1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright (c) 2014-2020, Oracle and/or its affiliates.
4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses.  You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the BSD-type
10 * license below:
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 *      Redistributions of source code must retain the above copyright
17 *      notice, this list of conditions and the following disclaimer.
18 *
19 *      Redistributions in binary form must reproduce the above
20 *      copyright notice, this list of conditions and the following
21 *      disclaimer in the documentation and/or other materials provided
22 *      with the distribution.
23 *
24 *      Neither the name of the Network Appliance, Inc. nor the names of
25 *      its contributors may be used to endorse or promote products
26 *      derived from this software without specific prior written
27 *      permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42/*
43 * rpc_rdma.c
44 *
45 * This file contains the guts of the RPC RDMA protocol, and
46 * does marshaling/unmarshaling, etc. It is also where interfacing
47 * to the Linux RPC framework lives.
48 */
49
50#include <linux/highmem.h>
51
52#include <linux/sunrpc/svc_rdma.h>
53
54#include "xprt_rdma.h"
55#include <trace/events/rpcrdma.h>
56
57/* Returns size of largest RPC-over-RDMA header in a Call message
58 *
59 * The largest Call header contains a full-size Read list and a
60 * minimal Reply chunk.
61 */
62static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
63{
64	unsigned int size;
65
66	/* Fixed header fields and list discriminators */
67	size = RPCRDMA_HDRLEN_MIN;
68
69	/* Maximum Read list size */
70	size += maxsegs * rpcrdma_readchunk_maxsz * sizeof(__be32);
71
72	/* Minimal Read chunk size */
73	size += sizeof(__be32);	/* segment count */
74	size += rpcrdma_segment_maxsz * sizeof(__be32);
75	size += sizeof(__be32);	/* list discriminator */
76
77	return size;
78}
79
80/* Returns size of largest RPC-over-RDMA header in a Reply message
81 *
82 * There is only one Write list or one Reply chunk per Reply
83 * message.  The larger list is the Write list.
84 */
85static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
86{
87	unsigned int size;
88
89	/* Fixed header fields and list discriminators */
90	size = RPCRDMA_HDRLEN_MIN;
91
92	/* Maximum Write list size */
93	size += sizeof(__be32);		/* segment count */
94	size += maxsegs * rpcrdma_segment_maxsz * sizeof(__be32);
95	size += sizeof(__be32);	/* list discriminator */
96
97	return size;
98}
99
100/**
101 * rpcrdma_set_max_header_sizes - Initialize inline payload sizes
102 * @ep: endpoint to initialize
103 *
104 * The max_inline fields contain the maximum size of an RPC message
105 * so the marshaling code doesn't have to repeat this calculation
106 * for every RPC.
107 */
108void rpcrdma_set_max_header_sizes(struct rpcrdma_ep *ep)
109{
110	unsigned int maxsegs = ep->re_max_rdma_segs;
111
112	ep->re_max_inline_send =
113		ep->re_inline_send - rpcrdma_max_call_header_size(maxsegs);
114	ep->re_max_inline_recv =
115		ep->re_inline_recv - rpcrdma_max_reply_header_size(maxsegs);
116}
117
118/* The client can send a request inline as long as the RPCRDMA header
119 * plus the RPC call fit under the transport's inline limit. If the
120 * combined call message size exceeds that limit, the client must use
121 * a Read chunk for this operation.
122 *
123 * A Read chunk is also required if sending the RPC call inline would
124 * exceed this device's max_sge limit.
125 */
126static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
127				struct rpc_rqst *rqst)
128{
129	struct xdr_buf *xdr = &rqst->rq_snd_buf;
130	struct rpcrdma_ep *ep = r_xprt->rx_ep;
131	unsigned int count, remaining, offset;
132
133	if (xdr->len > ep->re_max_inline_send)
134		return false;
135
136	if (xdr->page_len) {
137		remaining = xdr->page_len;
138		offset = offset_in_page(xdr->page_base);
139		count = RPCRDMA_MIN_SEND_SGES;
140		while (remaining) {
141			remaining -= min_t(unsigned int,
142					   PAGE_SIZE - offset, remaining);
143			offset = 0;
144			if (++count > ep->re_attr.cap.max_send_sge)
145				return false;
146		}
147	}
148
149	return true;
150}
151
152/* The client can't know how large the actual reply will be. Thus it
153 * plans for the largest possible reply for that particular ULP
154 * operation. If the maximum combined reply message size exceeds that
155 * limit, the client must provide a write list or a reply chunk for
156 * this request.
157 */
158static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
159				   struct rpc_rqst *rqst)
160{
161	return rqst->rq_rcv_buf.buflen <= r_xprt->rx_ep->re_max_inline_recv;
162}
163
164/* The client is required to provide a Reply chunk if the maximum
165 * size of the non-payload part of the RPC Reply is larger than
166 * the inline threshold.
167 */
168static bool
169rpcrdma_nonpayload_inline(const struct rpcrdma_xprt *r_xprt,
170			  const struct rpc_rqst *rqst)
171{
172	const struct xdr_buf *buf = &rqst->rq_rcv_buf;
173
174	return (buf->head[0].iov_len + buf->tail[0].iov_len) <
175		r_xprt->rx_ep->re_max_inline_recv;
176}
177
178/* ACL likes to be lazy in allocating pages. For TCP, these
179 * pages can be allocated during receive processing. Not true
180 * for RDMA, which must always provision receive buffers
181 * up front.
182 */
183static noinline int
184rpcrdma_alloc_sparse_pages(struct xdr_buf *buf)
185{
186	struct page **ppages;
187	int len;
188
189	len = buf->page_len;
190	ppages = buf->pages + (buf->page_base >> PAGE_SHIFT);
191	while (len > 0) {
192		if (!*ppages)
193			*ppages = alloc_page(GFP_NOWAIT | __GFP_NOWARN);
194		if (!*ppages)
195			return -ENOBUFS;
196		ppages++;
197		len -= PAGE_SIZE;
198	}
199
200	return 0;
201}
202
203/* Convert @vec to a single SGL element.
204 *
205 * Returns pointer to next available SGE, and bumps the total number
206 * of SGEs consumed.
207 */
208static struct rpcrdma_mr_seg *
209rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg,
210		     unsigned int *n)
211{
212	seg->mr_page = virt_to_page(vec->iov_base);
213	seg->mr_offset = offset_in_page(vec->iov_base);
214	seg->mr_len = vec->iov_len;
215	++seg;
216	++(*n);
217	return seg;
218}
219
220/* Convert @xdrbuf into SGEs no larger than a page each. As they
221 * are registered, these SGEs are then coalesced into RDMA segments
222 * when the selected memreg mode supports it.
223 *
224 * Returns positive number of SGEs consumed, or a negative errno.
225 */
226
227static int
228rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf,
229		     unsigned int pos, enum rpcrdma_chunktype type,
230		     struct rpcrdma_mr_seg *seg)
231{
232	unsigned long page_base;
233	unsigned int len, n;
234	struct page **ppages;
235
236	n = 0;
237	if (pos == 0)
238		seg = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, &n);
239
240	len = xdrbuf->page_len;
241	ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
242	page_base = offset_in_page(xdrbuf->page_base);
243	while (len) {
244		seg->mr_page = *ppages;
245		seg->mr_offset = page_base;
246		seg->mr_len = min_t(u32, PAGE_SIZE - page_base, len);
247		len -= seg->mr_len;
248		++ppages;
249		++seg;
250		++n;
251		page_base = 0;
252	}
253
254	if (type == rpcrdma_readch || type == rpcrdma_writech)
255		goto out;
256
257	if (xdrbuf->tail[0].iov_len)
258		rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, &n);
259
260out:
261	if (unlikely(n > RPCRDMA_MAX_SEGS))
262		return -EIO;
263	return n;
264}
265
266static int
267encode_rdma_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr)
268{
269	__be32 *p;
270
271	p = xdr_reserve_space(xdr, 4 * sizeof(*p));
272	if (unlikely(!p))
273		return -EMSGSIZE;
274
275	xdr_encode_rdma_segment(p, mr->mr_handle, mr->mr_length, mr->mr_offset);
276	return 0;
277}
278
279static int
280encode_read_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr,
281		    u32 position)
282{
283	__be32 *p;
284
285	p = xdr_reserve_space(xdr, 6 * sizeof(*p));
286	if (unlikely(!p))
287		return -EMSGSIZE;
288
289	*p++ = xdr_one;			/* Item present */
290	xdr_encode_read_segment(p, position, mr->mr_handle, mr->mr_length,
291				mr->mr_offset);
292	return 0;
293}
294
295static struct rpcrdma_mr_seg *rpcrdma_mr_prepare(struct rpcrdma_xprt *r_xprt,
296						 struct rpcrdma_req *req,
297						 struct rpcrdma_mr_seg *seg,
298						 int nsegs, bool writing,
299						 struct rpcrdma_mr **mr)
300{
301	*mr = rpcrdma_mr_pop(&req->rl_free_mrs);
302	if (!*mr) {
303		*mr = rpcrdma_mr_get(r_xprt);
304		if (!*mr)
305			goto out_getmr_err;
306		(*mr)->mr_req = req;
307	}
308
309	rpcrdma_mr_push(*mr, &req->rl_registered);
310	return frwr_map(r_xprt, seg, nsegs, writing, req->rl_slot.rq_xid, *mr);
311
312out_getmr_err:
313	trace_xprtrdma_nomrs_err(r_xprt, req);
314	xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
315	rpcrdma_mrs_refresh(r_xprt);
316	return ERR_PTR(-EAGAIN);
317}
318
319/* Register and XDR encode the Read list. Supports encoding a list of read
320 * segments that belong to a single read chunk.
321 *
322 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
323 *
324 *  Read chunklist (a linked list):
325 *   N elements, position P (same P for all chunks of same arg!):
326 *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
327 *
328 * Returns zero on success, or a negative errno if a failure occurred.
329 * @xdr is advanced to the next position in the stream.
330 *
331 * Only a single @pos value is currently supported.
332 */
333static int rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt,
334				    struct rpcrdma_req *req,
335				    struct rpc_rqst *rqst,
336				    enum rpcrdma_chunktype rtype)
337{
338	struct xdr_stream *xdr = &req->rl_stream;
339	struct rpcrdma_mr_seg *seg;
340	struct rpcrdma_mr *mr;
341	unsigned int pos;
342	int nsegs;
343
344	if (rtype == rpcrdma_noch_pullup || rtype == rpcrdma_noch_mapped)
345		goto done;
346
347	pos = rqst->rq_snd_buf.head[0].iov_len;
348	if (rtype == rpcrdma_areadch)
349		pos = 0;
350	seg = req->rl_segments;
351	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos,
352				     rtype, seg);
353	if (nsegs < 0)
354		return nsegs;
355
356	do {
357		seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, false, &mr);
358		if (IS_ERR(seg))
359			return PTR_ERR(seg);
360
361		if (encode_read_segment(xdr, mr, pos) < 0)
362			return -EMSGSIZE;
363
364		trace_xprtrdma_chunk_read(rqst->rq_task, pos, mr, nsegs);
365		r_xprt->rx_stats.read_chunk_count++;
366		nsegs -= mr->mr_nents;
367	} while (nsegs);
368
369done:
370	if (xdr_stream_encode_item_absent(xdr) < 0)
371		return -EMSGSIZE;
372	return 0;
373}
374
375/* Register and XDR encode the Write list. Supports encoding a list
376 * containing one array of plain segments that belong to a single
377 * write chunk.
378 *
379 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
380 *
381 *  Write chunklist (a list of (one) counted array):
382 *   N elements:
383 *    1 - N - HLOO - HLOO - ... - HLOO - 0
384 *
385 * Returns zero on success, or a negative errno if a failure occurred.
386 * @xdr is advanced to the next position in the stream.
387 *
388 * Only a single Write chunk is currently supported.
389 */
390static int rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt,
391				     struct rpcrdma_req *req,
392				     struct rpc_rqst *rqst,
393				     enum rpcrdma_chunktype wtype)
394{
395	struct xdr_stream *xdr = &req->rl_stream;
396	struct rpcrdma_ep *ep = r_xprt->rx_ep;
397	struct rpcrdma_mr_seg *seg;
398	struct rpcrdma_mr *mr;
399	int nsegs, nchunks;
400	__be32 *segcount;
401
402	if (wtype != rpcrdma_writech)
403		goto done;
404
405	seg = req->rl_segments;
406	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf,
407				     rqst->rq_rcv_buf.head[0].iov_len,
408				     wtype, seg);
409	if (nsegs < 0)
410		return nsegs;
411
412	if (xdr_stream_encode_item_present(xdr) < 0)
413		return -EMSGSIZE;
414	segcount = xdr_reserve_space(xdr, sizeof(*segcount));
415	if (unlikely(!segcount))
416		return -EMSGSIZE;
417	/* Actual value encoded below */
418
419	nchunks = 0;
420	do {
421		seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr);
422		if (IS_ERR(seg))
423			return PTR_ERR(seg);
424
425		if (encode_rdma_segment(xdr, mr) < 0)
426			return -EMSGSIZE;
427
428		trace_xprtrdma_chunk_write(rqst->rq_task, mr, nsegs);
429		r_xprt->rx_stats.write_chunk_count++;
430		r_xprt->rx_stats.total_rdma_request += mr->mr_length;
431		nchunks++;
432		nsegs -= mr->mr_nents;
433	} while (nsegs);
434
435	if (xdr_pad_size(rqst->rq_rcv_buf.page_len)) {
436		if (encode_rdma_segment(xdr, ep->re_write_pad_mr) < 0)
437			return -EMSGSIZE;
438
439		trace_xprtrdma_chunk_wp(rqst->rq_task, ep->re_write_pad_mr,
440					nsegs);
441		r_xprt->rx_stats.write_chunk_count++;
442		r_xprt->rx_stats.total_rdma_request += mr->mr_length;
443		nchunks++;
444		nsegs -= mr->mr_nents;
445	}
446
447	/* Update count of segments in this Write chunk */
448	*segcount = cpu_to_be32(nchunks);
449
450done:
451	if (xdr_stream_encode_item_absent(xdr) < 0)
452		return -EMSGSIZE;
453	return 0;
454}
455
456/* Register and XDR encode the Reply chunk. Supports encoding an array
457 * of plain segments that belong to a single write (reply) chunk.
458 *
459 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
460 *
461 *  Reply chunk (a counted array):
462 *   N elements:
463 *    1 - N - HLOO - HLOO - ... - HLOO
464 *
465 * Returns zero on success, or a negative errno if a failure occurred.
466 * @xdr is advanced to the next position in the stream.
467 */
468static int rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt,
469				      struct rpcrdma_req *req,
470				      struct rpc_rqst *rqst,
471				      enum rpcrdma_chunktype wtype)
472{
473	struct xdr_stream *xdr = &req->rl_stream;
474	struct rpcrdma_mr_seg *seg;
475	struct rpcrdma_mr *mr;
476	int nsegs, nchunks;
477	__be32 *segcount;
478
479	if (wtype != rpcrdma_replych) {
480		if (xdr_stream_encode_item_absent(xdr) < 0)
481			return -EMSGSIZE;
482		return 0;
483	}
484
485	seg = req->rl_segments;
486	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg);
487	if (nsegs < 0)
488		return nsegs;
489
490	if (xdr_stream_encode_item_present(xdr) < 0)
491		return -EMSGSIZE;
492	segcount = xdr_reserve_space(xdr, sizeof(*segcount));
493	if (unlikely(!segcount))
494		return -EMSGSIZE;
495	/* Actual value encoded below */
496
497	nchunks = 0;
498	do {
499		seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr);
500		if (IS_ERR(seg))
501			return PTR_ERR(seg);
502
503		if (encode_rdma_segment(xdr, mr) < 0)
504			return -EMSGSIZE;
505
506		trace_xprtrdma_chunk_reply(rqst->rq_task, mr, nsegs);
507		r_xprt->rx_stats.reply_chunk_count++;
508		r_xprt->rx_stats.total_rdma_request += mr->mr_length;
509		nchunks++;
510		nsegs -= mr->mr_nents;
511	} while (nsegs);
512
513	/* Update count of segments in the Reply chunk */
514	*segcount = cpu_to_be32(nchunks);
515
516	return 0;
517}
518
519static void rpcrdma_sendctx_done(struct kref *kref)
520{
521	struct rpcrdma_req *req =
522		container_of(kref, struct rpcrdma_req, rl_kref);
523	struct rpcrdma_rep *rep = req->rl_reply;
524
525	rpcrdma_complete_rqst(rep);
526	rep->rr_rxprt->rx_stats.reply_waits_for_send++;
527}
528
529/**
530 * rpcrdma_sendctx_unmap - DMA-unmap Send buffer
531 * @sc: sendctx containing SGEs to unmap
532 *
533 */
534void rpcrdma_sendctx_unmap(struct rpcrdma_sendctx *sc)
535{
536	struct rpcrdma_regbuf *rb = sc->sc_req->rl_sendbuf;
537	struct ib_sge *sge;
538
539	if (!sc->sc_unmap_count)
540		return;
541
542	/* The first two SGEs contain the transport header and
543	 * the inline buffer. These are always left mapped so
544	 * they can be cheaply re-used.
545	 */
546	for (sge = &sc->sc_sges[2]; sc->sc_unmap_count;
547	     ++sge, --sc->sc_unmap_count)
548		ib_dma_unmap_page(rdmab_device(rb), sge->addr, sge->length,
549				  DMA_TO_DEVICE);
550
551	kref_put(&sc->sc_req->rl_kref, rpcrdma_sendctx_done);
552}
553
554/* Prepare an SGE for the RPC-over-RDMA transport header.
555 */
556static void rpcrdma_prepare_hdr_sge(struct rpcrdma_xprt *r_xprt,
557				    struct rpcrdma_req *req, u32 len)
558{
559	struct rpcrdma_sendctx *sc = req->rl_sendctx;
560	struct rpcrdma_regbuf *rb = req->rl_rdmabuf;
561	struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
562
563	sge->addr = rdmab_addr(rb);
564	sge->length = len;
565	sge->lkey = rdmab_lkey(rb);
566
567	ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length,
568				      DMA_TO_DEVICE);
569}
570
571/* The head iovec is straightforward, as it is usually already
572 * DMA-mapped. Sync the content that has changed.
573 */
574static bool rpcrdma_prepare_head_iov(struct rpcrdma_xprt *r_xprt,
575				     struct rpcrdma_req *req, unsigned int len)
576{
577	struct rpcrdma_sendctx *sc = req->rl_sendctx;
578	struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
579	struct rpcrdma_regbuf *rb = req->rl_sendbuf;
580
581	if (!rpcrdma_regbuf_dma_map(r_xprt, rb))
582		return false;
583
584	sge->addr = rdmab_addr(rb);
585	sge->length = len;
586	sge->lkey = rdmab_lkey(rb);
587
588	ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length,
589				      DMA_TO_DEVICE);
590	return true;
591}
592
593/* If there is a page list present, DMA map and prepare an
594 * SGE for each page to be sent.
595 */
596static bool rpcrdma_prepare_pagelist(struct rpcrdma_req *req,
597				     struct xdr_buf *xdr)
598{
599	struct rpcrdma_sendctx *sc = req->rl_sendctx;
600	struct rpcrdma_regbuf *rb = req->rl_sendbuf;
601	unsigned int page_base, len, remaining;
602	struct page **ppages;
603	struct ib_sge *sge;
604
605	ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
606	page_base = offset_in_page(xdr->page_base);
607	remaining = xdr->page_len;
608	while (remaining) {
609		sge = &sc->sc_sges[req->rl_wr.num_sge++];
610		len = min_t(unsigned int, PAGE_SIZE - page_base, remaining);
611		sge->addr = ib_dma_map_page(rdmab_device(rb), *ppages,
612					    page_base, len, DMA_TO_DEVICE);
613		if (ib_dma_mapping_error(rdmab_device(rb), sge->addr))
614			goto out_mapping_err;
615
616		sge->length = len;
617		sge->lkey = rdmab_lkey(rb);
618
619		sc->sc_unmap_count++;
620		ppages++;
621		remaining -= len;
622		page_base = 0;
623	}
624
625	return true;
626
627out_mapping_err:
628	trace_xprtrdma_dma_maperr(sge->addr);
629	return false;
630}
631
632/* The tail iovec may include an XDR pad for the page list,
633 * as well as additional content, and may not reside in the
634 * same page as the head iovec.
635 */
636static bool rpcrdma_prepare_tail_iov(struct rpcrdma_req *req,
637				     struct xdr_buf *xdr,
638				     unsigned int page_base, unsigned int len)
639{
640	struct rpcrdma_sendctx *sc = req->rl_sendctx;
641	struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
642	struct rpcrdma_regbuf *rb = req->rl_sendbuf;
643	struct page *page = virt_to_page(xdr->tail[0].iov_base);
644
645	sge->addr = ib_dma_map_page(rdmab_device(rb), page, page_base, len,
646				    DMA_TO_DEVICE);
647	if (ib_dma_mapping_error(rdmab_device(rb), sge->addr))
648		goto out_mapping_err;
649
650	sge->length = len;
651	sge->lkey = rdmab_lkey(rb);
652	++sc->sc_unmap_count;
653	return true;
654
655out_mapping_err:
656	trace_xprtrdma_dma_maperr(sge->addr);
657	return false;
658}
659
660/* Copy the tail to the end of the head buffer.
661 */
662static void rpcrdma_pullup_tail_iov(struct rpcrdma_xprt *r_xprt,
663				    struct rpcrdma_req *req,
664				    struct xdr_buf *xdr)
665{
666	unsigned char *dst;
667
668	dst = (unsigned char *)xdr->head[0].iov_base;
669	dst += xdr->head[0].iov_len + xdr->page_len;
670	memmove(dst, xdr->tail[0].iov_base, xdr->tail[0].iov_len);
671	r_xprt->rx_stats.pullup_copy_count += xdr->tail[0].iov_len;
672}
673
674/* Copy pagelist content into the head buffer.
675 */
676static void rpcrdma_pullup_pagelist(struct rpcrdma_xprt *r_xprt,
677				    struct rpcrdma_req *req,
678				    struct xdr_buf *xdr)
679{
680	unsigned int len, page_base, remaining;
681	struct page **ppages;
682	unsigned char *src, *dst;
683
684	dst = (unsigned char *)xdr->head[0].iov_base;
685	dst += xdr->head[0].iov_len;
686	ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
687	page_base = offset_in_page(xdr->page_base);
688	remaining = xdr->page_len;
689	while (remaining) {
690		src = page_address(*ppages);
691		src += page_base;
692		len = min_t(unsigned int, PAGE_SIZE - page_base, remaining);
693		memcpy(dst, src, len);
694		r_xprt->rx_stats.pullup_copy_count += len;
695
696		ppages++;
697		dst += len;
698		remaining -= len;
699		page_base = 0;
700	}
701}
702
703/* Copy the contents of @xdr into @rl_sendbuf and DMA sync it.
704 * When the head, pagelist, and tail are small, a pull-up copy
705 * is considerably less costly than DMA mapping the components
706 * of @xdr.
707 *
708 * Assumptions:
709 *  - the caller has already verified that the total length
710 *    of the RPC Call body will fit into @rl_sendbuf.
711 */
712static bool rpcrdma_prepare_noch_pullup(struct rpcrdma_xprt *r_xprt,
713					struct rpcrdma_req *req,
714					struct xdr_buf *xdr)
715{
716	if (unlikely(xdr->tail[0].iov_len))
717		rpcrdma_pullup_tail_iov(r_xprt, req, xdr);
718
719	if (unlikely(xdr->page_len))
720		rpcrdma_pullup_pagelist(r_xprt, req, xdr);
721
722	/* The whole RPC message resides in the head iovec now */
723	return rpcrdma_prepare_head_iov(r_xprt, req, xdr->len);
724}
725
726static bool rpcrdma_prepare_noch_mapped(struct rpcrdma_xprt *r_xprt,
727					struct rpcrdma_req *req,
728					struct xdr_buf *xdr)
729{
730	struct kvec *tail = &xdr->tail[0];
731
732	if (!rpcrdma_prepare_head_iov(r_xprt, req, xdr->head[0].iov_len))
733		return false;
734	if (xdr->page_len)
735		if (!rpcrdma_prepare_pagelist(req, xdr))
736			return false;
737	if (tail->iov_len)
738		if (!rpcrdma_prepare_tail_iov(req, xdr,
739					      offset_in_page(tail->iov_base),
740					      tail->iov_len))
741			return false;
742
743	if (req->rl_sendctx->sc_unmap_count)
744		kref_get(&req->rl_kref);
745	return true;
746}
747
748static bool rpcrdma_prepare_readch(struct rpcrdma_xprt *r_xprt,
749				   struct rpcrdma_req *req,
750				   struct xdr_buf *xdr)
751{
752	if (!rpcrdma_prepare_head_iov(r_xprt, req, xdr->head[0].iov_len))
753		return false;
754
755	/* If there is a Read chunk, the page list is being handled
756	 * via explicit RDMA, and thus is skipped here.
757	 */
758
759	/* Do not include the tail if it is only an XDR pad */
760	if (xdr->tail[0].iov_len > 3) {
761		unsigned int page_base, len;
762
763		/* If the content in the page list is an odd length,
764		 * xdr_write_pages() adds a pad at the beginning of
765		 * the tail iovec. Force the tail's non-pad content to
766		 * land at the next XDR position in the Send message.
767		 */
768		page_base = offset_in_page(xdr->tail[0].iov_base);
769		len = xdr->tail[0].iov_len;
770		page_base += len & 3;
771		len -= len & 3;
772		if (!rpcrdma_prepare_tail_iov(req, xdr, page_base, len))
773			return false;
774		kref_get(&req->rl_kref);
775	}
776
777	return true;
778}
779
780/**
781 * rpcrdma_prepare_send_sges - Construct SGEs for a Send WR
782 * @r_xprt: controlling transport
783 * @req: context of RPC Call being marshalled
784 * @hdrlen: size of transport header, in bytes
785 * @xdr: xdr_buf containing RPC Call
786 * @rtype: chunk type being encoded
787 *
788 * Returns 0 on success; otherwise a negative errno is returned.
789 */
790inline int rpcrdma_prepare_send_sges(struct rpcrdma_xprt *r_xprt,
791				     struct rpcrdma_req *req, u32 hdrlen,
792				     struct xdr_buf *xdr,
793				     enum rpcrdma_chunktype rtype)
794{
795	int ret;
796
797	ret = -EAGAIN;
798	req->rl_sendctx = rpcrdma_sendctx_get_locked(r_xprt);
799	if (!req->rl_sendctx)
800		goto out_nosc;
801	req->rl_sendctx->sc_unmap_count = 0;
802	req->rl_sendctx->sc_req = req;
803	kref_init(&req->rl_kref);
804	req->rl_wr.wr_cqe = &req->rl_sendctx->sc_cqe;
805	req->rl_wr.sg_list = req->rl_sendctx->sc_sges;
806	req->rl_wr.num_sge = 0;
807	req->rl_wr.opcode = IB_WR_SEND;
808
809	rpcrdma_prepare_hdr_sge(r_xprt, req, hdrlen);
810
811	ret = -EIO;
812	switch (rtype) {
813	case rpcrdma_noch_pullup:
814		if (!rpcrdma_prepare_noch_pullup(r_xprt, req, xdr))
815			goto out_unmap;
816		break;
817	case rpcrdma_noch_mapped:
818		if (!rpcrdma_prepare_noch_mapped(r_xprt, req, xdr))
819			goto out_unmap;
820		break;
821	case rpcrdma_readch:
822		if (!rpcrdma_prepare_readch(r_xprt, req, xdr))
823			goto out_unmap;
824		break;
825	case rpcrdma_areadch:
826		break;
827	default:
828		goto out_unmap;
829	}
830
831	return 0;
832
833out_unmap:
834	rpcrdma_sendctx_unmap(req->rl_sendctx);
835out_nosc:
836	trace_xprtrdma_prepsend_failed(&req->rl_slot, ret);
837	return ret;
838}
839
840/**
841 * rpcrdma_marshal_req - Marshal and send one RPC request
842 * @r_xprt: controlling transport
843 * @rqst: RPC request to be marshaled
844 *
845 * For the RPC in "rqst", this function:
846 *  - Chooses the transfer mode (eg., RDMA_MSG or RDMA_NOMSG)
847 *  - Registers Read, Write, and Reply chunks
848 *  - Constructs the transport header
849 *  - Posts a Send WR to send the transport header and request
850 *
851 * Returns:
852 *	%0 if the RPC was sent successfully,
853 *	%-ENOTCONN if the connection was lost,
854 *	%-EAGAIN if the caller should call again with the same arguments,
855 *	%-ENOBUFS if the caller should call again after a delay,
856 *	%-EMSGSIZE if the transport header is too small,
857 *	%-EIO if a permanent problem occurred while marshaling.
858 */
859int
860rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst)
861{
862	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
863	struct xdr_stream *xdr = &req->rl_stream;
864	enum rpcrdma_chunktype rtype, wtype;
865	struct xdr_buf *buf = &rqst->rq_snd_buf;
866	bool ddp_allowed;
867	__be32 *p;
868	int ret;
869
870	if (unlikely(rqst->rq_rcv_buf.flags & XDRBUF_SPARSE_PAGES)) {
871		ret = rpcrdma_alloc_sparse_pages(&rqst->rq_rcv_buf);
872		if (ret)
873			return ret;
874	}
875
876	rpcrdma_set_xdrlen(&req->rl_hdrbuf, 0);
877	xdr_init_encode(xdr, &req->rl_hdrbuf, rdmab_data(req->rl_rdmabuf),
878			rqst);
879
880	/* Fixed header fields */
881	ret = -EMSGSIZE;
882	p = xdr_reserve_space(xdr, 4 * sizeof(*p));
883	if (!p)
884		goto out_err;
885	*p++ = rqst->rq_xid;
886	*p++ = rpcrdma_version;
887	*p++ = r_xprt->rx_buf.rb_max_requests;
888
889	/* When the ULP employs a GSS flavor that guarantees integrity
890	 * or privacy, direct data placement of individual data items
891	 * is not allowed.
892	 */
893	ddp_allowed = !test_bit(RPCAUTH_AUTH_DATATOUCH,
894				&rqst->rq_cred->cr_auth->au_flags);
895
896	/*
897	 * Chunks needed for results?
898	 *
899	 * o If the expected result is under the inline threshold, all ops
900	 *   return as inline.
901	 * o Large read ops return data as write chunk(s), header as
902	 *   inline.
903	 * o Large non-read ops return as a single reply chunk.
904	 */
905	if (rpcrdma_results_inline(r_xprt, rqst))
906		wtype = rpcrdma_noch;
907	else if ((ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ) &&
908		 rpcrdma_nonpayload_inline(r_xprt, rqst))
909		wtype = rpcrdma_writech;
910	else
911		wtype = rpcrdma_replych;
912
913	/*
914	 * Chunks needed for arguments?
915	 *
916	 * o If the total request is under the inline threshold, all ops
917	 *   are sent as inline.
918	 * o Large write ops transmit data as read chunk(s), header as
919	 *   inline.
920	 * o Large non-write ops are sent with the entire message as a
921	 *   single read chunk (protocol 0-position special case).
922	 *
923	 * This assumes that the upper layer does not present a request
924	 * that both has a data payload, and whose non-data arguments
925	 * by themselves are larger than the inline threshold.
926	 */
927	if (rpcrdma_args_inline(r_xprt, rqst)) {
928		*p++ = rdma_msg;
929		rtype = buf->len < rdmab_length(req->rl_sendbuf) ?
930			rpcrdma_noch_pullup : rpcrdma_noch_mapped;
931	} else if (ddp_allowed && buf->flags & XDRBUF_WRITE) {
932		*p++ = rdma_msg;
933		rtype = rpcrdma_readch;
934	} else {
935		r_xprt->rx_stats.nomsg_call_count++;
936		*p++ = rdma_nomsg;
937		rtype = rpcrdma_areadch;
938	}
939
940	/* This implementation supports the following combinations
941	 * of chunk lists in one RPC-over-RDMA Call message:
942	 *
943	 *   - Read list
944	 *   - Write list
945	 *   - Reply chunk
946	 *   - Read list + Reply chunk
947	 *
948	 * It might not yet support the following combinations:
949	 *
950	 *   - Read list + Write list
951	 *
952	 * It does not support the following combinations:
953	 *
954	 *   - Write list + Reply chunk
955	 *   - Read list + Write list + Reply chunk
956	 *
957	 * This implementation supports only a single chunk in each
958	 * Read or Write list. Thus for example the client cannot
959	 * send a Call message with a Position Zero Read chunk and a
960	 * regular Read chunk at the same time.
961	 */
962	ret = rpcrdma_encode_read_list(r_xprt, req, rqst, rtype);
963	if (ret)
964		goto out_err;
965	ret = rpcrdma_encode_write_list(r_xprt, req, rqst, wtype);
966	if (ret)
967		goto out_err;
968	ret = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, wtype);
969	if (ret)
970		goto out_err;
971
972	ret = rpcrdma_prepare_send_sges(r_xprt, req, req->rl_hdrbuf.len,
973					buf, rtype);
974	if (ret)
975		goto out_err;
976
977	trace_xprtrdma_marshal(req, rtype, wtype);
978	return 0;
979
980out_err:
981	trace_xprtrdma_marshal_failed(rqst, ret);
982	r_xprt->rx_stats.failed_marshal_count++;
983	frwr_reset(req);
984	return ret;
985}
986
987static void __rpcrdma_update_cwnd_locked(struct rpc_xprt *xprt,
988					 struct rpcrdma_buffer *buf,
989					 u32 grant)
990{
991	buf->rb_credits = grant;
992	xprt->cwnd = grant << RPC_CWNDSHIFT;
993}
994
995static void rpcrdma_update_cwnd(struct rpcrdma_xprt *r_xprt, u32 grant)
996{
997	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
998
999	spin_lock(&xprt->transport_lock);
1000	__rpcrdma_update_cwnd_locked(xprt, &r_xprt->rx_buf, grant);
1001	spin_unlock(&xprt->transport_lock);
1002}
1003
1004/**
1005 * rpcrdma_reset_cwnd - Reset the xprt's congestion window
1006 * @r_xprt: controlling transport instance
1007 *
1008 * Prepare @r_xprt for the next connection by reinitializing
1009 * its credit grant to one (see RFC 8166, Section 3.3.3).
1010 */
1011void rpcrdma_reset_cwnd(struct rpcrdma_xprt *r_xprt)
1012{
1013	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1014
1015	spin_lock(&xprt->transport_lock);
1016	xprt->cong = 0;
1017	__rpcrdma_update_cwnd_locked(xprt, &r_xprt->rx_buf, 1);
1018	spin_unlock(&xprt->transport_lock);
1019}
1020
1021/**
1022 * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
1023 * @rqst: controlling RPC request
1024 * @srcp: points to RPC message payload in receive buffer
1025 * @copy_len: remaining length of receive buffer content
1026 * @pad: Write chunk pad bytes needed (zero for pure inline)
1027 *
1028 * The upper layer has set the maximum number of bytes it can
1029 * receive in each component of rq_rcv_buf. These values are set in
1030 * the head.iov_len, page_len, tail.iov_len, and buflen fields.
1031 *
1032 * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
1033 * many cases this function simply updates iov_base pointers in
1034 * rq_rcv_buf to point directly to the received reply data, to
1035 * avoid copying reply data.
1036 *
1037 * Returns the count of bytes which had to be memcopied.
1038 */
1039static unsigned long
1040rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
1041{
1042	unsigned long fixup_copy_count;
1043	int i, npages, curlen;
1044	char *destp;
1045	struct page **ppages;
1046	int page_base;
1047
1048	/* The head iovec is redirected to the RPC reply message
1049	 * in the receive buffer, to avoid a memcopy.
1050	 */
1051	rqst->rq_rcv_buf.head[0].iov_base = srcp;
1052	rqst->rq_private_buf.head[0].iov_base = srcp;
1053
1054	/* The contents of the receive buffer that follow
1055	 * head.iov_len bytes are copied into the page list.
1056	 */
1057	curlen = rqst->rq_rcv_buf.head[0].iov_len;
1058	if (curlen > copy_len)
1059		curlen = copy_len;
1060	srcp += curlen;
1061	copy_len -= curlen;
1062
1063	ppages = rqst->rq_rcv_buf.pages +
1064		(rqst->rq_rcv_buf.page_base >> PAGE_SHIFT);
1065	page_base = offset_in_page(rqst->rq_rcv_buf.page_base);
1066	fixup_copy_count = 0;
1067	if (copy_len && rqst->rq_rcv_buf.page_len) {
1068		int pagelist_len;
1069
1070		pagelist_len = rqst->rq_rcv_buf.page_len;
1071		if (pagelist_len > copy_len)
1072			pagelist_len = copy_len;
1073		npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
1074		for (i = 0; i < npages; i++) {
1075			curlen = PAGE_SIZE - page_base;
1076			if (curlen > pagelist_len)
1077				curlen = pagelist_len;
1078
1079			destp = kmap_atomic(ppages[i]);
1080			memcpy(destp + page_base, srcp, curlen);
1081			flush_dcache_page(ppages[i]);
1082			kunmap_atomic(destp);
1083			srcp += curlen;
1084			copy_len -= curlen;
1085			fixup_copy_count += curlen;
1086			pagelist_len -= curlen;
1087			if (!pagelist_len)
1088				break;
1089			page_base = 0;
1090		}
1091
1092		/* Implicit padding for the last segment in a Write
1093		 * chunk is inserted inline at the front of the tail
1094		 * iovec. The upper layer ignores the content of
1095		 * the pad. Simply ensure inline content in the tail
1096		 * that follows the Write chunk is properly aligned.
1097		 */
1098		if (pad)
1099			srcp -= pad;
1100	}
1101
1102	/* The tail iovec is redirected to the remaining data
1103	 * in the receive buffer, to avoid a memcopy.
1104	 */
1105	if (copy_len || pad) {
1106		rqst->rq_rcv_buf.tail[0].iov_base = srcp;
1107		rqst->rq_private_buf.tail[0].iov_base = srcp;
1108	}
1109
1110	if (fixup_copy_count)
1111		trace_xprtrdma_fixup(rqst, fixup_copy_count);
1112	return fixup_copy_count;
1113}
1114
1115/* By convention, backchannel calls arrive via rdma_msg type
1116 * messages, and never populate the chunk lists. This makes
1117 * the RPC/RDMA header small and fixed in size, so it is
1118 * straightforward to check the RPC header's direction field.
1119 */
1120static bool
1121rpcrdma_is_bcall(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1122#if defined(CONFIG_SUNRPC_BACKCHANNEL)
1123{
1124	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1125	struct xdr_stream *xdr = &rep->rr_stream;
1126	__be32 *p;
1127
1128	if (rep->rr_proc != rdma_msg)
1129		return false;
1130
1131	/* Peek at stream contents without advancing. */
1132	p = xdr_inline_decode(xdr, 0);
1133
1134	/* Chunk lists */
1135	if (xdr_item_is_present(p++))
1136		return false;
1137	if (xdr_item_is_present(p++))
1138		return false;
1139	if (xdr_item_is_present(p++))
1140		return false;
1141
1142	/* RPC header */
1143	if (*p++ != rep->rr_xid)
1144		return false;
1145	if (*p != cpu_to_be32(RPC_CALL))
1146		return false;
1147
1148	/* No bc service. */
1149	if (xprt->bc_serv == NULL)
1150		return false;
1151
1152	/* Now that we are sure this is a backchannel call,
1153	 * advance to the RPC header.
1154	 */
1155	p = xdr_inline_decode(xdr, 3 * sizeof(*p));
1156	if (unlikely(!p))
1157		return true;
1158
1159	rpcrdma_bc_receive_call(r_xprt, rep);
1160	return true;
1161}
1162#else	/* CONFIG_SUNRPC_BACKCHANNEL */
1163{
1164	return false;
1165}
1166#endif	/* CONFIG_SUNRPC_BACKCHANNEL */
1167
1168static int decode_rdma_segment(struct xdr_stream *xdr, u32 *length)
1169{
1170	u32 handle;
1171	u64 offset;
1172	__be32 *p;
1173
1174	p = xdr_inline_decode(xdr, 4 * sizeof(*p));
1175	if (unlikely(!p))
1176		return -EIO;
1177
1178	xdr_decode_rdma_segment(p, &handle, length, &offset);
1179	trace_xprtrdma_decode_seg(handle, *length, offset);
1180	return 0;
1181}
1182
1183static int decode_write_chunk(struct xdr_stream *xdr, u32 *length)
1184{
1185	u32 segcount, seglength;
1186	__be32 *p;
1187
1188	p = xdr_inline_decode(xdr, sizeof(*p));
1189	if (unlikely(!p))
1190		return -EIO;
1191
1192	*length = 0;
1193	segcount = be32_to_cpup(p);
1194	while (segcount--) {
1195		if (decode_rdma_segment(xdr, &seglength))
1196			return -EIO;
1197		*length += seglength;
1198	}
1199
1200	return 0;
1201}
1202
1203/* In RPC-over-RDMA Version One replies, a Read list is never
1204 * expected. This decoder is a stub that returns an error if
1205 * a Read list is present.
1206 */
1207static int decode_read_list(struct xdr_stream *xdr)
1208{
1209	__be32 *p;
1210
1211	p = xdr_inline_decode(xdr, sizeof(*p));
1212	if (unlikely(!p))
1213		return -EIO;
1214	if (unlikely(xdr_item_is_present(p)))
1215		return -EIO;
1216	return 0;
1217}
1218
1219/* Supports only one Write chunk in the Write list
1220 */
1221static int decode_write_list(struct xdr_stream *xdr, u32 *length)
1222{
1223	u32 chunklen;
1224	bool first;
1225	__be32 *p;
1226
1227	*length = 0;
1228	first = true;
1229	do {
1230		p = xdr_inline_decode(xdr, sizeof(*p));
1231		if (unlikely(!p))
1232			return -EIO;
1233		if (xdr_item_is_absent(p))
1234			break;
1235		if (!first)
1236			return -EIO;
1237
1238		if (decode_write_chunk(xdr, &chunklen))
1239			return -EIO;
1240		*length += chunklen;
1241		first = false;
1242	} while (true);
1243	return 0;
1244}
1245
1246static int decode_reply_chunk(struct xdr_stream *xdr, u32 *length)
1247{
1248	__be32 *p;
1249
1250	p = xdr_inline_decode(xdr, sizeof(*p));
1251	if (unlikely(!p))
1252		return -EIO;
1253
1254	*length = 0;
1255	if (xdr_item_is_present(p))
1256		if (decode_write_chunk(xdr, length))
1257			return -EIO;
1258	return 0;
1259}
1260
1261static int
1262rpcrdma_decode_msg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1263		   struct rpc_rqst *rqst)
1264{
1265	struct xdr_stream *xdr = &rep->rr_stream;
1266	u32 writelist, replychunk, rpclen;
1267	char *base;
1268
1269	/* Decode the chunk lists */
1270	if (decode_read_list(xdr))
1271		return -EIO;
1272	if (decode_write_list(xdr, &writelist))
1273		return -EIO;
1274	if (decode_reply_chunk(xdr, &replychunk))
1275		return -EIO;
1276
1277	/* RDMA_MSG sanity checks */
1278	if (unlikely(replychunk))
1279		return -EIO;
1280
1281	/* Build the RPC reply's Payload stream in rqst->rq_rcv_buf */
1282	base = (char *)xdr_inline_decode(xdr, 0);
1283	rpclen = xdr_stream_remaining(xdr);
1284	r_xprt->rx_stats.fixup_copy_count +=
1285		rpcrdma_inline_fixup(rqst, base, rpclen, writelist & 3);
1286
1287	r_xprt->rx_stats.total_rdma_reply += writelist;
1288	return rpclen + xdr_align_size(writelist);
1289}
1290
1291static noinline int
1292rpcrdma_decode_nomsg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1293{
1294	struct xdr_stream *xdr = &rep->rr_stream;
1295	u32 writelist, replychunk;
1296
1297	/* Decode the chunk lists */
1298	if (decode_read_list(xdr))
1299		return -EIO;
1300	if (decode_write_list(xdr, &writelist))
1301		return -EIO;
1302	if (decode_reply_chunk(xdr, &replychunk))
1303		return -EIO;
1304
1305	/* RDMA_NOMSG sanity checks */
1306	if (unlikely(writelist))
1307		return -EIO;
1308	if (unlikely(!replychunk))
1309		return -EIO;
1310
1311	/* Reply chunk buffer already is the reply vector */
1312	r_xprt->rx_stats.total_rdma_reply += replychunk;
1313	return replychunk;
1314}
1315
1316static noinline int
1317rpcrdma_decode_error(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1318		     struct rpc_rqst *rqst)
1319{
1320	struct xdr_stream *xdr = &rep->rr_stream;
1321	__be32 *p;
1322
1323	p = xdr_inline_decode(xdr, sizeof(*p));
1324	if (unlikely(!p))
1325		return -EIO;
1326
1327	switch (*p) {
1328	case err_vers:
1329		p = xdr_inline_decode(xdr, 2 * sizeof(*p));
1330		if (!p)
1331			break;
1332		trace_xprtrdma_err_vers(rqst, p, p + 1);
1333		break;
1334	case err_chunk:
1335		trace_xprtrdma_err_chunk(rqst);
1336		break;
1337	default:
1338		trace_xprtrdma_err_unrecognized(rqst, p);
1339	}
1340
1341	return -EIO;
1342}
1343
1344/**
1345 * rpcrdma_unpin_rqst - Release rqst without completing it
1346 * @rep: RPC/RDMA Receive context
1347 *
1348 * This is done when a connection is lost so that a Reply
1349 * can be dropped and its matching Call can be subsequently
1350 * retransmitted on a new connection.
1351 */
1352void rpcrdma_unpin_rqst(struct rpcrdma_rep *rep)
1353{
1354	struct rpc_xprt *xprt = &rep->rr_rxprt->rx_xprt;
1355	struct rpc_rqst *rqst = rep->rr_rqst;
1356	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
1357
1358	req->rl_reply = NULL;
1359	rep->rr_rqst = NULL;
1360
1361	spin_lock(&xprt->queue_lock);
1362	xprt_unpin_rqst(rqst);
1363	spin_unlock(&xprt->queue_lock);
1364}
1365
1366/**
1367 * rpcrdma_complete_rqst - Pass completed rqst back to RPC
1368 * @rep: RPC/RDMA Receive context
1369 *
1370 * Reconstruct the RPC reply and complete the transaction
1371 * while @rqst is still pinned to ensure the rep, rqst, and
1372 * rq_task pointers remain stable.
1373 */
1374void rpcrdma_complete_rqst(struct rpcrdma_rep *rep)
1375{
1376	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1377	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1378	struct rpc_rqst *rqst = rep->rr_rqst;
1379	int status;
1380
1381	switch (rep->rr_proc) {
1382	case rdma_msg:
1383		status = rpcrdma_decode_msg(r_xprt, rep, rqst);
1384		break;
1385	case rdma_nomsg:
1386		status = rpcrdma_decode_nomsg(r_xprt, rep);
1387		break;
1388	case rdma_error:
1389		status = rpcrdma_decode_error(r_xprt, rep, rqst);
1390		break;
1391	default:
1392		status = -EIO;
1393	}
1394	if (status < 0)
1395		goto out_badheader;
1396
1397out:
1398	spin_lock(&xprt->queue_lock);
1399	xprt_complete_rqst(rqst->rq_task, status);
1400	xprt_unpin_rqst(rqst);
1401	spin_unlock(&xprt->queue_lock);
1402	return;
1403
1404out_badheader:
1405	trace_xprtrdma_reply_hdr_err(rep);
1406	r_xprt->rx_stats.bad_reply_count++;
1407	rqst->rq_task->tk_status = status;
1408	status = 0;
1409	goto out;
1410}
1411
1412static void rpcrdma_reply_done(struct kref *kref)
1413{
1414	struct rpcrdma_req *req =
1415		container_of(kref, struct rpcrdma_req, rl_kref);
1416
1417	rpcrdma_complete_rqst(req->rl_reply);
1418}
1419
1420/**
1421 * rpcrdma_reply_handler - Process received RPC/RDMA messages
1422 * @rep: Incoming rpcrdma_rep object to process
1423 *
1424 * Errors must result in the RPC task either being awakened, or
1425 * allowed to timeout, to discover the errors at that time.
1426 */
1427void rpcrdma_reply_handler(struct rpcrdma_rep *rep)
1428{
1429	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1430	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1431	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1432	struct rpcrdma_req *req;
1433	struct rpc_rqst *rqst;
1434	u32 credits;
1435	__be32 *p;
1436
1437	/* Any data means we had a useful conversation, so
1438	 * then we don't need to delay the next reconnect.
1439	 */
1440	if (xprt->reestablish_timeout)
1441		xprt->reestablish_timeout = 0;
1442
1443	/* Fixed transport header fields */
1444	xdr_init_decode(&rep->rr_stream, &rep->rr_hdrbuf,
1445			rep->rr_hdrbuf.head[0].iov_base, NULL);
1446	p = xdr_inline_decode(&rep->rr_stream, 4 * sizeof(*p));
1447	if (unlikely(!p))
1448		goto out_shortreply;
1449	rep->rr_xid = *p++;
1450	rep->rr_vers = *p++;
1451	credits = be32_to_cpu(*p++);
1452	rep->rr_proc = *p++;
1453
1454	if (rep->rr_vers != rpcrdma_version)
1455		goto out_badversion;
1456
1457	if (rpcrdma_is_bcall(r_xprt, rep))
1458		return;
1459
1460	/* Match incoming rpcrdma_rep to an rpcrdma_req to
1461	 * get context for handling any incoming chunks.
1462	 */
1463	spin_lock(&xprt->queue_lock);
1464	rqst = xprt_lookup_rqst(xprt, rep->rr_xid);
1465	if (!rqst)
1466		goto out_norqst;
1467	xprt_pin_rqst(rqst);
1468	spin_unlock(&xprt->queue_lock);
1469
1470	if (credits == 0)
1471		credits = 1;	/* don't deadlock */
1472	else if (credits > r_xprt->rx_ep->re_max_requests)
1473		credits = r_xprt->rx_ep->re_max_requests;
1474	rpcrdma_post_recvs(r_xprt, credits + (buf->rb_bc_srv_max_requests << 1),
1475			   false);
1476	if (buf->rb_credits != credits)
1477		rpcrdma_update_cwnd(r_xprt, credits);
1478
1479	req = rpcr_to_rdmar(rqst);
1480	if (unlikely(req->rl_reply))
1481		rpcrdma_rep_put(buf, req->rl_reply);
1482	req->rl_reply = rep;
1483	rep->rr_rqst = rqst;
1484
1485	trace_xprtrdma_reply(rqst->rq_task, rep, credits);
1486
1487	if (rep->rr_wc_flags & IB_WC_WITH_INVALIDATE)
1488		frwr_reminv(rep, &req->rl_registered);
1489	if (!list_empty(&req->rl_registered))
1490		frwr_unmap_async(r_xprt, req);
1491		/* LocalInv completion will complete the RPC */
1492	else
1493		kref_put(&req->rl_kref, rpcrdma_reply_done);
1494	return;
1495
1496out_badversion:
1497	trace_xprtrdma_reply_vers_err(rep);
1498	goto out;
1499
1500out_norqst:
1501	spin_unlock(&xprt->queue_lock);
1502	trace_xprtrdma_reply_rqst_err(rep);
1503	goto out;
1504
1505out_shortreply:
1506	trace_xprtrdma_reply_short_err(rep);
1507
1508out:
1509	rpcrdma_rep_put(buf, rep);
1510}
1511