1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2010 IBM Corporation
4 * Copyright (C) 2010 Politecnico di Torino, Italy
5 *                    TORSEC group -- https://security.polito.it
6 *
7 * Authors:
8 * Mimi Zohar <zohar@us.ibm.com>
9 * Roberto Sassu <roberto.sassu@polito.it>
10 *
11 * See Documentation/security/keys/trusted-encrypted.rst
12 */
13
14#include <linux/uaccess.h>
15#include <linux/module.h>
16#include <linux/init.h>
17#include <linux/slab.h>
18#include <linux/parser.h>
19#include <linux/string.h>
20#include <linux/err.h>
21#include <keys/user-type.h>
22#include <keys/trusted-type.h>
23#include <keys/encrypted-type.h>
24#include <linux/key-type.h>
25#include <linux/random.h>
26#include <linux/rcupdate.h>
27#include <linux/scatterlist.h>
28#include <linux/ctype.h>
29#include <crypto/aes.h>
30#include <crypto/hash.h>
31#include <crypto/sha2.h>
32#include <crypto/skcipher.h>
33#include <crypto/utils.h>
34
35#include "encrypted.h"
36#include "ecryptfs_format.h"
37
38static const char KEY_TRUSTED_PREFIX[] = "trusted:";
39static const char KEY_USER_PREFIX[] = "user:";
40static const char hash_alg[] = "sha256";
41static const char hmac_alg[] = "hmac(sha256)";
42static const char blkcipher_alg[] = "cbc(aes)";
43static const char key_format_default[] = "default";
44static const char key_format_ecryptfs[] = "ecryptfs";
45static const char key_format_enc32[] = "enc32";
46static unsigned int ivsize;
47static int blksize;
48
49#define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
50#define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
51#define KEY_ECRYPTFS_DESC_LEN 16
52#define HASH_SIZE SHA256_DIGEST_SIZE
53#define MAX_DATA_SIZE 4096
54#define MIN_DATA_SIZE  20
55#define KEY_ENC32_PAYLOAD_LEN 32
56
57static struct crypto_shash *hash_tfm;
58
59enum {
60	Opt_new, Opt_load, Opt_update, Opt_err
61};
62
63enum {
64	Opt_default, Opt_ecryptfs, Opt_enc32, Opt_error
65};
66
67static const match_table_t key_format_tokens = {
68	{Opt_default, "default"},
69	{Opt_ecryptfs, "ecryptfs"},
70	{Opt_enc32, "enc32"},
71	{Opt_error, NULL}
72};
73
74static const match_table_t key_tokens = {
75	{Opt_new, "new"},
76	{Opt_load, "load"},
77	{Opt_update, "update"},
78	{Opt_err, NULL}
79};
80
81static bool user_decrypted_data = IS_ENABLED(CONFIG_USER_DECRYPTED_DATA);
82module_param(user_decrypted_data, bool, 0);
83MODULE_PARM_DESC(user_decrypted_data,
84	"Allow instantiation of encrypted keys using provided decrypted data");
85
86static int aes_get_sizes(void)
87{
88	struct crypto_skcipher *tfm;
89
90	tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
91	if (IS_ERR(tfm)) {
92		pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
93		       PTR_ERR(tfm));
94		return PTR_ERR(tfm);
95	}
96	ivsize = crypto_skcipher_ivsize(tfm);
97	blksize = crypto_skcipher_blocksize(tfm);
98	crypto_free_skcipher(tfm);
99	return 0;
100}
101
102/*
103 * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
104 *
105 * The description of a encrypted key with format 'ecryptfs' must contain
106 * exactly 16 hexadecimal characters.
107 *
108 */
109static int valid_ecryptfs_desc(const char *ecryptfs_desc)
110{
111	int i;
112
113	if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
114		pr_err("encrypted_key: key description must be %d hexadecimal "
115		       "characters long\n", KEY_ECRYPTFS_DESC_LEN);
116		return -EINVAL;
117	}
118
119	for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
120		if (!isxdigit(ecryptfs_desc[i])) {
121			pr_err("encrypted_key: key description must contain "
122			       "only hexadecimal characters\n");
123			return -EINVAL;
124		}
125	}
126
127	return 0;
128}
129
130/*
131 * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
132 *
133 * key-type:= "trusted:" | "user:"
134 * desc:= master-key description
135 *
136 * Verify that 'key-type' is valid and that 'desc' exists. On key update,
137 * only the master key description is permitted to change, not the key-type.
138 * The key-type remains constant.
139 *
140 * On success returns 0, otherwise -EINVAL.
141 */
142static int valid_master_desc(const char *new_desc, const char *orig_desc)
143{
144	int prefix_len;
145
146	if (!strncmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN))
147		prefix_len = KEY_TRUSTED_PREFIX_LEN;
148	else if (!strncmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN))
149		prefix_len = KEY_USER_PREFIX_LEN;
150	else
151		return -EINVAL;
152
153	if (!new_desc[prefix_len])
154		return -EINVAL;
155
156	if (orig_desc && strncmp(new_desc, orig_desc, prefix_len))
157		return -EINVAL;
158
159	return 0;
160}
161
162/*
163 * datablob_parse - parse the keyctl data
164 *
165 * datablob format:
166 * new [<format>] <master-key name> <decrypted data length> [<decrypted data>]
167 * load [<format>] <master-key name> <decrypted data length>
168 *     <encrypted iv + data>
169 * update <new-master-key name>
170 *
171 * Tokenizes a copy of the keyctl data, returning a pointer to each token,
172 * which is null terminated.
173 *
174 * On success returns 0, otherwise -EINVAL.
175 */
176static int datablob_parse(char *datablob, const char **format,
177			  char **master_desc, char **decrypted_datalen,
178			  char **hex_encoded_iv, char **decrypted_data)
179{
180	substring_t args[MAX_OPT_ARGS];
181	int ret = -EINVAL;
182	int key_cmd;
183	int key_format;
184	char *p, *keyword;
185
186	keyword = strsep(&datablob, " \t");
187	if (!keyword) {
188		pr_info("encrypted_key: insufficient parameters specified\n");
189		return ret;
190	}
191	key_cmd = match_token(keyword, key_tokens, args);
192
193	/* Get optional format: default | ecryptfs */
194	p = strsep(&datablob, " \t");
195	if (!p) {
196		pr_err("encrypted_key: insufficient parameters specified\n");
197		return ret;
198	}
199
200	key_format = match_token(p, key_format_tokens, args);
201	switch (key_format) {
202	case Opt_ecryptfs:
203	case Opt_enc32:
204	case Opt_default:
205		*format = p;
206		*master_desc = strsep(&datablob, " \t");
207		break;
208	case Opt_error:
209		*master_desc = p;
210		break;
211	}
212
213	if (!*master_desc) {
214		pr_info("encrypted_key: master key parameter is missing\n");
215		goto out;
216	}
217
218	if (valid_master_desc(*master_desc, NULL) < 0) {
219		pr_info("encrypted_key: master key parameter \'%s\' "
220			"is invalid\n", *master_desc);
221		goto out;
222	}
223
224	if (decrypted_datalen) {
225		*decrypted_datalen = strsep(&datablob, " \t");
226		if (!*decrypted_datalen) {
227			pr_info("encrypted_key: keylen parameter is missing\n");
228			goto out;
229		}
230	}
231
232	switch (key_cmd) {
233	case Opt_new:
234		if (!decrypted_datalen) {
235			pr_info("encrypted_key: keyword \'%s\' not allowed "
236				"when called from .update method\n", keyword);
237			break;
238		}
239		*decrypted_data = strsep(&datablob, " \t");
240		ret = 0;
241		break;
242	case Opt_load:
243		if (!decrypted_datalen) {
244			pr_info("encrypted_key: keyword \'%s\' not allowed "
245				"when called from .update method\n", keyword);
246			break;
247		}
248		*hex_encoded_iv = strsep(&datablob, " \t");
249		if (!*hex_encoded_iv) {
250			pr_info("encrypted_key: hex blob is missing\n");
251			break;
252		}
253		ret = 0;
254		break;
255	case Opt_update:
256		if (decrypted_datalen) {
257			pr_info("encrypted_key: keyword \'%s\' not allowed "
258				"when called from .instantiate method\n",
259				keyword);
260			break;
261		}
262		ret = 0;
263		break;
264	case Opt_err:
265		pr_info("encrypted_key: keyword \'%s\' not recognized\n",
266			keyword);
267		break;
268	}
269out:
270	return ret;
271}
272
273/*
274 * datablob_format - format as an ascii string, before copying to userspace
275 */
276static char *datablob_format(struct encrypted_key_payload *epayload,
277			     size_t asciiblob_len)
278{
279	char *ascii_buf, *bufp;
280	u8 *iv = epayload->iv;
281	int len;
282	int i;
283
284	ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
285	if (!ascii_buf)
286		goto out;
287
288	ascii_buf[asciiblob_len] = '\0';
289
290	/* copy datablob master_desc and datalen strings */
291	len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
292		      epayload->master_desc, epayload->datalen);
293
294	/* convert the hex encoded iv, encrypted-data and HMAC to ascii */
295	bufp = &ascii_buf[len];
296	for (i = 0; i < (asciiblob_len - len) / 2; i++)
297		bufp = hex_byte_pack(bufp, iv[i]);
298out:
299	return ascii_buf;
300}
301
302/*
303 * request_user_key - request the user key
304 *
305 * Use a user provided key to encrypt/decrypt an encrypted-key.
306 */
307static struct key *request_user_key(const char *master_desc, const u8 **master_key,
308				    size_t *master_keylen)
309{
310	const struct user_key_payload *upayload;
311	struct key *ukey;
312
313	ukey = request_key(&key_type_user, master_desc, NULL);
314	if (IS_ERR(ukey))
315		goto error;
316
317	down_read(&ukey->sem);
318	upayload = user_key_payload_locked(ukey);
319	if (!upayload) {
320		/* key was revoked before we acquired its semaphore */
321		up_read(&ukey->sem);
322		key_put(ukey);
323		ukey = ERR_PTR(-EKEYREVOKED);
324		goto error;
325	}
326	*master_key = upayload->data;
327	*master_keylen = upayload->datalen;
328error:
329	return ukey;
330}
331
332static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen,
333		     const u8 *buf, unsigned int buflen)
334{
335	struct crypto_shash *tfm;
336	int err;
337
338	tfm = crypto_alloc_shash(hmac_alg, 0, 0);
339	if (IS_ERR(tfm)) {
340		pr_err("encrypted_key: can't alloc %s transform: %ld\n",
341		       hmac_alg, PTR_ERR(tfm));
342		return PTR_ERR(tfm);
343	}
344
345	err = crypto_shash_setkey(tfm, key, keylen);
346	if (!err)
347		err = crypto_shash_tfm_digest(tfm, buf, buflen, digest);
348	crypto_free_shash(tfm);
349	return err;
350}
351
352enum derived_key_type { ENC_KEY, AUTH_KEY };
353
354/* Derive authentication/encryption key from trusted key */
355static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
356			   const u8 *master_key, size_t master_keylen)
357{
358	u8 *derived_buf;
359	unsigned int derived_buf_len;
360	int ret;
361
362	derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
363	if (derived_buf_len < HASH_SIZE)
364		derived_buf_len = HASH_SIZE;
365
366	derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
367	if (!derived_buf)
368		return -ENOMEM;
369
370	if (key_type)
371		strcpy(derived_buf, "AUTH_KEY");
372	else
373		strcpy(derived_buf, "ENC_KEY");
374
375	memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
376	       master_keylen);
377	ret = crypto_shash_tfm_digest(hash_tfm, derived_buf, derived_buf_len,
378				      derived_key);
379	kfree_sensitive(derived_buf);
380	return ret;
381}
382
383static struct skcipher_request *init_skcipher_req(const u8 *key,
384						  unsigned int key_len)
385{
386	struct skcipher_request *req;
387	struct crypto_skcipher *tfm;
388	int ret;
389
390	tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
391	if (IS_ERR(tfm)) {
392		pr_err("encrypted_key: failed to load %s transform (%ld)\n",
393		       blkcipher_alg, PTR_ERR(tfm));
394		return ERR_CAST(tfm);
395	}
396
397	ret = crypto_skcipher_setkey(tfm, key, key_len);
398	if (ret < 0) {
399		pr_err("encrypted_key: failed to setkey (%d)\n", ret);
400		crypto_free_skcipher(tfm);
401		return ERR_PTR(ret);
402	}
403
404	req = skcipher_request_alloc(tfm, GFP_KERNEL);
405	if (!req) {
406		pr_err("encrypted_key: failed to allocate request for %s\n",
407		       blkcipher_alg);
408		crypto_free_skcipher(tfm);
409		return ERR_PTR(-ENOMEM);
410	}
411
412	skcipher_request_set_callback(req, 0, NULL, NULL);
413	return req;
414}
415
416static struct key *request_master_key(struct encrypted_key_payload *epayload,
417				      const u8 **master_key, size_t *master_keylen)
418{
419	struct key *mkey = ERR_PTR(-EINVAL);
420
421	if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
422		     KEY_TRUSTED_PREFIX_LEN)) {
423		mkey = request_trusted_key(epayload->master_desc +
424					   KEY_TRUSTED_PREFIX_LEN,
425					   master_key, master_keylen);
426	} else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
427			    KEY_USER_PREFIX_LEN)) {
428		mkey = request_user_key(epayload->master_desc +
429					KEY_USER_PREFIX_LEN,
430					master_key, master_keylen);
431	} else
432		goto out;
433
434	if (IS_ERR(mkey)) {
435		int ret = PTR_ERR(mkey);
436
437		if (ret == -ENOTSUPP)
438			pr_info("encrypted_key: key %s not supported",
439				epayload->master_desc);
440		else
441			pr_info("encrypted_key: key %s not found",
442				epayload->master_desc);
443		goto out;
444	}
445
446	dump_master_key(*master_key, *master_keylen);
447out:
448	return mkey;
449}
450
451/* Before returning data to userspace, encrypt decrypted data. */
452static int derived_key_encrypt(struct encrypted_key_payload *epayload,
453			       const u8 *derived_key,
454			       unsigned int derived_keylen)
455{
456	struct scatterlist sg_in[2];
457	struct scatterlist sg_out[1];
458	struct crypto_skcipher *tfm;
459	struct skcipher_request *req;
460	unsigned int encrypted_datalen;
461	u8 iv[AES_BLOCK_SIZE];
462	int ret;
463
464	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
465
466	req = init_skcipher_req(derived_key, derived_keylen);
467	ret = PTR_ERR(req);
468	if (IS_ERR(req))
469		goto out;
470	dump_decrypted_data(epayload);
471
472	sg_init_table(sg_in, 2);
473	sg_set_buf(&sg_in[0], epayload->decrypted_data,
474		   epayload->decrypted_datalen);
475	sg_set_page(&sg_in[1], ZERO_PAGE(0), AES_BLOCK_SIZE, 0);
476
477	sg_init_table(sg_out, 1);
478	sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
479
480	memcpy(iv, epayload->iv, sizeof(iv));
481	skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
482	ret = crypto_skcipher_encrypt(req);
483	tfm = crypto_skcipher_reqtfm(req);
484	skcipher_request_free(req);
485	crypto_free_skcipher(tfm);
486	if (ret < 0)
487		pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
488	else
489		dump_encrypted_data(epayload, encrypted_datalen);
490out:
491	return ret;
492}
493
494static int datablob_hmac_append(struct encrypted_key_payload *epayload,
495				const u8 *master_key, size_t master_keylen)
496{
497	u8 derived_key[HASH_SIZE];
498	u8 *digest;
499	int ret;
500
501	ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
502	if (ret < 0)
503		goto out;
504
505	digest = epayload->format + epayload->datablob_len;
506	ret = calc_hmac(digest, derived_key, sizeof derived_key,
507			epayload->format, epayload->datablob_len);
508	if (!ret)
509		dump_hmac(NULL, digest, HASH_SIZE);
510out:
511	memzero_explicit(derived_key, sizeof(derived_key));
512	return ret;
513}
514
515/* verify HMAC before decrypting encrypted key */
516static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
517				const u8 *format, const u8 *master_key,
518				size_t master_keylen)
519{
520	u8 derived_key[HASH_SIZE];
521	u8 digest[HASH_SIZE];
522	int ret;
523	char *p;
524	unsigned short len;
525
526	ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
527	if (ret < 0)
528		goto out;
529
530	len = epayload->datablob_len;
531	if (!format) {
532		p = epayload->master_desc;
533		len -= strlen(epayload->format) + 1;
534	} else
535		p = epayload->format;
536
537	ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len);
538	if (ret < 0)
539		goto out;
540	ret = crypto_memneq(digest, epayload->format + epayload->datablob_len,
541			    sizeof(digest));
542	if (ret) {
543		ret = -EINVAL;
544		dump_hmac("datablob",
545			  epayload->format + epayload->datablob_len,
546			  HASH_SIZE);
547		dump_hmac("calc", digest, HASH_SIZE);
548	}
549out:
550	memzero_explicit(derived_key, sizeof(derived_key));
551	return ret;
552}
553
554static int derived_key_decrypt(struct encrypted_key_payload *epayload,
555			       const u8 *derived_key,
556			       unsigned int derived_keylen)
557{
558	struct scatterlist sg_in[1];
559	struct scatterlist sg_out[2];
560	struct crypto_skcipher *tfm;
561	struct skcipher_request *req;
562	unsigned int encrypted_datalen;
563	u8 iv[AES_BLOCK_SIZE];
564	u8 *pad;
565	int ret;
566
567	/* Throwaway buffer to hold the unused zero padding at the end */
568	pad = kmalloc(AES_BLOCK_SIZE, GFP_KERNEL);
569	if (!pad)
570		return -ENOMEM;
571
572	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
573	req = init_skcipher_req(derived_key, derived_keylen);
574	ret = PTR_ERR(req);
575	if (IS_ERR(req))
576		goto out;
577	dump_encrypted_data(epayload, encrypted_datalen);
578
579	sg_init_table(sg_in, 1);
580	sg_init_table(sg_out, 2);
581	sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
582	sg_set_buf(&sg_out[0], epayload->decrypted_data,
583		   epayload->decrypted_datalen);
584	sg_set_buf(&sg_out[1], pad, AES_BLOCK_SIZE);
585
586	memcpy(iv, epayload->iv, sizeof(iv));
587	skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
588	ret = crypto_skcipher_decrypt(req);
589	tfm = crypto_skcipher_reqtfm(req);
590	skcipher_request_free(req);
591	crypto_free_skcipher(tfm);
592	if (ret < 0)
593		goto out;
594	dump_decrypted_data(epayload);
595out:
596	kfree(pad);
597	return ret;
598}
599
600/* Allocate memory for decrypted key and datablob. */
601static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
602							 const char *format,
603							 const char *master_desc,
604							 const char *datalen,
605							 const char *decrypted_data)
606{
607	struct encrypted_key_payload *epayload = NULL;
608	unsigned short datablob_len;
609	unsigned short decrypted_datalen;
610	unsigned short payload_datalen;
611	unsigned int encrypted_datalen;
612	unsigned int format_len;
613	long dlen;
614	int i;
615	int ret;
616
617	ret = kstrtol(datalen, 10, &dlen);
618	if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
619		return ERR_PTR(-EINVAL);
620
621	format_len = (!format) ? strlen(key_format_default) : strlen(format);
622	decrypted_datalen = dlen;
623	payload_datalen = decrypted_datalen;
624
625	if (decrypted_data) {
626		if (!user_decrypted_data) {
627			pr_err("encrypted key: instantiation of keys using provided decrypted data is disabled since CONFIG_USER_DECRYPTED_DATA is set to false\n");
628			return ERR_PTR(-EINVAL);
629		}
630		if (strlen(decrypted_data) != decrypted_datalen * 2) {
631			pr_err("encrypted key: decrypted data provided does not match decrypted data length provided\n");
632			return ERR_PTR(-EINVAL);
633		}
634		for (i = 0; i < strlen(decrypted_data); i++) {
635			if (!isxdigit(decrypted_data[i])) {
636				pr_err("encrypted key: decrypted data provided must contain only hexadecimal characters\n");
637				return ERR_PTR(-EINVAL);
638			}
639		}
640	}
641
642	if (format) {
643		if (!strcmp(format, key_format_ecryptfs)) {
644			if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
645				pr_err("encrypted_key: keylen for the ecryptfs format must be equal to %d bytes\n",
646					ECRYPTFS_MAX_KEY_BYTES);
647				return ERR_PTR(-EINVAL);
648			}
649			decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
650			payload_datalen = sizeof(struct ecryptfs_auth_tok);
651		} else if (!strcmp(format, key_format_enc32)) {
652			if (decrypted_datalen != KEY_ENC32_PAYLOAD_LEN) {
653				pr_err("encrypted_key: enc32 key payload incorrect length: %d\n",
654						decrypted_datalen);
655				return ERR_PTR(-EINVAL);
656			}
657		}
658	}
659
660	encrypted_datalen = roundup(decrypted_datalen, blksize);
661
662	datablob_len = format_len + 1 + strlen(master_desc) + 1
663	    + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
664
665	ret = key_payload_reserve(key, payload_datalen + datablob_len
666				  + HASH_SIZE + 1);
667	if (ret < 0)
668		return ERR_PTR(ret);
669
670	epayload = kzalloc(sizeof(*epayload) + payload_datalen +
671			   datablob_len + HASH_SIZE + 1, GFP_KERNEL);
672	if (!epayload)
673		return ERR_PTR(-ENOMEM);
674
675	epayload->payload_datalen = payload_datalen;
676	epayload->decrypted_datalen = decrypted_datalen;
677	epayload->datablob_len = datablob_len;
678	return epayload;
679}
680
681static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
682				 const char *format, const char *hex_encoded_iv)
683{
684	struct key *mkey;
685	u8 derived_key[HASH_SIZE];
686	const u8 *master_key;
687	u8 *hmac;
688	const char *hex_encoded_data;
689	unsigned int encrypted_datalen;
690	size_t master_keylen;
691	size_t asciilen;
692	int ret;
693
694	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
695	asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
696	if (strlen(hex_encoded_iv) != asciilen)
697		return -EINVAL;
698
699	hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
700	ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize);
701	if (ret < 0)
702		return -EINVAL;
703	ret = hex2bin(epayload->encrypted_data, hex_encoded_data,
704		      encrypted_datalen);
705	if (ret < 0)
706		return -EINVAL;
707
708	hmac = epayload->format + epayload->datablob_len;
709	ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2),
710		      HASH_SIZE);
711	if (ret < 0)
712		return -EINVAL;
713
714	mkey = request_master_key(epayload, &master_key, &master_keylen);
715	if (IS_ERR(mkey))
716		return PTR_ERR(mkey);
717
718	ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
719	if (ret < 0) {
720		pr_err("encrypted_key: bad hmac (%d)\n", ret);
721		goto out;
722	}
723
724	ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
725	if (ret < 0)
726		goto out;
727
728	ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
729	if (ret < 0)
730		pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
731out:
732	up_read(&mkey->sem);
733	key_put(mkey);
734	memzero_explicit(derived_key, sizeof(derived_key));
735	return ret;
736}
737
738static void __ekey_init(struct encrypted_key_payload *epayload,
739			const char *format, const char *master_desc,
740			const char *datalen)
741{
742	unsigned int format_len;
743
744	format_len = (!format) ? strlen(key_format_default) : strlen(format);
745	epayload->format = epayload->payload_data + epayload->payload_datalen;
746	epayload->master_desc = epayload->format + format_len + 1;
747	epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
748	epayload->iv = epayload->datalen + strlen(datalen) + 1;
749	epayload->encrypted_data = epayload->iv + ivsize + 1;
750	epayload->decrypted_data = epayload->payload_data;
751
752	if (!format)
753		memcpy(epayload->format, key_format_default, format_len);
754	else {
755		if (!strcmp(format, key_format_ecryptfs))
756			epayload->decrypted_data =
757				ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data);
758
759		memcpy(epayload->format, format, format_len);
760	}
761
762	memcpy(epayload->master_desc, master_desc, strlen(master_desc));
763	memcpy(epayload->datalen, datalen, strlen(datalen));
764}
765
766/*
767 * encrypted_init - initialize an encrypted key
768 *
769 * For a new key, use either a random number or user-provided decrypted data in
770 * case it is provided. A random number is used for the iv in both cases. For
771 * an old key, decrypt the hex encoded data.
772 */
773static int encrypted_init(struct encrypted_key_payload *epayload,
774			  const char *key_desc, const char *format,
775			  const char *master_desc, const char *datalen,
776			  const char *hex_encoded_iv, const char *decrypted_data)
777{
778	int ret = 0;
779
780	if (format && !strcmp(format, key_format_ecryptfs)) {
781		ret = valid_ecryptfs_desc(key_desc);
782		if (ret < 0)
783			return ret;
784
785		ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data,
786				       key_desc);
787	}
788
789	__ekey_init(epayload, format, master_desc, datalen);
790	if (hex_encoded_iv) {
791		ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
792	} else if (decrypted_data) {
793		get_random_bytes(epayload->iv, ivsize);
794		ret = hex2bin(epayload->decrypted_data, decrypted_data,
795			      epayload->decrypted_datalen);
796	} else {
797		get_random_bytes(epayload->iv, ivsize);
798		get_random_bytes(epayload->decrypted_data, epayload->decrypted_datalen);
799	}
800	return ret;
801}
802
803/*
804 * encrypted_instantiate - instantiate an encrypted key
805 *
806 * Instantiates the key:
807 * - by decrypting an existing encrypted datablob, or
808 * - by creating a new encrypted key based on a kernel random number, or
809 * - using provided decrypted data.
810 *
811 * On success, return 0. Otherwise return errno.
812 */
813static int encrypted_instantiate(struct key *key,
814				 struct key_preparsed_payload *prep)
815{
816	struct encrypted_key_payload *epayload = NULL;
817	char *datablob = NULL;
818	const char *format = NULL;
819	char *master_desc = NULL;
820	char *decrypted_datalen = NULL;
821	char *hex_encoded_iv = NULL;
822	char *decrypted_data = NULL;
823	size_t datalen = prep->datalen;
824	int ret;
825
826	if (datalen <= 0 || datalen > 32767 || !prep->data)
827		return -EINVAL;
828
829	datablob = kmalloc(datalen + 1, GFP_KERNEL);
830	if (!datablob)
831		return -ENOMEM;
832	datablob[datalen] = 0;
833	memcpy(datablob, prep->data, datalen);
834	ret = datablob_parse(datablob, &format, &master_desc,
835			     &decrypted_datalen, &hex_encoded_iv, &decrypted_data);
836	if (ret < 0)
837		goto out;
838
839	epayload = encrypted_key_alloc(key, format, master_desc,
840				       decrypted_datalen, decrypted_data);
841	if (IS_ERR(epayload)) {
842		ret = PTR_ERR(epayload);
843		goto out;
844	}
845	ret = encrypted_init(epayload, key->description, format, master_desc,
846			     decrypted_datalen, hex_encoded_iv, decrypted_data);
847	if (ret < 0) {
848		kfree_sensitive(epayload);
849		goto out;
850	}
851
852	rcu_assign_keypointer(key, epayload);
853out:
854	kfree_sensitive(datablob);
855	return ret;
856}
857
858static void encrypted_rcu_free(struct rcu_head *rcu)
859{
860	struct encrypted_key_payload *epayload;
861
862	epayload = container_of(rcu, struct encrypted_key_payload, rcu);
863	kfree_sensitive(epayload);
864}
865
866/*
867 * encrypted_update - update the master key description
868 *
869 * Change the master key description for an existing encrypted key.
870 * The next read will return an encrypted datablob using the new
871 * master key description.
872 *
873 * On success, return 0. Otherwise return errno.
874 */
875static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
876{
877	struct encrypted_key_payload *epayload = key->payload.data[0];
878	struct encrypted_key_payload *new_epayload;
879	char *buf;
880	char *new_master_desc = NULL;
881	const char *format = NULL;
882	size_t datalen = prep->datalen;
883	int ret = 0;
884
885	if (key_is_negative(key))
886		return -ENOKEY;
887	if (datalen <= 0 || datalen > 32767 || !prep->data)
888		return -EINVAL;
889
890	buf = kmalloc(datalen + 1, GFP_KERNEL);
891	if (!buf)
892		return -ENOMEM;
893
894	buf[datalen] = 0;
895	memcpy(buf, prep->data, datalen);
896	ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL, NULL);
897	if (ret < 0)
898		goto out;
899
900	ret = valid_master_desc(new_master_desc, epayload->master_desc);
901	if (ret < 0)
902		goto out;
903
904	new_epayload = encrypted_key_alloc(key, epayload->format,
905					   new_master_desc, epayload->datalen, NULL);
906	if (IS_ERR(new_epayload)) {
907		ret = PTR_ERR(new_epayload);
908		goto out;
909	}
910
911	__ekey_init(new_epayload, epayload->format, new_master_desc,
912		    epayload->datalen);
913
914	memcpy(new_epayload->iv, epayload->iv, ivsize);
915	memcpy(new_epayload->payload_data, epayload->payload_data,
916	       epayload->payload_datalen);
917
918	rcu_assign_keypointer(key, new_epayload);
919	call_rcu(&epayload->rcu, encrypted_rcu_free);
920out:
921	kfree_sensitive(buf);
922	return ret;
923}
924
925/*
926 * encrypted_read - format and copy out the encrypted data
927 *
928 * The resulting datablob format is:
929 * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
930 *
931 * On success, return to userspace the encrypted key datablob size.
932 */
933static long encrypted_read(const struct key *key, char *buffer,
934			   size_t buflen)
935{
936	struct encrypted_key_payload *epayload;
937	struct key *mkey;
938	const u8 *master_key;
939	size_t master_keylen;
940	char derived_key[HASH_SIZE];
941	char *ascii_buf;
942	size_t asciiblob_len;
943	int ret;
944
945	epayload = dereference_key_locked(key);
946
947	/* returns the hex encoded iv, encrypted-data, and hmac as ascii */
948	asciiblob_len = epayload->datablob_len + ivsize + 1
949	    + roundup(epayload->decrypted_datalen, blksize)
950	    + (HASH_SIZE * 2);
951
952	if (!buffer || buflen < asciiblob_len)
953		return asciiblob_len;
954
955	mkey = request_master_key(epayload, &master_key, &master_keylen);
956	if (IS_ERR(mkey))
957		return PTR_ERR(mkey);
958
959	ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
960	if (ret < 0)
961		goto out;
962
963	ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
964	if (ret < 0)
965		goto out;
966
967	ret = datablob_hmac_append(epayload, master_key, master_keylen);
968	if (ret < 0)
969		goto out;
970
971	ascii_buf = datablob_format(epayload, asciiblob_len);
972	if (!ascii_buf) {
973		ret = -ENOMEM;
974		goto out;
975	}
976
977	up_read(&mkey->sem);
978	key_put(mkey);
979	memzero_explicit(derived_key, sizeof(derived_key));
980
981	memcpy(buffer, ascii_buf, asciiblob_len);
982	kfree_sensitive(ascii_buf);
983
984	return asciiblob_len;
985out:
986	up_read(&mkey->sem);
987	key_put(mkey);
988	memzero_explicit(derived_key, sizeof(derived_key));
989	return ret;
990}
991
992/*
993 * encrypted_destroy - clear and free the key's payload
994 */
995static void encrypted_destroy(struct key *key)
996{
997	kfree_sensitive(key->payload.data[0]);
998}
999
1000struct key_type key_type_encrypted = {
1001	.name = "encrypted",
1002	.instantiate = encrypted_instantiate,
1003	.update = encrypted_update,
1004	.destroy = encrypted_destroy,
1005	.describe = user_describe,
1006	.read = encrypted_read,
1007};
1008EXPORT_SYMBOL_GPL(key_type_encrypted);
1009
1010static int __init init_encrypted(void)
1011{
1012	int ret;
1013
1014	hash_tfm = crypto_alloc_shash(hash_alg, 0, 0);
1015	if (IS_ERR(hash_tfm)) {
1016		pr_err("encrypted_key: can't allocate %s transform: %ld\n",
1017		       hash_alg, PTR_ERR(hash_tfm));
1018		return PTR_ERR(hash_tfm);
1019	}
1020
1021	ret = aes_get_sizes();
1022	if (ret < 0)
1023		goto out;
1024	ret = register_key_type(&key_type_encrypted);
1025	if (ret < 0)
1026		goto out;
1027	return 0;
1028out:
1029	crypto_free_shash(hash_tfm);
1030	return ret;
1031
1032}
1033
1034static void __exit cleanup_encrypted(void)
1035{
1036	crypto_free_shash(hash_tfm);
1037	unregister_key_type(&key_type_encrypted);
1038}
1039
1040late_initcall(init_encrypted);
1041module_exit(cleanup_encrypted);
1042
1043MODULE_LICENSE("GPL");
1044