc = security_validtrans_handle_fail(policy,
815								oentry,
816								nentry,
817								tentry,
818								tclass);
819			goto out;
820		}
821		constraint = constraint->next;
822	}
823
824out:
825	rcu_read_unlock();
826	return rc;
827}
828
829int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
830				      u16 tclass)
831{
832	return security_compute_validatetrans(oldsid, newsid, tasksid,
833					      tclass, true);
834}
835
836int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
837				 u16 orig_tclass)
838{
839	return security_compute_validatetrans(oldsid, newsid, tasksid,
840					      orig_tclass, false);
841}
842
843/*
844 * security_bounded_transition - check whether the given
845 * transition is directed to bounded, or not.
846 * It returns 0, if @newsid is bounded by @oldsid.
847 * Otherwise, it returns error code.
848 *
849 * @oldsid : current security identifier
850 * @newsid : destinated security identifier
851 */
852int security_bounded_transition(u32 old_sid, u32 new_sid)
853{
854	struct selinux_policy *policy;
855	struct policydb *policydb;
856	struct sidtab *sidtab;
857	struct sidtab_entry *old_entry, *new_entry;
858	struct type_datum *type;
859	u32 index;
860	int rc;
861
862	if (!selinux_initialized())
863		return 0;
864
865	rcu_read_lock();
866	policy = rcu_dereference(selinux_state.policy);
867	policydb = &policy->policydb;
868	sidtab = policy->sidtab;
869
870	rc = -EINVAL;
871	old_entry = sidtab_search_entry(sidtab, old_sid);
872	if (!old_entry) {
873		pr_err("SELinux: %s: unrecognized SID %u\n",
874		       __func__, old_sid);
875		goto out;
876	}
877
878	rc = -EINVAL;
879	new_entry = sidtab_search_entry(sidtab, new_sid);
880	if (!new_entry) {
881		pr_err("SELinux: %s: unrecognized SID %u\n",
882		       __func__, new_sid);
883		goto out;
884	}
885
886	rc = 0;
887	/* type/domain unchanged */
888	if (old_entry->context.type == new_entry->context.type)
889		goto out;
890
891	index = new_entry->context.type;
892	while (true) {
893		type = policydb->type_val_to_struct[index - 1];
894		BUG_ON(!type);
895
896		/* not bounded anymore */
897		rc = -EPERM;
898		if (!type->bounds)
899			break;
900
901		/* @newsid is bounded by @oldsid */
902		rc = 0;
903		if (type->bounds == old_entry->context.type)
904			break;
905
906		index = type->bounds;
907	}
908
909	if (rc) {
910		char *old_name = NULL;
911		char *new_name = NULL;
912		u32 length;
913
914		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
915					    &old_name, &length) &&
916		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
917					    &new_name, &length)) {
918			audit_log(audit_context(),
919				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
920				  "op=security_bounded_transition "
921				  "seresult=denied "
922				  "oldcontext=%s newcontext=%s",
923				  old_name, new_name);
924		}
925		kfree(new_name);
926		kfree(old_name);
927	}
928out:
929	rcu_read_unlock();
930
931	return rc;
932}
933
934static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
935{
936	avd->allowed = 0;
937	avd->auditallow = 0;
938	avd->auditdeny = 0xffffffff;
939	if (policy)
940		avd->seqno = policy->latest_granting;
941	else
942		avd->seqno = 0;
943	avd->flags = 0;
944}
945
946void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
947					struct avtab_node *node)
948{
949	unsigned int i;
950
951	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
952		if (xpermd->driver != node->datum.u.xperms->driver)
953			return;
954	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
955		if (!security_xperm_test(node->datum.u.xperms->perms.p,
956					xpermd->driver))
957			return;
958	} else {
959		BUG();
960	}
961
962	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
963		xpermd->used |= XPERMS_ALLOWED;
964		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
965			memset(xpermd->allowed->p, 0xff,
966					sizeof(xpermd->allowed->p));
967		}
968		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
969			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
970				xpermd->allowed->p[i] |=
971					node->datum.u.xperms->perms.p[i];
972		}
973	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
974		xpermd->used |= XPERMS_AUDITALLOW;
975		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
976			memset(xpermd->auditallow->p, 0xff,
977					sizeof(xpermd->auditallow->p));
978		}
979		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
980			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
981				xpermd->auditallow->p[i] |=
982					node->datum.u.xperms->perms.p[i];
983		}
984	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
985		xpermd->used |= XPERMS_DONTAUDIT;
986		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
987			memset(xpermd->dontaudit->p, 0xff,
988					sizeof(xpermd->dontaudit->p));
989		}
990		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
991			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
992				xpermd->dontaudit->p[i] |=
993					node->datum.u.xperms->perms.p[i];
994		}
995	} else {
996		BUG();
997	}
998}
999
1000void security_compute_xperms_decision(u32 ssid,
1001				      u32 tsid,
1002				      u16 orig_tclass,
1003				      u8 driver,
1004				      struct extended_perms_decision *xpermd)
1005{
1006	struct selinux_policy *policy;
1007	struct policydb *policydb;
1008	struct sidtab *sidtab;
1009	u16 tclass;
1010	struct context *scontext, *tcontext;
1011	struct avtab_key avkey;
1012	struct avtab_node *node;
1013	struct ebitmap *sattr, *tattr;
1014	struct ebitmap_node *snode, *tnode;
1015	unsigned int i, j;
1016
1017	xpermd->driver = driver;
1018	xpermd->used = 0;
1019	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1020	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1021	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1022
1023	rcu_read_lock();
1024	if (!selinux_initialized())
1025		goto allow;
1026
1027	policy = rcu_dereference(selinux_state.policy);
1028	policydb = &policy->policydb;
1029	sidtab = policy->sidtab;
1030
1031	scontext = sidtab_search(sidtab, ssid);
1032	if (!scontext) {
1033		pr_err("SELinux: %s:  unrecognized SID %d\n",
1034		       __func__, ssid);
1035		goto out;
1036	}
1037
1038	tcontext = sidtab_search(sidtab, tsid);
1039	if (!tcontext) {
1040		pr_err("SELinux: %s:  unrecognized SID %d\n",
1041		       __func__, tsid);
1042		goto out;
1043	}
1044
1045	tclass = unmap_class(&policy->map, orig_tclass);
1046	if (unlikely(orig_tclass && !tclass)) {
1047		if (policydb->allow_unknown)
1048			goto allow;
1049		goto out;
1050	}
1051
1052
1053	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1054		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1055		goto out;
1056	}
1057
1058	avkey.target_class = tclass;
1059	avkey.specified = AVTAB_XPERMS;
1060	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1061	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1062	ebitmap_for_each_positive_bit(sattr, snode, i) {
1063		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1064			avkey.source_type = i + 1;
1065			avkey.target_type = j + 1;
1066			for (node = avtab_search_node(&policydb->te_avtab,
1067						      &avkey);
1068			     node;
1069			     node = avtab_search_node_next(node, avkey.specified))
1070				services_compute_xperms_decision(xpermd, node);
1071
1072			cond_compute_xperms(&policydb->te_cond_avtab,
1073						&avkey, xpermd);
1074		}
1075	}
1076out:
1077	rcu_read_unlock();
1078	return;
1079allow:
1080	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1081	goto out;
1082}
1083
1084/**
1085 * security_compute_av - Compute access vector decisions.
1086 * @ssid: source security identifier
1087 * @tsid: target security identifier
1088 * @orig_tclass: target security class
1089 * @avd: access vector decisions
1090 * @xperms: extended permissions
1091 *
1092 * Compute a set of access vector decisions based on the
1093 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1094 */
1095void security_compute_av(u32 ssid,
1096			 u32 tsid,
1097			 u16 orig_tclass,
1098			 struct av_decision *avd,
1099			 struct extended_perms *xperms)
1100{
1101	struct selinux_policy *policy;
1102	struct policydb *policydb;
1103	struct sidtab *sidtab;
1104	u16 tclass;
1105	struct context *scontext = NULL, *tcontext = NULL;
1106
1107	rcu_read_lock();
1108	policy = rcu_dereference(selinux_state.policy);
1109	avd_init(policy, avd);
1110	xperms->len = 0;
1111	if (!selinux_initialized())
1112		goto allow;
1113
1114	policydb = &policy->policydb;
1115	sidtab = policy->sidtab;
1116
1117	scontext = sidtab_search(sidtab, ssid);
1118	if (!scontext) {
1119		pr_err("SELinux: %s:  unrecognized SID %d\n",
1120		       __func__, ssid);
1121		goto out;
1122	}
1123
1124	/* permissive domain? */
1125	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1126		avd->flags |= AVD_FLAGS_PERMISSIVE;
1127
1128	tcontext = sidtab_search(sidtab, tsid);
1129	if (!tcontext) {
1130		pr_err("SELinux: %s:  unrecognized SID %d\n",
1131		       __func__, tsid);
1132		goto out;
1133	}
1134
1135	tclass = unmap_class(&policy->map, orig_tclass);
1136	if (unlikely(orig_tclass && !tclass)) {
1137		if (policydb->allow_unknown)
1138			goto allow;
1139		goto out;
1140	}
1141	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1142				  xperms);
1143	map_decision(&policy->map, orig_tclass, avd,
1144		     policydb->allow_unknown);
1145out:
1146	rcu_read_unlock();
1147	return;
1148allow:
1149	avd->allowed = 0xffffffff;
1150	goto out;
1151}
1152
1153void security_compute_av_user(u32 ssid,
1154			      u32 tsid,
1155			      u16 tclass,
1156			      struct av_decision *avd)
1157{
1158	struct selinux_policy *policy;
1159	struct policydb *policydb;
1160	struct sidtab *sidtab;
1161	struct context *scontext = NULL, *tcontext = NULL;
1162
1163	rcu_read_lock();
1164	policy = rcu_dereference(selinux_state.policy);
1165	avd_init(policy, avd);
1166	if (!selinux_initialized())
1167		goto allow;
1168
1169	policydb = &policy->policydb;
1170	sidtab = policy->sidtab;
1171
1172	scontext = sidtab_search(sidtab, ssid);
1173	if (!scontext) {
1174		pr_err("SELinux: %s:  unrecognized SID %d\n",
1175		       __func__, ssid);
1176		goto out;
1177	}
1178
1179	/* permissive domain? */
1180	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1181		avd->flags |= AVD_FLAGS_PERMISSIVE;
1182
1183	tcontext = sidtab_search(sidtab, tsid);
1184	if (!tcontext) {
1185		pr_err("SELinux: %s:  unrecognized SID %d\n",
1186		       __func__, tsid);
1187		goto out;
1188	}
1189
1190	if (unlikely(!tclass)) {
1191		if (policydb->allow_unknown)
1192			goto allow;
1193		goto out;
1194	}
1195
1196	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1197				  NULL);
1198 out:
1199	rcu_read_unlock();
1200	return;
1201allow:
1202	avd->allowed = 0xffffffff;
1203	goto out;
1204}
1205
1206/*
1207 * Write the security context string representation of
1208 * the context structure `context' into a dynamically
1209 * allocated string of the correct size.  Set `*scontext'
1210 * to point to this string and set `*scontext_len' to
1211 * the length of the string.
1212 */
1213static int context_struct_to_string(struct policydb *p,
1214				    struct context *context,
1215				    char **scontext, u32 *scontext_len)
1216{
1217	char *scontextp;
1218
1219	if (scontext)
1220		*scontext = NULL;
1221	*scontext_len = 0;
1222
1223	if (context->len) {
1224		*scontext_len = context->len;
1225		if (scontext) {
1226			*scontext = kstrdup(context->str, GFP_ATOMIC);
1227			if (!(*scontext))
1228				return -ENOMEM;
1229		}
1230		return 0;
1231	}
1232
1233	/* Compute the size of the context. */
1234	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1235	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1236	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1237	*scontext_len += mls_compute_context_len(p, context);
1238
1239	if (!scontext)
1240		return 0;
1241
1242	/* Allocate space for the context; caller must free this space. */
1243	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1244	if (!scontextp)
1245		return -ENOMEM;
1246	*scontext = scontextp;
1247
1248	/*
1249	 * Copy the user name, role name and type name into the context.
1250	 */
1251	scontextp += sprintf(scontextp, "%s:%s:%s",
1252		sym_name(p, SYM_USERS, context->user - 1),
1253		sym_name(p, SYM_ROLES, context->role - 1),
1254		sym_name(p, SYM_TYPES, context->type - 1));
1255
1256	mls_sid_to_context(p, context, &scontextp);
1257
1258	*scontextp = 0;
1259
1260	return 0;
1261}
1262
1263static int sidtab_entry_to_string(struct policydb *p,
1264				  struct sidtab *sidtab,
1265				  struct sidtab_entry *entry,
1266				  char **scontext, u32 *scontext_len)
1267{
1268	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1269
1270	if (rc != -ENOENT)
1271		return rc;
1272
1273	rc = context_struct_to_string(p, &entry->context, scontext,
1274				      scontext_len);
1275	if (!rc && scontext)
1276		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1277	return rc;
1278}
1279
1280#include "initial_sid_to_string.h"
1281
1282int security_sidtab_hash_stats(char *page)
1283{
1284	struct selinux_policy *policy;
1285	int rc;
1286
1287	if (!selinux_initialized()) {
1288		pr_err("SELinux: %s:  called before initial load_policy\n",
1289		       __func__);
1290		return -EINVAL;
1291	}
1292
1293	rcu_read_lock();
1294	policy = rcu_dereference(selinux_state.policy);
1295	rc = sidtab_hash_stats(policy->sidtab, page);
1296	rcu_read_unlock();
1297
1298	return rc;
1299}
1300
1301const char *security_get_initial_sid_context(u32 sid)
1302{
1303	if (unlikely(sid > SECINITSID_NUM))
1304		return NULL;
1305	return initial_sid_to_string[sid];
1306}
1307
1308static int security_sid_to_context_core(u32 sid, char **scontext,
1309					u32 *scontext_len, int force,
1310					int only_invalid)
1311{
1312	struct selinux_policy *policy;
1313	struct policydb *policydb;
1314	struct sidtab *sidtab;
1315	struct sidtab_entry *entry;
1316	int rc = 0;
1317
1318	if (scontext)
1319		*scontext = NULL;
1320	*scontext_len  = 0;
1321
1322	if (!selinux_initialized()) {
1323		if (sid <= SECINITSID_NUM) {
1324			char *scontextp;
1325			const char *s;
1326
1327			/*
1328			 * Before the policy is loaded, translate
1329			 * SECINITSID_INIT to "kernel", because systemd and
1330			 * libselinux < 2.6 take a getcon_raw() result that is
1331			 * both non-null and not "kernel" to mean that a policy
1332			 * is already loaded.
1333			 */
1334			if (sid == SECINITSID_INIT)
1335				sid = SECINITSID_KERNEL;
1336
1337			s = initial_sid_to_string[sid];
1338			if (!s)
1339				return -EINVAL;
1340			*scontext_len = strlen(s) + 1;
1341			if (!scontext)
1342				return 0;
1343			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1344			if (!scontextp)
1345				return -ENOMEM;
1346			*scontext = scontextp;
1347			return 0;
1348		}
1349		pr_err("SELinux: %s:  called before initial "
1350		       "load_policy on unknown SID %d\n", __func__, sid);
1351		return -EINVAL;
1352	}
1353	rcu_read_lock();
1354	policy = rcu_dereference(selinux_state.policy);
1355	policydb = &policy->policydb;
1356	sidtab = policy->sidtab;
1357
1358	if (force)
1359		entry = sidtab_search_entry_force(sidtab, sid);
1360	else
1361		entry = sidtab_search_entry(sidtab, sid);
1362	if (!entry) {
1363		pr_err("SELinux: %s:  unrecognized SID %d\n",
1364			__func__, sid);
1365		rc = -EINVAL;
1366		goto out_unlock;
1367	}
1368	if (only_invalid && !entry->context.len)
1369		goto out_unlock;
1370
1371	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1372				    scontext_len);
1373
1374out_unlock:
1375	rcu_read_unlock();
1376	return rc;
1377
1378}
1379
1380/**
1381 * security_sid_to_context - Obtain a context for a given SID.
1382 * @sid: security identifier, SID
1383 * @scontext: security context
1384 * @scontext_len: length in bytes
1385 *
1386 * Write the string representation of the context associated with @sid
1387 * into a dynamically allocated string of the correct size.  Set @scontext
1388 * to point to this string and set @scontext_len to the length of the string.
1389 */
1390int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1391{
1392	return security_sid_to_context_core(sid, scontext,
1393					    scontext_len, 0, 0);
1394}
1395
1396int security_sid_to_context_force(u32 sid,
1397				  char **scontext, u32 *scontext_len)
1398{
1399	return security_sid_to_context_core(sid, scontext,
1400					    scontext_len, 1, 0);
1401}
1402
1403/**
1404 * security_sid_to_context_inval - Obtain a context for a given SID if it
1405 *                                 is invalid.
1406 * @sid: security identifier, SID
1407 * @scontext: security context
1408 * @scontext_len: length in bytes
1409 *
1410 * Write the string representation of the context associated with @sid
1411 * into a dynamically allocated string of the correct size, but only if the
1412 * context is invalid in the current policy.  Set @scontext to point to
1413 * this string (or NULL if the context is valid) and set @scontext_len to
1414 * the length of the string (or 0 if the context is valid).
1415 */
1416int security_sid_to_context_inval(u32 sid,
1417				  char **scontext, u32 *scontext_len)
1418{
1419	return security_sid_to_context_core(sid, scontext,
1420					    scontext_len, 1, 1);
1421}
1422
1423/*
1424 * Caveat:  Mutates scontext.
1425 */
1426static int string_to_context_struct(struct policydb *pol,
1427				    struct sidtab *sidtabp,
1428				    char *scontext,
1429				    struct context *ctx,
1430				    u32 def_sid)
1431{
1432	struct role_datum *role;
1433	struct type_datum *typdatum;
1434	struct user_datum *usrdatum;
1435	char *scontextp, *p, oldc;
1436	int rc = 0;
1437
1438	context_init(ctx);
1439
1440	/* Parse the security context. */
1441
1442	rc = -EINVAL;
1443	scontextp = scontext;
1444
1445	/* Extract the user. */
1446	p = scontextp;
1447	while (*p && *p != ':')
1448		p++;
1449
1450	if (*p == 0)
1451		goto out;
1452
1453	*p++ = 0;
1454
1455	usrdatum = symtab_search(&pol->p_users, scontextp);
1456	if (!usrdatum)
1457		goto out;
1458
1459	ctx->user = usrdatum->value;
1460
1461	/* Extract role. */
1462	scontextp = p;
1463	while (*p && *p != ':')
1464		p++;
1465
1466	if (*p == 0)
1467		goto out;
1468
1469	*p++ = 0;
1470
1471	role = symtab_search(&pol->p_roles, scontextp);
1472	if (!role)
1473		goto out;
1474	ctx->role = role->value;
1475
1476	/* Extract type. */
1477	scontextp = p;
1478	while (*p && *p != ':')
1479		p++;
1480	oldc = *p;
1481	*p++ = 0;
1482
1483	typdatum = symtab_search(&pol->p_types, scontextp);
1484	if (!typdatum || typdatum->attribute)
1485		goto out;
1486
1487	ctx->type = typdatum->value;
1488
1489	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1490	if (rc)
1491		goto out;
1492
1493	/* Check the validity of the new context. */
1494	rc = -EINVAL;
1495	if (!policydb_context_isvalid(pol, ctx))
1496		goto out;
1497	rc = 0;
1498out:
1499	if (rc)
1500		context_destroy(ctx);
1501	return rc;
1502}
1503
1504static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1505					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1506					int force)
1507{
1508	struct selinux_policy *policy;
1509	struct policydb *policydb;
1510	struct sidtab *sidtab;
1511	char *scontext2, *str = NULL;
1512	struct context context;
1513	int rc = 0;
1514
1515	/* An empty security context is never valid. */
1516	if (!scontext_len)
1517		return -EINVAL;
1518
1519	/* Copy the string to allow changes and ensure a NUL terminator */
1520	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1521	if (!scontext2)
1522		return -ENOMEM;
1523
1524	if (!selinux_initialized()) {
1525		u32 i;
1526
1527		for (i = 1; i < SECINITSID_NUM; i++) {
1528			const char *s = initial_sid_to_string[i];
1529
1530			if (s && !strcmp(s, scontext2)) {
1531				*sid = i;
1532				goto out;
1533			}
1534		}
1535		*sid = SECINITSID_KERNEL;
1536		goto out;
1537	}
1538	*sid = SECSID_NULL;
1539
1540	if (force) {
1541		/* Save another copy for storing in uninterpreted form */
1542		rc = -ENOMEM;
1543		str = kstrdup(scontext2, gfp_flags);
1544		if (!str)
1545			goto out;
1546	}
1547retry:
1548	rcu_read_lock();
1549	policy = rcu_dereference(selinux_state.policy);
1550	policydb = &policy->policydb;
1551	sidtab = policy->sidtab;
1552	rc = string_to_context_struct(policydb, sidtab, scontext2,
1553				      &context, def_sid);
1554	if (rc == -EINVAL && force) {
1555		context.str = str;
1556		context.len = strlen(str) + 1;
1557		str = NULL;
1558	} else if (rc)
1559		goto out_unlock;
1560	rc = sidtab_context_to_sid(sidtab, &context, sid);
1561	if (rc == -ESTALE) {
1562		rcu_read_unlock();
1563		if (context.str) {
1564			str = context.str;
1565			context.str = NULL;
1566		}
1567		context_destroy(&context);
1568		goto retry;
1569	}
1570	context_destroy(&context);
1571out_unlock:
1572	rcu_read_unlock();
1573out:
1574	kfree(scontext2);
1575	kfree(str);
1576	return rc;
1577}
1578
1579/**
1580 * security_context_to_sid - Obtain a SID for a given security context.
1581 * @scontext: security context
1582 * @scontext_len: length in bytes
1583 * @sid: security identifier, SID
1584 * @gfp: context for the allocation
1585 *
1586 * Obtains a SID associated with the security context that
1587 * has the string representation specified by @scontext.
1588 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1589 * memory is available, or 0 on success.
1590 */
1591int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1592			    gfp_t gfp)
1593{
1594	return security_context_to_sid_core(scontext, scontext_len,
1595					    sid, SECSID_NULL, gfp, 0);
1596}
1597
1598int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1599{
1600	return security_context_to_sid(scontext, strlen(scontext),
1601				       sid, gfp);
1602}
1603
1604/**
1605 * security_context_to_sid_default - Obtain a SID for a given security context,
1606 * falling back to specified default if needed.
1607 *
1608 * @scontext: security context
1609 * @scontext_len: length in bytes
1610 * @sid: security identifier, SID
1611 * @def_sid: default SID to assign on error
1612 * @gfp_flags: the allocator get-free-page (GFP) flags
1613 *
1614 * Obtains a SID associated with the security context that
1615 * has the string representation specified by @scontext.
1616 * The default SID is passed to the MLS layer to be used to allow
1617 * kernel labeling of the MLS field if the MLS field is not present
1618 * (for upgrading to MLS without full relabel).
1619 * Implicitly forces adding of the context even if it cannot be mapped yet.
1620 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1621 * memory is available, or 0 on success.
1622 */
1623int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1624				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1625{
1626	return security_context_to_sid_core(scontext, scontext_len,
1627					    sid, def_sid, gfp_flags, 1);
1628}
1629
1630int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1631				  u32 *sid)
1632{
1633	return security_context_to_sid_core(scontext, scontext_len,
1634					    sid, SECSID_NULL, GFP_KERNEL, 1);
1635}
1636
1637static int compute_sid_handle_invalid_context(
1638	struct selinux_policy *policy,
1639	struct sidtab_entry *sentry,
1640	struct sidtab_entry *tentry,
1641	u16 tclass,
1642	struct context *newcontext)
1643{
1644	struct policydb *policydb = &policy->policydb;
1645	struct sidtab *sidtab = policy->sidtab;
1646	char *s = NULL, *t = NULL, *n = NULL;
1647	u32 slen, tlen, nlen;
1648	struct audit_buffer *ab;
1649
1650	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1651		goto out;
1652	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1653		goto out;
1654	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1655		goto out;
1656	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1657	if (!ab)
1658		goto out;
1659	audit_log_format(ab,
1660			 "op=security_compute_sid invalid_context=");
1661	/* no need to record the NUL with untrusted strings */
1662	audit_log_n_untrustedstring(ab, n, nlen - 1);
1663	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1664			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1665	audit_log_end(ab);
1666out:
1667	kfree(s);
1668	kfree(t);
1669	kfree(n);
1670	if (!enforcing_enabled())
1671		return 0;
1672	return -EACCES;
1673}
1674
1675static void filename_compute_type(struct policydb *policydb,
1676				  struct context *newcontext,
1677				  u32 stype, u32 ttype, u16 tclass,
1678				  const char *objname)
1679{
1680	struct filename_trans_key ft;
1681	struct filename_trans_datum *datum;
1682
1683	/*
1684	 * Most filename trans rules are going to live in specific directories
1685	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1686	 * if the ttype does not contain any rules.
1687	 */
1688	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1689		return;
1690
1691	ft.ttype = ttype;
1692	ft.tclass = tclass;
1693	ft.name = objname;
1694
1695	datum = policydb_filenametr_search(policydb, &ft);
1696	while (datum) {
1697		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1698			newcontext->type = datum->otype;
1699			return;
1700		}
1701		datum = datum->next;
1702	}
1703}
1704
1705static int security_compute_sid(u32 ssid,
1706				u32 tsid,
1707				u16 orig_tclass,
1708				u16 specified,
1709				const char *objname,
1710				u32 *out_sid,
1711				bool kern)
1712{
1713	struct selinux_policy *policy;
1714	struct policydb *policydb;
1715	struct sidtab *sidtab;
1716	struct class_datum *cladatum;
1717	struct context *scontext, *tcontext, newcontext;
1718	struct sidtab_entry *sentry, *tentry;
1719	struct avtab_key avkey;
1720	struct avtab_node *avnode, *node;
1721	u16 tclass;
1722	int rc = 0;
1723	bool sock;
1724
1725	if (!selinux_initialized()) {
1726		switch (orig_tclass) {
1727		case SECCLASS_PROCESS: /* kernel value */
1728			*out_sid = ssid;
1729			break;
1730		default:
1731			*out_sid = tsid;
1732			break;
1733		}
1734		goto out;
1735	}
1736
1737retry:
1738	cladatum = NULL;
1739	context_init(&newcontext);
1740
1741	rcu_read_lock();
1742
1743	policy = rcu_dereference(selinux_state.policy);
1744
1745	if (kern) {
1746		tclass = unmap_class(&policy->map, orig_tclass);
1747		sock = security_is_socket_class(orig_tclass);
1748	} else {
1749		tclass = orig_tclass;
1750		sock = security_is_socket_class(map_class(&policy->map,
1751							  tclass));
1752	}
1753
1754	policydb = &policy->policydb;
1755	sidtab = policy->sidtab;
1756
1757	sentry = sidtab_search_entry(sidtab, ssid);
1758	if (!sentry) {
1759		pr_err("SELinux: %s:  unrecognized SID %d\n",
1760		       __func__, ssid);
1761		rc = -EINVAL;
1762		goto out_unlock;
1763	}
1764	tentry = sidtab_search_entry(sidtab, tsid);
1765	if (!tentry) {
1766		pr_err("SELinux: %s:  unrecognized SID %d\n",
1767		       __func__, tsid);
1768		rc = -EINVAL;
1769		goto out_unlock;
1770	}
1771
1772	scontext = &sentry->context;
1773	tcontext = &tentry->context;
1774
1775	if (tclass && tclass <= policydb->p_classes.nprim)
1776		cladatum = policydb->class_val_to_struct[tclass - 1];
1777
1778	/* Set the user identity. */
1779	switch (specified) {
1780	case AVTAB_TRANSITION:
1781	case AVTAB_CHANGE:
1782		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1783			newcontext.user = tcontext->user;
1784		} else {
1785			/* notice this gets both DEFAULT_SOURCE and unset */
1786			/* Use the process user identity. */
1787			newcontext.user = scontext->user;
1788		}
1789		break;
1790	case AVTAB_MEMBER:
1791		/* Use the related object owner. */
1792		newcontext.user = tcontext->user;
1793		break;
1794	}
1795
1796	/* Set the role to default values. */
1797	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1798		newcontext.role = scontext->role;
1799	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1800		newcontext.role = tcontext->role;
1801	} else {
1802		if ((tclass == policydb->process_class) || sock)
1803			newcontext.role = scontext->role;
1804		else
1805			newcontext.role = OBJECT_R_VAL;
1806	}
1807
1808	/* Set the type to default values. */
1809	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1810		newcontext.type = scontext->type;
1811	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1812		newcontext.type = tcontext->type;
1813	} else {
1814		if ((tclass == policydb->process_class) || sock) {
1815			/* Use the type of process. */
1816			newcontext.type = scontext->type;
1817		} else {
1818			/* Use the type of the related object. */
1819			newcontext.type = tcontext->type;
1820		}
1821	}
1822
1823	/* Look for a type transition/member/change rule. */
1824	avkey.source_type = scontext->type;
1825	avkey.target_type = tcontext->type;
1826	avkey.target_class = tclass;
1827	avkey.specified = specified;
1828	avnode = avtab_search_node(&policydb->te_avtab, &avkey);
1829
1830	/* If no permanent rule, also check for enabled conditional rules */
1831	if (!avnode) {
1832		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1833		for (; node; node = avtab_search_node_next(node, specified)) {
1834			if (node->key.specified & AVTAB_ENABLED) {
1835				avnode = node;
1836				break;
1837			}
1838		}
1839	}
1840
1841	if (avnode) {
1842		/* Use the type from the type transition/member/change rule. */
1843		newcontext.type = avnode->datum.u.data;
1844	}
1845
1846	/* if we have a objname this is a file trans check so check those rules */
1847	if (objname)
1848		filename_compute_type(policydb, &newcontext, scontext->type,
1849				      tcontext->type, tclass, objname);
1850
1851	/* Check for class-specific changes. */
1852	if (specified & AVTAB_TRANSITION) {
1853		/* Look for a role transition rule. */
1854		struct role_trans_datum *rtd;
1855		struct role_trans_key rtk = {
1856			.role = scontext->role,
1857			.type = tcontext->type,
1858			.tclass = tclass,
1859		};
1860
1861		rtd = policydb_roletr_search(policydb, &rtk);
1862		if (rtd)
1863			newcontext.role = rtd->new_role;
1864	}
1865
1866	/* Set the MLS attributes.
1867	   This is done last because it may allocate memory. */
1868	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1869			     &newcontext, sock);
1870	if (rc)
1871		goto out_unlock;
1872
1873	/* Check the validity of the context. */
1874	if (!policydb_context_isvalid(policydb, &newcontext)) {
1875		rc = compute_sid_handle_invalid_context(policy, sentry,
1876							tentry, tclass,
1877							&newcontext);
1878		if (rc)
1879			goto out_unlock;
1880	}
1881	/* Obtain the sid for the context. */
1882	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1883	if (rc == -ESTALE) {
1884		rcu_read_unlock();
1885		context_destroy(&newcontext);
1886		goto retry;
1887	}
1888out_unlock:
1889	rcu_read_unlock();
1890	context_destroy(&newcontext);
1891out:
1892	return rc;
1893}
1894
1895/**
1896 * security_transition_sid - Compute the SID for a new subject/object.
1897 * @ssid: source security identifier
1898 * @tsid: target security identifier
1899 * @tclass: target security class
1900 * @qstr: object name
1901 * @out_sid: security identifier for new subject/object
1902 *
1903 * Compute a SID to use for labeling a new subject or object in the
1904 * class @tclass based on a SID pair (@ssid, @tsid).
1905 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1906 * if insufficient memory is available, or %0 if the new SID was
1907 * computed successfully.
1908 */
1909int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1910			    const struct qstr *qstr, u32 *out_sid)
1911{
1912	return security_compute_sid(ssid, tsid, tclass,
1913				    AVTAB_TRANSITION,
1914				    qstr ? qstr->name : NULL, out_sid, true);
1915}
1916
1917int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1918				 const char *objname, u32 *out_sid)
1919{
1920	return security_compute_sid(ssid, tsid, tclass,
1921				    AVTAB_TRANSITION,
1922				    objname, out_sid, false);
1923}
1924
1925/**
1926 * security_member_sid - Compute the SID for member selection.
1927 * @ssid: source security identifier
1928 * @tsid: target security identifier
1929 * @tclass: target security class
1930 * @out_sid: security identifier for selected member
1931 *
1932 * Compute a SID to use when selecting a member of a polyinstantiated
1933 * object of class @tclass based on a SID pair (@ssid, @tsid).
1934 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1935 * if insufficient memory is available, or %0 if the SID was
1936 * computed successfully.
1937 */
1938int security_member_sid(u32 ssid,
1939			u32 tsid,
1940			u16 tclass,
1941			u32 *out_sid)
1942{
1943	return security_compute_sid(ssid, tsid, tclass,
1944				    AVTAB_MEMBER, NULL,
1945				    out_sid, false);
1946}
1947
1948/**
1949 * security_change_sid - Compute the SID for object relabeling.
1950 * @ssid: source security identifier
1951 * @tsid: target security identifier
1952 * @tclass: target security class
1953 * @out_sid: security identifier for selected member
1954 *
1955 * Compute a SID to use for relabeling an object of class @tclass
1956 * based on a SID pair (@ssid, @tsid).
1957 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1958 * if insufficient memory is available, or %0 if the SID was
1959 * computed successfully.
1960 */
1961int security_change_sid(u32 ssid,
1962			u32 tsid,
1963			u16 tclass,
1964			u32 *out_sid)
1965{
1966	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1967				    out_sid, false);
1968}
1969
1970static inline int convert_context_handle_invalid_context(
1971	struct policydb *policydb,
1972	struct context *context)
1973{
1974	char *s;
1975	u32 len;
1976
1977	if (enforcing_enabled())
1978		return -EINVAL;
1979
1980	if (!context_struct_to_string(policydb, context, &s, &len)) {
1981		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1982			s);
1983		kfree(s);
1984	}
1985	return 0;
1986}
1987
1988/**
1989 * services_convert_context - Convert a security context across policies.
1990 * @args: populated convert_context_args struct
1991 * @oldc: original context
1992 * @newc: converted context
1993 * @gfp_flags: allocation flags
1994 *
1995 * Convert the values in the security context structure @oldc from the values
1996 * specified in the policy @args->oldp to the values specified in the policy
1997 * @args->newp, storing the new context in @newc, and verifying that the
1998 * context is valid under the new policy.
1999 */
2000int services_convert_context(struct convert_context_args *args,
2001			     struct context *oldc, struct context *newc,
2002			     gfp_t gfp_flags)
2003{
2004	struct ocontext *oc;
2005	struct role_datum *role;
2006	struct type_datum *typdatum;
2007	struct user_datum *usrdatum;
2008	char *s;
2009	u32 len;
2010	int rc;
2011
2012	if (oldc->str) {
2013		s = kstrdup(oldc->str, gfp_flags);
2014		if (!s)
2015			return -ENOMEM;
2016
2017		rc = string_to_context_struct(args->newp, NULL, s, newc, SECSID_NULL);
2018		if (rc == -EINVAL) {
2019			/*
2020			 * Retain string representation for later mapping.
2021			 *
2022			 * IMPORTANT: We need to copy the contents of oldc->str
2023			 * back into s again because string_to_context_struct()
2024			 * may have garbled it.
2025			 */
2026			memcpy(s, oldc->str, oldc->len);
2027			context_init(newc);
2028			newc->str = s;
2029			newc->len = oldc->len;
2030			return 0;
2031		}
2032		kfree(s);
2033		if (rc) {
2034			/* Other error condition, e.g. ENOMEM. */
2035			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2036			       oldc->str, -rc);
2037			return rc;
2038		}
2039		pr_info("SELinux:  Context %s became valid (mapped).\n",
2040			oldc->str);
2041		return 0;
2042	}
2043
2044	context_init(newc);
2045
2046	/* Convert the user. */
2047	usrdatum = symtab_search(&args->newp->p_users,
2048				 sym_name(args->oldp, SYM_USERS, oldc->user - 1));
2049	if (!usrdatum)
2050		goto bad;
2051	newc->user = usrdatum->value;
2052
2053	/* Convert the role. */
2054	role = symtab_search(&args->newp->p_roles,
2055			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2056	if (!role)
2057		goto bad;
2058	newc->role = role->value;
2059
2060	/* Convert the type. */
2061	typdatum = symtab_search(&args->newp->p_types,
2062				 sym_name(args->oldp, SYM_TYPES, oldc->type - 1));
2063	if (!typdatum)
2064		goto bad;
2065	newc->type = typdatum->value;
2066
2067	/* Convert the MLS fields if dealing with MLS policies */
2068	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2069		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2070		if (rc)
2071			goto bad;
2072	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2073		/*
2074		 * Switching between non-MLS and MLS policy:
2075		 * ensure that the MLS fields of the context for all
2076		 * existing entries in the sidtab are filled in with a
2077		 * suitable default value, likely taken from one of the
2078		 * initial SIDs.
2079		 */
2080		oc = args->newp->ocontexts[OCON_ISID];
2081		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2082			oc = oc->next;
2083		if (!oc) {
2084			pr_err("SELinux:  unable to look up"
2085				" the initial SIDs list\n");
2086			goto bad;
2087		}
2088		rc = mls_range_set(newc, &oc->context[0].range);
2089		if (rc)
2090			goto bad;
2091	}
2092
2093	/* Check the validity of the new context. */
2094	if (!policydb_context_isvalid(args->newp, newc)) {
2095		rc = convert_context_handle_invalid_context(args->oldp, oldc);
2096		if (rc)
2097			goto bad;
2098	}
2099
2100	return 0;
2101bad:
2102	/* Map old representation to string and save it. */
2103	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2104	if (rc)
2105		return rc;
2106	context_destroy(newc);
2107	newc->str = s;
2108	newc->len = len;
2109	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2110		newc->str);
2111	return 0;
2112}
2113
2114static void security_load_policycaps(struct selinux_policy *policy)
2115{
2116	struct policydb *p;
2117	unsigned int i;
2118	struct ebitmap_node *node;
2119
2120	p = &policy->policydb;
2121
2122	for (i = 0; i < ARRAY_SIZE(selinux_state.policycap); i++)
2123		WRITE_ONCE(selinux_state.policycap[i],
2124			ebitmap_get_bit(&p->policycaps, i));
2125
2126	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2127		pr_info("SELinux:  policy capability %s=%d\n",
2128			selinux_policycap_names[i],
2129			ebitmap_get_bit(&p->policycaps, i));
2130
2131	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2132		if (i >= ARRAY_SIZE(selinux_policycap_names))
2133			pr_info("SELinux:  unknown policy capability %u\n",
2134				i);
2135	}
2136}
2137
2138static int security_preserve_bools(struct selinux_policy *oldpolicy,
2139				struct selinux_policy *newpolicy);
2140
2141static void selinux_policy_free(struct selinux_policy *policy)
2142{
2143	if (!policy)
2144		return;
2145
2146	sidtab_destroy(policy->sidtab);
2147	kfree(policy->map.mapping);
2148	policydb_destroy(&policy->policydb);
2149	kfree(policy->sidtab);
2150	kfree(policy);
2151}
2152
2153static void selinux_policy_cond_free(struct selinux_policy *policy)
2154{
2155	cond_policydb_destroy_dup(&policy->policydb);
2156	kfree(policy);
2157}
2158
2159void selinux_policy_cancel(struct selinux_load_state *load_state)
2160{
2161	struct selinux_state *state = &selinux_state;
2162	struct selinux_policy *oldpolicy;
2163
2164	oldpolicy = rcu_dereference_protected(state->policy,
2165					lockdep_is_held(&state->policy_mutex));
2166
2167	sidtab_cancel_convert(oldpolicy->sidtab);
2168	selinux_policy_free(load_state->policy);
2169	kfree(load_state->convert_data);
2170}
2171
2172static void selinux_notify_policy_change(u32 seqno)
2173{
2174	/* Flush external caches and notify userspace of policy load */
2175	avc_ss_reset(seqno);
2176	selnl_notify_policyload(seqno);
2177	selinux_status_update_policyload(seqno);
2178	selinux_netlbl_cache_invalidate();
2179	selinux_xfrm_notify_policyload();
2180	selinux_ima_measure_state_locked();
2181}
2182
2183void selinux_policy_commit(struct selinux_load_state *load_state)
2184{
2185	struct selinux_state *state = &selinux_state;
2186	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2187	unsigned long flags;
2188	u32 seqno;
2189
2190	oldpolicy = rcu_dereference_protected(state->policy,
2191					lockdep_is_held(&state->policy_mutex));
2192
2193	/* If switching between different policy types, log MLS status */
2194	if (oldpolicy) {
2195		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2196			pr_info("SELinux: Disabling MLS support...\n");
2197		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2198			pr_info("SELinux: Enabling MLS support...\n");
2199	}
2200
2201	/* Set latest granting seqno for new policy. */
2202	if (oldpolicy)
2203		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2204	else
2205		newpolicy->latest_granting = 1;
2206	seqno = newpolicy->latest_granting;
2207
2208	/* Install the new policy. */
2209	if (oldpolicy) {
2210		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2211		rcu_assign_pointer(state->policy, newpolicy);
2212		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2213	} else {
2214		rcu_assign_pointer(state->policy, newpolicy);
2215	}
2216
2217	/* Load the policycaps from the new policy */
2218	security_load_policycaps(newpolicy);
2219
2220	if (!selinux_initialized()) {
2221		/*
2222		 * After first policy load, the security server is
2223		 * marked as initialized and ready to handle requests and
2224		 * any objects created prior to policy load are then labeled.
2225		 */
2226		selinux_mark_initialized();
2227		selinux_complete_init();
2228	}
2229
2230	/* Free the old policy */
2231	synchronize_rcu();
2232	selinux_policy_free(oldpolicy);
2233	kfree(load_state->convert_data);
2234
2235	/* Notify others of the policy change */
2236	selinux_notify_policy_change(seqno);
2237}
2238
2239/**
2240 * security_load_policy - Load a security policy configuration.
2241 * @data: binary policy data
2242 * @len: length of data in bytes
2243 * @load_state: policy load state
2244 *
2245 * Load a new set of security policy configuration data,
2246 * validate it and convert the SID table as necessary.
2247 * This function will flush the access vector cache after
2248 * loading the new policy.
2249 */
2250int security_load_policy(void *data, size_t len,
2251			 struct selinux_load_state *load_state)
2252{
2253	struct selinux_state *state = &selinux_state;
2254	struct selinux_policy *newpolicy, *oldpolicy;
2255	struct selinux_policy_convert_data *convert_data;
2256	int rc = 0;
2257	struct policy_file file = { data, len }, *fp = &file;
2258
2259	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2260	if (!newpolicy)
2261		return -ENOMEM;
2262
2263	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2264	if (!newpolicy->sidtab) {
2265		rc = -ENOMEM;
2266		goto err_policy;
2267	}
2268
2269	rc = policydb_read(&newpolicy->policydb, fp);
2270	if (rc)
2271		goto err_sidtab;
2272
2273	newpolicy->policydb.len = len;
2274	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2275				&newpolicy->map);
2276	if (rc)
2277		goto err_policydb;
2278
2279	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2280	if (rc) {
2281		pr_err("SELinux:  unable to load the initial SIDs\n");
2282		goto err_mapping;
2283	}
2284
2285	if (!selinux_initialized()) {
2286		/* First policy load, so no need to preserve state from old policy */
2287		load_state->policy = newpolicy;
2288		load_state->convert_data = NULL;
2289		return 0;
2290	}
2291
2292	oldpolicy = rcu_dereference_protected(state->policy,
2293					lockdep_is_held(&state->policy_mutex));
2294
2295	/* Preserve active boolean values from the old policy */
2296	rc = security_preserve_bools(oldpolicy, newpolicy);
2297	if (rc) {
2298		pr_err("SELinux:  unable to preserve booleans\n");
2299		goto err_free_isids;
2300	}
2301
2302	/*
2303	 * Convert the internal representations of contexts
2304	 * in the new SID table.
2305	 */
2306
2307	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2308	if (!convert_data) {
2309		rc = -ENOMEM;
2310		goto err_free_isids;
2311	}
2312
2313	convert_data->args.oldp = &oldpolicy->policydb;
2314	convert_data->args.newp = &newpolicy->policydb;
2315
2316	convert_data->sidtab_params.args = &convert_data->args;
2317	convert_data->sidtab_params.target = newpolicy->sidtab;
2318
2319	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2320	if (rc) {
2321		pr_err("SELinux:  unable to convert the internal"
2322			" representation of contexts in the new SID"
2323			" table\n");
2324		goto err_free_convert_data;
2325	}
2326
2327	load_state->policy = newpolicy;
2328	load_state->convert_data = convert_data;
2329	return 0;
2330
2331err_free_convert_data:
2332	kfree(convert_data);
2333err_free_isids:
2334	sidtab_destroy(newpolicy->sidtab);
2335err_mapping:
2336	kfree(newpolicy->map.mapping);
2337err_policydb:
2338	policydb_destroy(&newpolicy->policydb);
2339err_sidtab:
2340	kfree(newpolicy->sidtab);
2341err_policy:
2342	kfree(newpolicy);
2343
2344	return rc;
2345}
2346
2347/**
2348 * ocontext_to_sid - Helper to safely get sid for an ocontext
2349 * @sidtab: SID table
2350 * @c: ocontext structure
2351 * @index: index of the context entry (0 or 1)
2352 * @out_sid: pointer to the resulting SID value
2353 *
2354 * For all ocontexts except OCON_ISID the SID fields are populated
2355 * on-demand when needed. Since updating the SID value is an SMP-sensitive
2356 * operation, this helper must be used to do that safely.
2357 *
2358 * WARNING: This function may return -ESTALE, indicating that the caller
2359 * must retry the operation after re-acquiring the policy pointer!
2360 */
2361static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2362			   size_t index, u32 *out_sid)
2363{
2364	int rc;
2365	u32 sid;
2366
2367	/* Ensure the associated sidtab entry is visible to this thread. */
2368	sid = smp_load_acquire(&c->sid[index]);
2369	if (!sid) {
2370		rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2371		if (rc)
2372			return rc;
2373
2374		/*
2375		 * Ensure the new sidtab entry is visible to other threads
2376		 * when they see the SID.
2377		 */
2378		smp_store_release(&c->sid[index], sid);
2379	}
2380	*out_sid = sid;
2381	return 0;
2382}
2383
2384/**
2385 * security_port_sid - Obtain the SID for a port.
2386 * @protocol: protocol number
2387 * @port: port number
2388 * @out_sid: security identifier
2389 */
2390int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2391{
2392	struct selinux_policy *policy;
2393	struct policydb *policydb;
2394	struct sidtab *sidtab;
2395	struct ocontext *c;
2396	int rc;
2397
2398	if (!selinux_initialized()) {
2399		*out_sid = SECINITSID_PORT;
2400		return 0;
2401	}
2402
2403retry:
2404	rc = 0;
2405	rcu_read_lock();
2406	policy = rcu_dereference(selinux_state.policy);
2407	policydb = &policy->policydb;
2408	sidtab = policy->sidtab;
2409
2410	c = policydb->ocontexts[OCON_PORT];
2411	while (c) {
2412		if (c->u.port.protocol == protocol &&
2413		    c->u.port.low_port <= port &&
2414		    c->u.port.high_port >= port)
2415			break;
2416		c = c->next;
2417	}
2418
2419	if (c) {
2420		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2421		if (rc == -ESTALE) {
2422			rcu_read_unlock();
2423			goto retry;
2424		}
2425		if (rc)
2426			goto out;
2427	} else {
2428		*out_sid = SECINITSID_PORT;
2429	}
2430
2431out:
2432	rcu_read_unlock();
2433	return rc;
2434}
2435
2436/**
2437 * security_ib_pkey_sid - Obtain the SID for a pkey.
2438 * @subnet_prefix: Subnet Prefix
2439 * @pkey_num: pkey number
2440 * @out_sid: security identifier
2441 */
2442int security_ib_pkey_sid(u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2443{
2444	struct selinux_policy *policy;
2445	struct policydb *policydb;
2446	struct sidtab *sidtab;
2447	struct ocontext *c;
2448	int rc;
2449
2450	if (!selinux_initialized()) {
2451		*out_sid = SECINITSID_UNLABELED;
2452		return 0;
2453	}
2454
2455retry:
2456	rc = 0;
2457	rcu_read_lock();
2458	policy = rcu_dereference(selinux_state.policy);
2459	policydb = &policy->policydb;
2460	sidtab = policy->sidtab;
2461
2462	c = policydb->ocontexts[OCON_IBPKEY];
2463	while (c) {
2464		if (c->u.ibpkey.low_pkey <= pkey_num &&
2465		    c->u.ibpkey.high_pkey >= pkey_num &&
2466		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2467			break;
2468
2469		c = c->next;
2470	}
2471
2472	if (c) {
2473		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2474		if (rc == -ESTALE) {
2475			rcu_read_unlock();
2476			goto retry;
2477		}
2478		if (rc)
2479			goto out;
2480	} else
2481		*out_sid = SECINITSID_UNLABELED;
2482
2483out:
2484	rcu_read_unlock();
2485	return rc;
2486}
2487
2488/**
2489 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2490 * @dev_name: device name
2491 * @port_num: port number
2492 * @out_sid: security identifier
2493 */
2494int security_ib_endport_sid(const char *dev_name, u8 port_num, u32 *out_sid)
2495{
2496	struct selinux_policy *policy;
2497	struct policydb *policydb;
2498	struct sidtab *sidtab;
2499	struct ocontext *c;
2500	int rc;
2501
2502	if (!selinux_initialized()) {
2503		*out_sid = SECINITSID_UNLABELED;
2504		return 0;
2505	}
2506
2507retry:
2508	rc = 0;
2509	rcu_read_lock();
2510	policy = rcu_dereference(selinux_state.policy);
2511	policydb = &policy->policydb;
2512	sidtab = policy->sidtab;
2513
2514	c = policydb->ocontexts[OCON_IBENDPORT];
2515	while (c) {
2516		if (c->u.ibendport.port == port_num &&
2517		    !strncmp(c->u.ibendport.dev_name,
2518			     dev_name,
2519			     IB_DEVICE_NAME_MAX))
2520			break;
2521
2522		c = c->next;
2523	}
2524
2525	if (c) {
2526		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2527		if (rc == -ESTALE) {
2528			rcu_read_unlock();
2529			goto retry;
2530		}
2531		if (rc)
2532			goto out;
2533	} else
2534		*out_sid = SECINITSID_UNLABELED;
2535
2536out:
2537	rcu_read_unlock();
2538	return rc;
2539}
2540
2541/**
2542 * security_netif_sid - Obtain the SID for a network interface.
2543 * @name: interface name
2544 * @if_sid: interface SID
2545 */
2546int security_netif_sid(char *name, u32 *if_sid)
2547{
2548	struct selinux_policy *policy;
2549	struct policydb *policydb;
2550	struct sidtab *sidtab;
2551	int rc;
2552	struct ocontext *c;
2553
2554	if (!selinux_initialized()) {
2555		*if_sid = SECINITSID_NETIF;
2556		return 0;
2557	}
2558
2559retry:
2560	rc = 0;
2561	rcu_read_lock();
2562	policy = rcu_dereference(selinux_state.policy);
2563	policydb = &policy->policydb;
2564	sidtab = policy->sidtab;
2565
2566	c = policydb->ocontexts[OCON_NETIF];
2567	while (c) {
2568		if (strcmp(name, c->u.name) == 0)
2569			break;
2570		c = c->next;
2571	}
2572
2573	if (c) {
2574		rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2575		if (rc == -ESTALE) {
2576			rcu_read_unlock();
2577			goto retry;
2578		}
2579		if (rc)
2580			goto out;
2581	} else
2582		*if_sid = SECINITSID_NETIF;
2583
2584out:
2585	rcu_read_unlock();
2586	return rc;
2587}
2588
2589static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2590{
2591	int i, fail = 0;
2592
2593	for (i = 0; i < 4; i++)
2594		if (addr[i] != (input[i] & mask[i])) {
2595			fail = 1;
2596			break;
2597		}
2598
2599	return !fail;
2600}
2601
2602/**
2603 * security_node_sid - Obtain the SID for a node (host).
2604 * @domain: communication domain aka address family
2605 * @addrp: address
2606 * @addrlen: address length in bytes
2607 * @out_sid: security identifier
2608 */
2609int security_node_sid(u16 domain,
2610		      void *addrp,
2611		      u32 addrlen,
2612		      u32 *out_sid)
2613{
2614	struct selinux_policy *policy;
2615	struct policydb *policydb;
2616	struct sidtab *sidtab;
2617	int rc;
2618	struct ocontext *c;
2619
2620	if (!selinux_initialized()) {
2621		*out_sid = SECINITSID_NODE;
2622		return 0;
2623	}
2624
2625retry:
2626	rcu_read_lock();
2627	policy = rcu_dereference(selinux_state.policy);
2628	policydb = &policy->policydb;
2629	sidtab = policy->sidtab;
2630
2631	switch (domain) {
2632	case AF_INET: {
2633		u32 addr;
2634
2635		rc = -EINVAL;
2636		if (addrlen != sizeof(u32))
2637			goto out;
2638
2639		addr = *((u32 *)addrp);
2640
2641		c = policydb->ocontexts[OCON_NODE];
2642		while (c) {
2643			if (c->u.node.addr == (addr & c->u.node.mask))
2644				break;
2645			c = c->next;
2646		}
2647		break;
2648	}
2649
2650	case AF_INET6:
2651		rc = -EINVAL;
2652		if (addrlen != sizeof(u64) * 2)
2653			goto out;
2654		c = policydb->ocontexts[OCON_NODE6];
2655		while (c) {
2656			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2657						c->u.node6.mask))
2658				break;
2659			c = c->next;
2660		}
2661		break;
2662
2663	default:
2664		rc = 0;
2665		*out_sid = SECINITSID_NODE;
2666		goto out;
2667	}
2668
2669	if (c) {
2670		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2671		if (rc == -ESTALE) {
2672			rcu_read_unlock();
2673			goto retry;
2674		}
2675		if (rc)
2676			goto out;
2677	} else {
2678		*out_sid = SECINITSID_NODE;
2679	}
2680
2681	rc = 0;
2682out:
2683	rcu_read_unlock();
2684	return rc;
2685}
2686
2687#define SIDS_NEL 25
2688
2689/**
2690 * security_get_user_sids - Obtain reachable SIDs for a user.
2691 * @fromsid: starting SID
2692 * @username: username
2693 * @sids: array of reachable SIDs for user
2694 * @nel: number of elements in @sids
2695 *
2696 * Generate the set of SIDs for legal security contexts
2697 * for a given user that can be reached by @fromsid.
2698 * Set *@sids to point to a dynamically allocated
2699 * array containing the set of SIDs.  Set *@nel to the
2700 * number of elements in the array.
2701 */
2702
2703int security_get_user_sids(u32 fromsid,
2704			   char *username,
2705			   u32 **sids,
2706			   u32 *nel)
2707{
2708	struct selinux_policy *policy;
2709	struct policydb *policydb;
2710	struct sidtab *sidtab;
2711	struct context *fromcon, usercon;
2712	u32 *mysids = NULL, *mysids2, sid;
2713	u32 i, j, mynel, maxnel = SIDS_NEL;
2714	struct user_datum *user;
2715	struct role_datum *role;
2716	struct ebitmap_node *rnode, *tnode;
2717	int rc;
2718
2719	*sids = NULL;
2720	*nel = 0;
2721
2722	if (!selinux_initialized())
2723		return 0;
2724
2725	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2726	if (!mysids)
2727		return -ENOMEM;
2728
2729retry:
2730	mynel = 0;
2731	rcu_read_lock();
2732	policy = rcu_dereference(selinux_state.policy);
2733	policydb = &policy->policydb;
2734	sidtab = policy->sidtab;
2735
2736	context_init(&usercon);
2737
2738	rc = -EINVAL;
2739	fromcon = sidtab_search(sidtab, fromsid);
2740	if (!fromcon)
2741		goto out_unlock;
2742
2743	rc = -EINVAL;
2744	user = symtab_search(&policydb->p_users, username);
2745	if (!user)
2746		goto out_unlock;
2747
2748	usercon.user = user->value;
2749
2750	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2751		role = policydb->role_val_to_struct[i];
2752		usercon.role = i + 1;
2753		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2754			usercon.type = j + 1;
2755
2756			if (mls_setup_user_range(policydb, fromcon, user,
2757						 &usercon))
2758				continue;
2759
2760			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2761			if (rc == -ESTALE) {
2762				rcu_read_unlock();
2763				goto retry;
2764			}
2765			if (rc)
2766				goto out_unlock;
2767			if (mynel < maxnel) {
2768				mysids[mynel++] = sid;
2769			} else {
2770				rc = -ENOMEM;
2771				maxnel += SIDS_NEL;
2772				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2773				if (!mysids2)
2774					goto out_unlock;
2775				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2776				kfree(mysids);
2777				mysids = mysids2;
2778				mysids[mynel++] = sid;
2779			}
2780		}
2781	}
2782	rc = 0;
2783out_unlock:
2784	rcu_read_unlock();
2785	if (rc || !mynel) {
2786		kfree(mysids);
2787		return rc;
2788	}
2789
2790	rc = -ENOMEM;
2791	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2792	if (!mysids2) {
2793		kfree(mysids);
2794		return rc;
2795	}
2796	for (i = 0, j = 0; i < mynel; i++) {
2797		struct av_decision dummy_avd;
2798		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2799					  SECCLASS_PROCESS, /* kernel value */
2800					  PROCESS__TRANSITION, AVC_STRICT,
2801					  &dummy_avd);
2802		if (!rc)
2803			mysids2[j++] = mysids[i];
2804		cond_resched();
2805	}
2806	kfree(mysids);
2807	*sids = mysids2;
2808	*nel = j;
2809	return 0;
2810}
2811
2812/**
2813 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2814 * @policy: policy
2815 * @fstype: filesystem type
2816 * @path: path from root of mount
2817 * @orig_sclass: file security class
2818 * @sid: SID for path
2819 *
2820 * Obtain a SID to use for a file in a filesystem that
2821 * cannot support xattr or use a fixed labeling behavior like
2822 * transition SIDs or task SIDs.
2823 *
2824 * WARNING: This function may return -ESTALE, indicating that the caller
2825 * must retry the operation after re-acquiring the policy pointer!
2826 */
2827static inline int __security_genfs_sid(struct selinux_policy *policy,
2828				       const char *fstype,
2829				       const char *path,
2830				       u16 orig_sclass,
2831				       u32 *sid)
2832{
2833	struct policydb *policydb = &policy->policydb;
2834	struct sidtab *sidtab = policy->sidtab;
2835	u16 sclass;
2836	struct genfs *genfs;
2837	struct ocontext *c;
2838	int cmp = 0;
2839
2840	while (path[0] == '/' && path[1] == '/')
2841		path++;
2842
2843	sclass = unmap_class(&policy->map, orig_sclass);
2844	*sid = SECINITSID_UNLABELED;
2845
2846	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2847		cmp = strcmp(fstype, genfs->fstype);
2848		if (cmp <= 0)
2849			break;
2850	}
2851
2852	if (!genfs || cmp)
2853		return -ENOENT;
2854
2855	for (c = genfs->head; c; c = c->next) {
2856		size_t len = strlen(c->u.name);
2857		if ((!c->v.sclass || sclass == c->v.sclass) &&
2858		    (strncmp(c->u.name, path, len) == 0))
2859			break;
2860	}
2861
2862	if (!c)
2863		return -ENOENT;
2864
2865	return ocontext_to_sid(sidtab, c, 0, sid);
2866}
2867
2868/**
2869 * security_genfs_sid - Obtain a SID for a file in a filesystem
2870 * @fstype: filesystem type
2871 * @path: path from root of mount
2872 * @orig_sclass: file security class
2873 * @sid: SID for path
2874 *
2875 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2876 * it afterward.
2877 */
2878int security_genfs_sid(const char *fstype,
2879		       const char *path,
2880		       u16 orig_sclass,
2881		       u32 *sid)
2882{
2883	struct selinux_policy *policy;
2884	int retval;
2885
2886	if (!selinux_initialized()) {
2887		*sid = SECINITSID_UNLABELED;
2888		return 0;
2889	}
2890
2891	do {
2892		rcu_read_lock();
2893		policy = rcu_dereference(selinux_state.policy);
2894		retval = __security_genfs_sid(policy, fstype, path,
2895					      orig_sclass, sid);
2896		rcu_read_unlock();
2897	} while (retval == -ESTALE);
2898	return retval;
2899}
2900
2901int selinux_policy_genfs_sid(struct selinux_policy *policy,
2902			const char *fstype,
2903			const char *path,
2904			u16 orig_sclass,
2905			u32 *sid)
2906{
2907	/* no lock required, policy is not yet accessible by other threads */
2908	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2909}
2910
2911/**
2912 * security_fs_use - Determine how to handle labeling for a filesystem.
2913 * @sb: superblock in question
2914 */
2915int security_fs_use(struct super_block *sb)
2916{
2917	struct selinux_policy *policy;
2918	struct policydb *policydb;
2919	struct sidtab *sidtab;
2920	int rc;
2921	struct ocontext *c;
2922	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2923	const char *fstype = sb->s_type->name;
2924
2925	if (!selinux_initialized()) {
2926		sbsec->behavior = SECURITY_FS_USE_NONE;
2927		sbsec->sid = SECINITSID_UNLABELED;
2928		return 0;
2929	}
2930
2931retry:
2932	rcu_read_lock();
2933	policy = rcu_dereference(selinux_state.policy);
2934	policydb = &policy->policydb;
2935	sidtab = policy->sidtab;
2936
2937	c = policydb->ocontexts[OCON_FSUSE];
2938	while (c) {
2939		if (strcmp(fstype, c->u.name) == 0)
2940			break;
2941		c = c->next;
2942	}
2943
2944	if (c) {
2945		sbsec->behavior = c->v.behavior;
2946		rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2947		if (rc == -ESTALE) {
2948			rcu_read_unlock();
2949			goto retry;
2950		}
2951		if (rc)
2952			goto out;
2953	} else {
2954		rc = __security_genfs_sid(policy, fstype, "/",
2955					SECCLASS_DIR, &sbsec->sid);
2956		if (rc == -ESTALE) {
2957			rcu_read_unlock();
2958			goto retry;
2959		}
2960		if (rc) {
2961			sbsec->behavior = SECURITY_FS_USE_NONE;
2962			rc = 0;
2963		} else {
2964			sbsec->behavior = SECURITY_FS_USE_GENFS;
2965		}
2966	}
2967
2968out:
2969	rcu_read_unlock();
2970	return rc;
2971}
2972
2973int security_get_bools(struct selinux_policy *policy,
2974		       u32 *len, char ***names, int **values)
2975{
2976	struct policydb *policydb;
2977	u32 i;
2978	int rc;
2979
2980	policydb = &policy->policydb;
2981
2982	*names = NULL;
2983	*values = NULL;
2984
2985	rc = 0;
2986	*len = policydb->p_bools.nprim;
2987	if (!*len)
2988		goto out;
2989
2990	rc = -ENOMEM;
2991	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2992	if (!*names)
2993		goto err;
2994
2995	rc = -ENOMEM;
2996	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2997	if (!*values)
2998		goto err;
2999
3000	for (i = 0; i < *len; i++) {
3001		(*values)[i] = policydb->bool_val_to_struct[i]->state;
3002
3003		rc = -ENOMEM;
3004		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3005				      GFP_ATOMIC);
3006		if (!(*names)[i])
3007			goto err;
3008	}
3009	rc = 0;
3010out:
3011	return rc;
3012err:
3013	if (*names) {
3014		for (i = 0; i < *len; i++)
3015			kfree((*names)[i]);
3016		kfree(*names);
3017	}
3018	kfree(*values);
3019	*len = 0;
3020	*names = NULL;
3021	*values = NULL;
3022	goto out;
3023}
3024
3025
3026int security_set_bools(u32 len, int *values)
3027{
3028	struct selinux_state *state = &selinux_state;
3029	struct selinux_policy *newpolicy, *oldpolicy;
3030	int rc;
3031	u32 i, seqno = 0;
3032
3033	if (!selinux_initialized())
3034		return -EINVAL;
3035
3036	oldpolicy = rcu_dereference_protected(state->policy,
3037					lockdep_is_held(&state->policy_mutex));
3038
3039	/* Consistency check on number of booleans, should never fail */
3040	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3041		return -EINVAL;
3042
3043	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3044	if (!newpolicy)
3045		return -ENOMEM;
3046
3047	/*
3048	 * Deep copy only the parts of the policydb that might be
3049	 * modified as a result of changing booleans.
3050	 */
3051	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3052	if (rc) {
3053		kfree(newpolicy);
3054		return -ENOMEM;
3055	}
3056
3057	/* Update the boolean states in the copy */
3058	for (i = 0; i < len; i++) {
3059		int new_state = !!values[i];
3060		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3061
3062		if (new_state != old_state) {
3063			audit_log(audit_context(), GFP_ATOMIC,
3064				AUDIT_MAC_CONFIG_CHANGE,
3065				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3066				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3067				new_state,
3068				old_state,
3069				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3070				audit_get_sessionid(current));
3071			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3072		}
3073	}
3074
3075	/* Re-evaluate the conditional rules in the copy */
3076	evaluate_cond_nodes(&newpolicy->policydb);
3077
3078	/* Set latest granting seqno for new policy */
3079	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3080	seqno = newpolicy->latest_granting;
3081
3082	/* Install the new policy */
3083	rcu_assign_pointer(state->policy, newpolicy);
3084
3085	/*
3086	 * Free the conditional portions of the old policydb
3087	 * that were copied for the new policy, and the oldpolicy
3088	 * structure itself but not what it references.
3089	 */
3090	synchronize_rcu();
3091	selinux_policy_cond_free(oldpolicy);
3092
3093	/* Notify others of the policy change */
3094	selinux_notify_policy_change(seqno);
3095	return 0;
3096}
3097
3098int security_get_bool_value(u32 index)
3099{
3100	struct selinux_policy *policy;
3101	struct policydb *policydb;
3102	int rc;
3103	u32 len;
3104
3105	if (!selinux_initialized())
3106		return 0;
3107
3108	rcu_read_lock();
3109	policy = rcu_dereference(selinux_state.policy);
3110	policydb = &policy->policydb;
3111
3112	rc = -EFAULT;
3113	len = policydb->p_bools.nprim;
3114	if (index >= len)
3115		goto out;
3116
3117	rc = policydb->bool_val_to_struct[index]->state;
3118out:
3119	rcu_read_unlock();
3120	return rc;
3121}
3122
3123static int security_preserve_bools(struct selinux_policy *oldpolicy,
3124				struct selinux_policy *newpolicy)
3125{
3126	int rc, *bvalues = NULL;
3127	char **bnames = NULL;
3128	struct cond_bool_datum *booldatum;
3129	u32 i, nbools = 0;
3130
3131	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3132	if (rc)
3133		goto out;
3134	for (i = 0; i < nbools; i++) {
3135		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3136					bnames[i]);
3137		if (booldatum)
3138			booldatum->state = bvalues[i];
3139	}
3140	evaluate_cond_nodes(&newpolicy->policydb);
3141
3142out:
3143	if (bnames) {
3144		for (i = 0; i < nbools; i++)
3145			kfree(bnames[i]);
3146	}
3147	kfree(bnames);
3148	kfree(bvalues);
3149	return rc;
3150}
3151
3152/*
3153 * security_sid_mls_copy() - computes a new sid based on the given
3154 * sid and the mls portion of mls_sid.
3155 */
3156int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
3157{
3158	struct selinux_policy *policy;
3159	struct policydb *policydb;
3160	struct sidtab *sidtab;
3161	struct context *context1;
3162	struct context *context2;
3163	struct context newcon;
3164	char *s;
3165	u32 len;
3166	int rc;
3167
3168	if (!selinux_initialized()) {
3169		*new_sid = sid;
3170		return 0;
3171	}
3172
3173retry:
3174	rc = 0;
3175	context_init(&newcon);
3176
3177	rcu_read_lock();
3178	policy = rcu_dereference(selinux_state.policy);
3179	policydb = &policy->policydb;
3180	sidtab = policy->sidtab;
3181
3182	if (!policydb->mls_enabled) {
3183		*new_sid = sid;
3184		goto out_unlock;
3185	}
3186
3187	rc = -EINVAL;
3188	context1 = sidtab_search(sidtab, sid);
3189	if (!context1) {
3190		pr_err("SELinux: %s:  unrecognized SID %d\n",
3191			__func__, sid);
3192		goto out_unlock;
3193	}
3194
3195	rc = -EINVAL;
3196	context2 = sidtab_search(sidtab, mls_sid);
3197	if (!context2) {
3198		pr_err("SELinux: %s:  unrecognized SID %d\n",
3199			__func__, mls_sid);
3200		goto out_unlock;
3201	}
3202
3203	newcon.user = context1->user;
3204	newcon.role = context1->role;
3205	newcon.type = context1->type;
3206	rc = mls_context_cpy(&newcon, context2);
3207	if (rc)
3208		goto out_unlock;
3209
3210	/* Check the validity of the new context. */
3211	if (!policydb_context_isvalid(policydb, &newcon)) {
3212		rc = convert_context_handle_invalid_context(policydb,
3213							&newcon);
3214		if (rc) {
3215			if (!context_struct_to_string(policydb, &newcon, &s,
3216						      &len)) {
3217				struct audit_buffer *ab;
3218
3219				ab = audit_log_start(audit_context(),
3220						     GFP_ATOMIC,
3221						     AUDIT_SELINUX_ERR);
3222				audit_log_format(ab,
3223						 "op=security_sid_mls_copy invalid_context=");
3224				/* don't record NUL with untrusted strings */
3225				audit_log_n_untrustedstring(ab, s, len - 1);
3226				audit_log_end(ab);
3227				kfree(s);
3228			}
3229			goto out_unlock;
3230		}
3231	}
3232	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3233	if (rc == -ESTALE) {
3234		rcu_read_unlock();
3235		context_destroy(&newcon);
3236		goto retry;
3237	}
3238out_unlock:
3239	rcu_read_unlock();
3240	context_destroy(&newcon);
3241	return rc;
3242}
3243
3244/**
3245 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3246 * @nlbl_sid: NetLabel SID
3247 * @nlbl_type: NetLabel labeling protocol type
3248 * @xfrm_sid: XFRM SID
3249 * @peer_sid: network peer sid
3250 *
3251 * Description:
3252 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3253 * resolved into a single SID it is returned via @peer_sid and the function
3254 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3255 * returns a negative value.  A table summarizing the behavior is below:
3256 *
3257 *                                 | function return |      @sid
3258 *   ------------------------------+-----------------+-----------------
3259 *   no peer labels                |        0        |    SECSID_NULL
3260 *   single peer label             |        0        |    <peer_label>
3261 *   multiple, consistent labels   |        0        |    <peer_label>
3262 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3263 *
3264 */
3265int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
3266				 u32 xfrm_sid,
3267				 u32 *peer_sid)
3268{
3269	struct selinux_policy *policy;
3270	struct policydb *policydb;
3271	struct sidtab *sidtab;
3272	int rc;
3273	struct context *nlbl_ctx;
3274	struct context *xfrm_ctx;
3275
3276	*peer_sid = SECSID_NULL;
3277
3278	/* handle the common (which also happens to be the set of easy) cases
3279	 * right away, these two if statements catch everything involving a
3280	 * single or absent peer SID/label */
3281	if (xfrm_sid == SECSID_NULL) {
3282		*peer_sid = nlbl_sid;
3283		return 0;
3284	}
3285	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3286	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3287	 * is present */
3288	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3289		*peer_sid = xfrm_sid;
3290		return 0;
3291	}
3292
3293	if (!selinux_initialized())
3294		return 0;
3295
3296	rcu_read_lock();
3297	policy = rcu_dereference(selinux_state.policy);
3298	policydb = &policy->policydb;
3299	sidtab = policy->sidtab;
3300
3301	/*
3302	 * We don't need to check initialized here since the only way both
3303	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3304	 * security server was initialized and state->initialized was true.
3305	 */
3306	if (!policydb->mls_enabled) {
3307		rc = 0;
3308		goto out;
3309	}
3310
3311	rc = -EINVAL;
3312	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3313	if (!nlbl_ctx) {
3314		pr_err("SELinux: %s:  unrecognized SID %d\n",
3315		       __func__, nlbl_sid);
3316		goto out;
3317	}
3318	rc = -EINVAL;
3319	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3320	if (!xfrm_ctx) {
3321		pr_err("SELinux: %s:  unrecognized SID %d\n",
3322		       __func__, xfrm_sid);
3323		goto out;
3324	}
3325	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3326	if (rc)
3327		goto out;
3328
3329	/* at present NetLabel SIDs/labels really only carry MLS
3330	 * information so if the MLS portion of the NetLabel SID
3331	 * matches the MLS portion of the labeled XFRM SID/label
3332	 * then pass along the XFRM SID as it is the most
3333	 * expressive */
3334	*peer_sid = xfrm_sid;
3335out:
3336	rcu_read_unlock();
3337	return rc;
3338}
3339
3340static int get_classes_callback(void *k, void *d, void *args)
3341{
3342	struct class_datum *datum = d;
3343	char *name = k, **classes = args;
3344	u32 value = datum->value - 1;
3345
3346	classes[value] = kstrdup(name, GFP_ATOMIC);
3347	if (!classes[value])
3348		return -ENOMEM;
3349
3350	return 0;
3351}
3352
3353int security_get_classes(struct selinux_policy *policy,
3354			 char ***classes, u32 *nclasses)
3355{
3356	struct policydb *policydb;
3357	int rc;
3358
3359	policydb = &policy->policydb;
3360
3361	rc = -ENOMEM;
3362	*nclasses = policydb->p_classes.nprim;
3363	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3364	if (!*classes)
3365		goto out;
3366
3367	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3368			 *classes);
3369	if (rc) {
3370		u32 i;
3371
3372		for (i = 0; i < *nclasses; i++)
3373			kfree((*classes)[i]);
3374		kfree(*classes);
3375	}
3376
3377out:
3378	return rc;
3379}
3380
3381static int get_permissions_callback(void *k, void *d, void *args)
3382{
3383	struct perm_datum *datum = d;
3384	char *name = k, **perms = args;
3385	u32 value = datum->value - 1;
3386
3387	perms[value] = kstrdup(name, GFP_ATOMIC);
3388	if (!perms[value])
3389		return -ENOMEM;
3390
3391	return 0;
3392}
3393
3394int security_get_permissions(struct selinux_policy *policy,
3395			     const char *class, char ***perms, u32 *nperms)
3396{
3397	struct policydb *policydb;
3398	u32 i;
3399	int rc;
3400	struct class_datum *match;
3401
3402	policydb = &policy->policydb;
3403
3404	rc = -EINVAL;
3405	match = symtab_search(&policydb->p_classes, class);
3406	if (!match) {
3407		pr_err("SELinux: %s:  unrecognized class %s\n",
3408			__func__, class);
3409		goto out;
3410	}
3411
3412	rc = -ENOMEM;
3413	*nperms = match->permissions.nprim;
3414	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3415	if (!*perms)
3416		goto out;
3417
3418	if (match->comdatum) {
3419		rc = hashtab_map(&match->comdatum->permissions.table,
3420				 get_permissions_callback, *perms);
3421		if (rc)
3422			goto err;
3423	}
3424
3425	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3426			 *perms);
3427	if (rc)
3428		goto err;
3429
3430out:
3431	return rc;
3432
3433err:
3434	for (i = 0; i < *nperms; i++)
3435		kfree((*perms)[i]);
3436	kfree(*perms);
3437	return rc;
3438}
3439
3440int security_get_reject_unknown(void)
3441{
3442	struct selinux_policy *policy;
3443	int value;
3444
3445	if (!selinux_initialized())
3446		return 0;
3447
3448	rcu_read_lock();
3449	policy = rcu_dereference(selinux_state.policy);
3450	value = policy->policydb.reject_unknown;
3451	rcu_read_unlock();
3452	return value;
3453}
3454
3455int security_get_allow_unknown(void)
3456{
3457	struct selinux_policy *policy;
3458	int value;
3459
3460	if (!selinux_initialized())
3461		return 0;
3462
3463	rcu_read_lock();
3464	policy = rcu_dereference(selinux_state.policy);
3465	value = policy->policydb.allow_unknown;
3466	rcu_read_unlock();
3467	return value;
3468}
3469
3470/**
3471 * security_policycap_supported - Check for a specific policy capability
3472 * @req_cap: capability
3473 *
3474 * Description:
3475 * This function queries the currently loaded policy to see if it supports the
3476 * capability specified by @req_cap.  Returns true (1) if the capability is
3477 * supported, false (0) if it isn't supported.
3478 *
3479 */
3480int security_policycap_supported(unsigned int req_cap)
3481{
3482	struct selinux_policy *policy;
3483	int rc;
3484
3485	if (!selinux_initialized())
3486		return 0;
3487
3488	rcu_read_lock();
3489	policy = rcu_dereference(selinux_state.policy);
3490	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3491	rcu_read_unlock();
3492
3493	return rc;
3494}
3495
3496struct selinux_audit_rule {
3497	u32 au_seqno;
3498	struct context au_ctxt;
3499};
3500
3501void selinux_audit_rule_free(void *vrule)
3502{
3503	struct selinux_audit_rule *rule = vrule;
3504
3505	if (rule) {
3506		context_destroy(&rule->au_ctxt);
3507		kfree(rule);
3508	}
3509}
3510
3511int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3512{
3513	struct selinux_state *state = &selinux_state;
3514	struct selinux_policy *policy;
3515	struct policydb *policydb;
3516	struct selinux_audit_rule *tmprule;
3517	struct role_datum *roledatum;
3518	struct type_datum *typedatum;
3519	struct user_datum *userdatum;
3520	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3521	int rc = 0;
3522
3523	*rule = NULL;
3524
3525	if (!selinux_initialized())
3526		return -EOPNOTSUPP;
3527
3528	switch (field) {
3529	case AUDIT_SUBJ_USER:
3530	case AUDIT_SUBJ_ROLE:
3531	case AUDIT_SUBJ_TYPE:
3532	case AUDIT_OBJ_USER:
3533	case AUDIT_OBJ_ROLE:
3534	case AUDIT_OBJ_TYPE:
3535		/* only 'equals' and 'not equals' fit user, role, and type */
3536		if (op != Audit_equal && op != Audit_not_equal)
3537			return -EINVAL;
3538		break;
3539	case AUDIT_SUBJ_SEN:
3540	case AUDIT_SUBJ_CLR:
3541	case AUDIT_OBJ_LEV_LOW:
3542	case AUDIT_OBJ_LEV_HIGH:
3543		/* we do not allow a range, indicated by the presence of '-' */
3544		if (strchr(rulestr, '-'))
3545			return -EINVAL;
3546		break;
3547	default:
3548		/* only the above fields are valid */
3549		return -EINVAL;
3550	}
3551
3552	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3553	if (!tmprule)
3554		return -ENOMEM;
3555	context_init(&tmprule->au_ctxt);
3556
3557	rcu_read_lock();
3558	policy = rcu_dereference(state->policy);
3559	policydb = &policy->policydb;
3560	tmprule->au_seqno = policy->latest_granting;
3561	switch (field) {
3562	case AUDIT_SUBJ_USER:
3563	case AUDIT_OBJ_USER:
3564		userdatum = symtab_search(&policydb->p_users, rulestr);
3565		if (!userdatum) {
3566			rc = -EINVAL;
3567			goto err;
3568		}
3569		tmprule->au_ctxt.user = userdatum->value;
3570		break;
3571	case AUDIT_SUBJ_ROLE:
3572	case AUDIT_OBJ_ROLE:
3573		roledatum = symtab_search(&policydb->p_roles, rulestr);
3574		if (!roledatum) {
3575			rc = -EINVAL;
3576			goto err;
3577		}
3578		tmprule->au_ctxt.role = roledatum->value;
3579		break;
3580	case AUDIT_SUBJ_TYPE:
3581	case AUDIT_OBJ_TYPE:
3582		typedatum = symtab_search(&policydb->p_types, rulestr);
3583		if (!typedatum) {
3584			rc = -EINVAL;
3585			goto err;
3586		}
3587		tmprule->au_ctxt.type = typedatum->value;
3588		break;
3589	case AUDIT_SUBJ_SEN:
3590	case AUDIT_SUBJ_CLR:
3591	case AUDIT_OBJ_LEV_LOW:
3592	case AUDIT_OBJ_LEV_HIGH:
3593		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3594				     GFP_ATOMIC);
3595		if (rc)
3596			goto err;
3597		break;
3598	}
3599	rcu_read_unlock();
3600
3601	*rule = tmprule;
3602	return 0;
3603
3604err:
3605	rcu_read_unlock();
3606	selinux_audit_rule_free(tmprule);
3607	*rule = NULL;
3608	return rc;
3609}
3610
3611/* Check to see if the rule contains any selinux fields */
3612int selinux_audit_rule_known(struct audit_krule *rule)
3613{
3614	u32 i;
3615
3616	for (i = 0; i < rule->field_count; i++) {
3617		struct audit_field *f = &rule->fields[i];
3618		switch (f->type) {
3619		case AUDIT_SUBJ_USER:
3620		case AUDIT_SUBJ_ROLE:
3621		case AUDIT_SUBJ_TYPE:
3622		case AUDIT_SUBJ_SEN:
3623		case AUDIT_SUBJ_CLR:
3624		case AUDIT_OBJ_USER:
3625		case AUDIT_OBJ_ROLE:
3626		case AUDIT_OBJ_TYPE:
3627		case AUDIT_OBJ_LEV_LOW:
3628		case AUDIT_OBJ_LEV_HIGH:
3629			return 1;
3630		}
3631	}
3632
3633	return 0;
3634}
3635
3636int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3637{
3638	struct selinux_state *state = &selinux_state;
3639	struct selinux_policy *policy;
3640	struct context *ctxt;
3641	struct mls_level *level;
3642	struct selinux_audit_rule *rule = vrule;
3643	int match = 0;
3644
3645	if (unlikely(!rule)) {
3646		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3647		return -ENOENT;
3648	}
3649
3650	if (!selinux_initialized())
3651		return 0;
3652
3653	rcu_read_lock();
3654
3655	policy = rcu_dereference(state->policy);
3656
3657	if (rule->au_seqno < policy->latest_granting) {
3658		match = -ESTALE;
3659		goto out;
3660	}
3661
3662	ctxt = sidtab_search(policy->sidtab, sid);
3663	if (unlikely(!ctxt)) {
3664		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3665			  sid);
3666		match = -ENOENT;
3667		goto out;
3668	}
3669
3670	/* a field/op pair that is not caught here will simply fall through
3671	   without a match */
3672	switch (field) {
3673	case AUDIT_SUBJ_USER:
3674	case AUDIT_OBJ_USER:
3675		switch (op) {
3676		case Audit_equal:
3677			match = (ctxt->user == rule->au_ctxt.user);
3678			break;
3679		case Audit_not_equal:
3680			match = (ctxt->user != rule->au_ctxt.user);
3681			break;
3682		}
3683		break;
3684	case AUDIT_SUBJ_ROLE:
3685	case AUDIT_OBJ_ROLE:
3686		switch (op) {
3687		case Audit_equal:
3688			match = (ctxt->role == rule->au_ctxt.role);
3689			break;
3690		case Audit_not_equal:
3691			match = (ctxt->role != rule->au_ctxt.role);
3692			break;
3693		}
3694		break;
3695	case AUDIT_SUBJ_TYPE:
3696	case AUDIT_OBJ_TYPE:
3697		switch (op) {
3698		case Audit_equal:
3699			match = (ctxt->type == rule->au_ctxt.type);
3700			break;
3701		case Audit_not_equal:
3702			match = (ctxt->type != rule->au_ctxt.type);
3703			break;
3704		}
3705		break;
3706	case AUDIT_SUBJ_SEN:
3707	case AUDIT_SUBJ_CLR:
3708	case AUDIT_OBJ_LEV_LOW:
3709	case AUDIT_OBJ_LEV_HIGH:
3710		level = ((field == AUDIT_SUBJ_SEN ||
3711			  field == AUDIT_OBJ_LEV_LOW) ?
3712			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3713		switch (op) {
3714		case Audit_equal:
3715			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3716					     level);
3717			break;
3718		case Audit_not_equal:
3719			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3720					      level);
3721			break;
3722		case Audit_lt:
3723			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3724					       level) &&
3725				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3726					       level));
3727			break;
3728		case Audit_le:
3729			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3730					      level);
3731			break;
3732		case Audit_gt:
3733			match = (mls_level_dom(level,
3734					      &rule->au_ctxt.range.level[0]) &&
3735				 !mls_level_eq(level,
3736					       &rule->au_ctxt.range.level[0]));
3737			break;
3738		case Audit_ge:
3739			match = mls_level_dom(level,
3740					      &rule->au_ctxt.range.level[0]);
3741			break;
3742		}
3743	}
3744
3745out:
3746	rcu_read_unlock();
3747	return match;
3748}
3749
3750static int aurule_avc_callback(u32 event)
3751{
3752	if (event == AVC_CALLBACK_RESET)
3753		return audit_update_lsm_rules();
3754	return 0;
3755}
3756
3757static int __init aurule_init(void)
3758{
3759	int err;
3760
3761	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3762	if (err)
3763		panic("avc_add_callback() failed, error %d\n", err);
3764
3765	return err;
3766}
3767__initcall(aurule_init);
3768
3769#ifdef CONFIG_NETLABEL
3770/**
3771 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3772 * @secattr: the NetLabel packet security attributes
3773 * @sid: the SELinux SID
3774 *
3775 * Description:
3776 * Attempt to cache the context in @ctx, which was derived from the packet in
3777 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3778 * already been initialized.
3779 *
3780 */
3781static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3782				      u32 sid)
3783{
3784	u32 *sid_cache;
3785
3786	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3787	if (sid_cache == NULL)
3788		return;
3789	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3790	if (secattr->cache == NULL) {
3791		kfree(sid_cache);
3792		return;
3793	}
3794
3795	*sid_cache = sid;
3796	secattr->cache->free = kfree;
3797	secattr->cache->data = sid_cache;
3798	secattr->flags |= NETLBL_SECATTR_CACHE;
3799}
3800
3801/**
3802 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3803 * @secattr: the NetLabel packet security attributes
3804 * @sid: the SELinux SID
3805 *
3806 * Description:
3807 * Convert the given NetLabel security attributes in @secattr into a
3808 * SELinux SID.  If the @secattr field does not contain a full SELinux
3809 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3810 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3811 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3812 * conversion for future lookups.  Returns zero on success, negative values on
3813 * failure.
3814 *
3815 */
3816int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3817				   u32 *sid)
3818{
3819	struct selinux_policy *policy;
3820	struct policydb *policydb;
3821	struct sidtab *sidtab;
3822	int rc;
3823	struct context *ctx;
3824	struct context ctx_new;
3825
3826	if (!selinux_initialized()) {
3827		*sid = SECSID_NULL;
3828		return 0;
3829	}
3830
3831retry:
3832	rc = 0;
3833	rcu_read_lock();
3834	policy = rcu_dereference(selinux_state.policy);
3835	policydb = &policy->policydb;
3836	sidtab = policy->sidtab;
3837
3838	if (secattr->flags & NETLBL_SECATTR_CACHE)
3839		*sid = *(u32 *)secattr->cache->data;
3840	else if (secattr->flags & NETLBL_SECATTR_SECID)
3841		*sid = secattr->attr.secid;
3842	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3843		rc = -EIDRM;
3844		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3845		if (ctx == NULL)
3846			goto out;
3847
3848		context_init(&ctx_new);
3849		ctx_new.user = ctx->user;
3850		ctx_new.role = ctx->role;
3851		ctx_new.type = ctx->type;
3852		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3853		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3854			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3855			if (rc)
3856				goto out;
3857		}
3858		rc = -EIDRM;
3859		if (!mls_context_isvalid(policydb, &ctx_new)) {
3860			ebitmap_destroy(&ctx_new.range.level[0].cat);
3861			goto out;
3862		}
3863
3864		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3865		ebitmap_destroy(&ctx_new.range.level[0].cat);
3866		if (rc == -ESTALE) {
3867			rcu_read_unlock();
3868			goto retry;
3869		}
3870		if (rc)
3871			goto out;
3872
3873		security_netlbl_cache_add(secattr, *sid);
3874	} else
3875		*sid = SECSID_NULL;
3876
3877out:
3878	rcu_read_unlock();
3879	return rc;
3880}
3881
3882/**
3883 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3884 * @sid: the SELinux SID
3885 * @secattr: the NetLabel packet security attributes
3886 *
3887 * Description:
3888 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3889 * Returns zero on success, negative values on failure.
3890 *
3891 */
3892int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3893{
3894	struct selinux_policy *policy;
3895	struct policydb *policydb;
3896	int rc;
3897	struct context *ctx;
3898
3899	if (!selinux_initialized())
3900		return 0;
3901
3902	rcu_read_lock();
3903	policy = rcu_dereference(selinux_state.policy);
3904	policydb = &policy->policydb;
3905
3906	rc = -ENOENT;
3907	ctx = sidtab_search(policy->sidtab, sid);
3908	if (ctx == NULL)
3909		goto out;
3910
3911	rc = -ENOMEM;
3912	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3913				  GFP_ATOMIC);
3914	if (secattr->domain == NULL)
3915		goto out;
3916
3917	secattr->attr.secid = sid;
3918	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3919	mls_export_netlbl_lvl(policydb, ctx, secattr);
3920	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3921out:
3922	rcu_read_unlock();
3923	return rc;
3924}
3925#endif /* CONFIG_NETLABEL */
3926
3927/**
3928 * __security_read_policy - read the policy.
3929 * @policy: SELinux policy
3930 * @data: binary policy data
3931 * @len: length of data in bytes
3932 *
3933 */
3934static int __security_read_policy(struct selinux_policy *policy,
3935				  void *data, size_t *len)
3936{
3937	int rc;
3938	struct policy_file fp;
3939
3940	fp.data = data;
3941	fp.len = *len;
3942
3943	rc = policydb_write(&policy->policydb, &fp);
3944	if (rc)
3945		return rc;
3946
3947	*len = (unsigned long)fp.data - (unsigned long)data;
3948	return 0;
3949}
3950
3951/**
3952 * security_read_policy - read the policy.
3953 * @data: binary policy data
3954 * @len: length of data in bytes
3955 *
3956 */
3957int security_read_policy(void **data, size_t *len)
3958{
3959	struct selinux_state *state = &selinux_state;
3960	struct selinux_policy *policy;
3961
3962	policy = rcu_dereference_protected(
3963			state->policy, lockdep_is_held(&state->policy_mutex));
3964	if (!policy)
3965		return -EINVAL;
3966
3967	*len = policy->policydb.len;
3968	*data = vmalloc_user(*len);
3969	if (!*data)
3970		return -ENOMEM;
3971
3972	return __security_read_policy(policy, *data, len);
3973}
3974
3975/**
3976 * security_read_state_kernel - read the policy.
3977 * @data: binary policy data
3978 * @len: length of data in bytes
3979 *
3980 * Allocates kernel memory for reading SELinux policy.
3981 * This function is for internal use only and should not
3982 * be used for returning data to user space.
3983 *
3984 * This function must be called with policy_mutex held.
3985 */
3986int security_read_state_kernel(void **data, size_t *len)
3987{
3988	int err;
3989	struct selinux_state *state = &selinux_state;
3990	struct selinux_policy *policy;
3991
3992	policy = rcu_dereference_protected(
3993			state->policy, lockdep_is_held(&state->policy_mutex));
3994	if (!policy)
3995		return -EINVAL;
3996
3997	*len = policy->policydb.len;
3998	*data = vmalloc(*len);
3999	if (!*data)
4000		return -ENOMEM;
4001
4002	err = __security_read_policy(policy, *data, len);
4003	if (err) {
4004		vfree(*data);
4005		*data = NULL;
4006		*len = 0;
4007	}
4008	return err;
4009}
4010