1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Landlock LSM - Filesystem management and hooks
4 *
5 * Copyright �� 2016-2020 Micka��l Sala��n <mic@digikod.net>
6 * Copyright �� 2018-2020 ANSSI
7 * Copyright �� 2021-2022 Microsoft Corporation
8 */
9
10#include <kunit/test.h>
11#include <linux/atomic.h>
12#include <linux/bitops.h>
13#include <linux/bits.h>
14#include <linux/compiler_types.h>
15#include <linux/dcache.h>
16#include <linux/err.h>
17#include <linux/fs.h>
18#include <linux/init.h>
19#include <linux/kernel.h>
20#include <linux/limits.h>
21#include <linux/list.h>
22#include <linux/lsm_hooks.h>
23#include <linux/mount.h>
24#include <linux/namei.h>
25#include <linux/path.h>
26#include <linux/rcupdate.h>
27#include <linux/spinlock.h>
28#include <linux/stat.h>
29#include <linux/types.h>
30#include <linux/wait_bit.h>
31#include <linux/workqueue.h>
32#include <uapi/linux/landlock.h>
33
34#include "common.h"
35#include "cred.h"
36#include "fs.h"
37#include "limits.h"
38#include "object.h"
39#include "ruleset.h"
40#include "setup.h"
41
42/* Underlying object management */
43
44static void release_inode(struct landlock_object *const object)
45	__releases(object->lock)
46{
47	struct inode *const inode = object->underobj;
48	struct super_block *sb;
49
50	if (!inode) {
51		spin_unlock(&object->lock);
52		return;
53	}
54
55	/*
56	 * Protects against concurrent use by hook_sb_delete() of the reference
57	 * to the underlying inode.
58	 */
59	object->underobj = NULL;
60	/*
61	 * Makes sure that if the filesystem is concurrently unmounted,
62	 * hook_sb_delete() will wait for us to finish iput().
63	 */
64	sb = inode->i_sb;
65	atomic_long_inc(&landlock_superblock(sb)->inode_refs);
66	spin_unlock(&object->lock);
67	/*
68	 * Because object->underobj was not NULL, hook_sb_delete() and
69	 * get_inode_object() guarantee that it is safe to reset
70	 * landlock_inode(inode)->object while it is not NULL.  It is therefore
71	 * not necessary to lock inode->i_lock.
72	 */
73	rcu_assign_pointer(landlock_inode(inode)->object, NULL);
74	/*
75	 * Now, new rules can safely be tied to @inode with get_inode_object().
76	 */
77
78	iput(inode);
79	if (atomic_long_dec_and_test(&landlock_superblock(sb)->inode_refs))
80		wake_up_var(&landlock_superblock(sb)->inode_refs);
81}
82
83static const struct landlock_object_underops landlock_fs_underops = {
84	.release = release_inode
85};
86
87/* Ruleset management */
88
89static struct landlock_object *get_inode_object(struct inode *const inode)
90{
91	struct landlock_object *object, *new_object;
92	struct landlock_inode_security *inode_sec = landlock_inode(inode);
93
94	rcu_read_lock();
95retry:
96	object = rcu_dereference(inode_sec->object);
97	if (object) {
98		if (likely(refcount_inc_not_zero(&object->usage))) {
99			rcu_read_unlock();
100			return object;
101		}
102		/*
103		 * We are racing with release_inode(), the object is going
104		 * away.  Wait for release_inode(), then retry.
105		 */
106		spin_lock(&object->lock);
107		spin_unlock(&object->lock);
108		goto retry;
109	}
110	rcu_read_unlock();
111
112	/*
113	 * If there is no object tied to @inode, then create a new one (without
114	 * holding any locks).
115	 */
116	new_object = landlock_create_object(&landlock_fs_underops, inode);
117	if (IS_ERR(new_object))
118		return new_object;
119
120	/*
121	 * Protects against concurrent calls to get_inode_object() or
122	 * hook_sb_delete().
123	 */
124	spin_lock(&inode->i_lock);
125	if (unlikely(rcu_access_pointer(inode_sec->object))) {
126		/* Someone else just created the object, bail out and retry. */
127		spin_unlock(&inode->i_lock);
128		kfree(new_object);
129
130		rcu_read_lock();
131		goto retry;
132	}
133
134	/*
135	 * @inode will be released by hook_sb_delete() on its superblock
136	 * shutdown, or by release_inode() when no more ruleset references the
137	 * related object.
138	 */
139	ihold(inode);
140	rcu_assign_pointer(inode_sec->object, new_object);
141	spin_unlock(&inode->i_lock);
142	return new_object;
143}
144
145/* All access rights that can be tied to files. */
146/* clang-format off */
147#define ACCESS_FILE ( \
148	LANDLOCK_ACCESS_FS_EXECUTE | \
149	LANDLOCK_ACCESS_FS_WRITE_FILE | \
150	LANDLOCK_ACCESS_FS_READ_FILE | \
151	LANDLOCK_ACCESS_FS_TRUNCATE)
152/* clang-format on */
153
154/*
155 * @path: Should have been checked by get_path_from_fd().
156 */
157int landlock_append_fs_rule(struct landlock_ruleset *const ruleset,
158			    const struct path *const path,
159			    access_mask_t access_rights)
160{
161	int err;
162	struct landlock_id id = {
163		.type = LANDLOCK_KEY_INODE,
164	};
165
166	/* Files only get access rights that make sense. */
167	if (!d_is_dir(path->dentry) &&
168	    (access_rights | ACCESS_FILE) != ACCESS_FILE)
169		return -EINVAL;
170	if (WARN_ON_ONCE(ruleset->num_layers != 1))
171		return -EINVAL;
172
173	/* Transforms relative access rights to absolute ones. */
174	access_rights |= LANDLOCK_MASK_ACCESS_FS &
175			 ~landlock_get_fs_access_mask(ruleset, 0);
176	id.key.object = get_inode_object(d_backing_inode(path->dentry));
177	if (IS_ERR(id.key.object))
178		return PTR_ERR(id.key.object);
179	mutex_lock(&ruleset->lock);
180	err = landlock_insert_rule(ruleset, id, access_rights);
181	mutex_unlock(&ruleset->lock);
182	/*
183	 * No need to check for an error because landlock_insert_rule()
184	 * increments the refcount for the new object if needed.
185	 */
186	landlock_put_object(id.key.object);
187	return err;
188}
189
190/* Access-control management */
191
192/*
193 * The lifetime of the returned rule is tied to @domain.
194 *
195 * Returns NULL if no rule is found or if @dentry is negative.
196 */
197static const struct landlock_rule *
198find_rule(const struct landlock_ruleset *const domain,
199	  const struct dentry *const dentry)
200{
201	const struct landlock_rule *rule;
202	const struct inode *inode;
203	struct landlock_id id = {
204		.type = LANDLOCK_KEY_INODE,
205	};
206
207	/* Ignores nonexistent leafs. */
208	if (d_is_negative(dentry))
209		return NULL;
210
211	inode = d_backing_inode(dentry);
212	rcu_read_lock();
213	id.key.object = rcu_dereference(landlock_inode(inode)->object);
214	rule = landlock_find_rule(domain, id);
215	rcu_read_unlock();
216	return rule;
217}
218
219/*
220 * Allows access to pseudo filesystems that will never be mountable (e.g.
221 * sockfs, pipefs), but can still be reachable through
222 * /proc/<pid>/fd/<file-descriptor>
223 */
224static bool is_nouser_or_private(const struct dentry *dentry)
225{
226	return (dentry->d_sb->s_flags & SB_NOUSER) ||
227	       (d_is_positive(dentry) &&
228		unlikely(IS_PRIVATE(d_backing_inode(dentry))));
229}
230
231static access_mask_t
232get_raw_handled_fs_accesses(const struct landlock_ruleset *const domain)
233{
234	access_mask_t access_dom = 0;
235	size_t layer_level;
236
237	for (layer_level = 0; layer_level < domain->num_layers; layer_level++)
238		access_dom |=
239			landlock_get_raw_fs_access_mask(domain, layer_level);
240	return access_dom;
241}
242
243static access_mask_t
244get_handled_fs_accesses(const struct landlock_ruleset *const domain)
245{
246	/* Handles all initially denied by default access rights. */
247	return get_raw_handled_fs_accesses(domain) |
248	       LANDLOCK_ACCESS_FS_INITIALLY_DENIED;
249}
250
251static const struct landlock_ruleset *
252get_fs_domain(const struct landlock_ruleset *const domain)
253{
254	if (!domain || !get_raw_handled_fs_accesses(domain))
255		return NULL;
256
257	return domain;
258}
259
260static const struct landlock_ruleset *get_current_fs_domain(void)
261{
262	return get_fs_domain(landlock_get_current_domain());
263}
264
265/*
266 * Check that a destination file hierarchy has more restrictions than a source
267 * file hierarchy.  This is only used for link and rename actions.
268 *
269 * @layer_masks_child2: Optional child masks.
270 */
271static bool no_more_access(
272	const layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS],
273	const layer_mask_t (*const layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS],
274	const bool child1_is_directory,
275	const layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS],
276	const layer_mask_t (*const layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS],
277	const bool child2_is_directory)
278{
279	unsigned long access_bit;
280
281	for (access_bit = 0; access_bit < ARRAY_SIZE(*layer_masks_parent2);
282	     access_bit++) {
283		/* Ignores accesses that only make sense for directories. */
284		const bool is_file_access =
285			!!(BIT_ULL(access_bit) & ACCESS_FILE);
286
287		if (child1_is_directory || is_file_access) {
288			/*
289			 * Checks if the destination restrictions are a
290			 * superset of the source ones (i.e. inherited access
291			 * rights without child exceptions):
292			 * restrictions(parent2) >= restrictions(child1)
293			 */
294			if ((((*layer_masks_parent1)[access_bit] &
295			      (*layer_masks_child1)[access_bit]) |
296			     (*layer_masks_parent2)[access_bit]) !=
297			    (*layer_masks_parent2)[access_bit])
298				return false;
299		}
300
301		if (!layer_masks_child2)
302			continue;
303		if (child2_is_directory || is_file_access) {
304			/*
305			 * Checks inverted restrictions for RENAME_EXCHANGE:
306			 * restrictions(parent1) >= restrictions(child2)
307			 */
308			if ((((*layer_masks_parent2)[access_bit] &
309			      (*layer_masks_child2)[access_bit]) |
310			     (*layer_masks_parent1)[access_bit]) !=
311			    (*layer_masks_parent1)[access_bit])
312				return false;
313		}
314	}
315	return true;
316}
317
318#define NMA_TRUE(...) KUNIT_EXPECT_TRUE(test, no_more_access(__VA_ARGS__))
319#define NMA_FALSE(...) KUNIT_EXPECT_FALSE(test, no_more_access(__VA_ARGS__))
320
321#ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST
322
323static void test_no_more_access(struct kunit *const test)
324{
325	const layer_mask_t rx0[LANDLOCK_NUM_ACCESS_FS] = {
326		[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0),
327		[BIT_INDEX(LANDLOCK_ACCESS_FS_READ_FILE)] = BIT_ULL(0),
328	};
329	const layer_mask_t mx0[LANDLOCK_NUM_ACCESS_FS] = {
330		[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0),
331		[BIT_INDEX(LANDLOCK_ACCESS_FS_MAKE_REG)] = BIT_ULL(0),
332	};
333	const layer_mask_t x0[LANDLOCK_NUM_ACCESS_FS] = {
334		[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0),
335	};
336	const layer_mask_t x1[LANDLOCK_NUM_ACCESS_FS] = {
337		[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(1),
338	};
339	const layer_mask_t x01[LANDLOCK_NUM_ACCESS_FS] = {
340		[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0) |
341							  BIT_ULL(1),
342	};
343	const layer_mask_t allows_all[LANDLOCK_NUM_ACCESS_FS] = {};
344
345	/* Checks without restriction. */
346	NMA_TRUE(&x0, &allows_all, false, &allows_all, NULL, false);
347	NMA_TRUE(&allows_all, &x0, false, &allows_all, NULL, false);
348	NMA_FALSE(&x0, &x0, false, &allows_all, NULL, false);
349
350	/*
351	 * Checks that we can only refer a file if no more access could be
352	 * inherited.
353	 */
354	NMA_TRUE(&x0, &x0, false, &rx0, NULL, false);
355	NMA_TRUE(&rx0, &rx0, false, &rx0, NULL, false);
356	NMA_FALSE(&rx0, &rx0, false, &x0, NULL, false);
357	NMA_FALSE(&rx0, &rx0, false, &x1, NULL, false);
358
359	/* Checks allowed referring with different nested domains. */
360	NMA_TRUE(&x0, &x1, false, &x0, NULL, false);
361	NMA_TRUE(&x1, &x0, false, &x0, NULL, false);
362	NMA_TRUE(&x0, &x01, false, &x0, NULL, false);
363	NMA_TRUE(&x0, &x01, false, &rx0, NULL, false);
364	NMA_TRUE(&x01, &x0, false, &x0, NULL, false);
365	NMA_TRUE(&x01, &x0, false, &rx0, NULL, false);
366	NMA_FALSE(&x01, &x01, false, &x0, NULL, false);
367
368	/* Checks that file access rights are also enforced for a directory. */
369	NMA_FALSE(&rx0, &rx0, true, &x0, NULL, false);
370
371	/* Checks that directory access rights don't impact file referring... */
372	NMA_TRUE(&mx0, &mx0, false, &x0, NULL, false);
373	/* ...but only directory referring. */
374	NMA_FALSE(&mx0, &mx0, true, &x0, NULL, false);
375
376	/* Checks directory exchange. */
377	NMA_TRUE(&mx0, &mx0, true, &mx0, &mx0, true);
378	NMA_TRUE(&mx0, &mx0, true, &mx0, &x0, true);
379	NMA_FALSE(&mx0, &mx0, true, &x0, &mx0, true);
380	NMA_FALSE(&mx0, &mx0, true, &x0, &x0, true);
381	NMA_FALSE(&mx0, &mx0, true, &x1, &x1, true);
382
383	/* Checks file exchange with directory access rights... */
384	NMA_TRUE(&mx0, &mx0, false, &mx0, &mx0, false);
385	NMA_TRUE(&mx0, &mx0, false, &mx0, &x0, false);
386	NMA_TRUE(&mx0, &mx0, false, &x0, &mx0, false);
387	NMA_TRUE(&mx0, &mx0, false, &x0, &x0, false);
388	/* ...and with file access rights. */
389	NMA_TRUE(&rx0, &rx0, false, &rx0, &rx0, false);
390	NMA_TRUE(&rx0, &rx0, false, &rx0, &x0, false);
391	NMA_FALSE(&rx0, &rx0, false, &x0, &rx0, false);
392	NMA_FALSE(&rx0, &rx0, false, &x0, &x0, false);
393	NMA_FALSE(&rx0, &rx0, false, &x1, &x1, false);
394
395	/*
396	 * Allowing the following requests should not be a security risk
397	 * because domain 0 denies execute access, and domain 1 is always
398	 * nested with domain 0.  However, adding an exception for this case
399	 * would mean to check all nested domains to make sure none can get
400	 * more privileges (e.g. processes only sandboxed by domain 0).
401	 * Moreover, this behavior (i.e. composition of N domains) could then
402	 * be inconsistent compared to domain 1's ruleset alone (e.g. it might
403	 * be denied to link/rename with domain 1's ruleset, whereas it would
404	 * be allowed if nested on top of domain 0).  Another drawback would be
405	 * to create a cover channel that could enable sandboxed processes to
406	 * infer most of the filesystem restrictions from their domain.  To
407	 * make it simple, efficient, safe, and more consistent, this case is
408	 * always denied.
409	 */
410	NMA_FALSE(&x1, &x1, false, &x0, NULL, false);
411	NMA_FALSE(&x1, &x1, false, &rx0, NULL, false);
412	NMA_FALSE(&x1, &x1, true, &x0, NULL, false);
413	NMA_FALSE(&x1, &x1, true, &rx0, NULL, false);
414
415	/* Checks the same case of exclusive domains with a file... */
416	NMA_TRUE(&x1, &x1, false, &x01, NULL, false);
417	NMA_FALSE(&x1, &x1, false, &x01, &x0, false);
418	NMA_FALSE(&x1, &x1, false, &x01, &x01, false);
419	NMA_FALSE(&x1, &x1, false, &x0, &x0, false);
420	/* ...and with a directory. */
421	NMA_FALSE(&x1, &x1, false, &x0, &x0, true);
422	NMA_FALSE(&x1, &x1, true, &x0, &x0, false);
423	NMA_FALSE(&x1, &x1, true, &x0, &x0, true);
424}
425
426#endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */
427
428#undef NMA_TRUE
429#undef NMA_FALSE
430
431/*
432 * Removes @layer_masks accesses that are not requested.
433 *
434 * Returns true if the request is allowed, false otherwise.
435 */
436static bool
437scope_to_request(const access_mask_t access_request,
438		 layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS])
439{
440	const unsigned long access_req = access_request;
441	unsigned long access_bit;
442
443	if (WARN_ON_ONCE(!layer_masks))
444		return true;
445
446	for_each_clear_bit(access_bit, &access_req, ARRAY_SIZE(*layer_masks))
447		(*layer_masks)[access_bit] = 0;
448	return !memchr_inv(layer_masks, 0, sizeof(*layer_masks));
449}
450
451#ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST
452
453static void test_scope_to_request_with_exec_none(struct kunit *const test)
454{
455	/* Allows everything. */
456	layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {};
457
458	/* Checks and scopes with execute. */
459	KUNIT_EXPECT_TRUE(test, scope_to_request(LANDLOCK_ACCESS_FS_EXECUTE,
460						 &layer_masks));
461	KUNIT_EXPECT_EQ(test, 0,
462			layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)]);
463	KUNIT_EXPECT_EQ(test, 0,
464			layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)]);
465}
466
467static void test_scope_to_request_with_exec_some(struct kunit *const test)
468{
469	/* Denies execute and write. */
470	layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {
471		[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0),
472		[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)] = BIT_ULL(1),
473	};
474
475	/* Checks and scopes with execute. */
476	KUNIT_EXPECT_FALSE(test, scope_to_request(LANDLOCK_ACCESS_FS_EXECUTE,
477						  &layer_masks));
478	KUNIT_EXPECT_EQ(test, BIT_ULL(0),
479			layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)]);
480	KUNIT_EXPECT_EQ(test, 0,
481			layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)]);
482}
483
484static void test_scope_to_request_without_access(struct kunit *const test)
485{
486	/* Denies execute and write. */
487	layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {
488		[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0),
489		[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)] = BIT_ULL(1),
490	};
491
492	/* Checks and scopes without access request. */
493	KUNIT_EXPECT_TRUE(test, scope_to_request(0, &layer_masks));
494	KUNIT_EXPECT_EQ(test, 0,
495			layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)]);
496	KUNIT_EXPECT_EQ(test, 0,
497			layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)]);
498}
499
500#endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */
501
502/*
503 * Returns true if there is at least one access right different than
504 * LANDLOCK_ACCESS_FS_REFER.
505 */
506static bool
507is_eacces(const layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS],
508	  const access_mask_t access_request)
509{
510	unsigned long access_bit;
511	/* LANDLOCK_ACCESS_FS_REFER alone must return -EXDEV. */
512	const unsigned long access_check = access_request &
513					   ~LANDLOCK_ACCESS_FS_REFER;
514
515	if (!layer_masks)
516		return false;
517
518	for_each_set_bit(access_bit, &access_check, ARRAY_SIZE(*layer_masks)) {
519		if ((*layer_masks)[access_bit])
520			return true;
521	}
522	return false;
523}
524
525#define IE_TRUE(...) KUNIT_EXPECT_TRUE(test, is_eacces(__VA_ARGS__))
526#define IE_FALSE(...) KUNIT_EXPECT_FALSE(test, is_eacces(__VA_ARGS__))
527
528#ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST
529
530static void test_is_eacces_with_none(struct kunit *const test)
531{
532	const layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {};
533
534	IE_FALSE(&layer_masks, 0);
535	IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_REFER);
536	IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_EXECUTE);
537	IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_WRITE_FILE);
538}
539
540static void test_is_eacces_with_refer(struct kunit *const test)
541{
542	const layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {
543		[BIT_INDEX(LANDLOCK_ACCESS_FS_REFER)] = BIT_ULL(0),
544	};
545
546	IE_FALSE(&layer_masks, 0);
547	IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_REFER);
548	IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_EXECUTE);
549	IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_WRITE_FILE);
550}
551
552static void test_is_eacces_with_write(struct kunit *const test)
553{
554	const layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {
555		[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)] = BIT_ULL(0),
556	};
557
558	IE_FALSE(&layer_masks, 0);
559	IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_REFER);
560	IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_EXECUTE);
561
562	IE_TRUE(&layer_masks, LANDLOCK_ACCESS_FS_WRITE_FILE);
563}
564
565#endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */
566
567#undef IE_TRUE
568#undef IE_FALSE
569
570/**
571 * is_access_to_paths_allowed - Check accesses for requests with a common path
572 *
573 * @domain: Domain to check against.
574 * @path: File hierarchy to walk through.
575 * @access_request_parent1: Accesses to check, once @layer_masks_parent1 is
576 *     equal to @layer_masks_parent2 (if any).  This is tied to the unique
577 *     requested path for most actions, or the source in case of a refer action
578 *     (i.e. rename or link), or the source and destination in case of
579 *     RENAME_EXCHANGE.
580 * @layer_masks_parent1: Pointer to a matrix of layer masks per access
581 *     masks, identifying the layers that forbid a specific access.  Bits from
582 *     this matrix can be unset according to the @path walk.  An empty matrix
583 *     means that @domain allows all possible Landlock accesses (i.e. not only
584 *     those identified by @access_request_parent1).  This matrix can
585 *     initially refer to domain layer masks and, when the accesses for the
586 *     destination and source are the same, to requested layer masks.
587 * @dentry_child1: Dentry to the initial child of the parent1 path.  This
588 *     pointer must be NULL for non-refer actions (i.e. not link nor rename).
589 * @access_request_parent2: Similar to @access_request_parent1 but for a
590 *     request involving a source and a destination.  This refers to the
591 *     destination, except in case of RENAME_EXCHANGE where it also refers to
592 *     the source.  Must be set to 0 when using a simple path request.
593 * @layer_masks_parent2: Similar to @layer_masks_parent1 but for a refer
594 *     action.  This must be NULL otherwise.
595 * @dentry_child2: Dentry to the initial child of the parent2 path.  This
596 *     pointer is only set for RENAME_EXCHANGE actions and must be NULL
597 *     otherwise.
598 *
599 * This helper first checks that the destination has a superset of restrictions
600 * compared to the source (if any) for a common path.  Because of
601 * RENAME_EXCHANGE actions, source and destinations may be swapped.  It then
602 * checks that the collected accesses and the remaining ones are enough to
603 * allow the request.
604 *
605 * Returns:
606 * - true if the access request is granted;
607 * - false otherwise.
608 */
609static bool is_access_to_paths_allowed(
610	const struct landlock_ruleset *const domain,
611	const struct path *const path,
612	const access_mask_t access_request_parent1,
613	layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS],
614	const struct dentry *const dentry_child1,
615	const access_mask_t access_request_parent2,
616	layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS],
617	const struct dentry *const dentry_child2)
618{
619	bool allowed_parent1 = false, allowed_parent2 = false, is_dom_check,
620	     child1_is_directory = true, child2_is_directory = true;
621	struct path walker_path;
622	access_mask_t access_masked_parent1, access_masked_parent2;
623	layer_mask_t _layer_masks_child1[LANDLOCK_NUM_ACCESS_FS],
624		_layer_masks_child2[LANDLOCK_NUM_ACCESS_FS];
625	layer_mask_t(*layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS] = NULL,
626	(*layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS] = NULL;
627
628	if (!access_request_parent1 && !access_request_parent2)
629		return true;
630	if (WARN_ON_ONCE(!domain || !path))
631		return true;
632	if (is_nouser_or_private(path->dentry))
633		return true;
634	if (WARN_ON_ONCE(domain->num_layers < 1 || !layer_masks_parent1))
635		return false;
636
637	if (unlikely(layer_masks_parent2)) {
638		if (WARN_ON_ONCE(!dentry_child1))
639			return false;
640		/*
641		 * For a double request, first check for potential privilege
642		 * escalation by looking at domain handled accesses (which are
643		 * a superset of the meaningful requested accesses).
644		 */
645		access_masked_parent1 = access_masked_parent2 =
646			get_handled_fs_accesses(domain);
647		is_dom_check = true;
648	} else {
649		if (WARN_ON_ONCE(dentry_child1 || dentry_child2))
650			return false;
651		/* For a simple request, only check for requested accesses. */
652		access_masked_parent1 = access_request_parent1;
653		access_masked_parent2 = access_request_parent2;
654		is_dom_check = false;
655	}
656
657	if (unlikely(dentry_child1)) {
658		landlock_unmask_layers(
659			find_rule(domain, dentry_child1),
660			landlock_init_layer_masks(
661				domain, LANDLOCK_MASK_ACCESS_FS,
662				&_layer_masks_child1, LANDLOCK_KEY_INODE),
663			&_layer_masks_child1, ARRAY_SIZE(_layer_masks_child1));
664		layer_masks_child1 = &_layer_masks_child1;
665		child1_is_directory = d_is_dir(dentry_child1);
666	}
667	if (unlikely(dentry_child2)) {
668		landlock_unmask_layers(
669			find_rule(domain, dentry_child2),
670			landlock_init_layer_masks(
671				domain, LANDLOCK_MASK_ACCESS_FS,
672				&_layer_masks_child2, LANDLOCK_KEY_INODE),
673			&_layer_masks_child2, ARRAY_SIZE(_layer_masks_child2));
674		layer_masks_child2 = &_layer_masks_child2;
675		child2_is_directory = d_is_dir(dentry_child2);
676	}
677
678	walker_path = *path;
679	path_get(&walker_path);
680	/*
681	 * We need to walk through all the hierarchy to not miss any relevant
682	 * restriction.
683	 */
684	while (true) {
685		struct dentry *parent_dentry;
686		const struct landlock_rule *rule;
687
688		/*
689		 * If at least all accesses allowed on the destination are
690		 * already allowed on the source, respectively if there is at
691		 * least as much as restrictions on the destination than on the
692		 * source, then we can safely refer files from the source to
693		 * the destination without risking a privilege escalation.
694		 * This also applies in the case of RENAME_EXCHANGE, which
695		 * implies checks on both direction.  This is crucial for
696		 * standalone multilayered security policies.  Furthermore,
697		 * this helps avoid policy writers to shoot themselves in the
698		 * foot.
699		 */
700		if (unlikely(is_dom_check &&
701			     no_more_access(
702				     layer_masks_parent1, layer_masks_child1,
703				     child1_is_directory, layer_masks_parent2,
704				     layer_masks_child2,
705				     child2_is_directory))) {
706			allowed_parent1 = scope_to_request(
707				access_request_parent1, layer_masks_parent1);
708			allowed_parent2 = scope_to_request(
709				access_request_parent2, layer_masks_parent2);
710
711			/* Stops when all accesses are granted. */
712			if (allowed_parent1 && allowed_parent2)
713				break;
714
715			/*
716			 * Now, downgrades the remaining checks from domain
717			 * handled accesses to requested accesses.
718			 */
719			is_dom_check = false;
720			access_masked_parent1 = access_request_parent1;
721			access_masked_parent2 = access_request_parent2;
722		}
723
724		rule = find_rule(domain, walker_path.dentry);
725		allowed_parent1 = landlock_unmask_layers(
726			rule, access_masked_parent1, layer_masks_parent1,
727			ARRAY_SIZE(*layer_masks_parent1));
728		allowed_parent2 = landlock_unmask_layers(
729			rule, access_masked_parent2, layer_masks_parent2,
730			ARRAY_SIZE(*layer_masks_parent2));
731
732		/* Stops when a rule from each layer grants access. */
733		if (allowed_parent1 && allowed_parent2)
734			break;
735jump_up:
736		if (walker_path.dentry == walker_path.mnt->mnt_root) {
737			if (follow_up(&walker_path)) {
738				/* Ignores hidden mount points. */
739				goto jump_up;
740			} else {
741				/*
742				 * Stops at the real root.  Denies access
743				 * because not all layers have granted access.
744				 */
745				break;
746			}
747		}
748		if (unlikely(IS_ROOT(walker_path.dentry))) {
749			/*
750			 * Stops at disconnected root directories.  Only allows
751			 * access to internal filesystems (e.g. nsfs, which is
752			 * reachable through /proc/<pid>/ns/<namespace>).
753			 */
754			allowed_parent1 = allowed_parent2 =
755				!!(walker_path.mnt->mnt_flags & MNT_INTERNAL);
756			break;
757		}
758		parent_dentry = dget_parent(walker_path.dentry);
759		dput(walker_path.dentry);
760		walker_path.dentry = parent_dentry;
761	}
762	path_put(&walker_path);
763
764	return allowed_parent1 && allowed_parent2;
765}
766
767static int check_access_path(const struct landlock_ruleset *const domain,
768			     const struct path *const path,
769			     access_mask_t access_request)
770{
771	layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {};
772
773	access_request = landlock_init_layer_masks(
774		domain, access_request, &layer_masks, LANDLOCK_KEY_INODE);
775	if (is_access_to_paths_allowed(domain, path, access_request,
776				       &layer_masks, NULL, 0, NULL, NULL))
777		return 0;
778	return -EACCES;
779}
780
781static int current_check_access_path(const struct path *const path,
782				     const access_mask_t access_request)
783{
784	const struct landlock_ruleset *const dom = get_current_fs_domain();
785
786	if (!dom)
787		return 0;
788	return check_access_path(dom, path, access_request);
789}
790
791static access_mask_t get_mode_access(const umode_t mode)
792{
793	switch (mode & S_IFMT) {
794	case S_IFLNK:
795		return LANDLOCK_ACCESS_FS_MAKE_SYM;
796	case 0:
797		/* A zero mode translates to S_IFREG. */
798	case S_IFREG:
799		return LANDLOCK_ACCESS_FS_MAKE_REG;
800	case S_IFDIR:
801		return LANDLOCK_ACCESS_FS_MAKE_DIR;
802	case S_IFCHR:
803		return LANDLOCK_ACCESS_FS_MAKE_CHAR;
804	case S_IFBLK:
805		return LANDLOCK_ACCESS_FS_MAKE_BLOCK;
806	case S_IFIFO:
807		return LANDLOCK_ACCESS_FS_MAKE_FIFO;
808	case S_IFSOCK:
809		return LANDLOCK_ACCESS_FS_MAKE_SOCK;
810	default:
811		WARN_ON_ONCE(1);
812		return 0;
813	}
814}
815
816static access_mask_t maybe_remove(const struct dentry *const dentry)
817{
818	if (d_is_negative(dentry))
819		return 0;
820	return d_is_dir(dentry) ? LANDLOCK_ACCESS_FS_REMOVE_DIR :
821				  LANDLOCK_ACCESS_FS_REMOVE_FILE;
822}
823
824/**
825 * collect_domain_accesses - Walk through a file path and collect accesses
826 *
827 * @domain: Domain to check against.
828 * @mnt_root: Last directory to check.
829 * @dir: Directory to start the walk from.
830 * @layer_masks_dom: Where to store the collected accesses.
831 *
832 * This helper is useful to begin a path walk from the @dir directory to a
833 * @mnt_root directory used as a mount point.  This mount point is the common
834 * ancestor between the source and the destination of a renamed and linked
835 * file.  While walking from @dir to @mnt_root, we record all the domain's
836 * allowed accesses in @layer_masks_dom.
837 *
838 * This is similar to is_access_to_paths_allowed() but much simpler because it
839 * only handles walking on the same mount point and only checks one set of
840 * accesses.
841 *
842 * Returns:
843 * - true if all the domain access rights are allowed for @dir;
844 * - false if the walk reached @mnt_root.
845 */
846static bool collect_domain_accesses(
847	const struct landlock_ruleset *const domain,
848	const struct dentry *const mnt_root, struct dentry *dir,
849	layer_mask_t (*const layer_masks_dom)[LANDLOCK_NUM_ACCESS_FS])
850{
851	unsigned long access_dom;
852	bool ret = false;
853
854	if (WARN_ON_ONCE(!domain || !mnt_root || !dir || !layer_masks_dom))
855		return true;
856	if (is_nouser_or_private(dir))
857		return true;
858
859	access_dom = landlock_init_layer_masks(domain, LANDLOCK_MASK_ACCESS_FS,
860					       layer_masks_dom,
861					       LANDLOCK_KEY_INODE);
862
863	dget(dir);
864	while (true) {
865		struct dentry *parent_dentry;
866
867		/* Gets all layers allowing all domain accesses. */
868		if (landlock_unmask_layers(find_rule(domain, dir), access_dom,
869					   layer_masks_dom,
870					   ARRAY_SIZE(*layer_masks_dom))) {
871			/*
872			 * Stops when all handled accesses are allowed by at
873			 * least one rule in each layer.
874			 */
875			ret = true;
876			break;
877		}
878
879		/* We should not reach a root other than @mnt_root. */
880		if (dir == mnt_root || WARN_ON_ONCE(IS_ROOT(dir)))
881			break;
882
883		parent_dentry = dget_parent(dir);
884		dput(dir);
885		dir = parent_dentry;
886	}
887	dput(dir);
888	return ret;
889}
890
891/**
892 * current_check_refer_path - Check if a rename or link action is allowed
893 *
894 * @old_dentry: File or directory requested to be moved or linked.
895 * @new_dir: Destination parent directory.
896 * @new_dentry: Destination file or directory.
897 * @removable: Sets to true if it is a rename operation.
898 * @exchange: Sets to true if it is a rename operation with RENAME_EXCHANGE.
899 *
900 * Because of its unprivileged constraints, Landlock relies on file hierarchies
901 * (and not only inodes) to tie access rights to files.  Being able to link or
902 * rename a file hierarchy brings some challenges.  Indeed, moving or linking a
903 * file (i.e. creating a new reference to an inode) can have an impact on the
904 * actions allowed for a set of files if it would change its parent directory
905 * (i.e. reparenting).
906 *
907 * To avoid trivial access right bypasses, Landlock first checks if the file or
908 * directory requested to be moved would gain new access rights inherited from
909 * its new hierarchy.  Before returning any error, Landlock then checks that
910 * the parent source hierarchy and the destination hierarchy would allow the
911 * link or rename action.  If it is not the case, an error with EACCES is
912 * returned to inform user space that there is no way to remove or create the
913 * requested source file type.  If it should be allowed but the new inherited
914 * access rights would be greater than the source access rights, then the
915 * kernel returns an error with EXDEV.  Prioritizing EACCES over EXDEV enables
916 * user space to abort the whole operation if there is no way to do it, or to
917 * manually copy the source to the destination if this remains allowed, e.g.
918 * because file creation is allowed on the destination directory but not direct
919 * linking.
920 *
921 * To achieve this goal, the kernel needs to compare two file hierarchies: the
922 * one identifying the source file or directory (including itself), and the
923 * destination one.  This can be seen as a multilayer partial ordering problem.
924 * The kernel walks through these paths and collects in a matrix the access
925 * rights that are denied per layer.  These matrices are then compared to see
926 * if the destination one has more (or the same) restrictions as the source
927 * one.  If this is the case, the requested action will not return EXDEV, which
928 * doesn't mean the action is allowed.  The parent hierarchy of the source
929 * (i.e. parent directory), and the destination hierarchy must also be checked
930 * to verify that they explicitly allow such action (i.e.  referencing,
931 * creation and potentially removal rights).  The kernel implementation is then
932 * required to rely on potentially four matrices of access rights: one for the
933 * source file or directory (i.e. the child), a potentially other one for the
934 * other source/destination (in case of RENAME_EXCHANGE), one for the source
935 * parent hierarchy and a last one for the destination hierarchy.  These
936 * ephemeral matrices take some space on the stack, which limits the number of
937 * layers to a deemed reasonable number: 16.
938 *
939 * Returns:
940 * - 0 if access is allowed;
941 * - -EXDEV if @old_dentry would inherit new access rights from @new_dir;
942 * - -EACCES if file removal or creation is denied.
943 */
944static int current_check_refer_path(struct dentry *const old_dentry,
945				    const struct path *const new_dir,
946				    struct dentry *const new_dentry,
947				    const bool removable, const bool exchange)
948{
949	const struct landlock_ruleset *const dom = get_current_fs_domain();
950	bool allow_parent1, allow_parent2;
951	access_mask_t access_request_parent1, access_request_parent2;
952	struct path mnt_dir;
953	layer_mask_t layer_masks_parent1[LANDLOCK_NUM_ACCESS_FS] = {},
954		     layer_masks_parent2[LANDLOCK_NUM_ACCESS_FS] = {};
955
956	if (!dom)
957		return 0;
958	if (WARN_ON_ONCE(dom->num_layers < 1))
959		return -EACCES;
960	if (unlikely(d_is_negative(old_dentry)))
961		return -ENOENT;
962	if (exchange) {
963		if (unlikely(d_is_negative(new_dentry)))
964			return -ENOENT;
965		access_request_parent1 =
966			get_mode_access(d_backing_inode(new_dentry)->i_mode);
967	} else {
968		access_request_parent1 = 0;
969	}
970	access_request_parent2 =
971		get_mode_access(d_backing_inode(old_dentry)->i_mode);
972	if (removable) {
973		access_request_parent1 |= maybe_remove(old_dentry);
974		access_request_parent2 |= maybe_remove(new_dentry);
975	}
976
977	/* The mount points are the same for old and new paths, cf. EXDEV. */
978	if (old_dentry->d_parent == new_dir->dentry) {
979		/*
980		 * The LANDLOCK_ACCESS_FS_REFER access right is not required
981		 * for same-directory referer (i.e. no reparenting).
982		 */
983		access_request_parent1 = landlock_init_layer_masks(
984			dom, access_request_parent1 | access_request_parent2,
985			&layer_masks_parent1, LANDLOCK_KEY_INODE);
986		if (is_access_to_paths_allowed(
987			    dom, new_dir, access_request_parent1,
988			    &layer_masks_parent1, NULL, 0, NULL, NULL))
989			return 0;
990		return -EACCES;
991	}
992
993	access_request_parent1 |= LANDLOCK_ACCESS_FS_REFER;
994	access_request_parent2 |= LANDLOCK_ACCESS_FS_REFER;
995
996	/* Saves the common mount point. */
997	mnt_dir.mnt = new_dir->mnt;
998	mnt_dir.dentry = new_dir->mnt->mnt_root;
999
1000	/* new_dir->dentry is equal to new_dentry->d_parent */
1001	allow_parent1 = collect_domain_accesses(dom, mnt_dir.dentry,
1002						old_dentry->d_parent,
1003						&layer_masks_parent1);
1004	allow_parent2 = collect_domain_accesses(
1005		dom, mnt_dir.dentry, new_dir->dentry, &layer_masks_parent2);
1006
1007	if (allow_parent1 && allow_parent2)
1008		return 0;
1009
1010	/*
1011	 * To be able to compare source and destination domain access rights,
1012	 * take into account the @old_dentry access rights aggregated with its
1013	 * parent access rights.  This will be useful to compare with the
1014	 * destination parent access rights.
1015	 */
1016	if (is_access_to_paths_allowed(
1017		    dom, &mnt_dir, access_request_parent1, &layer_masks_parent1,
1018		    old_dentry, access_request_parent2, &layer_masks_parent2,
1019		    exchange ? new_dentry : NULL))
1020		return 0;
1021
1022	/*
1023	 * This prioritizes EACCES over EXDEV for all actions, including
1024	 * renames with RENAME_EXCHANGE.
1025	 */
1026	if (likely(is_eacces(&layer_masks_parent1, access_request_parent1) ||
1027		   is_eacces(&layer_masks_parent2, access_request_parent2)))
1028		return -EACCES;
1029
1030	/*
1031	 * Gracefully forbids reparenting if the destination directory
1032	 * hierarchy is not a superset of restrictions of the source directory
1033	 * hierarchy, or if LANDLOCK_ACCESS_FS_REFER is not allowed by the
1034	 * source or the destination.
1035	 */
1036	return -EXDEV;
1037}
1038
1039/* Inode hooks */
1040
1041static void hook_inode_free_security(struct inode *const inode)
1042{
1043	/*
1044	 * All inodes must already have been untied from their object by
1045	 * release_inode() or hook_sb_delete().
1046	 */
1047	WARN_ON_ONCE(landlock_inode(inode)->object);
1048}
1049
1050/* Super-block hooks */
1051
1052/*
1053 * Release the inodes used in a security policy.
1054 *
1055 * Cf. fsnotify_unmount_inodes() and invalidate_inodes()
1056 */
1057static void hook_sb_delete(struct super_block *const sb)
1058{
1059	struct inode *inode, *prev_inode = NULL;
1060
1061	if (!landlock_initialized)
1062		return;
1063
1064	spin_lock(&sb->s_inode_list_lock);
1065	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1066		struct landlock_object *object;
1067
1068		/* Only handles referenced inodes. */
1069		if (!atomic_read(&inode->i_count))
1070			continue;
1071
1072		/*
1073		 * Protects against concurrent modification of inode (e.g.
1074		 * from get_inode_object()).
1075		 */
1076		spin_lock(&inode->i_lock);
1077		/*
1078		 * Checks I_FREEING and I_WILL_FREE  to protect against a race
1079		 * condition when release_inode() just called iput(), which
1080		 * could lead to a NULL dereference of inode->security or a
1081		 * second call to iput() for the same Landlock object.  Also
1082		 * checks I_NEW because such inode cannot be tied to an object.
1083		 */
1084		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
1085			spin_unlock(&inode->i_lock);
1086			continue;
1087		}
1088
1089		rcu_read_lock();
1090		object = rcu_dereference(landlock_inode(inode)->object);
1091		if (!object) {
1092			rcu_read_unlock();
1093			spin_unlock(&inode->i_lock);
1094			continue;
1095		}
1096		/* Keeps a reference to this inode until the next loop walk. */
1097		__iget(inode);
1098		spin_unlock(&inode->i_lock);
1099
1100		/*
1101		 * If there is no concurrent release_inode() ongoing, then we
1102		 * are in charge of calling iput() on this inode, otherwise we
1103		 * will just wait for it to finish.
1104		 */
1105		spin_lock(&object->lock);
1106		if (object->underobj == inode) {
1107			object->underobj = NULL;
1108			spin_unlock(&object->lock);
1109			rcu_read_unlock();
1110
1111			/*
1112			 * Because object->underobj was not NULL,
1113			 * release_inode() and get_inode_object() guarantee
1114			 * that it is safe to reset
1115			 * landlock_inode(inode)->object while it is not NULL.
1116			 * It is therefore not necessary to lock inode->i_lock.
1117			 */
1118			rcu_assign_pointer(landlock_inode(inode)->object, NULL);
1119			/*
1120			 * At this point, we own the ihold() reference that was
1121			 * originally set up by get_inode_object() and the
1122			 * __iget() reference that we just set in this loop
1123			 * walk.  Therefore the following call to iput() will
1124			 * not sleep nor drop the inode because there is now at
1125			 * least two references to it.
1126			 */
1127			iput(inode);
1128		} else {
1129			spin_unlock(&object->lock);
1130			rcu_read_unlock();
1131		}
1132
1133		if (prev_inode) {
1134			/*
1135			 * At this point, we still own the __iget() reference
1136			 * that we just set in this loop walk.  Therefore we
1137			 * can drop the list lock and know that the inode won't
1138			 * disappear from under us until the next loop walk.
1139			 */
1140			spin_unlock(&sb->s_inode_list_lock);
1141			/*
1142			 * We can now actually put the inode reference from the
1143			 * previous loop walk, which is not needed anymore.
1144			 */
1145			iput(prev_inode);
1146			cond_resched();
1147			spin_lock(&sb->s_inode_list_lock);
1148		}
1149		prev_inode = inode;
1150	}
1151	spin_unlock(&sb->s_inode_list_lock);
1152
1153	/* Puts the inode reference from the last loop walk, if any. */
1154	if (prev_inode)
1155		iput(prev_inode);
1156	/* Waits for pending iput() in release_inode(). */
1157	wait_var_event(&landlock_superblock(sb)->inode_refs,
1158		       !atomic_long_read(&landlock_superblock(sb)->inode_refs));
1159}
1160
1161/*
1162 * Because a Landlock security policy is defined according to the filesystem
1163 * topology (i.e. the mount namespace), changing it may grant access to files
1164 * not previously allowed.
1165 *
1166 * To make it simple, deny any filesystem topology modification by landlocked
1167 * processes.  Non-landlocked processes may still change the namespace of a
1168 * landlocked process, but this kind of threat must be handled by a system-wide
1169 * access-control security policy.
1170 *
1171 * This could be lifted in the future if Landlock can safely handle mount
1172 * namespace updates requested by a landlocked process.  Indeed, we could
1173 * update the current domain (which is currently read-only) by taking into
1174 * account the accesses of the source and the destination of a new mount point.
1175 * However, it would also require to make all the child domains dynamically
1176 * inherit these new constraints.  Anyway, for backward compatibility reasons,
1177 * a dedicated user space option would be required (e.g. as a ruleset flag).
1178 */
1179static int hook_sb_mount(const char *const dev_name,
1180			 const struct path *const path, const char *const type,
1181			 const unsigned long flags, void *const data)
1182{
1183	if (!get_current_fs_domain())
1184		return 0;
1185	return -EPERM;
1186}
1187
1188static int hook_move_mount(const struct path *const from_path,
1189			   const struct path *const to_path)
1190{
1191	if (!get_current_fs_domain())
1192		return 0;
1193	return -EPERM;
1194}
1195
1196/*
1197 * Removing a mount point may reveal a previously hidden file hierarchy, which
1198 * may then grant access to files, which may have previously been forbidden.
1199 */
1200static int hook_sb_umount(struct vfsmount *const mnt, const int flags)
1201{
1202	if (!get_current_fs_domain())
1203		return 0;
1204	return -EPERM;
1205}
1206
1207static int hook_sb_remount(struct super_block *const sb, void *const mnt_opts)
1208{
1209	if (!get_current_fs_domain())
1210		return 0;
1211	return -EPERM;
1212}
1213
1214/*
1215 * pivot_root(2), like mount(2), changes the current mount namespace.  It must
1216 * then be forbidden for a landlocked process.
1217 *
1218 * However, chroot(2) may be allowed because it only changes the relative root
1219 * directory of the current process.  Moreover, it can be used to restrict the
1220 * view of the filesystem.
1221 */
1222static int hook_sb_pivotroot(const struct path *const old_path,
1223			     const struct path *const new_path)
1224{
1225	if (!get_current_fs_domain())
1226		return 0;
1227	return -EPERM;
1228}
1229
1230/* Path hooks */
1231
1232static int hook_path_link(struct dentry *const old_dentry,
1233			  const struct path *const new_dir,
1234			  struct dentry *const new_dentry)
1235{
1236	return current_check_refer_path(old_dentry, new_dir, new_dentry, false,
1237					false);
1238}
1239
1240static int hook_path_rename(const struct path *const old_dir,
1241			    struct dentry *const old_dentry,
1242			    const struct path *const new_dir,
1243			    struct dentry *const new_dentry,
1244			    const unsigned int flags)
1245{
1246	/* old_dir refers to old_dentry->d_parent and new_dir->mnt */
1247	return current_check_refer_path(old_dentry, new_dir, new_dentry, true,
1248					!!(flags & RENAME_EXCHANGE));
1249}
1250
1251static int hook_path_mkdir(const struct path *const dir,
1252			   struct dentry *const dentry, const umode_t mode)
1253{
1254	return current_check_access_path(dir, LANDLOCK_ACCESS_FS_MAKE_DIR);
1255}
1256
1257static int hook_path_mknod(const struct path *const dir,
1258			   struct dentry *const dentry, const umode_t mode,
1259			   const unsigned int dev)
1260{
1261	const struct landlock_ruleset *const dom = get_current_fs_domain();
1262
1263	if (!dom)
1264		return 0;
1265	return check_access_path(dom, dir, get_mode_access(mode));
1266}
1267
1268static int hook_path_symlink(const struct path *const dir,
1269			     struct dentry *const dentry,
1270			     const char *const old_name)
1271{
1272	return current_check_access_path(dir, LANDLOCK_ACCESS_FS_MAKE_SYM);
1273}
1274
1275static int hook_path_unlink(const struct path *const dir,
1276			    struct dentry *const dentry)
1277{
1278	return current_check_access_path(dir, LANDLOCK_ACCESS_FS_REMOVE_FILE);
1279}
1280
1281static int hook_path_rmdir(const struct path *const dir,
1282			   struct dentry *const dentry)
1283{
1284	return current_check_access_path(dir, LANDLOCK_ACCESS_FS_REMOVE_DIR);
1285}
1286
1287static int hook_path_truncate(const struct path *const path)
1288{
1289	return current_check_access_path(path, LANDLOCK_ACCESS_FS_TRUNCATE);
1290}
1291
1292/* File hooks */
1293
1294/**
1295 * get_required_file_open_access - Get access needed to open a file
1296 *
1297 * @file: File being opened.
1298 *
1299 * Returns the access rights that are required for opening the given file,
1300 * depending on the file type and open mode.
1301 */
1302static access_mask_t
1303get_required_file_open_access(const struct file *const file)
1304{
1305	access_mask_t access = 0;
1306
1307	if (file->f_mode & FMODE_READ) {
1308		/* A directory can only be opened in read mode. */
1309		if (S_ISDIR(file_inode(file)->i_mode))
1310			return LANDLOCK_ACCESS_FS_READ_DIR;
1311		access = LANDLOCK_ACCESS_FS_READ_FILE;
1312	}
1313	if (file->f_mode & FMODE_WRITE)
1314		access |= LANDLOCK_ACCESS_FS_WRITE_FILE;
1315	/* __FMODE_EXEC is indeed part of f_flags, not f_mode. */
1316	if (file->f_flags & __FMODE_EXEC)
1317		access |= LANDLOCK_ACCESS_FS_EXECUTE;
1318	return access;
1319}
1320
1321static int hook_file_alloc_security(struct file *const file)
1322{
1323	/*
1324	 * Grants all access rights, even if most of them are not checked later
1325	 * on. It is more consistent.
1326	 *
1327	 * Notably, file descriptors for regular files can also be acquired
1328	 * without going through the file_open hook, for example when using
1329	 * memfd_create(2).
1330	 */
1331	landlock_file(file)->allowed_access = LANDLOCK_MASK_ACCESS_FS;
1332	return 0;
1333}
1334
1335static int hook_file_open(struct file *const file)
1336{
1337	layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {};
1338	access_mask_t open_access_request, full_access_request, allowed_access;
1339	const access_mask_t optional_access = LANDLOCK_ACCESS_FS_TRUNCATE;
1340	const struct landlock_ruleset *const dom =
1341		get_fs_domain(landlock_cred(file->f_cred)->domain);
1342
1343	if (!dom)
1344		return 0;
1345
1346	/*
1347	 * Because a file may be opened with O_PATH, get_required_file_open_access()
1348	 * may return 0.  This case will be handled with a future Landlock
1349	 * evolution.
1350	 */
1351	open_access_request = get_required_file_open_access(file);
1352
1353	/*
1354	 * We look up more access than what we immediately need for open(), so
1355	 * that we can later authorize operations on opened files.
1356	 */
1357	full_access_request = open_access_request | optional_access;
1358
1359	if (is_access_to_paths_allowed(
1360		    dom, &file->f_path,
1361		    landlock_init_layer_masks(dom, full_access_request,
1362					      &layer_masks, LANDLOCK_KEY_INODE),
1363		    &layer_masks, NULL, 0, NULL, NULL)) {
1364		allowed_access = full_access_request;
1365	} else {
1366		unsigned long access_bit;
1367		const unsigned long access_req = full_access_request;
1368
1369		/*
1370		 * Calculate the actual allowed access rights from layer_masks.
1371		 * Add each access right to allowed_access which has not been
1372		 * vetoed by any layer.
1373		 */
1374		allowed_access = 0;
1375		for_each_set_bit(access_bit, &access_req,
1376				 ARRAY_SIZE(layer_masks)) {
1377			if (!layer_masks[access_bit])
1378				allowed_access |= BIT_ULL(access_bit);
1379		}
1380	}
1381
1382	/*
1383	 * For operations on already opened files (i.e. ftruncate()), it is the
1384	 * access rights at the time of open() which decide whether the
1385	 * operation is permitted. Therefore, we record the relevant subset of
1386	 * file access rights in the opened struct file.
1387	 */
1388	landlock_file(file)->allowed_access = allowed_access;
1389
1390	if ((open_access_request & allowed_access) == open_access_request)
1391		return 0;
1392
1393	return -EACCES;
1394}
1395
1396static int hook_file_truncate(struct file *const file)
1397{
1398	/*
1399	 * Allows truncation if the truncate right was available at the time of
1400	 * opening the file, to get a consistent access check as for read, write
1401	 * and execute operations.
1402	 *
1403	 * Note: For checks done based on the file's Landlock allowed access, we
1404	 * enforce them independently of whether the current thread is in a
1405	 * Landlock domain, so that open files passed between independent
1406	 * processes retain their behaviour.
1407	 */
1408	if (landlock_file(file)->allowed_access & LANDLOCK_ACCESS_FS_TRUNCATE)
1409		return 0;
1410	return -EACCES;
1411}
1412
1413static struct security_hook_list landlock_hooks[] __ro_after_init = {
1414	LSM_HOOK_INIT(inode_free_security, hook_inode_free_security),
1415
1416	LSM_HOOK_INIT(sb_delete, hook_sb_delete),
1417	LSM_HOOK_INIT(sb_mount, hook_sb_mount),
1418	LSM_HOOK_INIT(move_mount, hook_move_mount),
1419	LSM_HOOK_INIT(sb_umount, hook_sb_umount),
1420	LSM_HOOK_INIT(sb_remount, hook_sb_remount),
1421	LSM_HOOK_INIT(sb_pivotroot, hook_sb_pivotroot),
1422
1423	LSM_HOOK_INIT(path_link, hook_path_link),
1424	LSM_HOOK_INIT(path_rename, hook_path_rename),
1425	LSM_HOOK_INIT(path_mkdir, hook_path_mkdir),
1426	LSM_HOOK_INIT(path_mknod, hook_path_mknod),
1427	LSM_HOOK_INIT(path_symlink, hook_path_symlink),
1428	LSM_HOOK_INIT(path_unlink, hook_path_unlink),
1429	LSM_HOOK_INIT(path_rmdir, hook_path_rmdir),
1430	LSM_HOOK_INIT(path_truncate, hook_path_truncate),
1431
1432	LSM_HOOK_INIT(file_alloc_security, hook_file_alloc_security),
1433	LSM_HOOK_INIT(file_open, hook_file_open),
1434	LSM_HOOK_INIT(file_truncate, hook_file_truncate),
1435};
1436
1437__init void landlock_add_fs_hooks(void)
1438{
1439	security_add_hooks(landlock_hooks, ARRAY_SIZE(landlock_hooks),
1440			   &landlock_lsmid);
1441}
1442
1443#ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST
1444
1445/* clang-format off */
1446static struct kunit_case test_cases[] = {
1447	KUNIT_CASE(test_no_more_access),
1448	KUNIT_CASE(test_scope_to_request_with_exec_none),
1449	KUNIT_CASE(test_scope_to_request_with_exec_some),
1450	KUNIT_CASE(test_scope_to_request_without_access),
1451	KUNIT_CASE(test_is_eacces_with_none),
1452	KUNIT_CASE(test_is_eacces_with_refer),
1453	KUNIT_CASE(test_is_eacces_with_write),
1454	{}
1455};
1456/* clang-format on */
1457
1458static struct kunit_suite test_suite = {
1459	.name = "landlock_fs",
1460	.test_cases = test_cases,
1461};
1462
1463kunit_test_suite(test_suite);
1464
1465#endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */
1466