1// SPDX-License-Identifier: GPL-2.0-or-later
2/* Common capabilities, needed by capability.o.
3 */
4
5#include <linux/capability.h>
6#include <linux/audit.h>
7#include <linux/init.h>
8#include <linux/kernel.h>
9#include <linux/lsm_hooks.h>
10#include <linux/file.h>
11#include <linux/mm.h>
12#include <linux/mman.h>
13#include <linux/pagemap.h>
14#include <linux/swap.h>
15#include <linux/skbuff.h>
16#include <linux/netlink.h>
17#include <linux/ptrace.h>
18#include <linux/xattr.h>
19#include <linux/hugetlb.h>
20#include <linux/mount.h>
21#include <linux/sched.h>
22#include <linux/prctl.h>
23#include <linux/securebits.h>
24#include <linux/user_namespace.h>
25#include <linux/binfmts.h>
26#include <linux/personality.h>
27#include <linux/mnt_idmapping.h>
28#include <uapi/linux/lsm.h>
29
30/*
31 * If a non-root user executes a setuid-root binary in
32 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
33 * However if fE is also set, then the intent is for only
34 * the file capabilities to be applied, and the setuid-root
35 * bit is left on either to change the uid (plausible) or
36 * to get full privilege on a kernel without file capabilities
37 * support.  So in that case we do not raise capabilities.
38 *
39 * Warn if that happens, once per boot.
40 */
41static void warn_setuid_and_fcaps_mixed(const char *fname)
42{
43	static int warned;
44	if (!warned) {
45		printk(KERN_INFO "warning: `%s' has both setuid-root and"
46			" effective capabilities. Therefore not raising all"
47			" capabilities.\n", fname);
48		warned = 1;
49	}
50}
51
52/**
53 * cap_capable - Determine whether a task has a particular effective capability
54 * @cred: The credentials to use
55 * @targ_ns:  The user namespace in which we need the capability
56 * @cap: The capability to check for
57 * @opts: Bitmask of options defined in include/linux/security.h
58 *
59 * Determine whether the nominated task has the specified capability amongst
60 * its effective set, returning 0 if it does, -ve if it does not.
61 *
62 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
63 * and has_capability() functions.  That is, it has the reverse semantics:
64 * cap_has_capability() returns 0 when a task has a capability, but the
65 * kernel's capable() and has_capability() returns 1 for this case.
66 */
67int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
68		int cap, unsigned int opts)
69{
70	struct user_namespace *ns = targ_ns;
71
72	/* See if cred has the capability in the target user namespace
73	 * by examining the target user namespace and all of the target
74	 * user namespace's parents.
75	 */
76	for (;;) {
77		/* Do we have the necessary capabilities? */
78		if (ns == cred->user_ns)
79			return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
80
81		/*
82		 * If we're already at a lower level than we're looking for,
83		 * we're done searching.
84		 */
85		if (ns->level <= cred->user_ns->level)
86			return -EPERM;
87
88		/*
89		 * The owner of the user namespace in the parent of the
90		 * user namespace has all caps.
91		 */
92		if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
93			return 0;
94
95		/*
96		 * If you have a capability in a parent user ns, then you have
97		 * it over all children user namespaces as well.
98		 */
99		ns = ns->parent;
100	}
101
102	/* We never get here */
103}
104
105/**
106 * cap_settime - Determine whether the current process may set the system clock
107 * @ts: The time to set
108 * @tz: The timezone to set
109 *
110 * Determine whether the current process may set the system clock and timezone
111 * information, returning 0 if permission granted, -ve if denied.
112 */
113int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
114{
115	if (!capable(CAP_SYS_TIME))
116		return -EPERM;
117	return 0;
118}
119
120/**
121 * cap_ptrace_access_check - Determine whether the current process may access
122 *			   another
123 * @child: The process to be accessed
124 * @mode: The mode of attachment.
125 *
126 * If we are in the same or an ancestor user_ns and have all the target
127 * task's capabilities, then ptrace access is allowed.
128 * If we have the ptrace capability to the target user_ns, then ptrace
129 * access is allowed.
130 * Else denied.
131 *
132 * Determine whether a process may access another, returning 0 if permission
133 * granted, -ve if denied.
134 */
135int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
136{
137	int ret = 0;
138	const struct cred *cred, *child_cred;
139	const kernel_cap_t *caller_caps;
140
141	rcu_read_lock();
142	cred = current_cred();
143	child_cred = __task_cred(child);
144	if (mode & PTRACE_MODE_FSCREDS)
145		caller_caps = &cred->cap_effective;
146	else
147		caller_caps = &cred->cap_permitted;
148	if (cred->user_ns == child_cred->user_ns &&
149	    cap_issubset(child_cred->cap_permitted, *caller_caps))
150		goto out;
151	if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
152		goto out;
153	ret = -EPERM;
154out:
155	rcu_read_unlock();
156	return ret;
157}
158
159/**
160 * cap_ptrace_traceme - Determine whether another process may trace the current
161 * @parent: The task proposed to be the tracer
162 *
163 * If parent is in the same or an ancestor user_ns and has all current's
164 * capabilities, then ptrace access is allowed.
165 * If parent has the ptrace capability to current's user_ns, then ptrace
166 * access is allowed.
167 * Else denied.
168 *
169 * Determine whether the nominated task is permitted to trace the current
170 * process, returning 0 if permission is granted, -ve if denied.
171 */
172int cap_ptrace_traceme(struct task_struct *parent)
173{
174	int ret = 0;
175	const struct cred *cred, *child_cred;
176
177	rcu_read_lock();
178	cred = __task_cred(parent);
179	child_cred = current_cred();
180	if (cred->user_ns == child_cred->user_ns &&
181	    cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
182		goto out;
183	if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
184		goto out;
185	ret = -EPERM;
186out:
187	rcu_read_unlock();
188	return ret;
189}
190
191/**
192 * cap_capget - Retrieve a task's capability sets
193 * @target: The task from which to retrieve the capability sets
194 * @effective: The place to record the effective set
195 * @inheritable: The place to record the inheritable set
196 * @permitted: The place to record the permitted set
197 *
198 * This function retrieves the capabilities of the nominated task and returns
199 * them to the caller.
200 */
201int cap_capget(const struct task_struct *target, kernel_cap_t *effective,
202	       kernel_cap_t *inheritable, kernel_cap_t *permitted)
203{
204	const struct cred *cred;
205
206	/* Derived from kernel/capability.c:sys_capget. */
207	rcu_read_lock();
208	cred = __task_cred(target);
209	*effective   = cred->cap_effective;
210	*inheritable = cred->cap_inheritable;
211	*permitted   = cred->cap_permitted;
212	rcu_read_unlock();
213	return 0;
214}
215
216/*
217 * Determine whether the inheritable capabilities are limited to the old
218 * permitted set.  Returns 1 if they are limited, 0 if they are not.
219 */
220static inline int cap_inh_is_capped(void)
221{
222	/* they are so limited unless the current task has the CAP_SETPCAP
223	 * capability
224	 */
225	if (cap_capable(current_cred(), current_cred()->user_ns,
226			CAP_SETPCAP, CAP_OPT_NONE) == 0)
227		return 0;
228	return 1;
229}
230
231/**
232 * cap_capset - Validate and apply proposed changes to current's capabilities
233 * @new: The proposed new credentials; alterations should be made here
234 * @old: The current task's current credentials
235 * @effective: A pointer to the proposed new effective capabilities set
236 * @inheritable: A pointer to the proposed new inheritable capabilities set
237 * @permitted: A pointer to the proposed new permitted capabilities set
238 *
239 * This function validates and applies a proposed mass change to the current
240 * process's capability sets.  The changes are made to the proposed new
241 * credentials, and assuming no error, will be committed by the caller of LSM.
242 */
243int cap_capset(struct cred *new,
244	       const struct cred *old,
245	       const kernel_cap_t *effective,
246	       const kernel_cap_t *inheritable,
247	       const kernel_cap_t *permitted)
248{
249	if (cap_inh_is_capped() &&
250	    !cap_issubset(*inheritable,
251			  cap_combine(old->cap_inheritable,
252				      old->cap_permitted)))
253		/* incapable of using this inheritable set */
254		return -EPERM;
255
256	if (!cap_issubset(*inheritable,
257			  cap_combine(old->cap_inheritable,
258				      old->cap_bset)))
259		/* no new pI capabilities outside bounding set */
260		return -EPERM;
261
262	/* verify restrictions on target's new Permitted set */
263	if (!cap_issubset(*permitted, old->cap_permitted))
264		return -EPERM;
265
266	/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
267	if (!cap_issubset(*effective, *permitted))
268		return -EPERM;
269
270	new->cap_effective   = *effective;
271	new->cap_inheritable = *inheritable;
272	new->cap_permitted   = *permitted;
273
274	/*
275	 * Mask off ambient bits that are no longer both permitted and
276	 * inheritable.
277	 */
278	new->cap_ambient = cap_intersect(new->cap_ambient,
279					 cap_intersect(*permitted,
280						       *inheritable));
281	if (WARN_ON(!cap_ambient_invariant_ok(new)))
282		return -EINVAL;
283	return 0;
284}
285
286/**
287 * cap_inode_need_killpriv - Determine if inode change affects privileges
288 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
289 *
290 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
291 * affects the security markings on that inode, and if it is, should
292 * inode_killpriv() be invoked or the change rejected.
293 *
294 * Return: 1 if security.capability has a value, meaning inode_killpriv()
295 * is required, 0 otherwise, meaning inode_killpriv() is not required.
296 */
297int cap_inode_need_killpriv(struct dentry *dentry)
298{
299	struct inode *inode = d_backing_inode(dentry);
300	int error;
301
302	error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
303	return error > 0;
304}
305
306/**
307 * cap_inode_killpriv - Erase the security markings on an inode
308 *
309 * @idmap:	idmap of the mount the inode was found from
310 * @dentry:	The inode/dentry to alter
311 *
312 * Erase the privilege-enhancing security markings on an inode.
313 *
314 * If the inode has been found through an idmapped mount the idmap of
315 * the vfsmount must be passed through @idmap. This function will then
316 * take care to map the inode according to @idmap before checking
317 * permissions. On non-idmapped mounts or if permission checking is to be
318 * performed on the raw inode simply pass @nop_mnt_idmap.
319 *
320 * Return: 0 if successful, -ve on error.
321 */
322int cap_inode_killpriv(struct mnt_idmap *idmap, struct dentry *dentry)
323{
324	int error;
325
326	error = __vfs_removexattr(idmap, dentry, XATTR_NAME_CAPS);
327	if (error == -EOPNOTSUPP)
328		error = 0;
329	return error;
330}
331
332static bool rootid_owns_currentns(vfsuid_t rootvfsuid)
333{
334	struct user_namespace *ns;
335	kuid_t kroot;
336
337	if (!vfsuid_valid(rootvfsuid))
338		return false;
339
340	kroot = vfsuid_into_kuid(rootvfsuid);
341	for (ns = current_user_ns();; ns = ns->parent) {
342		if (from_kuid(ns, kroot) == 0)
343			return true;
344		if (ns == &init_user_ns)
345			break;
346	}
347
348	return false;
349}
350
351static __u32 sansflags(__u32 m)
352{
353	return m & ~VFS_CAP_FLAGS_EFFECTIVE;
354}
355
356static bool is_v2header(int size, const struct vfs_cap_data *cap)
357{
358	if (size != XATTR_CAPS_SZ_2)
359		return false;
360	return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2;
361}
362
363static bool is_v3header(int size, const struct vfs_cap_data *cap)
364{
365	if (size != XATTR_CAPS_SZ_3)
366		return false;
367	return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3;
368}
369
370/*
371 * getsecurity: We are called for security.* before any attempt to read the
372 * xattr from the inode itself.
373 *
374 * This gives us a chance to read the on-disk value and convert it.  If we
375 * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
376 *
377 * Note we are not called by vfs_getxattr_alloc(), but that is only called
378 * by the integrity subsystem, which really wants the unconverted values -
379 * so that's good.
380 */
381int cap_inode_getsecurity(struct mnt_idmap *idmap,
382			  struct inode *inode, const char *name, void **buffer,
383			  bool alloc)
384{
385	int size;
386	kuid_t kroot;
387	vfsuid_t vfsroot;
388	u32 nsmagic, magic;
389	uid_t root, mappedroot;
390	char *tmpbuf = NULL;
391	struct vfs_cap_data *cap;
392	struct vfs_ns_cap_data *nscap = NULL;
393	struct dentry *dentry;
394	struct user_namespace *fs_ns;
395
396	if (strcmp(name, "capability") != 0)
397		return -EOPNOTSUPP;
398
399	dentry = d_find_any_alias(inode);
400	if (!dentry)
401		return -EINVAL;
402	size = vfs_getxattr_alloc(idmap, dentry, XATTR_NAME_CAPS, &tmpbuf,
403				  sizeof(struct vfs_ns_cap_data), GFP_NOFS);
404	dput(dentry);
405	/* gcc11 complains if we don't check for !tmpbuf */
406	if (size < 0 || !tmpbuf)
407		goto out_free;
408
409	fs_ns = inode->i_sb->s_user_ns;
410	cap = (struct vfs_cap_data *) tmpbuf;
411	if (is_v2header(size, cap)) {
412		root = 0;
413	} else if (is_v3header(size, cap)) {
414		nscap = (struct vfs_ns_cap_data *) tmpbuf;
415		root = le32_to_cpu(nscap->rootid);
416	} else {
417		size = -EINVAL;
418		goto out_free;
419	}
420
421	kroot = make_kuid(fs_ns, root);
422
423	/* If this is an idmapped mount shift the kuid. */
424	vfsroot = make_vfsuid(idmap, fs_ns, kroot);
425
426	/* If the root kuid maps to a valid uid in current ns, then return
427	 * this as a nscap. */
428	mappedroot = from_kuid(current_user_ns(), vfsuid_into_kuid(vfsroot));
429	if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) {
430		size = sizeof(struct vfs_ns_cap_data);
431		if (alloc) {
432			if (!nscap) {
433				/* v2 -> v3 conversion */
434				nscap = kzalloc(size, GFP_ATOMIC);
435				if (!nscap) {
436					size = -ENOMEM;
437					goto out_free;
438				}
439				nsmagic = VFS_CAP_REVISION_3;
440				magic = le32_to_cpu(cap->magic_etc);
441				if (magic & VFS_CAP_FLAGS_EFFECTIVE)
442					nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
443				memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
444				nscap->magic_etc = cpu_to_le32(nsmagic);
445			} else {
446				/* use allocated v3 buffer */
447				tmpbuf = NULL;
448			}
449			nscap->rootid = cpu_to_le32(mappedroot);
450			*buffer = nscap;
451		}
452		goto out_free;
453	}
454
455	if (!rootid_owns_currentns(vfsroot)) {
456		size = -EOVERFLOW;
457		goto out_free;
458	}
459
460	/* This comes from a parent namespace.  Return as a v2 capability */
461	size = sizeof(struct vfs_cap_data);
462	if (alloc) {
463		if (nscap) {
464			/* v3 -> v2 conversion */
465			cap = kzalloc(size, GFP_ATOMIC);
466			if (!cap) {
467				size = -ENOMEM;
468				goto out_free;
469			}
470			magic = VFS_CAP_REVISION_2;
471			nsmagic = le32_to_cpu(nscap->magic_etc);
472			if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE)
473				magic |= VFS_CAP_FLAGS_EFFECTIVE;
474			memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
475			cap->magic_etc = cpu_to_le32(magic);
476		} else {
477			/* use unconverted v2 */
478			tmpbuf = NULL;
479		}
480		*buffer = cap;
481	}
482out_free:
483	kfree(tmpbuf);
484	return size;
485}
486
487/**
488 * rootid_from_xattr - translate root uid of vfs caps
489 *
490 * @value:	vfs caps value which may be modified by this function
491 * @size:	size of @ivalue
492 * @task_ns:	user namespace of the caller
493 */
494static vfsuid_t rootid_from_xattr(const void *value, size_t size,
495				  struct user_namespace *task_ns)
496{
497	const struct vfs_ns_cap_data *nscap = value;
498	uid_t rootid = 0;
499
500	if (size == XATTR_CAPS_SZ_3)
501		rootid = le32_to_cpu(nscap->rootid);
502
503	return VFSUIDT_INIT(make_kuid(task_ns, rootid));
504}
505
506static bool validheader(size_t size, const struct vfs_cap_data *cap)
507{
508	return is_v2header(size, cap) || is_v3header(size, cap);
509}
510
511/**
512 * cap_convert_nscap - check vfs caps
513 *
514 * @idmap:	idmap of the mount the inode was found from
515 * @dentry:	used to retrieve inode to check permissions on
516 * @ivalue:	vfs caps value which may be modified by this function
517 * @size:	size of @ivalue
518 *
519 * User requested a write of security.capability.  If needed, update the
520 * xattr to change from v2 to v3, or to fixup the v3 rootid.
521 *
522 * If the inode has been found through an idmapped mount the idmap of
523 * the vfsmount must be passed through @idmap. This function will then
524 * take care to map the inode according to @idmap before checking
525 * permissions. On non-idmapped mounts or if permission checking is to be
526 * performed on the raw inode simply pass @nop_mnt_idmap.
527 *
528 * Return: On success, return the new size; on error, return < 0.
529 */
530int cap_convert_nscap(struct mnt_idmap *idmap, struct dentry *dentry,
531		      const void **ivalue, size_t size)
532{
533	struct vfs_ns_cap_data *nscap;
534	uid_t nsrootid;
535	const struct vfs_cap_data *cap = *ivalue;
536	__u32 magic, nsmagic;
537	struct inode *inode = d_backing_inode(dentry);
538	struct user_namespace *task_ns = current_user_ns(),
539		*fs_ns = inode->i_sb->s_user_ns;
540	kuid_t rootid;
541	vfsuid_t vfsrootid;
542	size_t newsize;
543
544	if (!*ivalue)
545		return -EINVAL;
546	if (!validheader(size, cap))
547		return -EINVAL;
548	if (!capable_wrt_inode_uidgid(idmap, inode, CAP_SETFCAP))
549		return -EPERM;
550	if (size == XATTR_CAPS_SZ_2 && (idmap == &nop_mnt_idmap))
551		if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP))
552			/* user is privileged, just write the v2 */
553			return size;
554
555	vfsrootid = rootid_from_xattr(*ivalue, size, task_ns);
556	if (!vfsuid_valid(vfsrootid))
557		return -EINVAL;
558
559	rootid = from_vfsuid(idmap, fs_ns, vfsrootid);
560	if (!uid_valid(rootid))
561		return -EINVAL;
562
563	nsrootid = from_kuid(fs_ns, rootid);
564	if (nsrootid == -1)
565		return -EINVAL;
566
567	newsize = sizeof(struct vfs_ns_cap_data);
568	nscap = kmalloc(newsize, GFP_ATOMIC);
569	if (!nscap)
570		return -ENOMEM;
571	nscap->rootid = cpu_to_le32(nsrootid);
572	nsmagic = VFS_CAP_REVISION_3;
573	magic = le32_to_cpu(cap->magic_etc);
574	if (magic & VFS_CAP_FLAGS_EFFECTIVE)
575		nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
576	nscap->magic_etc = cpu_to_le32(nsmagic);
577	memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
578
579	*ivalue = nscap;
580	return newsize;
581}
582
583/*
584 * Calculate the new process capability sets from the capability sets attached
585 * to a file.
586 */
587static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
588					  struct linux_binprm *bprm,
589					  bool *effective,
590					  bool *has_fcap)
591{
592	struct cred *new = bprm->cred;
593	int ret = 0;
594
595	if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
596		*effective = true;
597
598	if (caps->magic_etc & VFS_CAP_REVISION_MASK)
599		*has_fcap = true;
600
601	/*
602	 * pP' = (X & fP) | (pI & fI)
603	 * The addition of pA' is handled later.
604	 */
605	new->cap_permitted.val =
606		(new->cap_bset.val & caps->permitted.val) |
607		(new->cap_inheritable.val & caps->inheritable.val);
608
609	if (caps->permitted.val & ~new->cap_permitted.val)
610		/* insufficient to execute correctly */
611		ret = -EPERM;
612
613	/*
614	 * For legacy apps, with no internal support for recognizing they
615	 * do not have enough capabilities, we return an error if they are
616	 * missing some "forced" (aka file-permitted) capabilities.
617	 */
618	return *effective ? ret : 0;
619}
620
621/**
622 * get_vfs_caps_from_disk - retrieve vfs caps from disk
623 *
624 * @idmap:	idmap of the mount the inode was found from
625 * @dentry:	dentry from which @inode is retrieved
626 * @cpu_caps:	vfs capabilities
627 *
628 * Extract the on-exec-apply capability sets for an executable file.
629 *
630 * If the inode has been found through an idmapped mount the idmap of
631 * the vfsmount must be passed through @idmap. This function will then
632 * take care to map the inode according to @idmap before checking
633 * permissions. On non-idmapped mounts or if permission checking is to be
634 * performed on the raw inode simply pass @nop_mnt_idmap.
635 */
636int get_vfs_caps_from_disk(struct mnt_idmap *idmap,
637			   const struct dentry *dentry,
638			   struct cpu_vfs_cap_data *cpu_caps)
639{
640	struct inode *inode = d_backing_inode(dentry);
641	__u32 magic_etc;
642	int size;
643	struct vfs_ns_cap_data data, *nscaps = &data;
644	struct vfs_cap_data *caps = (struct vfs_cap_data *) &data;
645	kuid_t rootkuid;
646	vfsuid_t rootvfsuid;
647	struct user_namespace *fs_ns;
648
649	memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
650
651	if (!inode)
652		return -ENODATA;
653
654	fs_ns = inode->i_sb->s_user_ns;
655	size = __vfs_getxattr((struct dentry *)dentry, inode,
656			      XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ);
657	if (size == -ENODATA || size == -EOPNOTSUPP)
658		/* no data, that's ok */
659		return -ENODATA;
660
661	if (size < 0)
662		return size;
663
664	if (size < sizeof(magic_etc))
665		return -EINVAL;
666
667	cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc);
668
669	rootkuid = make_kuid(fs_ns, 0);
670	switch (magic_etc & VFS_CAP_REVISION_MASK) {
671	case VFS_CAP_REVISION_1:
672		if (size != XATTR_CAPS_SZ_1)
673			return -EINVAL;
674		break;
675	case VFS_CAP_REVISION_2:
676		if (size != XATTR_CAPS_SZ_2)
677			return -EINVAL;
678		break;
679	case VFS_CAP_REVISION_3:
680		if (size != XATTR_CAPS_SZ_3)
681			return -EINVAL;
682		rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid));
683		break;
684
685	default:
686		return -EINVAL;
687	}
688
689	rootvfsuid = make_vfsuid(idmap, fs_ns, rootkuid);
690	if (!vfsuid_valid(rootvfsuid))
691		return -ENODATA;
692
693	/* Limit the caps to the mounter of the filesystem
694	 * or the more limited uid specified in the xattr.
695	 */
696	if (!rootid_owns_currentns(rootvfsuid))
697		return -ENODATA;
698
699	cpu_caps->permitted.val = le32_to_cpu(caps->data[0].permitted);
700	cpu_caps->inheritable.val = le32_to_cpu(caps->data[0].inheritable);
701
702	/*
703	 * Rev1 had just a single 32-bit word, later expanded
704	 * to a second one for the high bits
705	 */
706	if ((magic_etc & VFS_CAP_REVISION_MASK) != VFS_CAP_REVISION_1) {
707		cpu_caps->permitted.val += (u64)le32_to_cpu(caps->data[1].permitted) << 32;
708		cpu_caps->inheritable.val += (u64)le32_to_cpu(caps->data[1].inheritable) << 32;
709	}
710
711	cpu_caps->permitted.val &= CAP_VALID_MASK;
712	cpu_caps->inheritable.val &= CAP_VALID_MASK;
713
714	cpu_caps->rootid = vfsuid_into_kuid(rootvfsuid);
715
716	return 0;
717}
718
719/*
720 * Attempt to get the on-exec apply capability sets for an executable file from
721 * its xattrs and, if present, apply them to the proposed credentials being
722 * constructed by execve().
723 */
724static int get_file_caps(struct linux_binprm *bprm, const struct file *file,
725			 bool *effective, bool *has_fcap)
726{
727	int rc = 0;
728	struct cpu_vfs_cap_data vcaps;
729
730	cap_clear(bprm->cred->cap_permitted);
731
732	if (!file_caps_enabled)
733		return 0;
734
735	if (!mnt_may_suid(file->f_path.mnt))
736		return 0;
737
738	/*
739	 * This check is redundant with mnt_may_suid() but is kept to make
740	 * explicit that capability bits are limited to s_user_ns and its
741	 * descendants.
742	 */
743	if (!current_in_userns(file->f_path.mnt->mnt_sb->s_user_ns))
744		return 0;
745
746	rc = get_vfs_caps_from_disk(file_mnt_idmap(file),
747				    file->f_path.dentry, &vcaps);
748	if (rc < 0) {
749		if (rc == -EINVAL)
750			printk(KERN_NOTICE "Invalid argument reading file caps for %s\n",
751					bprm->filename);
752		else if (rc == -ENODATA)
753			rc = 0;
754		goto out;
755	}
756
757	rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap);
758
759out:
760	if (rc)
761		cap_clear(bprm->cred->cap_permitted);
762
763	return rc;
764}
765
766static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); }
767
768static inline bool __is_real(kuid_t uid, struct cred *cred)
769{ return uid_eq(cred->uid, uid); }
770
771static inline bool __is_eff(kuid_t uid, struct cred *cred)
772{ return uid_eq(cred->euid, uid); }
773
774static inline bool __is_suid(kuid_t uid, struct cred *cred)
775{ return !__is_real(uid, cred) && __is_eff(uid, cred); }
776
777/*
778 * handle_privileged_root - Handle case of privileged root
779 * @bprm: The execution parameters, including the proposed creds
780 * @has_fcap: Are any file capabilities set?
781 * @effective: Do we have effective root privilege?
782 * @root_uid: This namespace' root UID WRT initial USER namespace
783 *
784 * Handle the case where root is privileged and hasn't been neutered by
785 * SECURE_NOROOT.  If file capabilities are set, they won't be combined with
786 * set UID root and nothing is changed.  If we are root, cap_permitted is
787 * updated.  If we have become set UID root, the effective bit is set.
788 */
789static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap,
790				   bool *effective, kuid_t root_uid)
791{
792	const struct cred *old = current_cred();
793	struct cred *new = bprm->cred;
794
795	if (!root_privileged())
796		return;
797	/*
798	 * If the legacy file capability is set, then don't set privs
799	 * for a setuid root binary run by a non-root user.  Do set it
800	 * for a root user just to cause least surprise to an admin.
801	 */
802	if (has_fcap && __is_suid(root_uid, new)) {
803		warn_setuid_and_fcaps_mixed(bprm->filename);
804		return;
805	}
806	/*
807	 * To support inheritance of root-permissions and suid-root
808	 * executables under compatibility mode, we override the
809	 * capability sets for the file.
810	 */
811	if (__is_eff(root_uid, new) || __is_real(root_uid, new)) {
812		/* pP' = (cap_bset & ~0) | (pI & ~0) */
813		new->cap_permitted = cap_combine(old->cap_bset,
814						 old->cap_inheritable);
815	}
816	/*
817	 * If only the real uid is 0, we do not set the effective bit.
818	 */
819	if (__is_eff(root_uid, new))
820		*effective = true;
821}
822
823#define __cap_gained(field, target, source) \
824	!cap_issubset(target->cap_##field, source->cap_##field)
825#define __cap_grew(target, source, cred) \
826	!cap_issubset(cred->cap_##target, cred->cap_##source)
827#define __cap_full(field, cred) \
828	cap_issubset(CAP_FULL_SET, cred->cap_##field)
829
830static inline bool __is_setuid(struct cred *new, const struct cred *old)
831{ return !uid_eq(new->euid, old->uid); }
832
833static inline bool __is_setgid(struct cred *new, const struct cred *old)
834{ return !gid_eq(new->egid, old->gid); }
835
836/*
837 * 1) Audit candidate if current->cap_effective is set
838 *
839 * We do not bother to audit if 3 things are true:
840 *   1) cap_effective has all caps
841 *   2) we became root *OR* are were already root
842 *   3) root is supposed to have all caps (SECURE_NOROOT)
843 * Since this is just a normal root execing a process.
844 *
845 * Number 1 above might fail if you don't have a full bset, but I think
846 * that is interesting information to audit.
847 *
848 * A number of other conditions require logging:
849 * 2) something prevented setuid root getting all caps
850 * 3) non-setuid root gets fcaps
851 * 4) non-setuid root gets ambient
852 */
853static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old,
854				     kuid_t root, bool has_fcap)
855{
856	bool ret = false;
857
858	if ((__cap_grew(effective, ambient, new) &&
859	     !(__cap_full(effective, new) &&
860	       (__is_eff(root, new) || __is_real(root, new)) &&
861	       root_privileged())) ||
862	    (root_privileged() &&
863	     __is_suid(root, new) &&
864	     !__cap_full(effective, new)) ||
865	    (!__is_setuid(new, old) &&
866	     ((has_fcap &&
867	       __cap_gained(permitted, new, old)) ||
868	      __cap_gained(ambient, new, old))))
869
870		ret = true;
871
872	return ret;
873}
874
875/**
876 * cap_bprm_creds_from_file - Set up the proposed credentials for execve().
877 * @bprm: The execution parameters, including the proposed creds
878 * @file: The file to pull the credentials from
879 *
880 * Set up the proposed credentials for a new execution context being
881 * constructed by execve().  The proposed creds in @bprm->cred is altered,
882 * which won't take effect immediately.
883 *
884 * Return: 0 if successful, -ve on error.
885 */
886int cap_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
887{
888	/* Process setpcap binaries and capabilities for uid 0 */
889	const struct cred *old = current_cred();
890	struct cred *new = bprm->cred;
891	bool effective = false, has_fcap = false, is_setid;
892	int ret;
893	kuid_t root_uid;
894
895	if (WARN_ON(!cap_ambient_invariant_ok(old)))
896		return -EPERM;
897
898	ret = get_file_caps(bprm, file, &effective, &has_fcap);
899	if (ret < 0)
900		return ret;
901
902	root_uid = make_kuid(new->user_ns, 0);
903
904	handle_privileged_root(bprm, has_fcap, &effective, root_uid);
905
906	/* if we have fs caps, clear dangerous personality flags */
907	if (__cap_gained(permitted, new, old))
908		bprm->per_clear |= PER_CLEAR_ON_SETID;
909
910	/* Don't let someone trace a set[ug]id/setpcap binary with the revised
911	 * credentials unless they have the appropriate permit.
912	 *
913	 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
914	 */
915	is_setid = __is_setuid(new, old) || __is_setgid(new, old);
916
917	if ((is_setid || __cap_gained(permitted, new, old)) &&
918	    ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
919	     !ptracer_capable(current, new->user_ns))) {
920		/* downgrade; they get no more than they had, and maybe less */
921		if (!ns_capable(new->user_ns, CAP_SETUID) ||
922		    (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
923			new->euid = new->uid;
924			new->egid = new->gid;
925		}
926		new->cap_permitted = cap_intersect(new->cap_permitted,
927						   old->cap_permitted);
928	}
929
930	new->suid = new->fsuid = new->euid;
931	new->sgid = new->fsgid = new->egid;
932
933	/* File caps or setid cancels ambient. */
934	if (has_fcap || is_setid)
935		cap_clear(new->cap_ambient);
936
937	/*
938	 * Now that we've computed pA', update pP' to give:
939	 *   pP' = (X & fP) | (pI & fI) | pA'
940	 */
941	new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
942
943	/*
944	 * Set pE' = (fE ? pP' : pA').  Because pA' is zero if fE is set,
945	 * this is the same as pE' = (fE ? pP' : 0) | pA'.
946	 */
947	if (effective)
948		new->cap_effective = new->cap_permitted;
949	else
950		new->cap_effective = new->cap_ambient;
951
952	if (WARN_ON(!cap_ambient_invariant_ok(new)))
953		return -EPERM;
954
955	if (nonroot_raised_pE(new, old, root_uid, has_fcap)) {
956		ret = audit_log_bprm_fcaps(bprm, new, old);
957		if (ret < 0)
958			return ret;
959	}
960
961	new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
962
963	if (WARN_ON(!cap_ambient_invariant_ok(new)))
964		return -EPERM;
965
966	/* Check for privilege-elevated exec. */
967	if (is_setid ||
968	    (!__is_real(root_uid, new) &&
969	     (effective ||
970	      __cap_grew(permitted, ambient, new))))
971		bprm->secureexec = 1;
972
973	return 0;
974}
975
976/**
977 * cap_inode_setxattr - Determine whether an xattr may be altered
978 * @dentry: The inode/dentry being altered
979 * @name: The name of the xattr to be changed
980 * @value: The value that the xattr will be changed to
981 * @size: The size of value
982 * @flags: The replacement flag
983 *
984 * Determine whether an xattr may be altered or set on an inode, returning 0 if
985 * permission is granted, -ve if denied.
986 *
987 * This is used to make sure security xattrs don't get updated or set by those
988 * who aren't privileged to do so.
989 */
990int cap_inode_setxattr(struct dentry *dentry, const char *name,
991		       const void *value, size_t size, int flags)
992{
993	struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
994
995	/* Ignore non-security xattrs */
996	if (strncmp(name, XATTR_SECURITY_PREFIX,
997			XATTR_SECURITY_PREFIX_LEN) != 0)
998		return 0;
999
1000	/*
1001	 * For XATTR_NAME_CAPS the check will be done in
1002	 * cap_convert_nscap(), called by setxattr()
1003	 */
1004	if (strcmp(name, XATTR_NAME_CAPS) == 0)
1005		return 0;
1006
1007	if (!ns_capable(user_ns, CAP_SYS_ADMIN))
1008		return -EPERM;
1009	return 0;
1010}
1011
1012/**
1013 * cap_inode_removexattr - Determine whether an xattr may be removed
1014 *
1015 * @idmap:	idmap of the mount the inode was found from
1016 * @dentry:	The inode/dentry being altered
1017 * @name:	The name of the xattr to be changed
1018 *
1019 * Determine whether an xattr may be removed from an inode, returning 0 if
1020 * permission is granted, -ve if denied.
1021 *
1022 * If the inode has been found through an idmapped mount the idmap of
1023 * the vfsmount must be passed through @idmap. This function will then
1024 * take care to map the inode according to @idmap before checking
1025 * permissions. On non-idmapped mounts or if permission checking is to be
1026 * performed on the raw inode simply pass @nop_mnt_idmap.
1027 *
1028 * This is used to make sure security xattrs don't get removed by those who
1029 * aren't privileged to remove them.
1030 */
1031int cap_inode_removexattr(struct mnt_idmap *idmap,
1032			  struct dentry *dentry, const char *name)
1033{
1034	struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
1035
1036	/* Ignore non-security xattrs */
1037	if (strncmp(name, XATTR_SECURITY_PREFIX,
1038			XATTR_SECURITY_PREFIX_LEN) != 0)
1039		return 0;
1040
1041	if (strcmp(name, XATTR_NAME_CAPS) == 0) {
1042		/* security.capability gets namespaced */
1043		struct inode *inode = d_backing_inode(dentry);
1044		if (!inode)
1045			return -EINVAL;
1046		if (!capable_wrt_inode_uidgid(idmap, inode, CAP_SETFCAP))
1047			return -EPERM;
1048		return 0;
1049	}
1050
1051	if (!ns_capable(user_ns, CAP_SYS_ADMIN))
1052		return -EPERM;
1053	return 0;
1054}
1055
1056/*
1057 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
1058 * a process after a call to setuid, setreuid, or setresuid.
1059 *
1060 *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
1061 *  {r,e,s}uid != 0, the permitted and effective capabilities are
1062 *  cleared.
1063 *
1064 *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
1065 *  capabilities of the process are cleared.
1066 *
1067 *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
1068 *  capabilities are set to the permitted capabilities.
1069 *
1070 *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
1071 *  never happen.
1072 *
1073 *  -astor
1074 *
1075 * cevans - New behaviour, Oct '99
1076 * A process may, via prctl(), elect to keep its capabilities when it
1077 * calls setuid() and switches away from uid==0. Both permitted and
1078 * effective sets will be retained.
1079 * Without this change, it was impossible for a daemon to drop only some
1080 * of its privilege. The call to setuid(!=0) would drop all privileges!
1081 * Keeping uid 0 is not an option because uid 0 owns too many vital
1082 * files..
1083 * Thanks to Olaf Kirch and Peter Benie for spotting this.
1084 */
1085static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
1086{
1087	kuid_t root_uid = make_kuid(old->user_ns, 0);
1088
1089	if ((uid_eq(old->uid, root_uid) ||
1090	     uid_eq(old->euid, root_uid) ||
1091	     uid_eq(old->suid, root_uid)) &&
1092	    (!uid_eq(new->uid, root_uid) &&
1093	     !uid_eq(new->euid, root_uid) &&
1094	     !uid_eq(new->suid, root_uid))) {
1095		if (!issecure(SECURE_KEEP_CAPS)) {
1096			cap_clear(new->cap_permitted);
1097			cap_clear(new->cap_effective);
1098		}
1099
1100		/*
1101		 * Pre-ambient programs expect setresuid to nonroot followed
1102		 * by exec to drop capabilities.  We should make sure that
1103		 * this remains the case.
1104		 */
1105		cap_clear(new->cap_ambient);
1106	}
1107	if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
1108		cap_clear(new->cap_effective);
1109	if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
1110		new->cap_effective = new->cap_permitted;
1111}
1112
1113/**
1114 * cap_task_fix_setuid - Fix up the results of setuid() call
1115 * @new: The proposed credentials
1116 * @old: The current task's current credentials
1117 * @flags: Indications of what has changed
1118 *
1119 * Fix up the results of setuid() call before the credential changes are
1120 * actually applied.
1121 *
1122 * Return: 0 to grant the changes, -ve to deny them.
1123 */
1124int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
1125{
1126	switch (flags) {
1127	case LSM_SETID_RE:
1128	case LSM_SETID_ID:
1129	case LSM_SETID_RES:
1130		/* juggle the capabilities to follow [RES]UID changes unless
1131		 * otherwise suppressed */
1132		if (!issecure(SECURE_NO_SETUID_FIXUP))
1133			cap_emulate_setxuid(new, old);
1134		break;
1135
1136	case LSM_SETID_FS:
1137		/* juggle the capabilities to follow FSUID changes, unless
1138		 * otherwise suppressed
1139		 *
1140		 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
1141		 *          if not, we might be a bit too harsh here.
1142		 */
1143		if (!issecure(SECURE_NO_SETUID_FIXUP)) {
1144			kuid_t root_uid = make_kuid(old->user_ns, 0);
1145			if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
1146				new->cap_effective =
1147					cap_drop_fs_set(new->cap_effective);
1148
1149			if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
1150				new->cap_effective =
1151					cap_raise_fs_set(new->cap_effective,
1152							 new->cap_permitted);
1153		}
1154		break;
1155
1156	default:
1157		return -EINVAL;
1158	}
1159
1160	return 0;
1161}
1162
1163/*
1164 * Rationale: code calling task_setscheduler, task_setioprio, and
1165 * task_setnice, assumes that
1166 *   . if capable(cap_sys_nice), then those actions should be allowed
1167 *   . if not capable(cap_sys_nice), but acting on your own processes,
1168 *   	then those actions should be allowed
1169 * This is insufficient now since you can call code without suid, but
1170 * yet with increased caps.
1171 * So we check for increased caps on the target process.
1172 */
1173static int cap_safe_nice(struct task_struct *p)
1174{
1175	int is_subset, ret = 0;
1176
1177	rcu_read_lock();
1178	is_subset = cap_issubset(__task_cred(p)->cap_permitted,
1179				 current_cred()->cap_permitted);
1180	if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1181		ret = -EPERM;
1182	rcu_read_unlock();
1183
1184	return ret;
1185}
1186
1187/**
1188 * cap_task_setscheduler - Determine if scheduler policy change is permitted
1189 * @p: The task to affect
1190 *
1191 * Determine if the requested scheduler policy change is permitted for the
1192 * specified task.
1193 *
1194 * Return: 0 if permission is granted, -ve if denied.
1195 */
1196int cap_task_setscheduler(struct task_struct *p)
1197{
1198	return cap_safe_nice(p);
1199}
1200
1201/**
1202 * cap_task_setioprio - Determine if I/O priority change is permitted
1203 * @p: The task to affect
1204 * @ioprio: The I/O priority to set
1205 *
1206 * Determine if the requested I/O priority change is permitted for the specified
1207 * task.
1208 *
1209 * Return: 0 if permission is granted, -ve if denied.
1210 */
1211int cap_task_setioprio(struct task_struct *p, int ioprio)
1212{
1213	return cap_safe_nice(p);
1214}
1215
1216/**
1217 * cap_task_setnice - Determine if task priority change is permitted
1218 * @p: The task to affect
1219 * @nice: The nice value to set
1220 *
1221 * Determine if the requested task priority change is permitted for the
1222 * specified task.
1223 *
1224 * Return: 0 if permission is granted, -ve if denied.
1225 */
1226int cap_task_setnice(struct task_struct *p, int nice)
1227{
1228	return cap_safe_nice(p);
1229}
1230
1231/*
1232 * Implement PR_CAPBSET_DROP.  Attempt to remove the specified capability from
1233 * the current task's bounding set.  Returns 0 on success, -ve on error.
1234 */
1235static int cap_prctl_drop(unsigned long cap)
1236{
1237	struct cred *new;
1238
1239	if (!ns_capable(current_user_ns(), CAP_SETPCAP))
1240		return -EPERM;
1241	if (!cap_valid(cap))
1242		return -EINVAL;
1243
1244	new = prepare_creds();
1245	if (!new)
1246		return -ENOMEM;
1247	cap_lower(new->cap_bset, cap);
1248	return commit_creds(new);
1249}
1250
1251/**
1252 * cap_task_prctl - Implement process control functions for this security module
1253 * @option: The process control function requested
1254 * @arg2: The argument data for this function
1255 * @arg3: The argument data for this function
1256 * @arg4: The argument data for this function
1257 * @arg5: The argument data for this function
1258 *
1259 * Allow process control functions (sys_prctl()) to alter capabilities; may
1260 * also deny access to other functions not otherwise implemented here.
1261 *
1262 * Return: 0 or +ve on success, -ENOSYS if this function is not implemented
1263 * here, other -ve on error.  If -ENOSYS is returned, sys_prctl() and other LSM
1264 * modules will consider performing the function.
1265 */
1266int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1267		   unsigned long arg4, unsigned long arg5)
1268{
1269	const struct cred *old = current_cred();
1270	struct cred *new;
1271
1272	switch (option) {
1273	case PR_CAPBSET_READ:
1274		if (!cap_valid(arg2))
1275			return -EINVAL;
1276		return !!cap_raised(old->cap_bset, arg2);
1277
1278	case PR_CAPBSET_DROP:
1279		return cap_prctl_drop(arg2);
1280
1281	/*
1282	 * The next four prctl's remain to assist with transitioning a
1283	 * system from legacy UID=0 based privilege (when filesystem
1284	 * capabilities are not in use) to a system using filesystem
1285	 * capabilities only - as the POSIX.1e draft intended.
1286	 *
1287	 * Note:
1288	 *
1289	 *  PR_SET_SECUREBITS =
1290	 *      issecure_mask(SECURE_KEEP_CAPS_LOCKED)
1291	 *    | issecure_mask(SECURE_NOROOT)
1292	 *    | issecure_mask(SECURE_NOROOT_LOCKED)
1293	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP)
1294	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
1295	 *
1296	 * will ensure that the current process and all of its
1297	 * children will be locked into a pure
1298	 * capability-based-privilege environment.
1299	 */
1300	case PR_SET_SECUREBITS:
1301		if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
1302		     & (old->securebits ^ arg2))			/*[1]*/
1303		    || ((old->securebits & SECURE_ALL_LOCKS & ~arg2))	/*[2]*/
1304		    || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS))	/*[3]*/
1305		    || (cap_capable(current_cred(),
1306				    current_cred()->user_ns,
1307				    CAP_SETPCAP,
1308				    CAP_OPT_NONE) != 0)			/*[4]*/
1309			/*
1310			 * [1] no changing of bits that are locked
1311			 * [2] no unlocking of locks
1312			 * [3] no setting of unsupported bits
1313			 * [4] doing anything requires privilege (go read about
1314			 *     the "sendmail capabilities bug")
1315			 */
1316		    )
1317			/* cannot change a locked bit */
1318			return -EPERM;
1319
1320		new = prepare_creds();
1321		if (!new)
1322			return -ENOMEM;
1323		new->securebits = arg2;
1324		return commit_creds(new);
1325
1326	case PR_GET_SECUREBITS:
1327		return old->securebits;
1328
1329	case PR_GET_KEEPCAPS:
1330		return !!issecure(SECURE_KEEP_CAPS);
1331
1332	case PR_SET_KEEPCAPS:
1333		if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
1334			return -EINVAL;
1335		if (issecure(SECURE_KEEP_CAPS_LOCKED))
1336			return -EPERM;
1337
1338		new = prepare_creds();
1339		if (!new)
1340			return -ENOMEM;
1341		if (arg2)
1342			new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
1343		else
1344			new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
1345		return commit_creds(new);
1346
1347	case PR_CAP_AMBIENT:
1348		if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
1349			if (arg3 | arg4 | arg5)
1350				return -EINVAL;
1351
1352			new = prepare_creds();
1353			if (!new)
1354				return -ENOMEM;
1355			cap_clear(new->cap_ambient);
1356			return commit_creds(new);
1357		}
1358
1359		if (((!cap_valid(arg3)) | arg4 | arg5))
1360			return -EINVAL;
1361
1362		if (arg2 == PR_CAP_AMBIENT_IS_SET) {
1363			return !!cap_raised(current_cred()->cap_ambient, arg3);
1364		} else if (arg2 != PR_CAP_AMBIENT_RAISE &&
1365			   arg2 != PR_CAP_AMBIENT_LOWER) {
1366			return -EINVAL;
1367		} else {
1368			if (arg2 == PR_CAP_AMBIENT_RAISE &&
1369			    (!cap_raised(current_cred()->cap_permitted, arg3) ||
1370			     !cap_raised(current_cred()->cap_inheritable,
1371					 arg3) ||
1372			     issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
1373				return -EPERM;
1374
1375			new = prepare_creds();
1376			if (!new)
1377				return -ENOMEM;
1378			if (arg2 == PR_CAP_AMBIENT_RAISE)
1379				cap_raise(new->cap_ambient, arg3);
1380			else
1381				cap_lower(new->cap_ambient, arg3);
1382			return commit_creds(new);
1383		}
1384
1385	default:
1386		/* No functionality available - continue with default */
1387		return -ENOSYS;
1388	}
1389}
1390
1391/**
1392 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1393 * @mm: The VM space in which the new mapping is to be made
1394 * @pages: The size of the mapping
1395 *
1396 * Determine whether the allocation of a new virtual mapping by the current
1397 * task is permitted.
1398 *
1399 * Return: 1 if permission is granted, 0 if not.
1400 */
1401int cap_vm_enough_memory(struct mm_struct *mm, long pages)
1402{
1403	int cap_sys_admin = 0;
1404
1405	if (cap_capable(current_cred(), &init_user_ns,
1406				CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) == 0)
1407		cap_sys_admin = 1;
1408
1409	return cap_sys_admin;
1410}
1411
1412/**
1413 * cap_mmap_addr - check if able to map given addr
1414 * @addr: address attempting to be mapped
1415 *
1416 * If the process is attempting to map memory below dac_mmap_min_addr they need
1417 * CAP_SYS_RAWIO.  The other parameters to this function are unused by the
1418 * capability security module.
1419 *
1420 * Return: 0 if this mapping should be allowed or -EPERM if not.
1421 */
1422int cap_mmap_addr(unsigned long addr)
1423{
1424	int ret = 0;
1425
1426	if (addr < dac_mmap_min_addr) {
1427		ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
1428				  CAP_OPT_NONE);
1429		/* set PF_SUPERPRIV if it turns out we allow the low mmap */
1430		if (ret == 0)
1431			current->flags |= PF_SUPERPRIV;
1432	}
1433	return ret;
1434}
1435
1436int cap_mmap_file(struct file *file, unsigned long reqprot,
1437		  unsigned long prot, unsigned long flags)
1438{
1439	return 0;
1440}
1441
1442#ifdef CONFIG_SECURITY
1443
1444static const struct lsm_id capability_lsmid = {
1445	.name = "capability",
1446	.id = LSM_ID_CAPABILITY,
1447};
1448
1449static struct security_hook_list capability_hooks[] __ro_after_init = {
1450	LSM_HOOK_INIT(capable, cap_capable),
1451	LSM_HOOK_INIT(settime, cap_settime),
1452	LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
1453	LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
1454	LSM_HOOK_INIT(capget, cap_capget),
1455	LSM_HOOK_INIT(capset, cap_capset),
1456	LSM_HOOK_INIT(bprm_creds_from_file, cap_bprm_creds_from_file),
1457	LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
1458	LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
1459	LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity),
1460	LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
1461	LSM_HOOK_INIT(mmap_file, cap_mmap_file),
1462	LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
1463	LSM_HOOK_INIT(task_prctl, cap_task_prctl),
1464	LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
1465	LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
1466	LSM_HOOK_INIT(task_setnice, cap_task_setnice),
1467	LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
1468};
1469
1470static int __init capability_init(void)
1471{
1472	security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
1473			   &capability_lsmid);
1474	return 0;
1475}
1476
1477DEFINE_LSM(capability) = {
1478	.name = "capability",
1479	.order = LSM_ORDER_FIRST,
1480	.init = capability_init,
1481};
1482
1483#endif /* CONFIG_SECURITY */
1484