1// SPDX-License-Identifier: GPL-2.0
2/*
3 * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption
4 *
5 * Copyright (c) 2019, Ericsson AB
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. Neither the names of the copyright holders nor the names of its
17 *    contributors may be used to endorse or promote products derived from
18 *    this software without specific prior written permission.
19 *
20 * Alternatively, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") version 2 as published by the Free
22 * Software Foundation.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
28 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37#include <crypto/aead.h>
38#include <crypto/aes.h>
39#include <crypto/rng.h>
40#include "crypto.h"
41#include "msg.h"
42#include "bcast.h"
43
44#define TIPC_TX_GRACE_PERIOD	msecs_to_jiffies(5000) /* 5s */
45#define TIPC_TX_LASTING_TIME	msecs_to_jiffies(10000) /* 10s */
46#define TIPC_RX_ACTIVE_LIM	msecs_to_jiffies(3000) /* 3s */
47#define TIPC_RX_PASSIVE_LIM	msecs_to_jiffies(15000) /* 15s */
48
49#define TIPC_MAX_TFMS_DEF	10
50#define TIPC_MAX_TFMS_LIM	1000
51
52#define TIPC_REKEYING_INTV_DEF	(60 * 24) /* default: 1 day */
53
54/*
55 * TIPC Key ids
56 */
57enum {
58	KEY_MASTER = 0,
59	KEY_MIN = KEY_MASTER,
60	KEY_1 = 1,
61	KEY_2,
62	KEY_3,
63	KEY_MAX = KEY_3,
64};
65
66/*
67 * TIPC Crypto statistics
68 */
69enum {
70	STAT_OK,
71	STAT_NOK,
72	STAT_ASYNC,
73	STAT_ASYNC_OK,
74	STAT_ASYNC_NOK,
75	STAT_BADKEYS, /* tx only */
76	STAT_BADMSGS = STAT_BADKEYS, /* rx only */
77	STAT_NOKEYS,
78	STAT_SWITCHES,
79
80	MAX_STATS,
81};
82
83/* TIPC crypto statistics' header */
84static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok",
85					"async_nok", "badmsgs", "nokeys",
86					"switches"};
87
88/* Max TFMs number per key */
89int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF;
90/* Key exchange switch, default: on */
91int sysctl_tipc_key_exchange_enabled __read_mostly = 1;
92
93/*
94 * struct tipc_key - TIPC keys' status indicator
95 *
96 *         7     6     5     4     3     2     1     0
97 *      +-----+-----+-----+-----+-----+-----+-----+-----+
98 * key: | (reserved)|passive idx| active idx|pending idx|
99 *      +-----+-----+-----+-----+-----+-----+-----+-----+
100 */
101struct tipc_key {
102#define KEY_BITS (2)
103#define KEY_MASK ((1 << KEY_BITS) - 1)
104	union {
105		struct {
106#if defined(__LITTLE_ENDIAN_BITFIELD)
107			u8 pending:2,
108			   active:2,
109			   passive:2, /* rx only */
110			   reserved:2;
111#elif defined(__BIG_ENDIAN_BITFIELD)
112			u8 reserved:2,
113			   passive:2, /* rx only */
114			   active:2,
115			   pending:2;
116#else
117#error  "Please fix <asm/byteorder.h>"
118#endif
119		} __packed;
120		u8 keys;
121	};
122};
123
124/**
125 * struct tipc_tfm - TIPC TFM structure to form a list of TFMs
126 * @tfm: cipher handle/key
127 * @list: linked list of TFMs
128 */
129struct tipc_tfm {
130	struct crypto_aead *tfm;
131	struct list_head list;
132};
133
134/**
135 * struct tipc_aead - TIPC AEAD key structure
136 * @tfm_entry: per-cpu pointer to one entry in TFM list
137 * @crypto: TIPC crypto owns this key
138 * @cloned: reference to the source key in case cloning
139 * @users: the number of the key users (TX/RX)
140 * @salt: the key's SALT value
141 * @authsize: authentication tag size (max = 16)
142 * @mode: crypto mode is applied to the key
143 * @hint: a hint for user key
144 * @rcu: struct rcu_head
145 * @key: the aead key
146 * @gen: the key's generation
147 * @seqno: the key seqno (cluster scope)
148 * @refcnt: the key reference counter
149 */
150struct tipc_aead {
151#define TIPC_AEAD_HINT_LEN (5)
152	struct tipc_tfm * __percpu *tfm_entry;
153	struct tipc_crypto *crypto;
154	struct tipc_aead *cloned;
155	atomic_t users;
156	u32 salt;
157	u8 authsize;
158	u8 mode;
159	char hint[2 * TIPC_AEAD_HINT_LEN + 1];
160	struct rcu_head rcu;
161	struct tipc_aead_key *key;
162	u16 gen;
163
164	atomic64_t seqno ____cacheline_aligned;
165	refcount_t refcnt ____cacheline_aligned;
166
167} ____cacheline_aligned;
168
169/**
170 * struct tipc_crypto_stats - TIPC Crypto statistics
171 * @stat: array of crypto statistics
172 */
173struct tipc_crypto_stats {
174	unsigned int stat[MAX_STATS];
175};
176
177/**
178 * struct tipc_crypto - TIPC TX/RX crypto structure
179 * @net: struct net
180 * @node: TIPC node (RX)
181 * @aead: array of pointers to AEAD keys for encryption/decryption
182 * @peer_rx_active: replicated peer RX active key index
183 * @key_gen: TX/RX key generation
184 * @key: the key states
185 * @skey_mode: session key's mode
186 * @skey: received session key
187 * @wq: common workqueue on TX crypto
188 * @work: delayed work sched for TX/RX
189 * @key_distr: key distributing state
190 * @rekeying_intv: rekeying interval (in minutes)
191 * @stats: the crypto statistics
192 * @name: the crypto name
193 * @sndnxt: the per-peer sndnxt (TX)
194 * @timer1: general timer 1 (jiffies)
195 * @timer2: general timer 2 (jiffies)
196 * @working: the crypto is working or not
197 * @key_master: flag indicates if master key exists
198 * @legacy_user: flag indicates if a peer joins w/o master key (for bwd comp.)
199 * @nokey: no key indication
200 * @flags: combined flags field
201 * @lock: tipc_key lock
202 */
203struct tipc_crypto {
204	struct net *net;
205	struct tipc_node *node;
206	struct tipc_aead __rcu *aead[KEY_MAX + 1];
207	atomic_t peer_rx_active;
208	u16 key_gen;
209	struct tipc_key key;
210	u8 skey_mode;
211	struct tipc_aead_key *skey;
212	struct workqueue_struct *wq;
213	struct delayed_work work;
214#define KEY_DISTR_SCHED		1
215#define KEY_DISTR_COMPL		2
216	atomic_t key_distr;
217	u32 rekeying_intv;
218
219	struct tipc_crypto_stats __percpu *stats;
220	char name[48];
221
222	atomic64_t sndnxt ____cacheline_aligned;
223	unsigned long timer1;
224	unsigned long timer2;
225	union {
226		struct {
227			u8 working:1;
228			u8 key_master:1;
229			u8 legacy_user:1;
230			u8 nokey: 1;
231		};
232		u8 flags;
233	};
234	spinlock_t lock; /* crypto lock */
235
236} ____cacheline_aligned;
237
238/* struct tipc_crypto_tx_ctx - TX context for callbacks */
239struct tipc_crypto_tx_ctx {
240	struct tipc_aead *aead;
241	struct tipc_bearer *bearer;
242	struct tipc_media_addr dst;
243};
244
245/* struct tipc_crypto_rx_ctx - RX context for callbacks */
246struct tipc_crypto_rx_ctx {
247	struct tipc_aead *aead;
248	struct tipc_bearer *bearer;
249};
250
251static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead);
252static inline void tipc_aead_put(struct tipc_aead *aead);
253static void tipc_aead_free(struct rcu_head *rp);
254static int tipc_aead_users(struct tipc_aead __rcu *aead);
255static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim);
256static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim);
257static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val);
258static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead);
259static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
260			  u8 mode);
261static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src);
262static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
263				 unsigned int crypto_ctx_size,
264				 u8 **iv, struct aead_request **req,
265				 struct scatterlist **sg, int nsg);
266static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
267			     struct tipc_bearer *b,
268			     struct tipc_media_addr *dst,
269			     struct tipc_node *__dnode);
270static void tipc_aead_encrypt_done(void *data, int err);
271static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
272			     struct sk_buff *skb, struct tipc_bearer *b);
273static void tipc_aead_decrypt_done(void *data, int err);
274static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr);
275static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
276			   u8 tx_key, struct sk_buff *skb,
277			   struct tipc_crypto *__rx);
278static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
279					     u8 new_passive,
280					     u8 new_active,
281					     u8 new_pending);
282static int tipc_crypto_key_attach(struct tipc_crypto *c,
283				  struct tipc_aead *aead, u8 pos,
284				  bool master_key);
285static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending);
286static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
287						 struct tipc_crypto *rx,
288						 struct sk_buff *skb,
289						 u8 tx_key);
290static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb);
291static int tipc_crypto_key_revoke(struct net *net, u8 tx_key);
292static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
293					 struct tipc_bearer *b,
294					 struct tipc_media_addr *dst,
295					 struct tipc_node *__dnode, u8 type);
296static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
297				     struct tipc_bearer *b,
298				     struct sk_buff **skb, int err);
299static void tipc_crypto_do_cmd(struct net *net, int cmd);
300static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf);
301static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
302				  char *buf);
303static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
304				u16 gen, u8 mode, u32 dnode);
305static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr);
306static void tipc_crypto_work_tx(struct work_struct *work);
307static void tipc_crypto_work_rx(struct work_struct *work);
308static int tipc_aead_key_generate(struct tipc_aead_key *skey);
309
310#define is_tx(crypto) (!(crypto)->node)
311#define is_rx(crypto) (!is_tx(crypto))
312
313#define key_next(cur) ((cur) % KEY_MAX + 1)
314
315#define tipc_aead_rcu_ptr(rcu_ptr, lock)				\
316	rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock))
317
318#define tipc_aead_rcu_replace(rcu_ptr, ptr, lock)			\
319do {									\
320	struct tipc_aead *__tmp = rcu_dereference_protected((rcu_ptr),	\
321						lockdep_is_held(lock));	\
322	rcu_assign_pointer((rcu_ptr), (ptr));				\
323	tipc_aead_put(__tmp);						\
324} while (0)
325
326#define tipc_crypto_key_detach(rcu_ptr, lock)				\
327	tipc_aead_rcu_replace((rcu_ptr), NULL, lock)
328
329/**
330 * tipc_aead_key_validate - Validate a AEAD user key
331 * @ukey: pointer to user key data
332 * @info: netlink info pointer
333 */
334int tipc_aead_key_validate(struct tipc_aead_key *ukey, struct genl_info *info)
335{
336	int keylen;
337
338	/* Check if algorithm exists */
339	if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) {
340		GENL_SET_ERR_MSG(info, "unable to load the algorithm (module existed?)");
341		return -ENODEV;
342	}
343
344	/* Currently, we only support the "gcm(aes)" cipher algorithm */
345	if (strcmp(ukey->alg_name, "gcm(aes)")) {
346		GENL_SET_ERR_MSG(info, "not supported yet the algorithm");
347		return -ENOTSUPP;
348	}
349
350	/* Check if key size is correct */
351	keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
352	if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 &&
353		     keylen != TIPC_AES_GCM_KEY_SIZE_192 &&
354		     keylen != TIPC_AES_GCM_KEY_SIZE_256)) {
355		GENL_SET_ERR_MSG(info, "incorrect key length (20, 28 or 36 octets?)");
356		return -EKEYREJECTED;
357	}
358
359	return 0;
360}
361
362/**
363 * tipc_aead_key_generate - Generate new session key
364 * @skey: input/output key with new content
365 *
366 * Return: 0 in case of success, otherwise < 0
367 */
368static int tipc_aead_key_generate(struct tipc_aead_key *skey)
369{
370	int rc = 0;
371
372	/* Fill the key's content with a random value via RNG cipher */
373	rc = crypto_get_default_rng();
374	if (likely(!rc)) {
375		rc = crypto_rng_get_bytes(crypto_default_rng, skey->key,
376					  skey->keylen);
377		crypto_put_default_rng();
378	}
379
380	return rc;
381}
382
383static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead)
384{
385	struct tipc_aead *tmp;
386
387	rcu_read_lock();
388	tmp = rcu_dereference(aead);
389	if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt)))
390		tmp = NULL;
391	rcu_read_unlock();
392
393	return tmp;
394}
395
396static inline void tipc_aead_put(struct tipc_aead *aead)
397{
398	if (aead && refcount_dec_and_test(&aead->refcnt))
399		call_rcu(&aead->rcu, tipc_aead_free);
400}
401
402/**
403 * tipc_aead_free - Release AEAD key incl. all the TFMs in the list
404 * @rp: rcu head pointer
405 */
406static void tipc_aead_free(struct rcu_head *rp)
407{
408	struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu);
409	struct tipc_tfm *tfm_entry, *head, *tmp;
410
411	if (aead->cloned) {
412		tipc_aead_put(aead->cloned);
413	} else {
414		head = *get_cpu_ptr(aead->tfm_entry);
415		put_cpu_ptr(aead->tfm_entry);
416		list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) {
417			crypto_free_aead(tfm_entry->tfm);
418			list_del(&tfm_entry->list);
419			kfree(tfm_entry);
420		}
421		/* Free the head */
422		crypto_free_aead(head->tfm);
423		list_del(&head->list);
424		kfree(head);
425	}
426	free_percpu(aead->tfm_entry);
427	kfree_sensitive(aead->key);
428	kfree(aead);
429}
430
431static int tipc_aead_users(struct tipc_aead __rcu *aead)
432{
433	struct tipc_aead *tmp;
434	int users = 0;
435
436	rcu_read_lock();
437	tmp = rcu_dereference(aead);
438	if (tmp)
439		users = atomic_read(&tmp->users);
440	rcu_read_unlock();
441
442	return users;
443}
444
445static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim)
446{
447	struct tipc_aead *tmp;
448
449	rcu_read_lock();
450	tmp = rcu_dereference(aead);
451	if (tmp)
452		atomic_add_unless(&tmp->users, 1, lim);
453	rcu_read_unlock();
454}
455
456static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim)
457{
458	struct tipc_aead *tmp;
459
460	rcu_read_lock();
461	tmp = rcu_dereference(aead);
462	if (tmp)
463		atomic_add_unless(&rcu_dereference(aead)->users, -1, lim);
464	rcu_read_unlock();
465}
466
467static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val)
468{
469	struct tipc_aead *tmp;
470	int cur;
471
472	rcu_read_lock();
473	tmp = rcu_dereference(aead);
474	if (tmp) {
475		do {
476			cur = atomic_read(&tmp->users);
477			if (cur == val)
478				break;
479		} while (atomic_cmpxchg(&tmp->users, cur, val) != cur);
480	}
481	rcu_read_unlock();
482}
483
484/**
485 * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it
486 * @aead: the AEAD key pointer
487 */
488static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead)
489{
490	struct tipc_tfm **tfm_entry;
491	struct crypto_aead *tfm;
492
493	tfm_entry = get_cpu_ptr(aead->tfm_entry);
494	*tfm_entry = list_next_entry(*tfm_entry, list);
495	tfm = (*tfm_entry)->tfm;
496	put_cpu_ptr(tfm_entry);
497
498	return tfm;
499}
500
501/**
502 * tipc_aead_init - Initiate TIPC AEAD
503 * @aead: returned new TIPC AEAD key handle pointer
504 * @ukey: pointer to user key data
505 * @mode: the key mode
506 *
507 * Allocate a (list of) new cipher transformation (TFM) with the specific user
508 * key data if valid. The number of the allocated TFMs can be set via the sysfs
509 * "net/tipc/max_tfms" first.
510 * Also, all the other AEAD data are also initialized.
511 *
512 * Return: 0 if the initiation is successful, otherwise: < 0
513 */
514static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
515			  u8 mode)
516{
517	struct tipc_tfm *tfm_entry, *head;
518	struct crypto_aead *tfm;
519	struct tipc_aead *tmp;
520	int keylen, err, cpu;
521	int tfm_cnt = 0;
522
523	if (unlikely(*aead))
524		return -EEXIST;
525
526	/* Allocate a new AEAD */
527	tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
528	if (unlikely(!tmp))
529		return -ENOMEM;
530
531	/* The key consists of two parts: [AES-KEY][SALT] */
532	keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
533
534	/* Allocate per-cpu TFM entry pointer */
535	tmp->tfm_entry = alloc_percpu(struct tipc_tfm *);
536	if (!tmp->tfm_entry) {
537		kfree_sensitive(tmp);
538		return -ENOMEM;
539	}
540
541	/* Make a list of TFMs with the user key data */
542	do {
543		tfm = crypto_alloc_aead(ukey->alg_name, 0, 0);
544		if (IS_ERR(tfm)) {
545			err = PTR_ERR(tfm);
546			break;
547		}
548
549		if (unlikely(!tfm_cnt &&
550			     crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) {
551			crypto_free_aead(tfm);
552			err = -ENOTSUPP;
553			break;
554		}
555
556		err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE);
557		err |= crypto_aead_setkey(tfm, ukey->key, keylen);
558		if (unlikely(err)) {
559			crypto_free_aead(tfm);
560			break;
561		}
562
563		tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL);
564		if (unlikely(!tfm_entry)) {
565			crypto_free_aead(tfm);
566			err = -ENOMEM;
567			break;
568		}
569		INIT_LIST_HEAD(&tfm_entry->list);
570		tfm_entry->tfm = tfm;
571
572		/* First entry? */
573		if (!tfm_cnt) {
574			head = tfm_entry;
575			for_each_possible_cpu(cpu) {
576				*per_cpu_ptr(tmp->tfm_entry, cpu) = head;
577			}
578		} else {
579			list_add_tail(&tfm_entry->list, &head->list);
580		}
581
582	} while (++tfm_cnt < sysctl_tipc_max_tfms);
583
584	/* Not any TFM is allocated? */
585	if (!tfm_cnt) {
586		free_percpu(tmp->tfm_entry);
587		kfree_sensitive(tmp);
588		return err;
589	}
590
591	/* Form a hex string of some last bytes as the key's hint */
592	bin2hex(tmp->hint, ukey->key + keylen - TIPC_AEAD_HINT_LEN,
593		TIPC_AEAD_HINT_LEN);
594
595	/* Initialize the other data */
596	tmp->mode = mode;
597	tmp->cloned = NULL;
598	tmp->authsize = TIPC_AES_GCM_TAG_SIZE;
599	tmp->key = kmemdup(ukey, tipc_aead_key_size(ukey), GFP_KERNEL);
600	if (!tmp->key) {
601		tipc_aead_free(&tmp->rcu);
602		return -ENOMEM;
603	}
604	memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE);
605	atomic_set(&tmp->users, 0);
606	atomic64_set(&tmp->seqno, 0);
607	refcount_set(&tmp->refcnt, 1);
608
609	*aead = tmp;
610	return 0;
611}
612
613/**
614 * tipc_aead_clone - Clone a TIPC AEAD key
615 * @dst: dest key for the cloning
616 * @src: source key to clone from
617 *
618 * Make a "copy" of the source AEAD key data to the dest, the TFMs list is
619 * common for the keys.
620 * A reference to the source is hold in the "cloned" pointer for the later
621 * freeing purposes.
622 *
623 * Note: this must be done in cluster-key mode only!
624 * Return: 0 in case of success, otherwise < 0
625 */
626static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src)
627{
628	struct tipc_aead *aead;
629	int cpu;
630
631	if (!src)
632		return -ENOKEY;
633
634	if (src->mode != CLUSTER_KEY)
635		return -EINVAL;
636
637	if (unlikely(*dst))
638		return -EEXIST;
639
640	aead = kzalloc(sizeof(*aead), GFP_ATOMIC);
641	if (unlikely(!aead))
642		return -ENOMEM;
643
644	aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC);
645	if (unlikely(!aead->tfm_entry)) {
646		kfree_sensitive(aead);
647		return -ENOMEM;
648	}
649
650	for_each_possible_cpu(cpu) {
651		*per_cpu_ptr(aead->tfm_entry, cpu) =
652				*per_cpu_ptr(src->tfm_entry, cpu);
653	}
654
655	memcpy(aead->hint, src->hint, sizeof(src->hint));
656	aead->mode = src->mode;
657	aead->salt = src->salt;
658	aead->authsize = src->authsize;
659	atomic_set(&aead->users, 0);
660	atomic64_set(&aead->seqno, 0);
661	refcount_set(&aead->refcnt, 1);
662
663	WARN_ON(!refcount_inc_not_zero(&src->refcnt));
664	aead->cloned = src;
665
666	*dst = aead;
667	return 0;
668}
669
670/**
671 * tipc_aead_mem_alloc - Allocate memory for AEAD request operations
672 * @tfm: cipher handle to be registered with the request
673 * @crypto_ctx_size: size of crypto context for callback
674 * @iv: returned pointer to IV data
675 * @req: returned pointer to AEAD request data
676 * @sg: returned pointer to SG lists
677 * @nsg: number of SG lists to be allocated
678 *
679 * Allocate memory to store the crypto context data, AEAD request, IV and SG
680 * lists, the memory layout is as follows:
681 * crypto_ctx || iv || aead_req || sg[]
682 *
683 * Return: the pointer to the memory areas in case of success, otherwise NULL
684 */
685static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
686				 unsigned int crypto_ctx_size,
687				 u8 **iv, struct aead_request **req,
688				 struct scatterlist **sg, int nsg)
689{
690	unsigned int iv_size, req_size;
691	unsigned int len;
692	u8 *mem;
693
694	iv_size = crypto_aead_ivsize(tfm);
695	req_size = sizeof(**req) + crypto_aead_reqsize(tfm);
696
697	len = crypto_ctx_size;
698	len += iv_size;
699	len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1);
700	len = ALIGN(len, crypto_tfm_ctx_alignment());
701	len += req_size;
702	len = ALIGN(len, __alignof__(struct scatterlist));
703	len += nsg * sizeof(**sg);
704
705	mem = kmalloc(len, GFP_ATOMIC);
706	if (!mem)
707		return NULL;
708
709	*iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size,
710			      crypto_aead_alignmask(tfm) + 1);
711	*req = (struct aead_request *)PTR_ALIGN(*iv + iv_size,
712						crypto_tfm_ctx_alignment());
713	*sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size,
714					      __alignof__(struct scatterlist));
715
716	return (void *)mem;
717}
718
719/**
720 * tipc_aead_encrypt - Encrypt a message
721 * @aead: TIPC AEAD key for the message encryption
722 * @skb: the input/output skb
723 * @b: TIPC bearer where the message will be delivered after the encryption
724 * @dst: the destination media address
725 * @__dnode: TIPC dest node if "known"
726 *
727 * Return:
728 * * 0                   : if the encryption has completed
729 * * -EINPROGRESS/-EBUSY : if a callback will be performed
730 * * < 0                 : the encryption has failed
731 */
732static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
733			     struct tipc_bearer *b,
734			     struct tipc_media_addr *dst,
735			     struct tipc_node *__dnode)
736{
737	struct crypto_aead *tfm = tipc_aead_tfm_next(aead);
738	struct tipc_crypto_tx_ctx *tx_ctx;
739	struct aead_request *req;
740	struct sk_buff *trailer;
741	struct scatterlist *sg;
742	struct tipc_ehdr *ehdr;
743	int ehsz, len, tailen, nsg, rc;
744	void *ctx;
745	u32 salt;
746	u8 *iv;
747
748	/* Make sure message len at least 4-byte aligned */
749	len = ALIGN(skb->len, 4);
750	tailen = len - skb->len + aead->authsize;
751
752	/* Expand skb tail for authentication tag:
753	 * As for simplicity, we'd have made sure skb having enough tailroom
754	 * for authentication tag @skb allocation. Even when skb is nonlinear
755	 * but there is no frag_list, it should be still fine!
756	 * Otherwise, we must cow it to be a writable buffer with the tailroom.
757	 */
758	SKB_LINEAR_ASSERT(skb);
759	if (tailen > skb_tailroom(skb)) {
760		pr_debug("TX(): skb tailroom is not enough: %d, requires: %d\n",
761			 skb_tailroom(skb), tailen);
762	}
763
764	nsg = skb_cow_data(skb, tailen, &trailer);
765	if (unlikely(nsg < 0)) {
766		pr_err("TX: skb_cow_data() returned %d\n", nsg);
767		return nsg;
768	}
769
770	pskb_put(skb, trailer, tailen);
771
772	/* Allocate memory for the AEAD operation */
773	ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg);
774	if (unlikely(!ctx))
775		return -ENOMEM;
776	TIPC_SKB_CB(skb)->crypto_ctx = ctx;
777
778	/* Map skb to the sg lists */
779	sg_init_table(sg, nsg);
780	rc = skb_to_sgvec(skb, sg, 0, skb->len);
781	if (unlikely(rc < 0)) {
782		pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg);
783		goto exit;
784	}
785
786	/* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)]
787	 * In case we're in cluster-key mode, SALT is varied by xor-ing with
788	 * the source address (or w0 of id), otherwise with the dest address
789	 * if dest is known.
790	 */
791	ehdr = (struct tipc_ehdr *)skb->data;
792	salt = aead->salt;
793	if (aead->mode == CLUSTER_KEY)
794		salt ^= __be32_to_cpu(ehdr->addr);
795	else if (__dnode)
796		salt ^= tipc_node_get_addr(__dnode);
797	memcpy(iv, &salt, 4);
798	memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
799
800	/* Prepare request */
801	ehsz = tipc_ehdr_size(ehdr);
802	aead_request_set_tfm(req, tfm);
803	aead_request_set_ad(req, ehsz);
804	aead_request_set_crypt(req, sg, sg, len - ehsz, iv);
805
806	/* Set callback function & data */
807	aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
808				  tipc_aead_encrypt_done, skb);
809	tx_ctx = (struct tipc_crypto_tx_ctx *)ctx;
810	tx_ctx->aead = aead;
811	tx_ctx->bearer = b;
812	memcpy(&tx_ctx->dst, dst, sizeof(*dst));
813
814	/* Hold bearer */
815	if (unlikely(!tipc_bearer_hold(b))) {
816		rc = -ENODEV;
817		goto exit;
818	}
819
820	/* Now, do encrypt */
821	rc = crypto_aead_encrypt(req);
822	if (rc == -EINPROGRESS || rc == -EBUSY)
823		return rc;
824
825	tipc_bearer_put(b);
826
827exit:
828	kfree(ctx);
829	TIPC_SKB_CB(skb)->crypto_ctx = NULL;
830	return rc;
831}
832
833static void tipc_aead_encrypt_done(void *data, int err)
834{
835	struct sk_buff *skb = data;
836	struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
837	struct tipc_bearer *b = tx_ctx->bearer;
838	struct tipc_aead *aead = tx_ctx->aead;
839	struct tipc_crypto *tx = aead->crypto;
840	struct net *net = tx->net;
841
842	switch (err) {
843	case 0:
844		this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]);
845		rcu_read_lock();
846		if (likely(test_bit(0, &b->up)))
847			b->media->send_msg(net, skb, b, &tx_ctx->dst);
848		else
849			kfree_skb(skb);
850		rcu_read_unlock();
851		break;
852	case -EINPROGRESS:
853		return;
854	default:
855		this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]);
856		kfree_skb(skb);
857		break;
858	}
859
860	kfree(tx_ctx);
861	tipc_bearer_put(b);
862	tipc_aead_put(aead);
863}
864
865/**
866 * tipc_aead_decrypt - Decrypt an encrypted message
867 * @net: struct net
868 * @aead: TIPC AEAD for the message decryption
869 * @skb: the input/output skb
870 * @b: TIPC bearer where the message has been received
871 *
872 * Return:
873 * * 0                   : if the decryption has completed
874 * * -EINPROGRESS/-EBUSY : if a callback will be performed
875 * * < 0                 : the decryption has failed
876 */
877static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
878			     struct sk_buff *skb, struct tipc_bearer *b)
879{
880	struct tipc_crypto_rx_ctx *rx_ctx;
881	struct aead_request *req;
882	struct crypto_aead *tfm;
883	struct sk_buff *unused;
884	struct scatterlist *sg;
885	struct tipc_ehdr *ehdr;
886	int ehsz, nsg, rc;
887	void *ctx;
888	u32 salt;
889	u8 *iv;
890
891	if (unlikely(!aead))
892		return -ENOKEY;
893
894	nsg = skb_cow_data(skb, 0, &unused);
895	if (unlikely(nsg < 0)) {
896		pr_err("RX: skb_cow_data() returned %d\n", nsg);
897		return nsg;
898	}
899
900	/* Allocate memory for the AEAD operation */
901	tfm = tipc_aead_tfm_next(aead);
902	ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg);
903	if (unlikely(!ctx))
904		return -ENOMEM;
905	TIPC_SKB_CB(skb)->crypto_ctx = ctx;
906
907	/* Map skb to the sg lists */
908	sg_init_table(sg, nsg);
909	rc = skb_to_sgvec(skb, sg, 0, skb->len);
910	if (unlikely(rc < 0)) {
911		pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg);
912		goto exit;
913	}
914
915	/* Reconstruct IV: */
916	ehdr = (struct tipc_ehdr *)skb->data;
917	salt = aead->salt;
918	if (aead->mode == CLUSTER_KEY)
919		salt ^= __be32_to_cpu(ehdr->addr);
920	else if (ehdr->destined)
921		salt ^= tipc_own_addr(net);
922	memcpy(iv, &salt, 4);
923	memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
924
925	/* Prepare request */
926	ehsz = tipc_ehdr_size(ehdr);
927	aead_request_set_tfm(req, tfm);
928	aead_request_set_ad(req, ehsz);
929	aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv);
930
931	/* Set callback function & data */
932	aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
933				  tipc_aead_decrypt_done, skb);
934	rx_ctx = (struct tipc_crypto_rx_ctx *)ctx;
935	rx_ctx->aead = aead;
936	rx_ctx->bearer = b;
937
938	/* Hold bearer */
939	if (unlikely(!tipc_bearer_hold(b))) {
940		rc = -ENODEV;
941		goto exit;
942	}
943
944	/* Now, do decrypt */
945	rc = crypto_aead_decrypt(req);
946	if (rc == -EINPROGRESS || rc == -EBUSY)
947		return rc;
948
949	tipc_bearer_put(b);
950
951exit:
952	kfree(ctx);
953	TIPC_SKB_CB(skb)->crypto_ctx = NULL;
954	return rc;
955}
956
957static void tipc_aead_decrypt_done(void *data, int err)
958{
959	struct sk_buff *skb = data;
960	struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
961	struct tipc_bearer *b = rx_ctx->bearer;
962	struct tipc_aead *aead = rx_ctx->aead;
963	struct tipc_crypto_stats __percpu *stats = aead->crypto->stats;
964	struct net *net = aead->crypto->net;
965
966	switch (err) {
967	case 0:
968		this_cpu_inc(stats->stat[STAT_ASYNC_OK]);
969		break;
970	case -EINPROGRESS:
971		return;
972	default:
973		this_cpu_inc(stats->stat[STAT_ASYNC_NOK]);
974		break;
975	}
976
977	kfree(rx_ctx);
978	tipc_crypto_rcv_complete(net, aead, b, &skb, err);
979	if (likely(skb)) {
980		if (likely(test_bit(0, &b->up)))
981			tipc_rcv(net, skb, b);
982		else
983			kfree_skb(skb);
984	}
985
986	tipc_bearer_put(b);
987}
988
989static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr)
990{
991	return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
992}
993
994/**
995 * tipc_ehdr_validate - Validate an encryption message
996 * @skb: the message buffer
997 *
998 * Return: "true" if this is a valid encryption message, otherwise "false"
999 */
1000bool tipc_ehdr_validate(struct sk_buff *skb)
1001{
1002	struct tipc_ehdr *ehdr;
1003	int ehsz;
1004
1005	if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE)))
1006		return false;
1007
1008	ehdr = (struct tipc_ehdr *)skb->data;
1009	if (unlikely(ehdr->version != TIPC_EVERSION))
1010		return false;
1011	ehsz = tipc_ehdr_size(ehdr);
1012	if (unlikely(!pskb_may_pull(skb, ehsz)))
1013		return false;
1014	if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE))
1015		return false;
1016
1017	return true;
1018}
1019
1020/**
1021 * tipc_ehdr_build - Build TIPC encryption message header
1022 * @net: struct net
1023 * @aead: TX AEAD key to be used for the message encryption
1024 * @tx_key: key id used for the message encryption
1025 * @skb: input/output message skb
1026 * @__rx: RX crypto handle if dest is "known"
1027 *
1028 * Return: the header size if the building is successful, otherwise < 0
1029 */
1030static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
1031			   u8 tx_key, struct sk_buff *skb,
1032			   struct tipc_crypto *__rx)
1033{
1034	struct tipc_msg *hdr = buf_msg(skb);
1035	struct tipc_ehdr *ehdr;
1036	u32 user = msg_user(hdr);
1037	u64 seqno;
1038	int ehsz;
1039
1040	/* Make room for encryption header */
1041	ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
1042	WARN_ON(skb_headroom(skb) < ehsz);
1043	ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz);
1044
1045	/* Obtain a seqno first:
1046	 * Use the key seqno (= cluster wise) if dest is unknown or we're in
1047	 * cluster key mode, otherwise it's better for a per-peer seqno!
1048	 */
1049	if (!__rx || aead->mode == CLUSTER_KEY)
1050		seqno = atomic64_inc_return(&aead->seqno);
1051	else
1052		seqno = atomic64_inc_return(&__rx->sndnxt);
1053
1054	/* Revoke the key if seqno is wrapped around */
1055	if (unlikely(!seqno))
1056		return tipc_crypto_key_revoke(net, tx_key);
1057
1058	/* Word 1-2 */
1059	ehdr->seqno = cpu_to_be64(seqno);
1060
1061	/* Words 0, 3- */
1062	ehdr->version = TIPC_EVERSION;
1063	ehdr->user = 0;
1064	ehdr->keepalive = 0;
1065	ehdr->tx_key = tx_key;
1066	ehdr->destined = (__rx) ? 1 : 0;
1067	ehdr->rx_key_active = (__rx) ? __rx->key.active : 0;
1068	ehdr->rx_nokey = (__rx) ? __rx->nokey : 0;
1069	ehdr->master_key = aead->crypto->key_master;
1070	ehdr->reserved_1 = 0;
1071	ehdr->reserved_2 = 0;
1072
1073	switch (user) {
1074	case LINK_CONFIG:
1075		ehdr->user = LINK_CONFIG;
1076		memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN);
1077		break;
1078	default:
1079		if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) {
1080			ehdr->user = LINK_PROTOCOL;
1081			ehdr->keepalive = msg_is_keepalive(hdr);
1082		}
1083		ehdr->addr = hdr->hdr[3];
1084		break;
1085	}
1086
1087	return ehsz;
1088}
1089
1090static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
1091					     u8 new_passive,
1092					     u8 new_active,
1093					     u8 new_pending)
1094{
1095	struct tipc_key old = c->key;
1096	char buf[32];
1097
1098	c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) |
1099		      ((new_active  & KEY_MASK) << (KEY_BITS)) |
1100		      ((new_pending & KEY_MASK));
1101
1102	pr_debug("%s: key changing %s ::%pS\n", c->name,
1103		 tipc_key_change_dump(old, c->key, buf),
1104		 __builtin_return_address(0));
1105}
1106
1107/**
1108 * tipc_crypto_key_init - Initiate a new user / AEAD key
1109 * @c: TIPC crypto to which new key is attached
1110 * @ukey: the user key
1111 * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY)
1112 * @master_key: specify this is a cluster master key
1113 *
1114 * A new TIPC AEAD key will be allocated and initiated with the specified user
1115 * key, then attached to the TIPC crypto.
1116 *
1117 * Return: new key id in case of success, otherwise: < 0
1118 */
1119int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey,
1120			 u8 mode, bool master_key)
1121{
1122	struct tipc_aead *aead = NULL;
1123	int rc = 0;
1124
1125	/* Initiate with the new user key */
1126	rc = tipc_aead_init(&aead, ukey, mode);
1127
1128	/* Attach it to the crypto */
1129	if (likely(!rc)) {
1130		rc = tipc_crypto_key_attach(c, aead, 0, master_key);
1131		if (rc < 0)
1132			tipc_aead_free(&aead->rcu);
1133	}
1134
1135	return rc;
1136}
1137
1138/**
1139 * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto
1140 * @c: TIPC crypto to which the new AEAD key is attached
1141 * @aead: the new AEAD key pointer
1142 * @pos: desired slot in the crypto key array, = 0 if any!
1143 * @master_key: specify this is a cluster master key
1144 *
1145 * Return: new key id in case of success, otherwise: -EBUSY
1146 */
1147static int tipc_crypto_key_attach(struct tipc_crypto *c,
1148				  struct tipc_aead *aead, u8 pos,
1149				  bool master_key)
1150{
1151	struct tipc_key key;
1152	int rc = -EBUSY;
1153	u8 new_key;
1154
1155	spin_lock_bh(&c->lock);
1156	key = c->key;
1157	if (master_key) {
1158		new_key = KEY_MASTER;
1159		goto attach;
1160	}
1161	if (key.active && key.passive)
1162		goto exit;
1163	if (key.pending) {
1164		if (tipc_aead_users(c->aead[key.pending]) > 0)
1165			goto exit;
1166		/* if (pos): ok with replacing, will be aligned when needed */
1167		/* Replace it */
1168		new_key = key.pending;
1169	} else {
1170		if (pos) {
1171			if (key.active && pos != key_next(key.active)) {
1172				key.passive = pos;
1173				new_key = pos;
1174				goto attach;
1175			} else if (!key.active && !key.passive) {
1176				key.pending = pos;
1177				new_key = pos;
1178				goto attach;
1179			}
1180		}
1181		key.pending = key_next(key.active ?: key.passive);
1182		new_key = key.pending;
1183	}
1184
1185attach:
1186	aead->crypto = c;
1187	aead->gen = (is_tx(c)) ? ++c->key_gen : c->key_gen;
1188	tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock);
1189	if (likely(c->key.keys != key.keys))
1190		tipc_crypto_key_set_state(c, key.passive, key.active,
1191					  key.pending);
1192	c->working = 1;
1193	c->nokey = 0;
1194	c->key_master |= master_key;
1195	rc = new_key;
1196
1197exit:
1198	spin_unlock_bh(&c->lock);
1199	return rc;
1200}
1201
1202void tipc_crypto_key_flush(struct tipc_crypto *c)
1203{
1204	struct tipc_crypto *tx, *rx;
1205	int k;
1206
1207	spin_lock_bh(&c->lock);
1208	if (is_rx(c)) {
1209		/* Try to cancel pending work */
1210		rx = c;
1211		tx = tipc_net(rx->net)->crypto_tx;
1212		if (cancel_delayed_work(&rx->work)) {
1213			kfree(rx->skey);
1214			rx->skey = NULL;
1215			atomic_xchg(&rx->key_distr, 0);
1216			tipc_node_put(rx->node);
1217		}
1218		/* RX stopping => decrease TX key users if any */
1219		k = atomic_xchg(&rx->peer_rx_active, 0);
1220		if (k) {
1221			tipc_aead_users_dec(tx->aead[k], 0);
1222			/* Mark the point TX key users changed */
1223			tx->timer1 = jiffies;
1224		}
1225	}
1226
1227	c->flags = 0;
1228	tipc_crypto_key_set_state(c, 0, 0, 0);
1229	for (k = KEY_MIN; k <= KEY_MAX; k++)
1230		tipc_crypto_key_detach(c->aead[k], &c->lock);
1231	atomic64_set(&c->sndnxt, 0);
1232	spin_unlock_bh(&c->lock);
1233}
1234
1235/**
1236 * tipc_crypto_key_try_align - Align RX keys if possible
1237 * @rx: RX crypto handle
1238 * @new_pending: new pending slot if aligned (= TX key from peer)
1239 *
1240 * Peer has used an unknown key slot, this only happens when peer has left and
1241 * rejoned, or we are newcomer.
1242 * That means, there must be no active key but a pending key at unaligned slot.
1243 * If so, we try to move the pending key to the new slot.
1244 * Note: A potential passive key can exist, it will be shifted correspondingly!
1245 *
1246 * Return: "true" if key is successfully aligned, otherwise "false"
1247 */
1248static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending)
1249{
1250	struct tipc_aead *tmp1, *tmp2 = NULL;
1251	struct tipc_key key;
1252	bool aligned = false;
1253	u8 new_passive = 0;
1254	int x;
1255
1256	spin_lock(&rx->lock);
1257	key = rx->key;
1258	if (key.pending == new_pending) {
1259		aligned = true;
1260		goto exit;
1261	}
1262	if (key.active)
1263		goto exit;
1264	if (!key.pending)
1265		goto exit;
1266	if (tipc_aead_users(rx->aead[key.pending]) > 0)
1267		goto exit;
1268
1269	/* Try to "isolate" this pending key first */
1270	tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock);
1271	if (!refcount_dec_if_one(&tmp1->refcnt))
1272		goto exit;
1273	rcu_assign_pointer(rx->aead[key.pending], NULL);
1274
1275	/* Move passive key if any */
1276	if (key.passive) {
1277		tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock));
1278		x = (key.passive - key.pending + new_pending) % KEY_MAX;
1279		new_passive = (x <= 0) ? x + KEY_MAX : x;
1280	}
1281
1282	/* Re-allocate the key(s) */
1283	tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
1284	rcu_assign_pointer(rx->aead[new_pending], tmp1);
1285	if (new_passive)
1286		rcu_assign_pointer(rx->aead[new_passive], tmp2);
1287	refcount_set(&tmp1->refcnt, 1);
1288	aligned = true;
1289	pr_info_ratelimited("%s: key[%d] -> key[%d]\n", rx->name, key.pending,
1290			    new_pending);
1291
1292exit:
1293	spin_unlock(&rx->lock);
1294	return aligned;
1295}
1296
1297/**
1298 * tipc_crypto_key_pick_tx - Pick one TX key for message decryption
1299 * @tx: TX crypto handle
1300 * @rx: RX crypto handle (can be NULL)
1301 * @skb: the message skb which will be decrypted later
1302 * @tx_key: peer TX key id
1303 *
1304 * This function looks up the existing TX keys and pick one which is suitable
1305 * for the message decryption, that must be a cluster key and not used before
1306 * on the same message (i.e. recursive).
1307 *
1308 * Return: the TX AEAD key handle in case of success, otherwise NULL
1309 */
1310static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
1311						 struct tipc_crypto *rx,
1312						 struct sk_buff *skb,
1313						 u8 tx_key)
1314{
1315	struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb);
1316	struct tipc_aead *aead = NULL;
1317	struct tipc_key key = tx->key;
1318	u8 k, i = 0;
1319
1320	/* Initialize data if not yet */
1321	if (!skb_cb->tx_clone_deferred) {
1322		skb_cb->tx_clone_deferred = 1;
1323		memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1324	}
1325
1326	skb_cb->tx_clone_ctx.rx = rx;
1327	if (++skb_cb->tx_clone_ctx.recurs > 2)
1328		return NULL;
1329
1330	/* Pick one TX key */
1331	spin_lock(&tx->lock);
1332	if (tx_key == KEY_MASTER) {
1333		aead = tipc_aead_rcu_ptr(tx->aead[KEY_MASTER], &tx->lock);
1334		goto done;
1335	}
1336	do {
1337		k = (i == 0) ? key.pending :
1338			((i == 1) ? key.active : key.passive);
1339		if (!k)
1340			continue;
1341		aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock);
1342		if (!aead)
1343			continue;
1344		if (aead->mode != CLUSTER_KEY ||
1345		    aead == skb_cb->tx_clone_ctx.last) {
1346			aead = NULL;
1347			continue;
1348		}
1349		/* Ok, found one cluster key */
1350		skb_cb->tx_clone_ctx.last = aead;
1351		WARN_ON(skb->next);
1352		skb->next = skb_clone(skb, GFP_ATOMIC);
1353		if (unlikely(!skb->next))
1354			pr_warn("Failed to clone skb for next round if any\n");
1355		break;
1356	} while (++i < 3);
1357
1358done:
1359	if (likely(aead))
1360		WARN_ON(!refcount_inc_not_zero(&aead->refcnt));
1361	spin_unlock(&tx->lock);
1362
1363	return aead;
1364}
1365
1366/**
1367 * tipc_crypto_key_synch: Synch own key data according to peer key status
1368 * @rx: RX crypto handle
1369 * @skb: TIPCv2 message buffer (incl. the ehdr from peer)
1370 *
1371 * This function updates the peer node related data as the peer RX active key
1372 * has changed, so the number of TX keys' users on this node are increased and
1373 * decreased correspondingly.
1374 *
1375 * It also considers if peer has no key, then we need to make own master key
1376 * (if any) taking over i.e. starting grace period and also trigger key
1377 * distributing process.
1378 *
1379 * The "per-peer" sndnxt is also reset when the peer key has switched.
1380 */
1381static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb)
1382{
1383	struct tipc_ehdr *ehdr = (struct tipc_ehdr *)skb_network_header(skb);
1384	struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
1385	struct tipc_msg *hdr = buf_msg(skb);
1386	u32 self = tipc_own_addr(rx->net);
1387	u8 cur, new;
1388	unsigned long delay;
1389
1390	/* Update RX 'key_master' flag according to peer, also mark "legacy" if
1391	 * a peer has no master key.
1392	 */
1393	rx->key_master = ehdr->master_key;
1394	if (!rx->key_master)
1395		tx->legacy_user = 1;
1396
1397	/* For later cases, apply only if message is destined to this node */
1398	if (!ehdr->destined || msg_short(hdr) || msg_destnode(hdr) != self)
1399		return;
1400
1401	/* Case 1: Peer has no keys, let's make master key take over */
1402	if (ehdr->rx_nokey) {
1403		/* Set or extend grace period */
1404		tx->timer2 = jiffies;
1405		/* Schedule key distributing for the peer if not yet */
1406		if (tx->key.keys &&
1407		    !atomic_cmpxchg(&rx->key_distr, 0, KEY_DISTR_SCHED)) {
1408			get_random_bytes(&delay, 2);
1409			delay %= 5;
1410			delay = msecs_to_jiffies(500 * ++delay);
1411			if (queue_delayed_work(tx->wq, &rx->work, delay))
1412				tipc_node_get(rx->node);
1413		}
1414	} else {
1415		/* Cancel a pending key distributing if any */
1416		atomic_xchg(&rx->key_distr, 0);
1417	}
1418
1419	/* Case 2: Peer RX active key has changed, let's update own TX users */
1420	cur = atomic_read(&rx->peer_rx_active);
1421	new = ehdr->rx_key_active;
1422	if (tx->key.keys &&
1423	    cur != new &&
1424	    atomic_cmpxchg(&rx->peer_rx_active, cur, new) == cur) {
1425		if (new)
1426			tipc_aead_users_inc(tx->aead[new], INT_MAX);
1427		if (cur)
1428			tipc_aead_users_dec(tx->aead[cur], 0);
1429
1430		atomic64_set(&rx->sndnxt, 0);
1431		/* Mark the point TX key users changed */
1432		tx->timer1 = jiffies;
1433
1434		pr_debug("%s: key users changed %d-- %d++, peer %s\n",
1435			 tx->name, cur, new, rx->name);
1436	}
1437}
1438
1439static int tipc_crypto_key_revoke(struct net *net, u8 tx_key)
1440{
1441	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1442	struct tipc_key key;
1443
1444	spin_lock_bh(&tx->lock);
1445	key = tx->key;
1446	WARN_ON(!key.active || tx_key != key.active);
1447
1448	/* Free the active key */
1449	tipc_crypto_key_set_state(tx, key.passive, 0, key.pending);
1450	tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1451	spin_unlock_bh(&tx->lock);
1452
1453	pr_warn("%s: key is revoked\n", tx->name);
1454	return -EKEYREVOKED;
1455}
1456
1457int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net,
1458		      struct tipc_node *node)
1459{
1460	struct tipc_crypto *c;
1461
1462	if (*crypto)
1463		return -EEXIST;
1464
1465	/* Allocate crypto */
1466	c = kzalloc(sizeof(*c), GFP_ATOMIC);
1467	if (!c)
1468		return -ENOMEM;
1469
1470	/* Allocate workqueue on TX */
1471	if (!node) {
1472		c->wq = alloc_ordered_workqueue("tipc_crypto", 0);
1473		if (!c->wq) {
1474			kfree(c);
1475			return -ENOMEM;
1476		}
1477	}
1478
1479	/* Allocate statistic structure */
1480	c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC);
1481	if (!c->stats) {
1482		if (c->wq)
1483			destroy_workqueue(c->wq);
1484		kfree_sensitive(c);
1485		return -ENOMEM;
1486	}
1487
1488	c->flags = 0;
1489	c->net = net;
1490	c->node = node;
1491	get_random_bytes(&c->key_gen, 2);
1492	tipc_crypto_key_set_state(c, 0, 0, 0);
1493	atomic_set(&c->key_distr, 0);
1494	atomic_set(&c->peer_rx_active, 0);
1495	atomic64_set(&c->sndnxt, 0);
1496	c->timer1 = jiffies;
1497	c->timer2 = jiffies;
1498	c->rekeying_intv = TIPC_REKEYING_INTV_DEF;
1499	spin_lock_init(&c->lock);
1500	scnprintf(c->name, 48, "%s(%s)", (is_rx(c)) ? "RX" : "TX",
1501		  (is_rx(c)) ? tipc_node_get_id_str(c->node) :
1502			       tipc_own_id_string(c->net));
1503
1504	if (is_rx(c))
1505		INIT_DELAYED_WORK(&c->work, tipc_crypto_work_rx);
1506	else
1507		INIT_DELAYED_WORK(&c->work, tipc_crypto_work_tx);
1508
1509	*crypto = c;
1510	return 0;
1511}
1512
1513void tipc_crypto_stop(struct tipc_crypto **crypto)
1514{
1515	struct tipc_crypto *c = *crypto;
1516	u8 k;
1517
1518	if (!c)
1519		return;
1520
1521	/* Flush any queued works & destroy wq */
1522	if (is_tx(c)) {
1523		c->rekeying_intv = 0;
1524		cancel_delayed_work_sync(&c->work);
1525		destroy_workqueue(c->wq);
1526	}
1527
1528	/* Release AEAD keys */
1529	rcu_read_lock();
1530	for (k = KEY_MIN; k <= KEY_MAX; k++)
1531		tipc_aead_put(rcu_dereference(c->aead[k]));
1532	rcu_read_unlock();
1533	pr_debug("%s: has been stopped\n", c->name);
1534
1535	/* Free this crypto statistics */
1536	free_percpu(c->stats);
1537
1538	*crypto = NULL;
1539	kfree_sensitive(c);
1540}
1541
1542void tipc_crypto_timeout(struct tipc_crypto *rx)
1543{
1544	struct tipc_net *tn = tipc_net(rx->net);
1545	struct tipc_crypto *tx = tn->crypto_tx;
1546	struct tipc_key key;
1547	int cmd;
1548
1549	/* TX pending: taking all users & stable -> active */
1550	spin_lock(&tx->lock);
1551	key = tx->key;
1552	if (key.active && tipc_aead_users(tx->aead[key.active]) > 0)
1553		goto s1;
1554	if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0)
1555		goto s1;
1556	if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_TIME))
1557		goto s1;
1558
1559	tipc_crypto_key_set_state(tx, key.passive, key.pending, 0);
1560	if (key.active)
1561		tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1562	this_cpu_inc(tx->stats->stat[STAT_SWITCHES]);
1563	pr_info("%s: key[%d] is activated\n", tx->name, key.pending);
1564
1565s1:
1566	spin_unlock(&tx->lock);
1567
1568	/* RX pending: having user -> active */
1569	spin_lock(&rx->lock);
1570	key = rx->key;
1571	if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0)
1572		goto s2;
1573
1574	if (key.active)
1575		key.passive = key.active;
1576	key.active = key.pending;
1577	rx->timer2 = jiffies;
1578	tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1579	this_cpu_inc(rx->stats->stat[STAT_SWITCHES]);
1580	pr_info("%s: key[%d] is activated\n", rx->name, key.pending);
1581	goto s5;
1582
1583s2:
1584	/* RX pending: not working -> remove */
1585	if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -10)
1586		goto s3;
1587
1588	tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1589	tipc_crypto_key_detach(rx->aead[key.pending], &rx->lock);
1590	pr_debug("%s: key[%d] is removed\n", rx->name, key.pending);
1591	goto s5;
1592
1593s3:
1594	/* RX active: timed out or no user -> pending */
1595	if (!key.active)
1596		goto s4;
1597	if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM) &&
1598	    tipc_aead_users(rx->aead[key.active]) > 0)
1599		goto s4;
1600
1601	if (key.pending)
1602		key.passive = key.active;
1603	else
1604		key.pending = key.active;
1605	rx->timer2 = jiffies;
1606	tipc_crypto_key_set_state(rx, key.passive, 0, key.pending);
1607	tipc_aead_users_set(rx->aead[key.pending], 0);
1608	pr_debug("%s: key[%d] is deactivated\n", rx->name, key.active);
1609	goto s5;
1610
1611s4:
1612	/* RX passive: outdated or not working -> free */
1613	if (!key.passive)
1614		goto s5;
1615	if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM) &&
1616	    tipc_aead_users(rx->aead[key.passive]) > -10)
1617		goto s5;
1618
1619	tipc_crypto_key_set_state(rx, 0, key.active, key.pending);
1620	tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock);
1621	pr_debug("%s: key[%d] is freed\n", rx->name, key.passive);
1622
1623s5:
1624	spin_unlock(&rx->lock);
1625
1626	/* Relax it here, the flag will be set again if it really is, but only
1627	 * when we are not in grace period for safety!
1628	 */
1629	if (time_after(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD))
1630		tx->legacy_user = 0;
1631
1632	/* Limit max_tfms & do debug commands if needed */
1633	if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM))
1634		return;
1635
1636	cmd = sysctl_tipc_max_tfms;
1637	sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF;
1638	tipc_crypto_do_cmd(rx->net, cmd);
1639}
1640
1641static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
1642					 struct tipc_bearer *b,
1643					 struct tipc_media_addr *dst,
1644					 struct tipc_node *__dnode, u8 type)
1645{
1646	struct sk_buff *skb;
1647
1648	skb = skb_clone(_skb, GFP_ATOMIC);
1649	if (skb) {
1650		TIPC_SKB_CB(skb)->xmit_type = type;
1651		tipc_crypto_xmit(net, &skb, b, dst, __dnode);
1652		if (skb)
1653			b->media->send_msg(net, skb, b, dst);
1654	}
1655}
1656
1657/**
1658 * tipc_crypto_xmit - Build & encrypt TIPC message for xmit
1659 * @net: struct net
1660 * @skb: input/output message skb pointer
1661 * @b: bearer used for xmit later
1662 * @dst: destination media address
1663 * @__dnode: destination node for reference if any
1664 *
1665 * First, build an encryption message header on the top of the message, then
1666 * encrypt the original TIPC message by using the pending, master or active
1667 * key with this preference order.
1668 * If the encryption is successful, the encrypted skb is returned directly or
1669 * via the callback.
1670 * Otherwise, the skb is freed!
1671 *
1672 * Return:
1673 * * 0                   : the encryption has succeeded (or no encryption)
1674 * * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made
1675 * * -ENOKEK             : the encryption has failed due to no key
1676 * * -EKEYREVOKED        : the encryption has failed due to key revoked
1677 * * -ENOMEM             : the encryption has failed due to no memory
1678 * * < 0                 : the encryption has failed due to other reasons
1679 */
1680int tipc_crypto_xmit(struct net *net, struct sk_buff **skb,
1681		     struct tipc_bearer *b, struct tipc_media_addr *dst,
1682		     struct tipc_node *__dnode)
1683{
1684	struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode);
1685	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1686	struct tipc_crypto_stats __percpu *stats = tx->stats;
1687	struct tipc_msg *hdr = buf_msg(*skb);
1688	struct tipc_key key = tx->key;
1689	struct tipc_aead *aead = NULL;
1690	u32 user = msg_user(hdr);
1691	u32 type = msg_type(hdr);
1692	int rc = -ENOKEY;
1693	u8 tx_key = 0;
1694
1695	/* No encryption? */
1696	if (!tx->working)
1697		return 0;
1698
1699	/* Pending key if peer has active on it or probing time */
1700	if (unlikely(key.pending)) {
1701		tx_key = key.pending;
1702		if (!tx->key_master && !key.active)
1703			goto encrypt;
1704		if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key)
1705			goto encrypt;
1706		if (TIPC_SKB_CB(*skb)->xmit_type == SKB_PROBING) {
1707			pr_debug("%s: probing for key[%d]\n", tx->name,
1708				 key.pending);
1709			goto encrypt;
1710		}
1711		if (user == LINK_CONFIG || user == LINK_PROTOCOL)
1712			tipc_crypto_clone_msg(net, *skb, b, dst, __dnode,
1713					      SKB_PROBING);
1714	}
1715
1716	/* Master key if this is a *vital* message or in grace period */
1717	if (tx->key_master) {
1718		tx_key = KEY_MASTER;
1719		if (!key.active)
1720			goto encrypt;
1721		if (TIPC_SKB_CB(*skb)->xmit_type == SKB_GRACING) {
1722			pr_debug("%s: gracing for msg (%d %d)\n", tx->name,
1723				 user, type);
1724			goto encrypt;
1725		}
1726		if (user == LINK_CONFIG ||
1727		    (user == LINK_PROTOCOL && type == RESET_MSG) ||
1728		    (user == MSG_CRYPTO && type == KEY_DISTR_MSG) ||
1729		    time_before(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) {
1730			if (__rx && __rx->key_master &&
1731			    !atomic_read(&__rx->peer_rx_active))
1732				goto encrypt;
1733			if (!__rx) {
1734				if (likely(!tx->legacy_user))
1735					goto encrypt;
1736				tipc_crypto_clone_msg(net, *skb, b, dst,
1737						      __dnode, SKB_GRACING);
1738			}
1739		}
1740	}
1741
1742	/* Else, use the active key if any */
1743	if (likely(key.active)) {
1744		tx_key = key.active;
1745		goto encrypt;
1746	}
1747
1748	goto exit;
1749
1750encrypt:
1751	aead = tipc_aead_get(tx->aead[tx_key]);
1752	if (unlikely(!aead))
1753		goto exit;
1754	rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx);
1755	if (likely(rc > 0))
1756		rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode);
1757
1758exit:
1759	switch (rc) {
1760	case 0:
1761		this_cpu_inc(stats->stat[STAT_OK]);
1762		break;
1763	case -EINPROGRESS:
1764	case -EBUSY:
1765		this_cpu_inc(stats->stat[STAT_ASYNC]);
1766		*skb = NULL;
1767		return rc;
1768	default:
1769		this_cpu_inc(stats->stat[STAT_NOK]);
1770		if (rc == -ENOKEY)
1771			this_cpu_inc(stats->stat[STAT_NOKEYS]);
1772		else if (rc == -EKEYREVOKED)
1773			this_cpu_inc(stats->stat[STAT_BADKEYS]);
1774		kfree_skb(*skb);
1775		*skb = NULL;
1776		break;
1777	}
1778
1779	tipc_aead_put(aead);
1780	return rc;
1781}
1782
1783/**
1784 * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer
1785 * @net: struct net
1786 * @rx: RX crypto handle
1787 * @skb: input/output message skb pointer
1788 * @b: bearer where the message has been received
1789 *
1790 * If the decryption is successful, the decrypted skb is returned directly or
1791 * as the callback, the encryption header and auth tag will be trimed out
1792 * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete().
1793 * Otherwise, the skb will be freed!
1794 * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX
1795 * cluster key(s) can be taken for decryption (- recursive).
1796 *
1797 * Return:
1798 * * 0                   : the decryption has successfully completed
1799 * * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made
1800 * * -ENOKEY             : the decryption has failed due to no key
1801 * * -EBADMSG            : the decryption has failed due to bad message
1802 * * -ENOMEM             : the decryption has failed due to no memory
1803 * * < 0                 : the decryption has failed due to other reasons
1804 */
1805int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx,
1806		    struct sk_buff **skb, struct tipc_bearer *b)
1807{
1808	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1809	struct tipc_crypto_stats __percpu *stats;
1810	struct tipc_aead *aead = NULL;
1811	struct tipc_key key;
1812	int rc = -ENOKEY;
1813	u8 tx_key, n;
1814
1815	tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key;
1816
1817	/* New peer?
1818	 * Let's try with TX key (i.e. cluster mode) & verify the skb first!
1819	 */
1820	if (unlikely(!rx || tx_key == KEY_MASTER))
1821		goto pick_tx;
1822
1823	/* Pick RX key according to TX key if any */
1824	key = rx->key;
1825	if (tx_key == key.active || tx_key == key.pending ||
1826	    tx_key == key.passive)
1827		goto decrypt;
1828
1829	/* Unknown key, let's try to align RX key(s) */
1830	if (tipc_crypto_key_try_align(rx, tx_key))
1831		goto decrypt;
1832
1833pick_tx:
1834	/* No key suitable? Try to pick one from TX... */
1835	aead = tipc_crypto_key_pick_tx(tx, rx, *skb, tx_key);
1836	if (aead)
1837		goto decrypt;
1838	goto exit;
1839
1840decrypt:
1841	rcu_read_lock();
1842	if (!aead)
1843		aead = tipc_aead_get(rx->aead[tx_key]);
1844	rc = tipc_aead_decrypt(net, aead, *skb, b);
1845	rcu_read_unlock();
1846
1847exit:
1848	stats = ((rx) ?: tx)->stats;
1849	switch (rc) {
1850	case 0:
1851		this_cpu_inc(stats->stat[STAT_OK]);
1852		break;
1853	case -EINPROGRESS:
1854	case -EBUSY:
1855		this_cpu_inc(stats->stat[STAT_ASYNC]);
1856		*skb = NULL;
1857		return rc;
1858	default:
1859		this_cpu_inc(stats->stat[STAT_NOK]);
1860		if (rc == -ENOKEY) {
1861			kfree_skb(*skb);
1862			*skb = NULL;
1863			if (rx) {
1864				/* Mark rx->nokey only if we dont have a
1865				 * pending received session key, nor a newer
1866				 * one i.e. in the next slot.
1867				 */
1868				n = key_next(tx_key);
1869				rx->nokey = !(rx->skey ||
1870					      rcu_access_pointer(rx->aead[n]));
1871				pr_debug_ratelimited("%s: nokey %d, key %d/%x\n",
1872						     rx->name, rx->nokey,
1873						     tx_key, rx->key.keys);
1874				tipc_node_put(rx->node);
1875			}
1876			this_cpu_inc(stats->stat[STAT_NOKEYS]);
1877			return rc;
1878		} else if (rc == -EBADMSG) {
1879			this_cpu_inc(stats->stat[STAT_BADMSGS]);
1880		}
1881		break;
1882	}
1883
1884	tipc_crypto_rcv_complete(net, aead, b, skb, rc);
1885	return rc;
1886}
1887
1888static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
1889				     struct tipc_bearer *b,
1890				     struct sk_buff **skb, int err)
1891{
1892	struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb);
1893	struct tipc_crypto *rx = aead->crypto;
1894	struct tipc_aead *tmp = NULL;
1895	struct tipc_ehdr *ehdr;
1896	struct tipc_node *n;
1897
1898	/* Is this completed by TX? */
1899	if (unlikely(is_tx(aead->crypto))) {
1900		rx = skb_cb->tx_clone_ctx.rx;
1901		pr_debug("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n",
1902			 (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead,
1903			 (*skb)->next, skb_cb->flags);
1904		pr_debug("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n",
1905			 skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last,
1906			 aead->crypto->aead[1], aead->crypto->aead[2],
1907			 aead->crypto->aead[3]);
1908		if (unlikely(err)) {
1909			if (err == -EBADMSG && (*skb)->next)
1910				tipc_rcv(net, (*skb)->next, b);
1911			goto free_skb;
1912		}
1913
1914		if (likely((*skb)->next)) {
1915			kfree_skb((*skb)->next);
1916			(*skb)->next = NULL;
1917		}
1918		ehdr = (struct tipc_ehdr *)(*skb)->data;
1919		if (!rx) {
1920			WARN_ON(ehdr->user != LINK_CONFIG);
1921			n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0,
1922					     true);
1923			rx = tipc_node_crypto_rx(n);
1924			if (unlikely(!rx))
1925				goto free_skb;
1926		}
1927
1928		/* Ignore cloning if it was TX master key */
1929		if (ehdr->tx_key == KEY_MASTER)
1930			goto rcv;
1931		if (tipc_aead_clone(&tmp, aead) < 0)
1932			goto rcv;
1933		WARN_ON(!refcount_inc_not_zero(&tmp->refcnt));
1934		if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key, false) < 0) {
1935			tipc_aead_free(&tmp->rcu);
1936			goto rcv;
1937		}
1938		tipc_aead_put(aead);
1939		aead = tmp;
1940	}
1941
1942	if (unlikely(err)) {
1943		tipc_aead_users_dec((struct tipc_aead __force __rcu *)aead, INT_MIN);
1944		goto free_skb;
1945	}
1946
1947	/* Set the RX key's user */
1948	tipc_aead_users_set((struct tipc_aead __force __rcu *)aead, 1);
1949
1950	/* Mark this point, RX works */
1951	rx->timer1 = jiffies;
1952
1953rcv:
1954	/* Remove ehdr & auth. tag prior to tipc_rcv() */
1955	ehdr = (struct tipc_ehdr *)(*skb)->data;
1956
1957	/* Mark this point, RX passive still works */
1958	if (rx->key.passive && ehdr->tx_key == rx->key.passive)
1959		rx->timer2 = jiffies;
1960
1961	skb_reset_network_header(*skb);
1962	skb_pull(*skb, tipc_ehdr_size(ehdr));
1963	if (pskb_trim(*skb, (*skb)->len - aead->authsize))
1964		goto free_skb;
1965
1966	/* Validate TIPCv2 message */
1967	if (unlikely(!tipc_msg_validate(skb))) {
1968		pr_err_ratelimited("Packet dropped after decryption!\n");
1969		goto free_skb;
1970	}
1971
1972	/* Ok, everything's fine, try to synch own keys according to peers' */
1973	tipc_crypto_key_synch(rx, *skb);
1974
1975	/* Re-fetch skb cb as skb might be changed in tipc_msg_validate */
1976	skb_cb = TIPC_SKB_CB(*skb);
1977
1978	/* Mark skb decrypted */
1979	skb_cb->decrypted = 1;
1980
1981	/* Clear clone cxt if any */
1982	if (likely(!skb_cb->tx_clone_deferred))
1983		goto exit;
1984	skb_cb->tx_clone_deferred = 0;
1985	memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1986	goto exit;
1987
1988free_skb:
1989	kfree_skb(*skb);
1990	*skb = NULL;
1991
1992exit:
1993	tipc_aead_put(aead);
1994	if (rx)
1995		tipc_node_put(rx->node);
1996}
1997
1998static void tipc_crypto_do_cmd(struct net *net, int cmd)
1999{
2000	struct tipc_net *tn = tipc_net(net);
2001	struct tipc_crypto *tx = tn->crypto_tx, *rx;
2002	struct list_head *p;
2003	unsigned int stat;
2004	int i, j, cpu;
2005	char buf[200];
2006
2007	/* Currently only one command is supported */
2008	switch (cmd) {
2009	case 0xfff1:
2010		goto print_stats;
2011	default:
2012		return;
2013	}
2014
2015print_stats:
2016	/* Print a header */
2017	pr_info("\n=============== TIPC Crypto Statistics ===============\n\n");
2018
2019	/* Print key status */
2020	pr_info("Key status:\n");
2021	pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net),
2022		tipc_crypto_key_dump(tx, buf));
2023
2024	rcu_read_lock();
2025	for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2026		rx = tipc_node_crypto_rx_by_list(p);
2027		pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node),
2028			tipc_crypto_key_dump(rx, buf));
2029	}
2030	rcu_read_unlock();
2031
2032	/* Print crypto statistics */
2033	for (i = 0, j = 0; i < MAX_STATS; i++)
2034		j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]);
2035	pr_info("Counter     %s", buf);
2036
2037	memset(buf, '-', 115);
2038	buf[115] = '\0';
2039	pr_info("%s\n", buf);
2040
2041	j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net));
2042	for_each_possible_cpu(cpu) {
2043		for (i = 0; i < MAX_STATS; i++) {
2044			stat = per_cpu_ptr(tx->stats, cpu)->stat[i];
2045			j += scnprintf(buf + j, 200 - j, "|%11d ", stat);
2046		}
2047		pr_info("%s", buf);
2048		j = scnprintf(buf, 200, "%12s", " ");
2049	}
2050
2051	rcu_read_lock();
2052	for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2053		rx = tipc_node_crypto_rx_by_list(p);
2054		j = scnprintf(buf, 200, "RX(%7.7s) ",
2055			      tipc_node_get_id_str(rx->node));
2056		for_each_possible_cpu(cpu) {
2057			for (i = 0; i < MAX_STATS; i++) {
2058				stat = per_cpu_ptr(rx->stats, cpu)->stat[i];
2059				j += scnprintf(buf + j, 200 - j, "|%11d ",
2060					       stat);
2061			}
2062			pr_info("%s", buf);
2063			j = scnprintf(buf, 200, "%12s", " ");
2064		}
2065	}
2066	rcu_read_unlock();
2067
2068	pr_info("\n======================== Done ========================\n");
2069}
2070
2071static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf)
2072{
2073	struct tipc_key key = c->key;
2074	struct tipc_aead *aead;
2075	int k, i = 0;
2076	char *s;
2077
2078	for (k = KEY_MIN; k <= KEY_MAX; k++) {
2079		if (k == KEY_MASTER) {
2080			if (is_rx(c))
2081				continue;
2082			if (time_before(jiffies,
2083					c->timer2 + TIPC_TX_GRACE_PERIOD))
2084				s = "ACT";
2085			else
2086				s = "PAS";
2087		} else {
2088			if (k == key.passive)
2089				s = "PAS";
2090			else if (k == key.active)
2091				s = "ACT";
2092			else if (k == key.pending)
2093				s = "PEN";
2094			else
2095				s = "-";
2096		}
2097		i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s);
2098
2099		rcu_read_lock();
2100		aead = rcu_dereference(c->aead[k]);
2101		if (aead)
2102			i += scnprintf(buf + i, 200 - i,
2103				       "{\"0x...%s\", \"%s\"}/%d:%d",
2104				       aead->hint,
2105				       (aead->mode == CLUSTER_KEY) ? "c" : "p",
2106				       atomic_read(&aead->users),
2107				       refcount_read(&aead->refcnt));
2108		rcu_read_unlock();
2109		i += scnprintf(buf + i, 200 - i, "\n");
2110	}
2111
2112	if (is_rx(c))
2113		i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n",
2114			       atomic_read(&c->peer_rx_active));
2115
2116	return buf;
2117}
2118
2119static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
2120				  char *buf)
2121{
2122	struct tipc_key *key = &old;
2123	int k, i = 0;
2124	char *s;
2125
2126	/* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */
2127again:
2128	i += scnprintf(buf + i, 32 - i, "[");
2129	for (k = KEY_1; k <= KEY_3; k++) {
2130		if (k == key->passive)
2131			s = "pas";
2132		else if (k == key->active)
2133			s = "act";
2134		else if (k == key->pending)
2135			s = "pen";
2136		else
2137			s = "-";
2138		i += scnprintf(buf + i, 32 - i,
2139			       (k != KEY_3) ? "%s " : "%s", s);
2140	}
2141	if (key != &new) {
2142		i += scnprintf(buf + i, 32 - i, "] -> ");
2143		key = &new;
2144		goto again;
2145	}
2146	i += scnprintf(buf + i, 32 - i, "]");
2147	return buf;
2148}
2149
2150/**
2151 * tipc_crypto_msg_rcv - Common 'MSG_CRYPTO' processing point
2152 * @net: the struct net
2153 * @skb: the receiving message buffer
2154 */
2155void tipc_crypto_msg_rcv(struct net *net, struct sk_buff *skb)
2156{
2157	struct tipc_crypto *rx;
2158	struct tipc_msg *hdr;
2159
2160	if (unlikely(skb_linearize(skb)))
2161		goto exit;
2162
2163	hdr = buf_msg(skb);
2164	rx = tipc_node_crypto_rx_by_addr(net, msg_prevnode(hdr));
2165	if (unlikely(!rx))
2166		goto exit;
2167
2168	switch (msg_type(hdr)) {
2169	case KEY_DISTR_MSG:
2170		if (tipc_crypto_key_rcv(rx, hdr))
2171			goto exit;
2172		break;
2173	default:
2174		break;
2175	}
2176
2177	tipc_node_put(rx->node);
2178
2179exit:
2180	kfree_skb(skb);
2181}
2182
2183/**
2184 * tipc_crypto_key_distr - Distribute a TX key
2185 * @tx: the TX crypto
2186 * @key: the key's index
2187 * @dest: the destination tipc node, = NULL if distributing to all nodes
2188 *
2189 * Return: 0 in case of success, otherwise < 0
2190 */
2191int tipc_crypto_key_distr(struct tipc_crypto *tx, u8 key,
2192			  struct tipc_node *dest)
2193{
2194	struct tipc_aead *aead;
2195	u32 dnode = tipc_node_get_addr(dest);
2196	int rc = -ENOKEY;
2197
2198	if (!sysctl_tipc_key_exchange_enabled)
2199		return 0;
2200
2201	if (key) {
2202		rcu_read_lock();
2203		aead = tipc_aead_get(tx->aead[key]);
2204		if (likely(aead)) {
2205			rc = tipc_crypto_key_xmit(tx->net, aead->key,
2206						  aead->gen, aead->mode,
2207						  dnode);
2208			tipc_aead_put(aead);
2209		}
2210		rcu_read_unlock();
2211	}
2212
2213	return rc;
2214}
2215
2216/**
2217 * tipc_crypto_key_xmit - Send a session key
2218 * @net: the struct net
2219 * @skey: the session key to be sent
2220 * @gen: the key's generation
2221 * @mode: the key's mode
2222 * @dnode: the destination node address, = 0 if broadcasting to all nodes
2223 *
2224 * The session key 'skey' is packed in a TIPC v2 'MSG_CRYPTO/KEY_DISTR_MSG'
2225 * as its data section, then xmit-ed through the uc/bc link.
2226 *
2227 * Return: 0 in case of success, otherwise < 0
2228 */
2229static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
2230				u16 gen, u8 mode, u32 dnode)
2231{
2232	struct sk_buff_head pkts;
2233	struct tipc_msg *hdr;
2234	struct sk_buff *skb;
2235	u16 size, cong_link_cnt;
2236	u8 *data;
2237	int rc;
2238
2239	size = tipc_aead_key_size(skey);
2240	skb = tipc_buf_acquire(INT_H_SIZE + size, GFP_ATOMIC);
2241	if (!skb)
2242		return -ENOMEM;
2243
2244	hdr = buf_msg(skb);
2245	tipc_msg_init(tipc_own_addr(net), hdr, MSG_CRYPTO, KEY_DISTR_MSG,
2246		      INT_H_SIZE, dnode);
2247	msg_set_size(hdr, INT_H_SIZE + size);
2248	msg_set_key_gen(hdr, gen);
2249	msg_set_key_mode(hdr, mode);
2250
2251	data = msg_data(hdr);
2252	*((__be32 *)(data + TIPC_AEAD_ALG_NAME)) = htonl(skey->keylen);
2253	memcpy(data, skey->alg_name, TIPC_AEAD_ALG_NAME);
2254	memcpy(data + TIPC_AEAD_ALG_NAME + sizeof(__be32), skey->key,
2255	       skey->keylen);
2256
2257	__skb_queue_head_init(&pkts);
2258	__skb_queue_tail(&pkts, skb);
2259	if (dnode)
2260		rc = tipc_node_xmit(net, &pkts, dnode, 0);
2261	else
2262		rc = tipc_bcast_xmit(net, &pkts, &cong_link_cnt);
2263
2264	return rc;
2265}
2266
2267/**
2268 * tipc_crypto_key_rcv - Receive a session key
2269 * @rx: the RX crypto
2270 * @hdr: the TIPC v2 message incl. the receiving session key in its data
2271 *
2272 * This function retrieves the session key in the message from peer, then
2273 * schedules a RX work to attach the key to the corresponding RX crypto.
2274 *
2275 * Return: "true" if the key has been scheduled for attaching, otherwise
2276 * "false".
2277 */
2278static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr)
2279{
2280	struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2281	struct tipc_aead_key *skey = NULL;
2282	u16 key_gen = msg_key_gen(hdr);
2283	u32 size = msg_data_sz(hdr);
2284	u8 *data = msg_data(hdr);
2285	unsigned int keylen;
2286
2287	/* Verify whether the size can exist in the packet */
2288	if (unlikely(size < sizeof(struct tipc_aead_key) + TIPC_AEAD_KEYLEN_MIN)) {
2289		pr_debug("%s: message data size is too small\n", rx->name);
2290		goto exit;
2291	}
2292
2293	keylen = ntohl(*((__be32 *)(data + TIPC_AEAD_ALG_NAME)));
2294
2295	/* Verify the supplied size values */
2296	if (unlikely(size != keylen + sizeof(struct tipc_aead_key) ||
2297		     keylen > TIPC_AEAD_KEY_SIZE_MAX)) {
2298		pr_debug("%s: invalid MSG_CRYPTO key size\n", rx->name);
2299		goto exit;
2300	}
2301
2302	spin_lock(&rx->lock);
2303	if (unlikely(rx->skey || (key_gen == rx->key_gen && rx->key.keys))) {
2304		pr_err("%s: key existed <%p>, gen %d vs %d\n", rx->name,
2305		       rx->skey, key_gen, rx->key_gen);
2306		goto exit_unlock;
2307	}
2308
2309	/* Allocate memory for the key */
2310	skey = kmalloc(size, GFP_ATOMIC);
2311	if (unlikely(!skey)) {
2312		pr_err("%s: unable to allocate memory for skey\n", rx->name);
2313		goto exit_unlock;
2314	}
2315
2316	/* Copy key from msg data */
2317	skey->keylen = keylen;
2318	memcpy(skey->alg_name, data, TIPC_AEAD_ALG_NAME);
2319	memcpy(skey->key, data + TIPC_AEAD_ALG_NAME + sizeof(__be32),
2320	       skey->keylen);
2321
2322	rx->key_gen = key_gen;
2323	rx->skey_mode = msg_key_mode(hdr);
2324	rx->skey = skey;
2325	rx->nokey = 0;
2326	mb(); /* for nokey flag */
2327
2328exit_unlock:
2329	spin_unlock(&rx->lock);
2330
2331exit:
2332	/* Schedule the key attaching on this crypto */
2333	if (likely(skey && queue_delayed_work(tx->wq, &rx->work, 0)))
2334		return true;
2335
2336	return false;
2337}
2338
2339/**
2340 * tipc_crypto_work_rx - Scheduled RX works handler
2341 * @work: the struct RX work
2342 *
2343 * The function processes the previous scheduled works i.e. distributing TX key
2344 * or attaching a received session key on RX crypto.
2345 */
2346static void tipc_crypto_work_rx(struct work_struct *work)
2347{
2348	struct delayed_work *dwork = to_delayed_work(work);
2349	struct tipc_crypto *rx = container_of(dwork, struct tipc_crypto, work);
2350	struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2351	unsigned long delay = msecs_to_jiffies(5000);
2352	bool resched = false;
2353	u8 key;
2354	int rc;
2355
2356	/* Case 1: Distribute TX key to peer if scheduled */
2357	if (atomic_cmpxchg(&rx->key_distr,
2358			   KEY_DISTR_SCHED,
2359			   KEY_DISTR_COMPL) == KEY_DISTR_SCHED) {
2360		/* Always pick the newest one for distributing */
2361		key = tx->key.pending ?: tx->key.active;
2362		rc = tipc_crypto_key_distr(tx, key, rx->node);
2363		if (unlikely(rc))
2364			pr_warn("%s: unable to distr key[%d] to %s, err %d\n",
2365				tx->name, key, tipc_node_get_id_str(rx->node),
2366				rc);
2367
2368		/* Sched for key_distr releasing */
2369		resched = true;
2370	} else {
2371		atomic_cmpxchg(&rx->key_distr, KEY_DISTR_COMPL, 0);
2372	}
2373
2374	/* Case 2: Attach a pending received session key from peer if any */
2375	if (rx->skey) {
2376		rc = tipc_crypto_key_init(rx, rx->skey, rx->skey_mode, false);
2377		if (unlikely(rc < 0))
2378			pr_warn("%s: unable to attach received skey, err %d\n",
2379				rx->name, rc);
2380		switch (rc) {
2381		case -EBUSY:
2382		case -ENOMEM:
2383			/* Resched the key attaching */
2384			resched = true;
2385			break;
2386		default:
2387			synchronize_rcu();
2388			kfree(rx->skey);
2389			rx->skey = NULL;
2390			break;
2391		}
2392	}
2393
2394	if (resched && queue_delayed_work(tx->wq, &rx->work, delay))
2395		return;
2396
2397	tipc_node_put(rx->node);
2398}
2399
2400/**
2401 * tipc_crypto_rekeying_sched - (Re)schedule rekeying w/o new interval
2402 * @tx: TX crypto
2403 * @changed: if the rekeying needs to be rescheduled with new interval
2404 * @new_intv: new rekeying interval (when "changed" = true)
2405 */
2406void tipc_crypto_rekeying_sched(struct tipc_crypto *tx, bool changed,
2407				u32 new_intv)
2408{
2409	unsigned long delay;
2410	bool now = false;
2411
2412	if (changed) {
2413		if (new_intv == TIPC_REKEYING_NOW)
2414			now = true;
2415		else
2416			tx->rekeying_intv = new_intv;
2417		cancel_delayed_work_sync(&tx->work);
2418	}
2419
2420	if (tx->rekeying_intv || now) {
2421		delay = (now) ? 0 : tx->rekeying_intv * 60 * 1000;
2422		queue_delayed_work(tx->wq, &tx->work, msecs_to_jiffies(delay));
2423	}
2424}
2425
2426/**
2427 * tipc_crypto_work_tx - Scheduled TX works handler
2428 * @work: the struct TX work
2429 *
2430 * The function processes the previous scheduled work, i.e. key rekeying, by
2431 * generating a new session key based on current one, then attaching it to the
2432 * TX crypto and finally distributing it to peers. It also re-schedules the
2433 * rekeying if needed.
2434 */
2435static void tipc_crypto_work_tx(struct work_struct *work)
2436{
2437	struct delayed_work *dwork = to_delayed_work(work);
2438	struct tipc_crypto *tx = container_of(dwork, struct tipc_crypto, work);
2439	struct tipc_aead_key *skey = NULL;
2440	struct tipc_key key = tx->key;
2441	struct tipc_aead *aead;
2442	int rc = -ENOMEM;
2443
2444	if (unlikely(key.pending))
2445		goto resched;
2446
2447	/* Take current key as a template */
2448	rcu_read_lock();
2449	aead = rcu_dereference(tx->aead[key.active ?: KEY_MASTER]);
2450	if (unlikely(!aead)) {
2451		rcu_read_unlock();
2452		/* At least one key should exist for securing */
2453		return;
2454	}
2455
2456	/* Lets duplicate it first */
2457	skey = kmemdup(aead->key, tipc_aead_key_size(aead->key), GFP_ATOMIC);
2458	rcu_read_unlock();
2459
2460	/* Now, generate new key, initiate & distribute it */
2461	if (likely(skey)) {
2462		rc = tipc_aead_key_generate(skey) ?:
2463		     tipc_crypto_key_init(tx, skey, PER_NODE_KEY, false);
2464		if (likely(rc > 0))
2465			rc = tipc_crypto_key_distr(tx, rc, NULL);
2466		kfree_sensitive(skey);
2467	}
2468
2469	if (unlikely(rc))
2470		pr_warn_ratelimited("%s: rekeying returns %d\n", tx->name, rc);
2471
2472resched:
2473	/* Re-schedule rekeying if any */
2474	tipc_crypto_rekeying_sched(tx, false, 0);
2475}
2476