1/*
2 * COPYRIGHT (c) 2008
3 * The Regents of the University of Michigan
4 * ALL RIGHTS RESERVED
5 *
6 * Permission is granted to use, copy, create derivative works
7 * and redistribute this software and such derivative works
8 * for any purpose, so long as the name of The University of
9 * Michigan is not used in any advertising or publicity
10 * pertaining to the use of distribution of this software
11 * without specific, written prior authorization.  If the
12 * above copyright notice or any other identification of the
13 * University of Michigan is included in any copy of any
14 * portion of this software, then the disclaimer below must
15 * also be included.
16 *
17 * THIS SOFTWARE IS PROVIDED AS IS, WITHOUT REPRESENTATION
18 * FROM THE UNIVERSITY OF MICHIGAN AS TO ITS FITNESS FOR ANY
19 * PURPOSE, AND WITHOUT WARRANTY BY THE UNIVERSITY OF
20 * MICHIGAN OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING
21 * WITHOUT LIMITATION THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
23 * REGENTS OF THE UNIVERSITY OF MICHIGAN SHALL NOT BE LIABLE
24 * FOR ANY DAMAGES, INCLUDING SPECIAL, INDIRECT, INCIDENTAL, OR
25 * CONSEQUENTIAL DAMAGES, WITH RESPECT TO ANY CLAIM ARISING
26 * OUT OF OR IN CONNECTION WITH THE USE OF THE SOFTWARE, EVEN
27 * IF IT HAS BEEN OR IS HEREAFTER ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGES.
29 */
30
31/*
32 * Copyright (C) 1998 by the FundsXpress, INC.
33 *
34 * All rights reserved.
35 *
36 * Export of this software from the United States of America may require
37 * a specific license from the United States Government.  It is the
38 * responsibility of any person or organization contemplating export to
39 * obtain such a license before exporting.
40 *
41 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
42 * distribute this software and its documentation for any purpose and
43 * without fee is hereby granted, provided that the above copyright
44 * notice appear in all copies and that both that copyright notice and
45 * this permission notice appear in supporting documentation, and that
46 * the name of FundsXpress. not be used in advertising or publicity pertaining
47 * to distribution of the software without specific, written prior
48 * permission.  FundsXpress makes no representations about the suitability of
49 * this software for any purpose.  It is provided "as is" without express
50 * or implied warranty.
51 *
52 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
53 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
54 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
55 */
56
57#include <crypto/skcipher.h>
58#include <linux/err.h>
59#include <linux/types.h>
60#include <linux/sunrpc/gss_krb5.h>
61#include <linux/sunrpc/xdr.h>
62#include <linux/lcm.h>
63#include <crypto/hash.h>
64#include <kunit/visibility.h>
65
66#include "gss_krb5_internal.h"
67
68#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
69# define RPCDBG_FACILITY        RPCDBG_AUTH
70#endif
71
72/**
73 * krb5_nfold - n-fold function
74 * @inbits: number of bits in @in
75 * @in: buffer containing input to fold
76 * @outbits: number of bits in the output buffer
77 * @out: buffer to hold the result
78 *
79 * This is the n-fold function as described in rfc3961, sec 5.1
80 * Taken from MIT Kerberos and modified.
81 */
82VISIBLE_IF_KUNIT
83void krb5_nfold(u32 inbits, const u8 *in, u32 outbits, u8 *out)
84{
85	unsigned long ulcm;
86	int byte, i, msbit;
87
88	/* the code below is more readable if I make these bytes
89	   instead of bits */
90
91	inbits >>= 3;
92	outbits >>= 3;
93
94	/* first compute lcm(n,k) */
95	ulcm = lcm(inbits, outbits);
96
97	/* now do the real work */
98
99	memset(out, 0, outbits);
100	byte = 0;
101
102	/* this will end up cycling through k lcm(k,n)/k times, which
103	   is correct */
104	for (i = ulcm-1; i >= 0; i--) {
105		/* compute the msbit in k which gets added into this byte */
106		msbit = (
107			/* first, start with the msbit in the first,
108			 * unrotated byte */
109			 ((inbits << 3) - 1)
110			 /* then, for each byte, shift to the right
111			  * for each repetition */
112			 + (((inbits << 3) + 13) * (i/inbits))
113			 /* last, pick out the correct byte within
114			  * that shifted repetition */
115			 + ((inbits - (i % inbits)) << 3)
116			 ) % (inbits << 3);
117
118		/* pull out the byte value itself */
119		byte += (((in[((inbits - 1) - (msbit >> 3)) % inbits] << 8)|
120				  (in[((inbits) - (msbit >> 3)) % inbits]))
121				 >> ((msbit & 7) + 1)) & 0xff;
122
123		/* do the addition */
124		byte += out[i % outbits];
125		out[i % outbits] = byte & 0xff;
126
127		/* keep around the carry bit, if any */
128		byte >>= 8;
129
130	}
131
132	/* if there's a carry bit left over, add it back in */
133	if (byte) {
134		for (i = outbits - 1; i >= 0; i--) {
135			/* do the addition */
136			byte += out[i];
137			out[i] = byte & 0xff;
138
139			/* keep around the carry bit, if any */
140			byte >>= 8;
141		}
142	}
143}
144EXPORT_SYMBOL_IF_KUNIT(krb5_nfold);
145
146/*
147 * This is the DK (derive_key) function as described in rfc3961, sec 5.1
148 * Taken from MIT Kerberos and modified.
149 */
150static int krb5_DK(const struct gss_krb5_enctype *gk5e,
151		   const struct xdr_netobj *inkey, u8 *rawkey,
152		   const struct xdr_netobj *in_constant, gfp_t gfp_mask)
153{
154	size_t blocksize, keybytes, keylength, n;
155	unsigned char *inblockdata, *outblockdata;
156	struct xdr_netobj inblock, outblock;
157	struct crypto_sync_skcipher *cipher;
158	int ret = -EINVAL;
159
160	keybytes = gk5e->keybytes;
161	keylength = gk5e->keylength;
162
163	if (inkey->len != keylength)
164		goto err_return;
165
166	cipher = crypto_alloc_sync_skcipher(gk5e->encrypt_name, 0, 0);
167	if (IS_ERR(cipher))
168		goto err_return;
169	blocksize = crypto_sync_skcipher_blocksize(cipher);
170	if (crypto_sync_skcipher_setkey(cipher, inkey->data, inkey->len))
171		goto err_return;
172
173	ret = -ENOMEM;
174	inblockdata = kmalloc(blocksize, gfp_mask);
175	if (inblockdata == NULL)
176		goto err_free_cipher;
177
178	outblockdata = kmalloc(blocksize, gfp_mask);
179	if (outblockdata == NULL)
180		goto err_free_in;
181
182	inblock.data = (char *) inblockdata;
183	inblock.len = blocksize;
184
185	outblock.data = (char *) outblockdata;
186	outblock.len = blocksize;
187
188	/* initialize the input block */
189
190	if (in_constant->len == inblock.len) {
191		memcpy(inblock.data, in_constant->data, inblock.len);
192	} else {
193		krb5_nfold(in_constant->len * 8, in_constant->data,
194			   inblock.len * 8, inblock.data);
195	}
196
197	/* loop encrypting the blocks until enough key bytes are generated */
198
199	n = 0;
200	while (n < keybytes) {
201		krb5_encrypt(cipher, NULL, inblock.data, outblock.data,
202			     inblock.len);
203
204		if ((keybytes - n) <= outblock.len) {
205			memcpy(rawkey + n, outblock.data, (keybytes - n));
206			break;
207		}
208
209		memcpy(rawkey + n, outblock.data, outblock.len);
210		memcpy(inblock.data, outblock.data, outblock.len);
211		n += outblock.len;
212	}
213
214	ret = 0;
215
216	kfree_sensitive(outblockdata);
217err_free_in:
218	kfree_sensitive(inblockdata);
219err_free_cipher:
220	crypto_free_sync_skcipher(cipher);
221err_return:
222	return ret;
223}
224
225/*
226 * This is the identity function, with some sanity checking.
227 */
228static int krb5_random_to_key_v2(const struct gss_krb5_enctype *gk5e,
229				 struct xdr_netobj *randombits,
230				 struct xdr_netobj *key)
231{
232	int ret = -EINVAL;
233
234	if (key->len != 16 && key->len != 32) {
235		dprintk("%s: key->len is %d\n", __func__, key->len);
236		goto err_out;
237	}
238	if (randombits->len != 16 && randombits->len != 32) {
239		dprintk("%s: randombits->len is %d\n",
240			__func__, randombits->len);
241		goto err_out;
242	}
243	if (randombits->len != key->len) {
244		dprintk("%s: randombits->len is %d, key->len is %d\n",
245			__func__, randombits->len, key->len);
246		goto err_out;
247	}
248	memcpy(key->data, randombits->data, key->len);
249	ret = 0;
250err_out:
251	return ret;
252}
253
254/**
255 * krb5_derive_key_v2 - Derive a subkey for an RFC 3962 enctype
256 * @gk5e: Kerberos 5 enctype profile
257 * @inkey: base protocol key
258 * @outkey: OUT: derived key
259 * @label: subkey usage label
260 * @gfp_mask: memory allocation control flags
261 *
262 * Caller sets @outkey->len to the desired length of the derived key.
263 *
264 * On success, returns 0 and fills in @outkey. A negative errno value
265 * is returned on failure.
266 */
267int krb5_derive_key_v2(const struct gss_krb5_enctype *gk5e,
268		       const struct xdr_netobj *inkey,
269		       struct xdr_netobj *outkey,
270		       const struct xdr_netobj *label,
271		       gfp_t gfp_mask)
272{
273	struct xdr_netobj inblock;
274	int ret;
275
276	inblock.len = gk5e->keybytes;
277	inblock.data = kmalloc(inblock.len, gfp_mask);
278	if (!inblock.data)
279		return -ENOMEM;
280
281	ret = krb5_DK(gk5e, inkey, inblock.data, label, gfp_mask);
282	if (!ret)
283		ret = krb5_random_to_key_v2(gk5e, &inblock, outkey);
284
285	kfree_sensitive(inblock.data);
286	return ret;
287}
288
289/*
290 * K(i) = CMAC(key, K(i-1) | i | constant | 0x00 | k)
291 *
292 *    i: A block counter is used with a length of 4 bytes, represented
293 *       in big-endian order.
294 *
295 *    constant: The label input to the KDF is the usage constant supplied
296 *              to the key derivation function
297 *
298 *    k: The length of the output key in bits, represented as a 4-byte
299 *       string in big-endian order.
300 *
301 * Caller fills in K(i-1) in @step, and receives the result K(i)
302 * in the same buffer.
303 */
304static int
305krb5_cmac_Ki(struct crypto_shash *tfm, const struct xdr_netobj *constant,
306	     u32 outlen, u32 count, struct xdr_netobj *step)
307{
308	__be32 k = cpu_to_be32(outlen * 8);
309	SHASH_DESC_ON_STACK(desc, tfm);
310	__be32 i = cpu_to_be32(count);
311	u8 zero = 0;
312	int ret;
313
314	desc->tfm = tfm;
315	ret = crypto_shash_init(desc);
316	if (ret)
317		goto out_err;
318
319	ret = crypto_shash_update(desc, step->data, step->len);
320	if (ret)
321		goto out_err;
322	ret = crypto_shash_update(desc, (u8 *)&i, sizeof(i));
323	if (ret)
324		goto out_err;
325	ret = crypto_shash_update(desc, constant->data, constant->len);
326	if (ret)
327		goto out_err;
328	ret = crypto_shash_update(desc, &zero, sizeof(zero));
329	if (ret)
330		goto out_err;
331	ret = crypto_shash_update(desc, (u8 *)&k, sizeof(k));
332	if (ret)
333		goto out_err;
334	ret = crypto_shash_final(desc, step->data);
335	if (ret)
336		goto out_err;
337
338out_err:
339	shash_desc_zero(desc);
340	return ret;
341}
342
343/**
344 * krb5_kdf_feedback_cmac - Derive a subkey for a Camellia/CMAC-based enctype
345 * @gk5e: Kerberos 5 enctype parameters
346 * @inkey: base protocol key
347 * @outkey: OUT: derived key
348 * @constant: subkey usage label
349 * @gfp_mask: memory allocation control flags
350 *
351 * RFC 6803 Section 3:
352 *
353 * "We use a key derivation function from the family specified in
354 *  [SP800-108], Section 5.2, 'KDF in Feedback Mode'."
355 *
356 *	n = ceiling(k / 128)
357 *	K(0) = zeros
358 *	K(i) = CMAC(key, K(i-1) | i | constant | 0x00 | k)
359 *	DR(key, constant) = k-truncate(K(1) | K(2) | ... | K(n))
360 *	KDF-FEEDBACK-CMAC(key, constant) = random-to-key(DR(key, constant))
361 *
362 * Caller sets @outkey->len to the desired length of the derived key (k).
363 *
364 * On success, returns 0 and fills in @outkey. A negative errno value
365 * is returned on failure.
366 */
367int
368krb5_kdf_feedback_cmac(const struct gss_krb5_enctype *gk5e,
369		       const struct xdr_netobj *inkey,
370		       struct xdr_netobj *outkey,
371		       const struct xdr_netobj *constant,
372		       gfp_t gfp_mask)
373{
374	struct xdr_netobj step = { .data = NULL };
375	struct xdr_netobj DR = { .data = NULL };
376	unsigned int blocksize, offset;
377	struct crypto_shash *tfm;
378	int n, count, ret;
379
380	/*
381	 * This implementation assumes the CMAC used for an enctype's
382	 * key derivation is the same as the CMAC used for its
383	 * checksumming. This happens to be true for enctypes that
384	 * are currently supported by this implementation.
385	 */
386	tfm = crypto_alloc_shash(gk5e->cksum_name, 0, 0);
387	if (IS_ERR(tfm)) {
388		ret = PTR_ERR(tfm);
389		goto out;
390	}
391	ret = crypto_shash_setkey(tfm, inkey->data, inkey->len);
392	if (ret)
393		goto out_free_tfm;
394
395	blocksize = crypto_shash_digestsize(tfm);
396	n = (outkey->len + blocksize - 1) / blocksize;
397
398	/* K(0) is all zeroes */
399	ret = -ENOMEM;
400	step.len = blocksize;
401	step.data = kzalloc(step.len, gfp_mask);
402	if (!step.data)
403		goto out_free_tfm;
404
405	DR.len = blocksize * n;
406	DR.data = kmalloc(DR.len, gfp_mask);
407	if (!DR.data)
408		goto out_free_tfm;
409
410	/* XXX: Does not handle partial-block key sizes */
411	for (offset = 0, count = 1; count <= n; count++) {
412		ret = krb5_cmac_Ki(tfm, constant, outkey->len, count, &step);
413		if (ret)
414			goto out_free_tfm;
415
416		memcpy(DR.data + offset, step.data, blocksize);
417		offset += blocksize;
418	}
419
420	/* k-truncate and random-to-key */
421	memcpy(outkey->data, DR.data, outkey->len);
422	ret = 0;
423
424out_free_tfm:
425	crypto_free_shash(tfm);
426out:
427	kfree_sensitive(step.data);
428	kfree_sensitive(DR.data);
429	return ret;
430}
431
432/*
433 * K1 = HMAC-SHA(key, 0x00000001 | label | 0x00 | k)
434 *
435 *    key: The source of entropy from which subsequent keys are derived.
436 *
437 *    label: An octet string describing the intended usage of the
438 *    derived key.
439 *
440 *    k: Length in bits of the key to be outputted, expressed in
441 *    big-endian binary representation in 4 bytes.
442 */
443static int
444krb5_hmac_K1(struct crypto_shash *tfm, const struct xdr_netobj *label,
445	     u32 outlen, struct xdr_netobj *K1)
446{
447	__be32 k = cpu_to_be32(outlen * 8);
448	SHASH_DESC_ON_STACK(desc, tfm);
449	__be32 one = cpu_to_be32(1);
450	u8 zero = 0;
451	int ret;
452
453	desc->tfm = tfm;
454	ret = crypto_shash_init(desc);
455	if (ret)
456		goto out_err;
457	ret = crypto_shash_update(desc, (u8 *)&one, sizeof(one));
458	if (ret)
459		goto out_err;
460	ret = crypto_shash_update(desc, label->data, label->len);
461	if (ret)
462		goto out_err;
463	ret = crypto_shash_update(desc, &zero, sizeof(zero));
464	if (ret)
465		goto out_err;
466	ret = crypto_shash_update(desc, (u8 *)&k, sizeof(k));
467	if (ret)
468		goto out_err;
469	ret = crypto_shash_final(desc, K1->data);
470	if (ret)
471		goto out_err;
472
473out_err:
474	shash_desc_zero(desc);
475	return ret;
476}
477
478/**
479 * krb5_kdf_hmac_sha2 - Derive a subkey for an AES/SHA2-based enctype
480 * @gk5e: Kerberos 5 enctype policy parameters
481 * @inkey: base protocol key
482 * @outkey: OUT: derived key
483 * @label: subkey usage label
484 * @gfp_mask: memory allocation control flags
485 *
486 * RFC 8009 Section 3:
487 *
488 *  "We use a key derivation function from Section 5.1 of [SP800-108],
489 *   which uses the HMAC algorithm as the PRF."
490 *
491 *	function KDF-HMAC-SHA2(key, label, [context,] k):
492 *		k-truncate(K1)
493 *
494 * Caller sets @outkey->len to the desired length of the derived key.
495 *
496 * On success, returns 0 and fills in @outkey. A negative errno value
497 * is returned on failure.
498 */
499int
500krb5_kdf_hmac_sha2(const struct gss_krb5_enctype *gk5e,
501		   const struct xdr_netobj *inkey,
502		   struct xdr_netobj *outkey,
503		   const struct xdr_netobj *label,
504		   gfp_t gfp_mask)
505{
506	struct crypto_shash *tfm;
507	struct xdr_netobj K1 = {
508		.data = NULL,
509	};
510	int ret;
511
512	/*
513	 * This implementation assumes the HMAC used for an enctype's
514	 * key derivation is the same as the HMAC used for its
515	 * checksumming. This happens to be true for enctypes that
516	 * are currently supported by this implementation.
517	 */
518	tfm = crypto_alloc_shash(gk5e->cksum_name, 0, 0);
519	if (IS_ERR(tfm)) {
520		ret = PTR_ERR(tfm);
521		goto out;
522	}
523	ret = crypto_shash_setkey(tfm, inkey->data, inkey->len);
524	if (ret)
525		goto out_free_tfm;
526
527	K1.len = crypto_shash_digestsize(tfm);
528	K1.data = kmalloc(K1.len, gfp_mask);
529	if (!K1.data) {
530		ret = -ENOMEM;
531		goto out_free_tfm;
532	}
533
534	ret = krb5_hmac_K1(tfm, label, outkey->len, &K1);
535	if (ret)
536		goto out_free_tfm;
537
538	/* k-truncate and random-to-key */
539	memcpy(outkey->data, K1.data, outkey->len);
540
541out_free_tfm:
542	kfree_sensitive(K1.data);
543	crypto_free_shash(tfm);
544out:
545	return ret;
546}
547