1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2015, 2017 Oracle.  All rights reserved.
4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5 */
6
7/* Lightweight memory registration using Fast Registration Work
8 * Requests (FRWR).
9 *
10 * FRWR features ordered asynchronous registration and invalidation
11 * of arbitrarily-sized memory regions. This is the fastest and safest
12 * but most complex memory registration mode.
13 */
14
15/* Normal operation
16 *
17 * A Memory Region is prepared for RDMA Read or Write using a FAST_REG
18 * Work Request (frwr_map). When the RDMA operation is finished, this
19 * Memory Region is invalidated using a LOCAL_INV Work Request
20 * (frwr_unmap_async and frwr_unmap_sync).
21 *
22 * Typically FAST_REG Work Requests are not signaled, and neither are
23 * RDMA Send Work Requests (with the exception of signaling occasionally
24 * to prevent provider work queue overflows). This greatly reduces HCA
25 * interrupt workload.
26 */
27
28/* Transport recovery
29 *
30 * frwr_map and frwr_unmap_* cannot run at the same time the transport
31 * connect worker is running. The connect worker holds the transport
32 * send lock, just as ->send_request does. This prevents frwr_map and
33 * the connect worker from running concurrently. When a connection is
34 * closed, the Receive completion queue is drained before the allowing
35 * the connect worker to get control. This prevents frwr_unmap and the
36 * connect worker from running concurrently.
37 *
38 * When the underlying transport disconnects, MRs that are in flight
39 * are flushed and are likely unusable. Thus all MRs are destroyed.
40 * New MRs are created on demand.
41 */
42
43#include <linux/sunrpc/svc_rdma.h>
44
45#include "xprt_rdma.h"
46#include <trace/events/rpcrdma.h>
47
48static void frwr_cid_init(struct rpcrdma_ep *ep,
49			  struct rpcrdma_mr *mr)
50{
51	struct rpc_rdma_cid *cid = &mr->mr_cid;
52
53	cid->ci_queue_id = ep->re_attr.send_cq->res.id;
54	cid->ci_completion_id = mr->mr_ibmr->res.id;
55}
56
57static void frwr_mr_unmap(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr)
58{
59	if (mr->mr_device) {
60		trace_xprtrdma_mr_unmap(mr);
61		ib_dma_unmap_sg(mr->mr_device, mr->mr_sg, mr->mr_nents,
62				mr->mr_dir);
63		mr->mr_device = NULL;
64	}
65}
66
67/**
68 * frwr_mr_release - Destroy one MR
69 * @mr: MR allocated by frwr_mr_init
70 *
71 */
72void frwr_mr_release(struct rpcrdma_mr *mr)
73{
74	int rc;
75
76	frwr_mr_unmap(mr->mr_xprt, mr);
77
78	rc = ib_dereg_mr(mr->mr_ibmr);
79	if (rc)
80		trace_xprtrdma_frwr_dereg(mr, rc);
81	kfree(mr->mr_sg);
82	kfree(mr);
83}
84
85static void frwr_mr_put(struct rpcrdma_mr *mr)
86{
87	frwr_mr_unmap(mr->mr_xprt, mr);
88
89	/* The MR is returned to the req's MR free list instead
90	 * of to the xprt's MR free list. No spinlock is needed.
91	 */
92	rpcrdma_mr_push(mr, &mr->mr_req->rl_free_mrs);
93}
94
95/* frwr_reset - Place MRs back on the free list
96 * @req: request to reset
97 *
98 * Used after a failed marshal. For FRWR, this means the MRs
99 * don't have to be fully released and recreated.
100 *
101 * NB: This is safe only as long as none of @req's MRs are
102 * involved with an ongoing asynchronous FAST_REG or LOCAL_INV
103 * Work Request.
104 */
105void frwr_reset(struct rpcrdma_req *req)
106{
107	struct rpcrdma_mr *mr;
108
109	while ((mr = rpcrdma_mr_pop(&req->rl_registered)))
110		frwr_mr_put(mr);
111}
112
113/**
114 * frwr_mr_init - Initialize one MR
115 * @r_xprt: controlling transport instance
116 * @mr: generic MR to prepare for FRWR
117 *
118 * Returns zero if successful. Otherwise a negative errno
119 * is returned.
120 */
121int frwr_mr_init(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr)
122{
123	struct rpcrdma_ep *ep = r_xprt->rx_ep;
124	unsigned int depth = ep->re_max_fr_depth;
125	struct scatterlist *sg;
126	struct ib_mr *frmr;
127
128	sg = kcalloc_node(depth, sizeof(*sg), XPRTRDMA_GFP_FLAGS,
129			  ibdev_to_node(ep->re_id->device));
130	if (!sg)
131		return -ENOMEM;
132
133	frmr = ib_alloc_mr(ep->re_pd, ep->re_mrtype, depth);
134	if (IS_ERR(frmr))
135		goto out_mr_err;
136
137	mr->mr_xprt = r_xprt;
138	mr->mr_ibmr = frmr;
139	mr->mr_device = NULL;
140	INIT_LIST_HEAD(&mr->mr_list);
141	init_completion(&mr->mr_linv_done);
142	frwr_cid_init(ep, mr);
143
144	sg_init_table(sg, depth);
145	mr->mr_sg = sg;
146	return 0;
147
148out_mr_err:
149	kfree(sg);
150	trace_xprtrdma_frwr_alloc(mr, PTR_ERR(frmr));
151	return PTR_ERR(frmr);
152}
153
154/**
155 * frwr_query_device - Prepare a transport for use with FRWR
156 * @ep: endpoint to fill in
157 * @device: RDMA device to query
158 *
159 * On success, sets:
160 *	ep->re_attr
161 *	ep->re_max_requests
162 *	ep->re_max_rdma_segs
163 *	ep->re_max_fr_depth
164 *	ep->re_mrtype
165 *
166 * Return values:
167 *   On success, returns zero.
168 *   %-EINVAL - the device does not support FRWR memory registration
169 *   %-ENOMEM - the device is not sufficiently capable for NFS/RDMA
170 */
171int frwr_query_device(struct rpcrdma_ep *ep, const struct ib_device *device)
172{
173	const struct ib_device_attr *attrs = &device->attrs;
174	int max_qp_wr, depth, delta;
175	unsigned int max_sge;
176
177	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) ||
178	    attrs->max_fast_reg_page_list_len == 0) {
179		pr_err("rpcrdma: 'frwr' mode is not supported by device %s\n",
180		       device->name);
181		return -EINVAL;
182	}
183
184	max_sge = min_t(unsigned int, attrs->max_send_sge,
185			RPCRDMA_MAX_SEND_SGES);
186	if (max_sge < RPCRDMA_MIN_SEND_SGES) {
187		pr_err("rpcrdma: HCA provides only %u send SGEs\n", max_sge);
188		return -ENOMEM;
189	}
190	ep->re_attr.cap.max_send_sge = max_sge;
191	ep->re_attr.cap.max_recv_sge = 1;
192
193	ep->re_mrtype = IB_MR_TYPE_MEM_REG;
194	if (attrs->kernel_cap_flags & IBK_SG_GAPS_REG)
195		ep->re_mrtype = IB_MR_TYPE_SG_GAPS;
196
197	/* Quirk: Some devices advertise a large max_fast_reg_page_list_len
198	 * capability, but perform optimally when the MRs are not larger
199	 * than a page.
200	 */
201	if (attrs->max_sge_rd > RPCRDMA_MAX_HDR_SEGS)
202		ep->re_max_fr_depth = attrs->max_sge_rd;
203	else
204		ep->re_max_fr_depth = attrs->max_fast_reg_page_list_len;
205	if (ep->re_max_fr_depth > RPCRDMA_MAX_DATA_SEGS)
206		ep->re_max_fr_depth = RPCRDMA_MAX_DATA_SEGS;
207
208	/* Add room for frwr register and invalidate WRs.
209	 * 1. FRWR reg WR for head
210	 * 2. FRWR invalidate WR for head
211	 * 3. N FRWR reg WRs for pagelist
212	 * 4. N FRWR invalidate WRs for pagelist
213	 * 5. FRWR reg WR for tail
214	 * 6. FRWR invalidate WR for tail
215	 * 7. The RDMA_SEND WR
216	 */
217	depth = 7;
218
219	/* Calculate N if the device max FRWR depth is smaller than
220	 * RPCRDMA_MAX_DATA_SEGS.
221	 */
222	if (ep->re_max_fr_depth < RPCRDMA_MAX_DATA_SEGS) {
223		delta = RPCRDMA_MAX_DATA_SEGS - ep->re_max_fr_depth;
224		do {
225			depth += 2; /* FRWR reg + invalidate */
226			delta -= ep->re_max_fr_depth;
227		} while (delta > 0);
228	}
229
230	max_qp_wr = attrs->max_qp_wr;
231	max_qp_wr -= RPCRDMA_BACKWARD_WRS;
232	max_qp_wr -= 1;
233	if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE)
234		return -ENOMEM;
235	if (ep->re_max_requests > max_qp_wr)
236		ep->re_max_requests = max_qp_wr;
237	ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth;
238	if (ep->re_attr.cap.max_send_wr > max_qp_wr) {
239		ep->re_max_requests = max_qp_wr / depth;
240		if (!ep->re_max_requests)
241			return -ENOMEM;
242		ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth;
243	}
244	ep->re_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS;
245	ep->re_attr.cap.max_send_wr += 1; /* for ib_drain_sq */
246	ep->re_attr.cap.max_recv_wr = ep->re_max_requests;
247	ep->re_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS;
248	ep->re_attr.cap.max_recv_wr += RPCRDMA_MAX_RECV_BATCH;
249	ep->re_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */
250
251	ep->re_max_rdma_segs =
252		DIV_ROUND_UP(RPCRDMA_MAX_DATA_SEGS, ep->re_max_fr_depth);
253	/* Reply chunks require segments for head and tail buffers */
254	ep->re_max_rdma_segs += 2;
255	if (ep->re_max_rdma_segs > RPCRDMA_MAX_HDR_SEGS)
256		ep->re_max_rdma_segs = RPCRDMA_MAX_HDR_SEGS;
257
258	/* Ensure the underlying device is capable of conveying the
259	 * largest r/wsize NFS will ask for. This guarantees that
260	 * failing over from one RDMA device to another will not
261	 * break NFS I/O.
262	 */
263	if ((ep->re_max_rdma_segs * ep->re_max_fr_depth) < RPCRDMA_MAX_SEGS)
264		return -ENOMEM;
265
266	return 0;
267}
268
269/**
270 * frwr_map - Register a memory region
271 * @r_xprt: controlling transport
272 * @seg: memory region co-ordinates
273 * @nsegs: number of segments remaining
274 * @writing: true when RDMA Write will be used
275 * @xid: XID of RPC using the registered memory
276 * @mr: MR to fill in
277 *
278 * Prepare a REG_MR Work Request to register a memory region
279 * for remote access via RDMA READ or RDMA WRITE.
280 *
281 * Returns the next segment or a negative errno pointer.
282 * On success, @mr is filled in.
283 */
284struct rpcrdma_mr_seg *frwr_map(struct rpcrdma_xprt *r_xprt,
285				struct rpcrdma_mr_seg *seg,
286				int nsegs, bool writing, __be32 xid,
287				struct rpcrdma_mr *mr)
288{
289	struct rpcrdma_ep *ep = r_xprt->rx_ep;
290	struct ib_reg_wr *reg_wr;
291	int i, n, dma_nents;
292	struct ib_mr *ibmr;
293	u8 key;
294
295	if (nsegs > ep->re_max_fr_depth)
296		nsegs = ep->re_max_fr_depth;
297	for (i = 0; i < nsegs;) {
298		sg_set_page(&mr->mr_sg[i], seg->mr_page,
299			    seg->mr_len, seg->mr_offset);
300
301		++seg;
302		++i;
303		if (ep->re_mrtype == IB_MR_TYPE_SG_GAPS)
304			continue;
305		if ((i < nsegs && seg->mr_offset) ||
306		    offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
307			break;
308	}
309	mr->mr_dir = rpcrdma_data_dir(writing);
310	mr->mr_nents = i;
311
312	dma_nents = ib_dma_map_sg(ep->re_id->device, mr->mr_sg, mr->mr_nents,
313				  mr->mr_dir);
314	if (!dma_nents)
315		goto out_dmamap_err;
316	mr->mr_device = ep->re_id->device;
317
318	ibmr = mr->mr_ibmr;
319	n = ib_map_mr_sg(ibmr, mr->mr_sg, dma_nents, NULL, PAGE_SIZE);
320	if (n != dma_nents)
321		goto out_mapmr_err;
322
323	ibmr->iova &= 0x00000000ffffffff;
324	ibmr->iova |= ((u64)be32_to_cpu(xid)) << 32;
325	key = (u8)(ibmr->rkey & 0x000000FF);
326	ib_update_fast_reg_key(ibmr, ++key);
327
328	reg_wr = &mr->mr_regwr;
329	reg_wr->mr = ibmr;
330	reg_wr->key = ibmr->rkey;
331	reg_wr->access = writing ?
332			 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
333			 IB_ACCESS_REMOTE_READ;
334
335	mr->mr_handle = ibmr->rkey;
336	mr->mr_length = ibmr->length;
337	mr->mr_offset = ibmr->iova;
338	trace_xprtrdma_mr_map(mr);
339
340	return seg;
341
342out_dmamap_err:
343	trace_xprtrdma_frwr_sgerr(mr, i);
344	return ERR_PTR(-EIO);
345
346out_mapmr_err:
347	trace_xprtrdma_frwr_maperr(mr, n);
348	return ERR_PTR(-EIO);
349}
350
351/**
352 * frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC
353 * @cq: completion queue
354 * @wc: WCE for a completed FastReg WR
355 *
356 * Each flushed MR gets destroyed after the QP has drained.
357 */
358static void frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc)
359{
360	struct ib_cqe *cqe = wc->wr_cqe;
361	struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
362
363	/* WARNING: Only wr_cqe and status are reliable at this point */
364	trace_xprtrdma_wc_fastreg(wc, &mr->mr_cid);
365
366	rpcrdma_flush_disconnect(cq->cq_context, wc);
367}
368
369/**
370 * frwr_send - post Send WRs containing the RPC Call message
371 * @r_xprt: controlling transport instance
372 * @req: prepared RPC Call
373 *
374 * For FRWR, chain any FastReg WRs to the Send WR. Only a
375 * single ib_post_send call is needed to register memory
376 * and then post the Send WR.
377 *
378 * Returns the return code from ib_post_send.
379 *
380 * Caller must hold the transport send lock to ensure that the
381 * pointers to the transport's rdma_cm_id and QP are stable.
382 */
383int frwr_send(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
384{
385	struct ib_send_wr *post_wr, *send_wr = &req->rl_wr;
386	struct rpcrdma_ep *ep = r_xprt->rx_ep;
387	struct rpcrdma_mr *mr;
388	unsigned int num_wrs;
389	int ret;
390
391	num_wrs = 1;
392	post_wr = send_wr;
393	list_for_each_entry(mr, &req->rl_registered, mr_list) {
394		trace_xprtrdma_mr_fastreg(mr);
395
396		mr->mr_cqe.done = frwr_wc_fastreg;
397		mr->mr_regwr.wr.next = post_wr;
398		mr->mr_regwr.wr.wr_cqe = &mr->mr_cqe;
399		mr->mr_regwr.wr.num_sge = 0;
400		mr->mr_regwr.wr.opcode = IB_WR_REG_MR;
401		mr->mr_regwr.wr.send_flags = 0;
402		post_wr = &mr->mr_regwr.wr;
403		++num_wrs;
404	}
405
406	if ((kref_read(&req->rl_kref) > 1) || num_wrs > ep->re_send_count) {
407		send_wr->send_flags |= IB_SEND_SIGNALED;
408		ep->re_send_count = min_t(unsigned int, ep->re_send_batch,
409					  num_wrs - ep->re_send_count);
410	} else {
411		send_wr->send_flags &= ~IB_SEND_SIGNALED;
412		ep->re_send_count -= num_wrs;
413	}
414
415	trace_xprtrdma_post_send(req);
416	ret = ib_post_send(ep->re_id->qp, post_wr, NULL);
417	if (ret)
418		trace_xprtrdma_post_send_err(r_xprt, req, ret);
419	return ret;
420}
421
422/**
423 * frwr_reminv - handle a remotely invalidated mr on the @mrs list
424 * @rep: Received reply
425 * @mrs: list of MRs to check
426 *
427 */
428void frwr_reminv(struct rpcrdma_rep *rep, struct list_head *mrs)
429{
430	struct rpcrdma_mr *mr;
431
432	list_for_each_entry(mr, mrs, mr_list)
433		if (mr->mr_handle == rep->rr_inv_rkey) {
434			list_del_init(&mr->mr_list);
435			trace_xprtrdma_mr_reminv(mr);
436			frwr_mr_put(mr);
437			break;	/* only one invalidated MR per RPC */
438		}
439}
440
441static void frwr_mr_done(struct ib_wc *wc, struct rpcrdma_mr *mr)
442{
443	if (likely(wc->status == IB_WC_SUCCESS))
444		frwr_mr_put(mr);
445}
446
447/**
448 * frwr_wc_localinv - Invoked by RDMA provider for a LOCAL_INV WC
449 * @cq: completion queue
450 * @wc: WCE for a completed LocalInv WR
451 *
452 */
453static void frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc)
454{
455	struct ib_cqe *cqe = wc->wr_cqe;
456	struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
457
458	/* WARNING: Only wr_cqe and status are reliable at this point */
459	trace_xprtrdma_wc_li(wc, &mr->mr_cid);
460	frwr_mr_done(wc, mr);
461
462	rpcrdma_flush_disconnect(cq->cq_context, wc);
463}
464
465/**
466 * frwr_wc_localinv_wake - Invoked by RDMA provider for a LOCAL_INV WC
467 * @cq: completion queue
468 * @wc: WCE for a completed LocalInv WR
469 *
470 * Awaken anyone waiting for an MR to finish being fenced.
471 */
472static void frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc)
473{
474	struct ib_cqe *cqe = wc->wr_cqe;
475	struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
476
477	/* WARNING: Only wr_cqe and status are reliable at this point */
478	trace_xprtrdma_wc_li_wake(wc, &mr->mr_cid);
479	frwr_mr_done(wc, mr);
480	complete(&mr->mr_linv_done);
481
482	rpcrdma_flush_disconnect(cq->cq_context, wc);
483}
484
485/**
486 * frwr_unmap_sync - invalidate memory regions that were registered for @req
487 * @r_xprt: controlling transport instance
488 * @req: rpcrdma_req with a non-empty list of MRs to process
489 *
490 * Sleeps until it is safe for the host CPU to access the previously mapped
491 * memory regions. This guarantees that registered MRs are properly fenced
492 * from the server before the RPC consumer accesses the data in them. It
493 * also ensures proper Send flow control: waking the next RPC waits until
494 * this RPC has relinquished all its Send Queue entries.
495 */
496void frwr_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
497{
498	struct ib_send_wr *first, **prev, *last;
499	struct rpcrdma_ep *ep = r_xprt->rx_ep;
500	const struct ib_send_wr *bad_wr;
501	struct rpcrdma_mr *mr;
502	int rc;
503
504	/* ORDER: Invalidate all of the MRs first
505	 *
506	 * Chain the LOCAL_INV Work Requests and post them with
507	 * a single ib_post_send() call.
508	 */
509	prev = &first;
510	mr = rpcrdma_mr_pop(&req->rl_registered);
511	do {
512		trace_xprtrdma_mr_localinv(mr);
513		r_xprt->rx_stats.local_inv_needed++;
514
515		last = &mr->mr_invwr;
516		last->next = NULL;
517		last->wr_cqe = &mr->mr_cqe;
518		last->sg_list = NULL;
519		last->num_sge = 0;
520		last->opcode = IB_WR_LOCAL_INV;
521		last->send_flags = IB_SEND_SIGNALED;
522		last->ex.invalidate_rkey = mr->mr_handle;
523
524		last->wr_cqe->done = frwr_wc_localinv;
525
526		*prev = last;
527		prev = &last->next;
528	} while ((mr = rpcrdma_mr_pop(&req->rl_registered)));
529
530	mr = container_of(last, struct rpcrdma_mr, mr_invwr);
531
532	/* Strong send queue ordering guarantees that when the
533	 * last WR in the chain completes, all WRs in the chain
534	 * are complete.
535	 */
536	last->wr_cqe->done = frwr_wc_localinv_wake;
537	reinit_completion(&mr->mr_linv_done);
538
539	/* Transport disconnect drains the receive CQ before it
540	 * replaces the QP. The RPC reply handler won't call us
541	 * unless re_id->qp is a valid pointer.
542	 */
543	bad_wr = NULL;
544	rc = ib_post_send(ep->re_id->qp, first, &bad_wr);
545
546	/* The final LOCAL_INV WR in the chain is supposed to
547	 * do the wake. If it was never posted, the wake will
548	 * not happen, so don't wait in that case.
549	 */
550	if (bad_wr != first)
551		wait_for_completion(&mr->mr_linv_done);
552	if (!rc)
553		return;
554
555	/* On error, the MRs get destroyed once the QP has drained. */
556	trace_xprtrdma_post_linv_err(req, rc);
557
558	/* Force a connection loss to ensure complete recovery.
559	 */
560	rpcrdma_force_disconnect(ep);
561}
562
563/**
564 * frwr_wc_localinv_done - Invoked by RDMA provider for a signaled LOCAL_INV WC
565 * @cq:	completion queue
566 * @wc:	WCE for a completed LocalInv WR
567 *
568 */
569static void frwr_wc_localinv_done(struct ib_cq *cq, struct ib_wc *wc)
570{
571	struct ib_cqe *cqe = wc->wr_cqe;
572	struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
573	struct rpcrdma_rep *rep;
574
575	/* WARNING: Only wr_cqe and status are reliable at this point */
576	trace_xprtrdma_wc_li_done(wc, &mr->mr_cid);
577
578	/* Ensure that @rep is generated before the MR is released */
579	rep = mr->mr_req->rl_reply;
580	smp_rmb();
581
582	if (wc->status != IB_WC_SUCCESS) {
583		if (rep)
584			rpcrdma_unpin_rqst(rep);
585		rpcrdma_flush_disconnect(cq->cq_context, wc);
586		return;
587	}
588	frwr_mr_put(mr);
589	rpcrdma_complete_rqst(rep);
590}
591
592/**
593 * frwr_unmap_async - invalidate memory regions that were registered for @req
594 * @r_xprt: controlling transport instance
595 * @req: rpcrdma_req with a non-empty list of MRs to process
596 *
597 * This guarantees that registered MRs are properly fenced from the
598 * server before the RPC consumer accesses the data in them. It also
599 * ensures proper Send flow control: waking the next RPC waits until
600 * this RPC has relinquished all its Send Queue entries.
601 */
602void frwr_unmap_async(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
603{
604	struct ib_send_wr *first, *last, **prev;
605	struct rpcrdma_ep *ep = r_xprt->rx_ep;
606	struct rpcrdma_mr *mr;
607	int rc;
608
609	/* Chain the LOCAL_INV Work Requests and post them with
610	 * a single ib_post_send() call.
611	 */
612	prev = &first;
613	mr = rpcrdma_mr_pop(&req->rl_registered);
614	do {
615		trace_xprtrdma_mr_localinv(mr);
616		r_xprt->rx_stats.local_inv_needed++;
617
618		last = &mr->mr_invwr;
619		last->next = NULL;
620		last->wr_cqe = &mr->mr_cqe;
621		last->sg_list = NULL;
622		last->num_sge = 0;
623		last->opcode = IB_WR_LOCAL_INV;
624		last->send_flags = IB_SEND_SIGNALED;
625		last->ex.invalidate_rkey = mr->mr_handle;
626
627		last->wr_cqe->done = frwr_wc_localinv;
628
629		*prev = last;
630		prev = &last->next;
631	} while ((mr = rpcrdma_mr_pop(&req->rl_registered)));
632
633	/* Strong send queue ordering guarantees that when the
634	 * last WR in the chain completes, all WRs in the chain
635	 * are complete. The last completion will wake up the
636	 * RPC waiter.
637	 */
638	last->wr_cqe->done = frwr_wc_localinv_done;
639
640	/* Transport disconnect drains the receive CQ before it
641	 * replaces the QP. The RPC reply handler won't call us
642	 * unless re_id->qp is a valid pointer.
643	 */
644	rc = ib_post_send(ep->re_id->qp, first, NULL);
645	if (!rc)
646		return;
647
648	/* On error, the MRs get destroyed once the QP has drained. */
649	trace_xprtrdma_post_linv_err(req, rc);
650
651	/* The final LOCAL_INV WR in the chain is supposed to
652	 * do the wake. If it was never posted, the wake does
653	 * not happen. Unpin the rqst in preparation for its
654	 * retransmission.
655	 */
656	rpcrdma_unpin_rqst(req->rl_reply);
657
658	/* Force a connection loss to ensure complete recovery.
659	 */
660	rpcrdma_force_disconnect(ep);
661}
662
663/**
664 * frwr_wp_create - Create an MR for padding Write chunks
665 * @r_xprt: transport resources to use
666 *
667 * Return 0 on success, negative errno on failure.
668 */
669int frwr_wp_create(struct rpcrdma_xprt *r_xprt)
670{
671	struct rpcrdma_ep *ep = r_xprt->rx_ep;
672	struct rpcrdma_mr_seg seg;
673	struct rpcrdma_mr *mr;
674
675	mr = rpcrdma_mr_get(r_xprt);
676	if (!mr)
677		return -EAGAIN;
678	mr->mr_req = NULL;
679	ep->re_write_pad_mr = mr;
680
681	seg.mr_len = XDR_UNIT;
682	seg.mr_page = virt_to_page(ep->re_write_pad);
683	seg.mr_offset = offset_in_page(ep->re_write_pad);
684	if (IS_ERR(frwr_map(r_xprt, &seg, 1, true, xdr_zero, mr)))
685		return -EIO;
686	trace_xprtrdma_mr_fastreg(mr);
687
688	mr->mr_cqe.done = frwr_wc_fastreg;
689	mr->mr_regwr.wr.next = NULL;
690	mr->mr_regwr.wr.wr_cqe = &mr->mr_cqe;
691	mr->mr_regwr.wr.num_sge = 0;
692	mr->mr_regwr.wr.opcode = IB_WR_REG_MR;
693	mr->mr_regwr.wr.send_flags = 0;
694
695	return ib_post_send(ep->re_id->qp, &mr->mr_regwr.wr, NULL);
696}
697