1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * VMware vSockets Driver
4 *
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
7
8#include <linux/types.h>
9#include <linux/bitops.h>
10#include <linux/cred.h>
11#include <linux/init.h>
12#include <linux/io.h>
13#include <linux/kernel.h>
14#include <linux/kmod.h>
15#include <linux/list.h>
16#include <linux/module.h>
17#include <linux/mutex.h>
18#include <linux/net.h>
19#include <linux/poll.h>
20#include <linux/skbuff.h>
21#include <linux/smp.h>
22#include <linux/socket.h>
23#include <linux/stddef.h>
24#include <linux/unistd.h>
25#include <linux/wait.h>
26#include <linux/workqueue.h>
27#include <net/sock.h>
28#include <net/af_vsock.h>
29
30#include "vmci_transport_notify.h"
31
32static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
33static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
34static void vmci_transport_peer_detach_cb(u32 sub_id,
35					  const struct vmci_event_data *ed,
36					  void *client_data);
37static void vmci_transport_recv_pkt_work(struct work_struct *work);
38static void vmci_transport_cleanup(struct work_struct *work);
39static int vmci_transport_recv_listen(struct sock *sk,
40				      struct vmci_transport_packet *pkt);
41static int vmci_transport_recv_connecting_server(
42					struct sock *sk,
43					struct sock *pending,
44					struct vmci_transport_packet *pkt);
45static int vmci_transport_recv_connecting_client(
46					struct sock *sk,
47					struct vmci_transport_packet *pkt);
48static int vmci_transport_recv_connecting_client_negotiate(
49					struct sock *sk,
50					struct vmci_transport_packet *pkt);
51static int vmci_transport_recv_connecting_client_invalid(
52					struct sock *sk,
53					struct vmci_transport_packet *pkt);
54static int vmci_transport_recv_connected(struct sock *sk,
55					 struct vmci_transport_packet *pkt);
56static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
57static u16 vmci_transport_new_proto_supported_versions(void);
58static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
59						  bool old_pkt_proto);
60static bool vmci_check_transport(struct vsock_sock *vsk);
61
62struct vmci_transport_recv_pkt_info {
63	struct work_struct work;
64	struct sock *sk;
65	struct vmci_transport_packet pkt;
66};
67
68static LIST_HEAD(vmci_transport_cleanup_list);
69static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
70static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
71
72static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
73							   VMCI_INVALID_ID };
74static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
75
76static int PROTOCOL_OVERRIDE = -1;
77
78static struct vsock_transport vmci_transport; /* forward declaration */
79
80/* Helper function to convert from a VMCI error code to a VSock error code. */
81
82static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
83{
84	switch (vmci_error) {
85	case VMCI_ERROR_NO_MEM:
86		return -ENOMEM;
87	case VMCI_ERROR_DUPLICATE_ENTRY:
88	case VMCI_ERROR_ALREADY_EXISTS:
89		return -EADDRINUSE;
90	case VMCI_ERROR_NO_ACCESS:
91		return -EPERM;
92	case VMCI_ERROR_NO_RESOURCES:
93		return -ENOBUFS;
94	case VMCI_ERROR_INVALID_RESOURCE:
95		return -EHOSTUNREACH;
96	case VMCI_ERROR_INVALID_ARGS:
97	default:
98		break;
99	}
100	return -EINVAL;
101}
102
103static u32 vmci_transport_peer_rid(u32 peer_cid)
104{
105	if (VMADDR_CID_HYPERVISOR == peer_cid)
106		return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
107
108	return VMCI_TRANSPORT_PACKET_RID;
109}
110
111static inline void
112vmci_transport_packet_init(struct vmci_transport_packet *pkt,
113			   struct sockaddr_vm *src,
114			   struct sockaddr_vm *dst,
115			   u8 type,
116			   u64 size,
117			   u64 mode,
118			   struct vmci_transport_waiting_info *wait,
119			   u16 proto,
120			   struct vmci_handle handle)
121{
122	/* We register the stream control handler as an any cid handle so we
123	 * must always send from a source address of VMADDR_CID_ANY
124	 */
125	pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
126				       VMCI_TRANSPORT_PACKET_RID);
127	pkt->dg.dst = vmci_make_handle(dst->svm_cid,
128				       vmci_transport_peer_rid(dst->svm_cid));
129	pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
130	pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
131	pkt->type = type;
132	pkt->src_port = src->svm_port;
133	pkt->dst_port = dst->svm_port;
134	memset(&pkt->proto, 0, sizeof(pkt->proto));
135	memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
136
137	switch (pkt->type) {
138	case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
139		pkt->u.size = 0;
140		break;
141
142	case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
143	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
144		pkt->u.size = size;
145		break;
146
147	case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
148	case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
149		pkt->u.handle = handle;
150		break;
151
152	case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
153	case VMCI_TRANSPORT_PACKET_TYPE_READ:
154	case VMCI_TRANSPORT_PACKET_TYPE_RST:
155		pkt->u.size = 0;
156		break;
157
158	case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
159		pkt->u.mode = mode;
160		break;
161
162	case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
163	case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
164		memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
165		break;
166
167	case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
168	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
169		pkt->u.size = size;
170		pkt->proto = proto;
171		break;
172	}
173}
174
175static inline void
176vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
177				    struct sockaddr_vm *local,
178				    struct sockaddr_vm *remote)
179{
180	vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
181	vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
182}
183
184static int
185__vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
186				  struct sockaddr_vm *src,
187				  struct sockaddr_vm *dst,
188				  enum vmci_transport_packet_type type,
189				  u64 size,
190				  u64 mode,
191				  struct vmci_transport_waiting_info *wait,
192				  u16 proto,
193				  struct vmci_handle handle,
194				  bool convert_error)
195{
196	int err;
197
198	vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
199				   proto, handle);
200	err = vmci_datagram_send(&pkt->dg);
201	if (convert_error && (err < 0))
202		return vmci_transport_error_to_vsock_error(err);
203
204	return err;
205}
206
207static int
208vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
209				      enum vmci_transport_packet_type type,
210				      u64 size,
211				      u64 mode,
212				      struct vmci_transport_waiting_info *wait,
213				      struct vmci_handle handle)
214{
215	struct vmci_transport_packet reply;
216	struct sockaddr_vm src, dst;
217
218	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
219		return 0;
220	} else {
221		vmci_transport_packet_get_addresses(pkt, &src, &dst);
222		return __vmci_transport_send_control_pkt(&reply, &src, &dst,
223							 type,
224							 size, mode, wait,
225							 VSOCK_PROTO_INVALID,
226							 handle, true);
227	}
228}
229
230static int
231vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
232				   struct sockaddr_vm *dst,
233				   enum vmci_transport_packet_type type,
234				   u64 size,
235				   u64 mode,
236				   struct vmci_transport_waiting_info *wait,
237				   struct vmci_handle handle)
238{
239	/* Note that it is safe to use a single packet across all CPUs since
240	 * two tasklets of the same type are guaranteed to not ever run
241	 * simultaneously. If that ever changes, or VMCI stops using tasklets,
242	 * we can use per-cpu packets.
243	 */
244	static struct vmci_transport_packet pkt;
245
246	return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
247						 size, mode, wait,
248						 VSOCK_PROTO_INVALID, handle,
249						 false);
250}
251
252static int
253vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src,
254				      struct sockaddr_vm *dst,
255				      enum vmci_transport_packet_type type,
256				      u64 size,
257				      u64 mode,
258				      struct vmci_transport_waiting_info *wait,
259				      u16 proto,
260				      struct vmci_handle handle)
261{
262	struct vmci_transport_packet *pkt;
263	int err;
264
265	pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
266	if (!pkt)
267		return -ENOMEM;
268
269	err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size,
270						mode, wait, proto, handle,
271						true);
272	kfree(pkt);
273
274	return err;
275}
276
277static int
278vmci_transport_send_control_pkt(struct sock *sk,
279				enum vmci_transport_packet_type type,
280				u64 size,
281				u64 mode,
282				struct vmci_transport_waiting_info *wait,
283				u16 proto,
284				struct vmci_handle handle)
285{
286	struct vsock_sock *vsk;
287
288	vsk = vsock_sk(sk);
289
290	if (!vsock_addr_bound(&vsk->local_addr))
291		return -EINVAL;
292
293	if (!vsock_addr_bound(&vsk->remote_addr))
294		return -EINVAL;
295
296	return vmci_transport_alloc_send_control_pkt(&vsk->local_addr,
297						     &vsk->remote_addr,
298						     type, size, mode,
299						     wait, proto, handle);
300}
301
302static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
303					struct sockaddr_vm *src,
304					struct vmci_transport_packet *pkt)
305{
306	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
307		return 0;
308	return vmci_transport_send_control_pkt_bh(
309					dst, src,
310					VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
311					0, NULL, VMCI_INVALID_HANDLE);
312}
313
314static int vmci_transport_send_reset(struct sock *sk,
315				     struct vmci_transport_packet *pkt)
316{
317	struct sockaddr_vm *dst_ptr;
318	struct sockaddr_vm dst;
319	struct vsock_sock *vsk;
320
321	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
322		return 0;
323
324	vsk = vsock_sk(sk);
325
326	if (!vsock_addr_bound(&vsk->local_addr))
327		return -EINVAL;
328
329	if (vsock_addr_bound(&vsk->remote_addr)) {
330		dst_ptr = &vsk->remote_addr;
331	} else {
332		vsock_addr_init(&dst, pkt->dg.src.context,
333				pkt->src_port);
334		dst_ptr = &dst;
335	}
336	return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr,
337					     VMCI_TRANSPORT_PACKET_TYPE_RST,
338					     0, 0, NULL, VSOCK_PROTO_INVALID,
339					     VMCI_INVALID_HANDLE);
340}
341
342static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
343{
344	return vmci_transport_send_control_pkt(
345					sk,
346					VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
347					size, 0, NULL,
348					VSOCK_PROTO_INVALID,
349					VMCI_INVALID_HANDLE);
350}
351
352static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
353					  u16 version)
354{
355	return vmci_transport_send_control_pkt(
356					sk,
357					VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
358					size, 0, NULL, version,
359					VMCI_INVALID_HANDLE);
360}
361
362static int vmci_transport_send_qp_offer(struct sock *sk,
363					struct vmci_handle handle)
364{
365	return vmci_transport_send_control_pkt(
366					sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
367					0, NULL,
368					VSOCK_PROTO_INVALID, handle);
369}
370
371static int vmci_transport_send_attach(struct sock *sk,
372				      struct vmci_handle handle)
373{
374	return vmci_transport_send_control_pkt(
375					sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
376					0, 0, NULL, VSOCK_PROTO_INVALID,
377					handle);
378}
379
380static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
381{
382	return vmci_transport_reply_control_pkt_fast(
383						pkt,
384						VMCI_TRANSPORT_PACKET_TYPE_RST,
385						0, 0, NULL,
386						VMCI_INVALID_HANDLE);
387}
388
389static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
390					  struct sockaddr_vm *src)
391{
392	return vmci_transport_send_control_pkt_bh(
393					dst, src,
394					VMCI_TRANSPORT_PACKET_TYPE_INVALID,
395					0, 0, NULL, VMCI_INVALID_HANDLE);
396}
397
398int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
399				 struct sockaddr_vm *src)
400{
401	return vmci_transport_send_control_pkt_bh(
402					dst, src,
403					VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
404					0, NULL, VMCI_INVALID_HANDLE);
405}
406
407int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
408				struct sockaddr_vm *src)
409{
410	return vmci_transport_send_control_pkt_bh(
411					dst, src,
412					VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
413					0, NULL, VMCI_INVALID_HANDLE);
414}
415
416int vmci_transport_send_wrote(struct sock *sk)
417{
418	return vmci_transport_send_control_pkt(
419					sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
420					0, NULL, VSOCK_PROTO_INVALID,
421					VMCI_INVALID_HANDLE);
422}
423
424int vmci_transport_send_read(struct sock *sk)
425{
426	return vmci_transport_send_control_pkt(
427					sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
428					0, NULL, VSOCK_PROTO_INVALID,
429					VMCI_INVALID_HANDLE);
430}
431
432int vmci_transport_send_waiting_write(struct sock *sk,
433				      struct vmci_transport_waiting_info *wait)
434{
435	return vmci_transport_send_control_pkt(
436				sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
437				0, 0, wait, VSOCK_PROTO_INVALID,
438				VMCI_INVALID_HANDLE);
439}
440
441int vmci_transport_send_waiting_read(struct sock *sk,
442				     struct vmci_transport_waiting_info *wait)
443{
444	return vmci_transport_send_control_pkt(
445				sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
446				0, 0, wait, VSOCK_PROTO_INVALID,
447				VMCI_INVALID_HANDLE);
448}
449
450static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
451{
452	return vmci_transport_send_control_pkt(
453					&vsk->sk,
454					VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
455					0, mode, NULL,
456					VSOCK_PROTO_INVALID,
457					VMCI_INVALID_HANDLE);
458}
459
460static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
461{
462	return vmci_transport_send_control_pkt(sk,
463					VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
464					size, 0, NULL,
465					VSOCK_PROTO_INVALID,
466					VMCI_INVALID_HANDLE);
467}
468
469static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
470					     u16 version)
471{
472	return vmci_transport_send_control_pkt(
473					sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
474					size, 0, NULL, version,
475					VMCI_INVALID_HANDLE);
476}
477
478static struct sock *vmci_transport_get_pending(
479					struct sock *listener,
480					struct vmci_transport_packet *pkt)
481{
482	struct vsock_sock *vlistener;
483	struct vsock_sock *vpending;
484	struct sock *pending;
485	struct sockaddr_vm src;
486
487	vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
488
489	vlistener = vsock_sk(listener);
490
491	list_for_each_entry(vpending, &vlistener->pending_links,
492			    pending_links) {
493		if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
494		    pkt->dst_port == vpending->local_addr.svm_port) {
495			pending = sk_vsock(vpending);
496			sock_hold(pending);
497			goto found;
498		}
499	}
500
501	pending = NULL;
502found:
503	return pending;
504
505}
506
507static void vmci_transport_release_pending(struct sock *pending)
508{
509	sock_put(pending);
510}
511
512/* We allow two kinds of sockets to communicate with a restricted VM: 1)
513 * trusted sockets 2) sockets from applications running as the same user as the
514 * VM (this is only true for the host side and only when using hosted products)
515 */
516
517static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
518{
519	return vsock->trusted ||
520	       vmci_is_context_owner(peer_cid, vsock->owner->uid);
521}
522
523/* We allow sending datagrams to and receiving datagrams from a restricted VM
524 * only if it is trusted as described in vmci_transport_is_trusted.
525 */
526
527static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
528{
529	if (VMADDR_CID_HYPERVISOR == peer_cid)
530		return true;
531
532	if (vsock->cached_peer != peer_cid) {
533		vsock->cached_peer = peer_cid;
534		if (!vmci_transport_is_trusted(vsock, peer_cid) &&
535		    (vmci_context_get_priv_flags(peer_cid) &
536		     VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
537			vsock->cached_peer_allow_dgram = false;
538		} else {
539			vsock->cached_peer_allow_dgram = true;
540		}
541	}
542
543	return vsock->cached_peer_allow_dgram;
544}
545
546static int
547vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
548				struct vmci_handle *handle,
549				u64 produce_size,
550				u64 consume_size,
551				u32 peer, u32 flags, bool trusted)
552{
553	int err = 0;
554
555	if (trusted) {
556		/* Try to allocate our queue pair as trusted. This will only
557		 * work if vsock is running in the host.
558		 */
559
560		err = vmci_qpair_alloc(qpair, handle, produce_size,
561				       consume_size,
562				       peer, flags,
563				       VMCI_PRIVILEGE_FLAG_TRUSTED);
564		if (err != VMCI_ERROR_NO_ACCESS)
565			goto out;
566
567	}
568
569	err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
570			       peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
571out:
572	if (err < 0) {
573		pr_err_once("Could not attach to queue pair with %d\n", err);
574		err = vmci_transport_error_to_vsock_error(err);
575	}
576
577	return err;
578}
579
580static int
581vmci_transport_datagram_create_hnd(u32 resource_id,
582				   u32 flags,
583				   vmci_datagram_recv_cb recv_cb,
584				   void *client_data,
585				   struct vmci_handle *out_handle)
586{
587	int err = 0;
588
589	/* Try to allocate our datagram handler as trusted. This will only work
590	 * if vsock is running in the host.
591	 */
592
593	err = vmci_datagram_create_handle_priv(resource_id, flags,
594					       VMCI_PRIVILEGE_FLAG_TRUSTED,
595					       recv_cb,
596					       client_data, out_handle);
597
598	if (err == VMCI_ERROR_NO_ACCESS)
599		err = vmci_datagram_create_handle(resource_id, flags,
600						  recv_cb, client_data,
601						  out_handle);
602
603	return err;
604}
605
606/* This is invoked as part of a tasklet that's scheduled when the VMCI
607 * interrupt fires.  This is run in bottom-half context and if it ever needs to
608 * sleep it should defer that work to a work queue.
609 */
610
611static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
612{
613	struct sock *sk;
614	size_t size;
615	struct sk_buff *skb;
616	struct vsock_sock *vsk;
617
618	sk = (struct sock *)data;
619
620	/* This handler is privileged when this module is running on the host.
621	 * We will get datagrams from all endpoints (even VMs that are in a
622	 * restricted context). If we get one from a restricted context then
623	 * the destination socket must be trusted.
624	 *
625	 * NOTE: We access the socket struct without holding the lock here.
626	 * This is ok because the field we are interested is never modified
627	 * outside of the create and destruct socket functions.
628	 */
629	vsk = vsock_sk(sk);
630	if (!vmci_transport_allow_dgram(vsk, dg->src.context))
631		return VMCI_ERROR_NO_ACCESS;
632
633	size = VMCI_DG_SIZE(dg);
634
635	/* Attach the packet to the socket's receive queue as an sk_buff. */
636	skb = alloc_skb(size, GFP_ATOMIC);
637	if (!skb)
638		return VMCI_ERROR_NO_MEM;
639
640	/* sk_receive_skb() will do a sock_put(), so hold here. */
641	sock_hold(sk);
642	skb_put(skb, size);
643	memcpy(skb->data, dg, size);
644	sk_receive_skb(sk, skb, 0);
645
646	return VMCI_SUCCESS;
647}
648
649static bool vmci_transport_stream_allow(u32 cid, u32 port)
650{
651	static const u32 non_socket_contexts[] = {
652		VMADDR_CID_LOCAL,
653	};
654	int i;
655
656	BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
657
658	for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
659		if (cid == non_socket_contexts[i])
660			return false;
661	}
662
663	return true;
664}
665
666/* This is invoked as part of a tasklet that's scheduled when the VMCI
667 * interrupt fires.  This is run in bottom-half context but it defers most of
668 * its work to the packet handling work queue.
669 */
670
671static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
672{
673	struct sock *sk;
674	struct sockaddr_vm dst;
675	struct sockaddr_vm src;
676	struct vmci_transport_packet *pkt;
677	struct vsock_sock *vsk;
678	bool bh_process_pkt;
679	int err;
680
681	sk = NULL;
682	err = VMCI_SUCCESS;
683	bh_process_pkt = false;
684
685	/* Ignore incoming packets from contexts without sockets, or resources
686	 * that aren't vsock implementations.
687	 */
688
689	if (!vmci_transport_stream_allow(dg->src.context, -1)
690	    || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
691		return VMCI_ERROR_NO_ACCESS;
692
693	if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
694		/* Drop datagrams that do not contain full VSock packets. */
695		return VMCI_ERROR_INVALID_ARGS;
696
697	pkt = (struct vmci_transport_packet *)dg;
698
699	/* Find the socket that should handle this packet.  First we look for a
700	 * connected socket and if there is none we look for a socket bound to
701	 * the destintation address.
702	 */
703	vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
704	vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
705
706	sk = vsock_find_connected_socket(&src, &dst);
707	if (!sk) {
708		sk = vsock_find_bound_socket(&dst);
709		if (!sk) {
710			/* We could not find a socket for this specified
711			 * address.  If this packet is a RST, we just drop it.
712			 * If it is another packet, we send a RST.  Note that
713			 * we do not send a RST reply to RSTs so that we do not
714			 * continually send RSTs between two endpoints.
715			 *
716			 * Note that since this is a reply, dst is src and src
717			 * is dst.
718			 */
719			if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
720				pr_err("unable to send reset\n");
721
722			err = VMCI_ERROR_NOT_FOUND;
723			goto out;
724		}
725	}
726
727	/* If the received packet type is beyond all types known to this
728	 * implementation, reply with an invalid message.  Hopefully this will
729	 * help when implementing backwards compatibility in the future.
730	 */
731	if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
732		vmci_transport_send_invalid_bh(&dst, &src);
733		err = VMCI_ERROR_INVALID_ARGS;
734		goto out;
735	}
736
737	/* This handler is privileged when this module is running on the host.
738	 * We will get datagram connect requests from all endpoints (even VMs
739	 * that are in a restricted context). If we get one from a restricted
740	 * context then the destination socket must be trusted.
741	 *
742	 * NOTE: We access the socket struct without holding the lock here.
743	 * This is ok because the field we are interested is never modified
744	 * outside of the create and destruct socket functions.
745	 */
746	vsk = vsock_sk(sk);
747	if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
748		err = VMCI_ERROR_NO_ACCESS;
749		goto out;
750	}
751
752	/* We do most everything in a work queue, but let's fast path the
753	 * notification of reads and writes to help data transfer performance.
754	 * We can only do this if there is no process context code executing
755	 * for this socket since that may change the state.
756	 */
757	bh_lock_sock(sk);
758
759	if (!sock_owned_by_user(sk)) {
760		/* The local context ID may be out of date, update it. */
761		vsk->local_addr.svm_cid = dst.svm_cid;
762
763		if (sk->sk_state == TCP_ESTABLISHED)
764			vmci_trans(vsk)->notify_ops->handle_notify_pkt(
765					sk, pkt, true, &dst, &src,
766					&bh_process_pkt);
767	}
768
769	bh_unlock_sock(sk);
770
771	if (!bh_process_pkt) {
772		struct vmci_transport_recv_pkt_info *recv_pkt_info;
773
774		recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
775		if (!recv_pkt_info) {
776			if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
777				pr_err("unable to send reset\n");
778
779			err = VMCI_ERROR_NO_MEM;
780			goto out;
781		}
782
783		recv_pkt_info->sk = sk;
784		memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
785		INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
786
787		schedule_work(&recv_pkt_info->work);
788		/* Clear sk so that the reference count incremented by one of
789		 * the Find functions above is not decremented below.  We need
790		 * that reference count for the packet handler we've scheduled
791		 * to run.
792		 */
793		sk = NULL;
794	}
795
796out:
797	if (sk)
798		sock_put(sk);
799
800	return err;
801}
802
803static void vmci_transport_handle_detach(struct sock *sk)
804{
805	struct vsock_sock *vsk;
806
807	vsk = vsock_sk(sk);
808	if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
809		sock_set_flag(sk, SOCK_DONE);
810
811		/* On a detach the peer will not be sending or receiving
812		 * anymore.
813		 */
814		vsk->peer_shutdown = SHUTDOWN_MASK;
815
816		/* We should not be sending anymore since the peer won't be
817		 * there to receive, but we can still receive if there is data
818		 * left in our consume queue. If the local endpoint is a host,
819		 * we can't call vsock_stream_has_data, since that may block,
820		 * but a host endpoint can't read data once the VM has
821		 * detached, so there is no available data in that case.
822		 */
823		if (vsk->local_addr.svm_cid == VMADDR_CID_HOST ||
824		    vsock_stream_has_data(vsk) <= 0) {
825			if (sk->sk_state == TCP_SYN_SENT) {
826				/* The peer may detach from a queue pair while
827				 * we are still in the connecting state, i.e.,
828				 * if the peer VM is killed after attaching to
829				 * a queue pair, but before we complete the
830				 * handshake. In that case, we treat the detach
831				 * event like a reset.
832				 */
833
834				sk->sk_state = TCP_CLOSE;
835				sk->sk_err = ECONNRESET;
836				sk_error_report(sk);
837				return;
838			}
839			sk->sk_state = TCP_CLOSE;
840		}
841		sk->sk_state_change(sk);
842	}
843}
844
845static void vmci_transport_peer_detach_cb(u32 sub_id,
846					  const struct vmci_event_data *e_data,
847					  void *client_data)
848{
849	struct vmci_transport *trans = client_data;
850	const struct vmci_event_payload_qp *e_payload;
851
852	e_payload = vmci_event_data_const_payload(e_data);
853
854	/* XXX This is lame, we should provide a way to lookup sockets by
855	 * qp_handle.
856	 */
857	if (vmci_handle_is_invalid(e_payload->handle) ||
858	    !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
859		return;
860
861	/* We don't ask for delayed CBs when we subscribe to this event (we
862	 * pass 0 as flags to vmci_event_subscribe()).  VMCI makes no
863	 * guarantees in that case about what context we might be running in,
864	 * so it could be BH or process, blockable or non-blockable.  So we
865	 * need to account for all possible contexts here.
866	 */
867	spin_lock_bh(&trans->lock);
868	if (!trans->sk)
869		goto out;
870
871	/* Apart from here, trans->lock is only grabbed as part of sk destruct,
872	 * where trans->sk isn't locked.
873	 */
874	bh_lock_sock(trans->sk);
875
876	vmci_transport_handle_detach(trans->sk);
877
878	bh_unlock_sock(trans->sk);
879 out:
880	spin_unlock_bh(&trans->lock);
881}
882
883static void vmci_transport_qp_resumed_cb(u32 sub_id,
884					 const struct vmci_event_data *e_data,
885					 void *client_data)
886{
887	vsock_for_each_connected_socket(&vmci_transport,
888					vmci_transport_handle_detach);
889}
890
891static void vmci_transport_recv_pkt_work(struct work_struct *work)
892{
893	struct vmci_transport_recv_pkt_info *recv_pkt_info;
894	struct vmci_transport_packet *pkt;
895	struct sock *sk;
896
897	recv_pkt_info =
898		container_of(work, struct vmci_transport_recv_pkt_info, work);
899	sk = recv_pkt_info->sk;
900	pkt = &recv_pkt_info->pkt;
901
902	lock_sock(sk);
903
904	/* The local context ID may be out of date. */
905	vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
906
907	switch (sk->sk_state) {
908	case TCP_LISTEN:
909		vmci_transport_recv_listen(sk, pkt);
910		break;
911	case TCP_SYN_SENT:
912		/* Processing of pending connections for servers goes through
913		 * the listening socket, so see vmci_transport_recv_listen()
914		 * for that path.
915		 */
916		vmci_transport_recv_connecting_client(sk, pkt);
917		break;
918	case TCP_ESTABLISHED:
919		vmci_transport_recv_connected(sk, pkt);
920		break;
921	default:
922		/* Because this function does not run in the same context as
923		 * vmci_transport_recv_stream_cb it is possible that the
924		 * socket has closed. We need to let the other side know or it
925		 * could be sitting in a connect and hang forever. Send a
926		 * reset to prevent that.
927		 */
928		vmci_transport_send_reset(sk, pkt);
929		break;
930	}
931
932	release_sock(sk);
933	kfree(recv_pkt_info);
934	/* Release reference obtained in the stream callback when we fetched
935	 * this socket out of the bound or connected list.
936	 */
937	sock_put(sk);
938}
939
940static int vmci_transport_recv_listen(struct sock *sk,
941				      struct vmci_transport_packet *pkt)
942{
943	struct sock *pending;
944	struct vsock_sock *vpending;
945	int err;
946	u64 qp_size;
947	bool old_request = false;
948	bool old_pkt_proto = false;
949
950	/* Because we are in the listen state, we could be receiving a packet
951	 * for ourself or any previous connection requests that we received.
952	 * If it's the latter, we try to find a socket in our list of pending
953	 * connections and, if we do, call the appropriate handler for the
954	 * state that socket is in.  Otherwise we try to service the
955	 * connection request.
956	 */
957	pending = vmci_transport_get_pending(sk, pkt);
958	if (pending) {
959		lock_sock(pending);
960
961		/* The local context ID may be out of date. */
962		vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
963
964		switch (pending->sk_state) {
965		case TCP_SYN_SENT:
966			err = vmci_transport_recv_connecting_server(sk,
967								    pending,
968								    pkt);
969			break;
970		default:
971			vmci_transport_send_reset(pending, pkt);
972			err = -EINVAL;
973		}
974
975		if (err < 0)
976			vsock_remove_pending(sk, pending);
977
978		release_sock(pending);
979		vmci_transport_release_pending(pending);
980
981		return err;
982	}
983
984	/* The listen state only accepts connection requests.  Reply with a
985	 * reset unless we received a reset.
986	 */
987
988	if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
989	      pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
990		vmci_transport_reply_reset(pkt);
991		return -EINVAL;
992	}
993
994	if (pkt->u.size == 0) {
995		vmci_transport_reply_reset(pkt);
996		return -EINVAL;
997	}
998
999	/* If this socket can't accommodate this connection request, we send a
1000	 * reset.  Otherwise we create and initialize a child socket and reply
1001	 * with a connection negotiation.
1002	 */
1003	if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1004		vmci_transport_reply_reset(pkt);
1005		return -ECONNREFUSED;
1006	}
1007
1008	pending = vsock_create_connected(sk);
1009	if (!pending) {
1010		vmci_transport_send_reset(sk, pkt);
1011		return -ENOMEM;
1012	}
1013
1014	vpending = vsock_sk(pending);
1015
1016	vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1017			pkt->dst_port);
1018	vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1019			pkt->src_port);
1020
1021	err = vsock_assign_transport(vpending, vsock_sk(sk));
1022	/* Transport assigned (looking at remote_addr) must be the same
1023	 * where we received the request.
1024	 */
1025	if (err || !vmci_check_transport(vpending)) {
1026		vmci_transport_send_reset(sk, pkt);
1027		sock_put(pending);
1028		return err;
1029	}
1030
1031	/* If the proposed size fits within our min/max, accept it. Otherwise
1032	 * propose our own size.
1033	 */
1034	if (pkt->u.size >= vpending->buffer_min_size &&
1035	    pkt->u.size <= vpending->buffer_max_size) {
1036		qp_size = pkt->u.size;
1037	} else {
1038		qp_size = vpending->buffer_size;
1039	}
1040
1041	/* Figure out if we are using old or new requests based on the
1042	 * overrides pkt types sent by our peer.
1043	 */
1044	if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1045		old_request = old_pkt_proto;
1046	} else {
1047		if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1048			old_request = true;
1049		else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1050			old_request = false;
1051
1052	}
1053
1054	if (old_request) {
1055		/* Handle a REQUEST (or override) */
1056		u16 version = VSOCK_PROTO_INVALID;
1057		if (vmci_transport_proto_to_notify_struct(
1058			pending, &version, true))
1059			err = vmci_transport_send_negotiate(pending, qp_size);
1060		else
1061			err = -EINVAL;
1062
1063	} else {
1064		/* Handle a REQUEST2 (or override) */
1065		int proto_int = pkt->proto;
1066		int pos;
1067		u16 active_proto_version = 0;
1068
1069		/* The list of possible protocols is the intersection of all
1070		 * protocols the client supports ... plus all the protocols we
1071		 * support.
1072		 */
1073		proto_int &= vmci_transport_new_proto_supported_versions();
1074
1075		/* We choose the highest possible protocol version and use that
1076		 * one.
1077		 */
1078		pos = fls(proto_int);
1079		if (pos) {
1080			active_proto_version = (1 << (pos - 1));
1081			if (vmci_transport_proto_to_notify_struct(
1082				pending, &active_proto_version, false))
1083				err = vmci_transport_send_negotiate2(pending,
1084							qp_size,
1085							active_proto_version);
1086			else
1087				err = -EINVAL;
1088
1089		} else {
1090			err = -EINVAL;
1091		}
1092	}
1093
1094	if (err < 0) {
1095		vmci_transport_send_reset(sk, pkt);
1096		sock_put(pending);
1097		err = vmci_transport_error_to_vsock_error(err);
1098		goto out;
1099	}
1100
1101	vsock_add_pending(sk, pending);
1102	sk_acceptq_added(sk);
1103
1104	pending->sk_state = TCP_SYN_SENT;
1105	vmci_trans(vpending)->produce_size =
1106		vmci_trans(vpending)->consume_size = qp_size;
1107	vpending->buffer_size = qp_size;
1108
1109	vmci_trans(vpending)->notify_ops->process_request(pending);
1110
1111	/* We might never receive another message for this socket and it's not
1112	 * connected to any process, so we have to ensure it gets cleaned up
1113	 * ourself.  Our delayed work function will take care of that.  Note
1114	 * that we do not ever cancel this function since we have few
1115	 * guarantees about its state when calling cancel_delayed_work().
1116	 * Instead we hold a reference on the socket for that function and make
1117	 * it capable of handling cases where it needs to do nothing but
1118	 * release that reference.
1119	 */
1120	vpending->listener = sk;
1121	sock_hold(sk);
1122	sock_hold(pending);
1123	schedule_delayed_work(&vpending->pending_work, HZ);
1124
1125out:
1126	return err;
1127}
1128
1129static int
1130vmci_transport_recv_connecting_server(struct sock *listener,
1131				      struct sock *pending,
1132				      struct vmci_transport_packet *pkt)
1133{
1134	struct vsock_sock *vpending;
1135	struct vmci_handle handle;
1136	struct vmci_qp *qpair;
1137	bool is_local;
1138	u32 flags;
1139	u32 detach_sub_id;
1140	int err;
1141	int skerr;
1142
1143	vpending = vsock_sk(pending);
1144	detach_sub_id = VMCI_INVALID_ID;
1145
1146	switch (pkt->type) {
1147	case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1148		if (vmci_handle_is_invalid(pkt->u.handle)) {
1149			vmci_transport_send_reset(pending, pkt);
1150			skerr = EPROTO;
1151			err = -EINVAL;
1152			goto destroy;
1153		}
1154		break;
1155	default:
1156		/* Close and cleanup the connection. */
1157		vmci_transport_send_reset(pending, pkt);
1158		skerr = EPROTO;
1159		err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1160		goto destroy;
1161	}
1162
1163	/* In order to complete the connection we need to attach to the offered
1164	 * queue pair and send an attach notification.  We also subscribe to the
1165	 * detach event so we know when our peer goes away, and we do that
1166	 * before attaching so we don't miss an event.  If all this succeeds,
1167	 * we update our state and wakeup anything waiting in accept() for a
1168	 * connection.
1169	 */
1170
1171	/* We don't care about attach since we ensure the other side has
1172	 * attached by specifying the ATTACH_ONLY flag below.
1173	 */
1174	err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1175				   vmci_transport_peer_detach_cb,
1176				   vmci_trans(vpending), &detach_sub_id);
1177	if (err < VMCI_SUCCESS) {
1178		vmci_transport_send_reset(pending, pkt);
1179		err = vmci_transport_error_to_vsock_error(err);
1180		skerr = -err;
1181		goto destroy;
1182	}
1183
1184	vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1185
1186	/* Now attach to the queue pair the client created. */
1187	handle = pkt->u.handle;
1188
1189	/* vpending->local_addr always has a context id so we do not need to
1190	 * worry about VMADDR_CID_ANY in this case.
1191	 */
1192	is_local =
1193	    vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1194	flags = VMCI_QPFLAG_ATTACH_ONLY;
1195	flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1196
1197	err = vmci_transport_queue_pair_alloc(
1198					&qpair,
1199					&handle,
1200					vmci_trans(vpending)->produce_size,
1201					vmci_trans(vpending)->consume_size,
1202					pkt->dg.src.context,
1203					flags,
1204					vmci_transport_is_trusted(
1205						vpending,
1206						vpending->remote_addr.svm_cid));
1207	if (err < 0) {
1208		vmci_transport_send_reset(pending, pkt);
1209		skerr = -err;
1210		goto destroy;
1211	}
1212
1213	vmci_trans(vpending)->qp_handle = handle;
1214	vmci_trans(vpending)->qpair = qpair;
1215
1216	/* When we send the attach message, we must be ready to handle incoming
1217	 * control messages on the newly connected socket. So we move the
1218	 * pending socket to the connected state before sending the attach
1219	 * message. Otherwise, an incoming packet triggered by the attach being
1220	 * received by the peer may be processed concurrently with what happens
1221	 * below after sending the attach message, and that incoming packet
1222	 * will find the listening socket instead of the (currently) pending
1223	 * socket. Note that enqueueing the socket increments the reference
1224	 * count, so even if a reset comes before the connection is accepted,
1225	 * the socket will be valid until it is removed from the queue.
1226	 *
1227	 * If we fail sending the attach below, we remove the socket from the
1228	 * connected list and move the socket to TCP_CLOSE before
1229	 * releasing the lock, so a pending slow path processing of an incoming
1230	 * packet will not see the socket in the connected state in that case.
1231	 */
1232	pending->sk_state = TCP_ESTABLISHED;
1233
1234	vsock_insert_connected(vpending);
1235
1236	/* Notify our peer of our attach. */
1237	err = vmci_transport_send_attach(pending, handle);
1238	if (err < 0) {
1239		vsock_remove_connected(vpending);
1240		pr_err("Could not send attach\n");
1241		vmci_transport_send_reset(pending, pkt);
1242		err = vmci_transport_error_to_vsock_error(err);
1243		skerr = -err;
1244		goto destroy;
1245	}
1246
1247	/* We have a connection. Move the now connected socket from the
1248	 * listener's pending list to the accept queue so callers of accept()
1249	 * can find it.
1250	 */
1251	vsock_remove_pending(listener, pending);
1252	vsock_enqueue_accept(listener, pending);
1253
1254	/* Callers of accept() will be waiting on the listening socket, not
1255	 * the pending socket.
1256	 */
1257	listener->sk_data_ready(listener);
1258
1259	return 0;
1260
1261destroy:
1262	pending->sk_err = skerr;
1263	pending->sk_state = TCP_CLOSE;
1264	/* As long as we drop our reference, all necessary cleanup will handle
1265	 * when the cleanup function drops its reference and our destruct
1266	 * implementation is called.  Note that since the listen handler will
1267	 * remove pending from the pending list upon our failure, the cleanup
1268	 * function won't drop the additional reference, which is why we do it
1269	 * here.
1270	 */
1271	sock_put(pending);
1272
1273	return err;
1274}
1275
1276static int
1277vmci_transport_recv_connecting_client(struct sock *sk,
1278				      struct vmci_transport_packet *pkt)
1279{
1280	struct vsock_sock *vsk;
1281	int err;
1282	int skerr;
1283
1284	vsk = vsock_sk(sk);
1285
1286	switch (pkt->type) {
1287	case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1288		if (vmci_handle_is_invalid(pkt->u.handle) ||
1289		    !vmci_handle_is_equal(pkt->u.handle,
1290					  vmci_trans(vsk)->qp_handle)) {
1291			skerr = EPROTO;
1292			err = -EINVAL;
1293			goto destroy;
1294		}
1295
1296		/* Signify the socket is connected and wakeup the waiter in
1297		 * connect(). Also place the socket in the connected table for
1298		 * accounting (it can already be found since it's in the bound
1299		 * table).
1300		 */
1301		sk->sk_state = TCP_ESTABLISHED;
1302		sk->sk_socket->state = SS_CONNECTED;
1303		vsock_insert_connected(vsk);
1304		sk->sk_state_change(sk);
1305
1306		break;
1307	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1308	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1309		if (pkt->u.size == 0
1310		    || pkt->dg.src.context != vsk->remote_addr.svm_cid
1311		    || pkt->src_port != vsk->remote_addr.svm_port
1312		    || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1313		    || vmci_trans(vsk)->qpair
1314		    || vmci_trans(vsk)->produce_size != 0
1315		    || vmci_trans(vsk)->consume_size != 0
1316		    || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1317			skerr = EPROTO;
1318			err = -EINVAL;
1319
1320			goto destroy;
1321		}
1322
1323		err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1324		if (err) {
1325			skerr = -err;
1326			goto destroy;
1327		}
1328
1329		break;
1330	case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1331		err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1332		if (err) {
1333			skerr = -err;
1334			goto destroy;
1335		}
1336
1337		break;
1338	case VMCI_TRANSPORT_PACKET_TYPE_RST:
1339		/* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1340		 * continue processing here after they sent an INVALID packet.
1341		 * This meant that we got a RST after the INVALID. We ignore a
1342		 * RST after an INVALID. The common code doesn't send the RST
1343		 * ... so we can hang if an old version of the common code
1344		 * fails between getting a REQUEST and sending an OFFER back.
1345		 * Not much we can do about it... except hope that it doesn't
1346		 * happen.
1347		 */
1348		if (vsk->ignore_connecting_rst) {
1349			vsk->ignore_connecting_rst = false;
1350		} else {
1351			skerr = ECONNRESET;
1352			err = 0;
1353			goto destroy;
1354		}
1355
1356		break;
1357	default:
1358		/* Close and cleanup the connection. */
1359		skerr = EPROTO;
1360		err = -EINVAL;
1361		goto destroy;
1362	}
1363
1364	return 0;
1365
1366destroy:
1367	vmci_transport_send_reset(sk, pkt);
1368
1369	sk->sk_state = TCP_CLOSE;
1370	sk->sk_err = skerr;
1371	sk_error_report(sk);
1372	return err;
1373}
1374
1375static int vmci_transport_recv_connecting_client_negotiate(
1376					struct sock *sk,
1377					struct vmci_transport_packet *pkt)
1378{
1379	int err;
1380	struct vsock_sock *vsk;
1381	struct vmci_handle handle;
1382	struct vmci_qp *qpair;
1383	u32 detach_sub_id;
1384	bool is_local;
1385	u32 flags;
1386	bool old_proto = true;
1387	bool old_pkt_proto;
1388	u16 version;
1389
1390	vsk = vsock_sk(sk);
1391	handle = VMCI_INVALID_HANDLE;
1392	detach_sub_id = VMCI_INVALID_ID;
1393
1394	/* If we have gotten here then we should be past the point where old
1395	 * linux vsock could have sent the bogus rst.
1396	 */
1397	vsk->sent_request = false;
1398	vsk->ignore_connecting_rst = false;
1399
1400	/* Verify that we're OK with the proposed queue pair size */
1401	if (pkt->u.size < vsk->buffer_min_size ||
1402	    pkt->u.size > vsk->buffer_max_size) {
1403		err = -EINVAL;
1404		goto destroy;
1405	}
1406
1407	/* At this point we know the CID the peer is using to talk to us. */
1408
1409	if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1410		vsk->local_addr.svm_cid = pkt->dg.dst.context;
1411
1412	/* Setup the notify ops to be the highest supported version that both
1413	 * the server and the client support.
1414	 */
1415
1416	if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1417		old_proto = old_pkt_proto;
1418	} else {
1419		if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1420			old_proto = true;
1421		else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1422			old_proto = false;
1423
1424	}
1425
1426	if (old_proto)
1427		version = VSOCK_PROTO_INVALID;
1428	else
1429		version = pkt->proto;
1430
1431	if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1432		err = -EINVAL;
1433		goto destroy;
1434	}
1435
1436	/* Subscribe to detach events first.
1437	 *
1438	 * XXX We attach once for each queue pair created for now so it is easy
1439	 * to find the socket (it's provided), but later we should only
1440	 * subscribe once and add a way to lookup sockets by queue pair handle.
1441	 */
1442	err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1443				   vmci_transport_peer_detach_cb,
1444				   vmci_trans(vsk), &detach_sub_id);
1445	if (err < VMCI_SUCCESS) {
1446		err = vmci_transport_error_to_vsock_error(err);
1447		goto destroy;
1448	}
1449
1450	/* Make VMCI select the handle for us. */
1451	handle = VMCI_INVALID_HANDLE;
1452	is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1453	flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1454
1455	err = vmci_transport_queue_pair_alloc(&qpair,
1456					      &handle,
1457					      pkt->u.size,
1458					      pkt->u.size,
1459					      vsk->remote_addr.svm_cid,
1460					      flags,
1461					      vmci_transport_is_trusted(
1462						  vsk,
1463						  vsk->
1464						  remote_addr.svm_cid));
1465	if (err < 0)
1466		goto destroy;
1467
1468	err = vmci_transport_send_qp_offer(sk, handle);
1469	if (err < 0) {
1470		err = vmci_transport_error_to_vsock_error(err);
1471		goto destroy;
1472	}
1473
1474	vmci_trans(vsk)->qp_handle = handle;
1475	vmci_trans(vsk)->qpair = qpair;
1476
1477	vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1478		pkt->u.size;
1479
1480	vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1481
1482	vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1483
1484	return 0;
1485
1486destroy:
1487	if (detach_sub_id != VMCI_INVALID_ID)
1488		vmci_event_unsubscribe(detach_sub_id);
1489
1490	if (!vmci_handle_is_invalid(handle))
1491		vmci_qpair_detach(&qpair);
1492
1493	return err;
1494}
1495
1496static int
1497vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1498					      struct vmci_transport_packet *pkt)
1499{
1500	int err = 0;
1501	struct vsock_sock *vsk = vsock_sk(sk);
1502
1503	if (vsk->sent_request) {
1504		vsk->sent_request = false;
1505		vsk->ignore_connecting_rst = true;
1506
1507		err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
1508		if (err < 0)
1509			err = vmci_transport_error_to_vsock_error(err);
1510		else
1511			err = 0;
1512
1513	}
1514
1515	return err;
1516}
1517
1518static int vmci_transport_recv_connected(struct sock *sk,
1519					 struct vmci_transport_packet *pkt)
1520{
1521	struct vsock_sock *vsk;
1522	bool pkt_processed = false;
1523
1524	/* In cases where we are closing the connection, it's sufficient to
1525	 * mark the state change (and maybe error) and wake up any waiting
1526	 * threads. Since this is a connected socket, it's owned by a user
1527	 * process and will be cleaned up when the failure is passed back on
1528	 * the current or next system call.  Our system call implementations
1529	 * must therefore check for error and state changes on entry and when
1530	 * being awoken.
1531	 */
1532	switch (pkt->type) {
1533	case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1534		if (pkt->u.mode) {
1535			vsk = vsock_sk(sk);
1536
1537			vsk->peer_shutdown |= pkt->u.mode;
1538			sk->sk_state_change(sk);
1539		}
1540		break;
1541
1542	case VMCI_TRANSPORT_PACKET_TYPE_RST:
1543		vsk = vsock_sk(sk);
1544		/* It is possible that we sent our peer a message (e.g a
1545		 * WAITING_READ) right before we got notified that the peer had
1546		 * detached. If that happens then we can get a RST pkt back
1547		 * from our peer even though there is data available for us to
1548		 * read. In that case, don't shutdown the socket completely but
1549		 * instead allow the local client to finish reading data off
1550		 * the queuepair. Always treat a RST pkt in connected mode like
1551		 * a clean shutdown.
1552		 */
1553		sock_set_flag(sk, SOCK_DONE);
1554		vsk->peer_shutdown = SHUTDOWN_MASK;
1555		if (vsock_stream_has_data(vsk) <= 0)
1556			sk->sk_state = TCP_CLOSING;
1557
1558		sk->sk_state_change(sk);
1559		break;
1560
1561	default:
1562		vsk = vsock_sk(sk);
1563		vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1564				sk, pkt, false, NULL, NULL,
1565				&pkt_processed);
1566		if (!pkt_processed)
1567			return -EINVAL;
1568
1569		break;
1570	}
1571
1572	return 0;
1573}
1574
1575static int vmci_transport_socket_init(struct vsock_sock *vsk,
1576				      struct vsock_sock *psk)
1577{
1578	vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1579	if (!vsk->trans)
1580		return -ENOMEM;
1581
1582	vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1583	vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1584	vmci_trans(vsk)->qpair = NULL;
1585	vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1586	vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1587	vmci_trans(vsk)->notify_ops = NULL;
1588	INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1589	vmci_trans(vsk)->sk = &vsk->sk;
1590	spin_lock_init(&vmci_trans(vsk)->lock);
1591
1592	return 0;
1593}
1594
1595static void vmci_transport_free_resources(struct list_head *transport_list)
1596{
1597	while (!list_empty(transport_list)) {
1598		struct vmci_transport *transport =
1599		    list_first_entry(transport_list, struct vmci_transport,
1600				     elem);
1601		list_del(&transport->elem);
1602
1603		if (transport->detach_sub_id != VMCI_INVALID_ID) {
1604			vmci_event_unsubscribe(transport->detach_sub_id);
1605			transport->detach_sub_id = VMCI_INVALID_ID;
1606		}
1607
1608		if (!vmci_handle_is_invalid(transport->qp_handle)) {
1609			vmci_qpair_detach(&transport->qpair);
1610			transport->qp_handle = VMCI_INVALID_HANDLE;
1611			transport->produce_size = 0;
1612			transport->consume_size = 0;
1613		}
1614
1615		kfree(transport);
1616	}
1617}
1618
1619static void vmci_transport_cleanup(struct work_struct *work)
1620{
1621	LIST_HEAD(pending);
1622
1623	spin_lock_bh(&vmci_transport_cleanup_lock);
1624	list_replace_init(&vmci_transport_cleanup_list, &pending);
1625	spin_unlock_bh(&vmci_transport_cleanup_lock);
1626	vmci_transport_free_resources(&pending);
1627}
1628
1629static void vmci_transport_destruct(struct vsock_sock *vsk)
1630{
1631	/* transport can be NULL if we hit a failure at init() time */
1632	if (!vmci_trans(vsk))
1633		return;
1634
1635	/* Ensure that the detach callback doesn't use the sk/vsk
1636	 * we are about to destruct.
1637	 */
1638	spin_lock_bh(&vmci_trans(vsk)->lock);
1639	vmci_trans(vsk)->sk = NULL;
1640	spin_unlock_bh(&vmci_trans(vsk)->lock);
1641
1642	if (vmci_trans(vsk)->notify_ops)
1643		vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1644
1645	spin_lock_bh(&vmci_transport_cleanup_lock);
1646	list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1647	spin_unlock_bh(&vmci_transport_cleanup_lock);
1648	schedule_work(&vmci_transport_cleanup_work);
1649
1650	vsk->trans = NULL;
1651}
1652
1653static void vmci_transport_release(struct vsock_sock *vsk)
1654{
1655	vsock_remove_sock(vsk);
1656
1657	if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1658		vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1659		vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1660	}
1661}
1662
1663static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1664				     struct sockaddr_vm *addr)
1665{
1666	u32 port;
1667	u32 flags;
1668	int err;
1669
1670	/* VMCI will select a resource ID for us if we provide
1671	 * VMCI_INVALID_ID.
1672	 */
1673	port = addr->svm_port == VMADDR_PORT_ANY ?
1674			VMCI_INVALID_ID : addr->svm_port;
1675
1676	if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1677		return -EACCES;
1678
1679	flags = addr->svm_cid == VMADDR_CID_ANY ?
1680				VMCI_FLAG_ANYCID_DG_HND : 0;
1681
1682	err = vmci_transport_datagram_create_hnd(port, flags,
1683						 vmci_transport_recv_dgram_cb,
1684						 &vsk->sk,
1685						 &vmci_trans(vsk)->dg_handle);
1686	if (err < VMCI_SUCCESS)
1687		return vmci_transport_error_to_vsock_error(err);
1688	vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1689			vmci_trans(vsk)->dg_handle.resource);
1690
1691	return 0;
1692}
1693
1694static int vmci_transport_dgram_enqueue(
1695	struct vsock_sock *vsk,
1696	struct sockaddr_vm *remote_addr,
1697	struct msghdr *msg,
1698	size_t len)
1699{
1700	int err;
1701	struct vmci_datagram *dg;
1702
1703	if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1704		return -EMSGSIZE;
1705
1706	if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1707		return -EPERM;
1708
1709	/* Allocate a buffer for the user's message and our packet header. */
1710	dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1711	if (!dg)
1712		return -ENOMEM;
1713
1714	err = memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1715	if (err) {
1716		kfree(dg);
1717		return err;
1718	}
1719
1720	dg->dst = vmci_make_handle(remote_addr->svm_cid,
1721				   remote_addr->svm_port);
1722	dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1723				   vsk->local_addr.svm_port);
1724	dg->payload_size = len;
1725
1726	err = vmci_datagram_send(dg);
1727	kfree(dg);
1728	if (err < 0)
1729		return vmci_transport_error_to_vsock_error(err);
1730
1731	return err - sizeof(*dg);
1732}
1733
1734static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1735					struct msghdr *msg, size_t len,
1736					int flags)
1737{
1738	int err;
1739	struct vmci_datagram *dg;
1740	size_t payload_len;
1741	struct sk_buff *skb;
1742
1743	if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1744		return -EOPNOTSUPP;
1745
1746	/* Retrieve the head sk_buff from the socket's receive queue. */
1747	err = 0;
1748	skb = skb_recv_datagram(&vsk->sk, flags, &err);
1749	if (!skb)
1750		return err;
1751
1752	dg = (struct vmci_datagram *)skb->data;
1753	if (!dg)
1754		/* err is 0, meaning we read zero bytes. */
1755		goto out;
1756
1757	payload_len = dg->payload_size;
1758	/* Ensure the sk_buff matches the payload size claimed in the packet. */
1759	if (payload_len != skb->len - sizeof(*dg)) {
1760		err = -EINVAL;
1761		goto out;
1762	}
1763
1764	if (payload_len > len) {
1765		payload_len = len;
1766		msg->msg_flags |= MSG_TRUNC;
1767	}
1768
1769	/* Place the datagram payload in the user's iovec. */
1770	err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1771	if (err)
1772		goto out;
1773
1774	if (msg->msg_name) {
1775		/* Provide the address of the sender. */
1776		DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1777		vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1778		msg->msg_namelen = sizeof(*vm_addr);
1779	}
1780	err = payload_len;
1781
1782out:
1783	skb_free_datagram(&vsk->sk, skb);
1784	return err;
1785}
1786
1787static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1788{
1789	if (cid == VMADDR_CID_HYPERVISOR) {
1790		/* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1791		 * state and are allowed.
1792		 */
1793		return port == VMCI_UNITY_PBRPC_REGISTER;
1794	}
1795
1796	return true;
1797}
1798
1799static int vmci_transport_connect(struct vsock_sock *vsk)
1800{
1801	int err;
1802	bool old_pkt_proto = false;
1803	struct sock *sk = &vsk->sk;
1804
1805	if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1806		old_pkt_proto) {
1807		err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
1808		if (err < 0) {
1809			sk->sk_state = TCP_CLOSE;
1810			return err;
1811		}
1812	} else {
1813		int supported_proto_versions =
1814			vmci_transport_new_proto_supported_versions();
1815		err = vmci_transport_send_conn_request2(sk, vsk->buffer_size,
1816				supported_proto_versions);
1817		if (err < 0) {
1818			sk->sk_state = TCP_CLOSE;
1819			return err;
1820		}
1821
1822		vsk->sent_request = true;
1823	}
1824
1825	return err;
1826}
1827
1828static ssize_t vmci_transport_stream_dequeue(
1829	struct vsock_sock *vsk,
1830	struct msghdr *msg,
1831	size_t len,
1832	int flags)
1833{
1834	ssize_t err;
1835
1836	if (flags & MSG_PEEK)
1837		err = vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1838	else
1839		err = vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1840
1841	if (err < 0)
1842		err = -ENOMEM;
1843
1844	return err;
1845}
1846
1847static ssize_t vmci_transport_stream_enqueue(
1848	struct vsock_sock *vsk,
1849	struct msghdr *msg,
1850	size_t len)
1851{
1852	ssize_t err;
1853
1854	err = vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1855	if (err < 0)
1856		err = -ENOMEM;
1857
1858	return err;
1859}
1860
1861static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1862{
1863	return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1864}
1865
1866static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1867{
1868	return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1869}
1870
1871static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1872{
1873	return vmci_trans(vsk)->consume_size;
1874}
1875
1876static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1877{
1878	return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1879}
1880
1881static int vmci_transport_notify_poll_in(
1882	struct vsock_sock *vsk,
1883	size_t target,
1884	bool *data_ready_now)
1885{
1886	return vmci_trans(vsk)->notify_ops->poll_in(
1887			&vsk->sk, target, data_ready_now);
1888}
1889
1890static int vmci_transport_notify_poll_out(
1891	struct vsock_sock *vsk,
1892	size_t target,
1893	bool *space_available_now)
1894{
1895	return vmci_trans(vsk)->notify_ops->poll_out(
1896			&vsk->sk, target, space_available_now);
1897}
1898
1899static int vmci_transport_notify_recv_init(
1900	struct vsock_sock *vsk,
1901	size_t target,
1902	struct vsock_transport_recv_notify_data *data)
1903{
1904	return vmci_trans(vsk)->notify_ops->recv_init(
1905			&vsk->sk, target,
1906			(struct vmci_transport_recv_notify_data *)data);
1907}
1908
1909static int vmci_transport_notify_recv_pre_block(
1910	struct vsock_sock *vsk,
1911	size_t target,
1912	struct vsock_transport_recv_notify_data *data)
1913{
1914	return vmci_trans(vsk)->notify_ops->recv_pre_block(
1915			&vsk->sk, target,
1916			(struct vmci_transport_recv_notify_data *)data);
1917}
1918
1919static int vmci_transport_notify_recv_pre_dequeue(
1920	struct vsock_sock *vsk,
1921	size_t target,
1922	struct vsock_transport_recv_notify_data *data)
1923{
1924	return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1925			&vsk->sk, target,
1926			(struct vmci_transport_recv_notify_data *)data);
1927}
1928
1929static int vmci_transport_notify_recv_post_dequeue(
1930	struct vsock_sock *vsk,
1931	size_t target,
1932	ssize_t copied,
1933	bool data_read,
1934	struct vsock_transport_recv_notify_data *data)
1935{
1936	return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1937			&vsk->sk, target, copied, data_read,
1938			(struct vmci_transport_recv_notify_data *)data);
1939}
1940
1941static int vmci_transport_notify_send_init(
1942	struct vsock_sock *vsk,
1943	struct vsock_transport_send_notify_data *data)
1944{
1945	return vmci_trans(vsk)->notify_ops->send_init(
1946			&vsk->sk,
1947			(struct vmci_transport_send_notify_data *)data);
1948}
1949
1950static int vmci_transport_notify_send_pre_block(
1951	struct vsock_sock *vsk,
1952	struct vsock_transport_send_notify_data *data)
1953{
1954	return vmci_trans(vsk)->notify_ops->send_pre_block(
1955			&vsk->sk,
1956			(struct vmci_transport_send_notify_data *)data);
1957}
1958
1959static int vmci_transport_notify_send_pre_enqueue(
1960	struct vsock_sock *vsk,
1961	struct vsock_transport_send_notify_data *data)
1962{
1963	return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
1964			&vsk->sk,
1965			(struct vmci_transport_send_notify_data *)data);
1966}
1967
1968static int vmci_transport_notify_send_post_enqueue(
1969	struct vsock_sock *vsk,
1970	ssize_t written,
1971	struct vsock_transport_send_notify_data *data)
1972{
1973	return vmci_trans(vsk)->notify_ops->send_post_enqueue(
1974			&vsk->sk, written,
1975			(struct vmci_transport_send_notify_data *)data);
1976}
1977
1978static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
1979{
1980	if (PROTOCOL_OVERRIDE != -1) {
1981		if (PROTOCOL_OVERRIDE == 0)
1982			*old_pkt_proto = true;
1983		else
1984			*old_pkt_proto = false;
1985
1986		pr_info("Proto override in use\n");
1987		return true;
1988	}
1989
1990	return false;
1991}
1992
1993static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
1994						  u16 *proto,
1995						  bool old_pkt_proto)
1996{
1997	struct vsock_sock *vsk = vsock_sk(sk);
1998
1999	if (old_pkt_proto) {
2000		if (*proto != VSOCK_PROTO_INVALID) {
2001			pr_err("Can't set both an old and new protocol\n");
2002			return false;
2003		}
2004		vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
2005		goto exit;
2006	}
2007
2008	switch (*proto) {
2009	case VSOCK_PROTO_PKT_ON_NOTIFY:
2010		vmci_trans(vsk)->notify_ops =
2011			&vmci_transport_notify_pkt_q_state_ops;
2012		break;
2013	default:
2014		pr_err("Unknown notify protocol version\n");
2015		return false;
2016	}
2017
2018exit:
2019	vmci_trans(vsk)->notify_ops->socket_init(sk);
2020	return true;
2021}
2022
2023static u16 vmci_transport_new_proto_supported_versions(void)
2024{
2025	if (PROTOCOL_OVERRIDE != -1)
2026		return PROTOCOL_OVERRIDE;
2027
2028	return VSOCK_PROTO_ALL_SUPPORTED;
2029}
2030
2031static u32 vmci_transport_get_local_cid(void)
2032{
2033	return vmci_get_context_id();
2034}
2035
2036static struct vsock_transport vmci_transport = {
2037	.module = THIS_MODULE,
2038	.init = vmci_transport_socket_init,
2039	.destruct = vmci_transport_destruct,
2040	.release = vmci_transport_release,
2041	.connect = vmci_transport_connect,
2042	.dgram_bind = vmci_transport_dgram_bind,
2043	.dgram_dequeue = vmci_transport_dgram_dequeue,
2044	.dgram_enqueue = vmci_transport_dgram_enqueue,
2045	.dgram_allow = vmci_transport_dgram_allow,
2046	.stream_dequeue = vmci_transport_stream_dequeue,
2047	.stream_enqueue = vmci_transport_stream_enqueue,
2048	.stream_has_data = vmci_transport_stream_has_data,
2049	.stream_has_space = vmci_transport_stream_has_space,
2050	.stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2051	.stream_is_active = vmci_transport_stream_is_active,
2052	.stream_allow = vmci_transport_stream_allow,
2053	.notify_poll_in = vmci_transport_notify_poll_in,
2054	.notify_poll_out = vmci_transport_notify_poll_out,
2055	.notify_recv_init = vmci_transport_notify_recv_init,
2056	.notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2057	.notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2058	.notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2059	.notify_send_init = vmci_transport_notify_send_init,
2060	.notify_send_pre_block = vmci_transport_notify_send_pre_block,
2061	.notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2062	.notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2063	.shutdown = vmci_transport_shutdown,
2064	.get_local_cid = vmci_transport_get_local_cid,
2065};
2066
2067static bool vmci_check_transport(struct vsock_sock *vsk)
2068{
2069	return vsk->transport == &vmci_transport;
2070}
2071
2072static void vmci_vsock_transport_cb(bool is_host)
2073{
2074	int features;
2075
2076	if (is_host)
2077		features = VSOCK_TRANSPORT_F_H2G;
2078	else
2079		features = VSOCK_TRANSPORT_F_G2H;
2080
2081	vsock_core_register(&vmci_transport, features);
2082}
2083
2084static int __init vmci_transport_init(void)
2085{
2086	int err;
2087
2088	/* Create the datagram handle that we will use to send and receive all
2089	 * VSocket control messages for this context.
2090	 */
2091	err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2092						 VMCI_FLAG_ANYCID_DG_HND,
2093						 vmci_transport_recv_stream_cb,
2094						 NULL,
2095						 &vmci_transport_stream_handle);
2096	if (err < VMCI_SUCCESS) {
2097		pr_err("Unable to create datagram handle. (%d)\n", err);
2098		return vmci_transport_error_to_vsock_error(err);
2099	}
2100	err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2101				   vmci_transport_qp_resumed_cb,
2102				   NULL, &vmci_transport_qp_resumed_sub_id);
2103	if (err < VMCI_SUCCESS) {
2104		pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2105		err = vmci_transport_error_to_vsock_error(err);
2106		vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2107		goto err_destroy_stream_handle;
2108	}
2109
2110	/* Register only with dgram feature, other features (H2G, G2H) will be
2111	 * registered when the first host or guest becomes active.
2112	 */
2113	err = vsock_core_register(&vmci_transport, VSOCK_TRANSPORT_F_DGRAM);
2114	if (err < 0)
2115		goto err_unsubscribe;
2116
2117	err = vmci_register_vsock_callback(vmci_vsock_transport_cb);
2118	if (err < 0)
2119		goto err_unregister;
2120
2121	return 0;
2122
2123err_unregister:
2124	vsock_core_unregister(&vmci_transport);
2125err_unsubscribe:
2126	vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2127err_destroy_stream_handle:
2128	vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2129	return err;
2130}
2131module_init(vmci_transport_init);
2132
2133static void __exit vmci_transport_exit(void)
2134{
2135	cancel_work_sync(&vmci_transport_cleanup_work);
2136	vmci_transport_free_resources(&vmci_transport_cleanup_list);
2137
2138	if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2139		if (vmci_datagram_destroy_handle(
2140			vmci_transport_stream_handle) != VMCI_SUCCESS)
2141			pr_err("Couldn't destroy datagram handle\n");
2142		vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2143	}
2144
2145	if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2146		vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2147		vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2148	}
2149
2150	vmci_register_vsock_callback(NULL);
2151	vsock_core_unregister(&vmci_transport);
2152}
2153module_exit(vmci_transport_exit);
2154
2155MODULE_AUTHOR("VMware, Inc.");
2156MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2157MODULE_VERSION("1.0.5.0-k");
2158MODULE_LICENSE("GPL v2");
2159MODULE_ALIAS("vmware_vsock");
2160MODULE_ALIAS_NETPROTO(PF_VSOCK);
2161