1// SPDX-License-Identifier: GPL-2.0-or-later
2/* SCTP kernel implementation
3 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
4 *
5 * This file is part of the SCTP kernel implementation
6 *
7 * Please send any bug reports or fixes you make to the
8 * email address(es):
9 *    lksctp developers <linux-sctp@vger.kernel.org>
10 *
11 * Written or modified by:
12 *   Vlad Yasevich     <vladislav.yasevich@hp.com>
13 */
14
15#include <crypto/hash.h>
16#include <linux/slab.h>
17#include <linux/types.h>
18#include <linux/scatterlist.h>
19#include <net/sctp/sctp.h>
20#include <net/sctp/auth.h>
21
22static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
23	{
24		/* id 0 is reserved.  as all 0 */
25		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
26	},
27	{
28		.hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
29		.hmac_name = "hmac(sha1)",
30		.hmac_len = SCTP_SHA1_SIG_SIZE,
31	},
32	{
33		/* id 2 is reserved as well */
34		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
35	},
36#if IS_ENABLED(CONFIG_CRYPTO_SHA256)
37	{
38		.hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
39		.hmac_name = "hmac(sha256)",
40		.hmac_len = SCTP_SHA256_SIG_SIZE,
41	}
42#endif
43};
44
45
46void sctp_auth_key_put(struct sctp_auth_bytes *key)
47{
48	if (!key)
49		return;
50
51	if (refcount_dec_and_test(&key->refcnt)) {
52		kfree_sensitive(key);
53		SCTP_DBG_OBJCNT_DEC(keys);
54	}
55}
56
57/* Create a new key structure of a given length */
58static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
59{
60	struct sctp_auth_bytes *key;
61
62	/* Verify that we are not going to overflow INT_MAX */
63	if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
64		return NULL;
65
66	/* Allocate the shared key */
67	key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
68	if (!key)
69		return NULL;
70
71	key->len = key_len;
72	refcount_set(&key->refcnt, 1);
73	SCTP_DBG_OBJCNT_INC(keys);
74
75	return key;
76}
77
78/* Create a new shared key container with a give key id */
79struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
80{
81	struct sctp_shared_key *new;
82
83	/* Allocate the shared key container */
84	new = kzalloc(sizeof(struct sctp_shared_key), gfp);
85	if (!new)
86		return NULL;
87
88	INIT_LIST_HEAD(&new->key_list);
89	refcount_set(&new->refcnt, 1);
90	new->key_id = key_id;
91
92	return new;
93}
94
95/* Free the shared key structure */
96static void sctp_auth_shkey_destroy(struct sctp_shared_key *sh_key)
97{
98	BUG_ON(!list_empty(&sh_key->key_list));
99	sctp_auth_key_put(sh_key->key);
100	sh_key->key = NULL;
101	kfree(sh_key);
102}
103
104void sctp_auth_shkey_release(struct sctp_shared_key *sh_key)
105{
106	if (refcount_dec_and_test(&sh_key->refcnt))
107		sctp_auth_shkey_destroy(sh_key);
108}
109
110void sctp_auth_shkey_hold(struct sctp_shared_key *sh_key)
111{
112	refcount_inc(&sh_key->refcnt);
113}
114
115/* Destroy the entire key list.  This is done during the
116 * associon and endpoint free process.
117 */
118void sctp_auth_destroy_keys(struct list_head *keys)
119{
120	struct sctp_shared_key *ep_key;
121	struct sctp_shared_key *tmp;
122
123	if (list_empty(keys))
124		return;
125
126	key_for_each_safe(ep_key, tmp, keys) {
127		list_del_init(&ep_key->key_list);
128		sctp_auth_shkey_release(ep_key);
129	}
130}
131
132/* Compare two byte vectors as numbers.  Return values
133 * are:
134 * 	  0 - vectors are equal
135 * 	< 0 - vector 1 is smaller than vector2
136 * 	> 0 - vector 1 is greater than vector2
137 *
138 * Algorithm is:
139 * 	This is performed by selecting the numerically smaller key vector...
140 *	If the key vectors are equal as numbers but differ in length ...
141 *	the shorter vector is considered smaller
142 *
143 * Examples (with small values):
144 * 	000123456789 > 123456789 (first number is longer)
145 * 	000123456789 < 234567891 (second number is larger numerically)
146 * 	123456789 > 2345678 	 (first number is both larger & longer)
147 */
148static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
149			      struct sctp_auth_bytes *vector2)
150{
151	int diff;
152	int i;
153	const __u8 *longer;
154
155	diff = vector1->len - vector2->len;
156	if (diff) {
157		longer = (diff > 0) ? vector1->data : vector2->data;
158
159		/* Check to see if the longer number is
160		 * lead-zero padded.  If it is not, it
161		 * is automatically larger numerically.
162		 */
163		for (i = 0; i < abs(diff); i++) {
164			if (longer[i] != 0)
165				return diff;
166		}
167	}
168
169	/* lengths are the same, compare numbers */
170	return memcmp(vector1->data, vector2->data, vector1->len);
171}
172
173/*
174 * Create a key vector as described in SCTP-AUTH, Section 6.1
175 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
176 *    parameter sent by each endpoint are concatenated as byte vectors.
177 *    These parameters include the parameter type, parameter length, and
178 *    the parameter value, but padding is omitted; all padding MUST be
179 *    removed from this concatenation before proceeding with further
180 *    computation of keys.  Parameters which were not sent are simply
181 *    omitted from the concatenation process.  The resulting two vectors
182 *    are called the two key vectors.
183 */
184static struct sctp_auth_bytes *sctp_auth_make_key_vector(
185			struct sctp_random_param *random,
186			struct sctp_chunks_param *chunks,
187			struct sctp_hmac_algo_param *hmacs,
188			gfp_t gfp)
189{
190	struct sctp_auth_bytes *new;
191	__u32	len;
192	__u32	offset = 0;
193	__u16	random_len, hmacs_len, chunks_len = 0;
194
195	random_len = ntohs(random->param_hdr.length);
196	hmacs_len = ntohs(hmacs->param_hdr.length);
197	if (chunks)
198		chunks_len = ntohs(chunks->param_hdr.length);
199
200	len = random_len + hmacs_len + chunks_len;
201
202	new = sctp_auth_create_key(len, gfp);
203	if (!new)
204		return NULL;
205
206	memcpy(new->data, random, random_len);
207	offset += random_len;
208
209	if (chunks) {
210		memcpy(new->data + offset, chunks, chunks_len);
211		offset += chunks_len;
212	}
213
214	memcpy(new->data + offset, hmacs, hmacs_len);
215
216	return new;
217}
218
219
220/* Make a key vector based on our local parameters */
221static struct sctp_auth_bytes *sctp_auth_make_local_vector(
222				    const struct sctp_association *asoc,
223				    gfp_t gfp)
224{
225	return sctp_auth_make_key_vector(
226			(struct sctp_random_param *)asoc->c.auth_random,
227			(struct sctp_chunks_param *)asoc->c.auth_chunks,
228			(struct sctp_hmac_algo_param *)asoc->c.auth_hmacs, gfp);
229}
230
231/* Make a key vector based on peer's parameters */
232static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
233				    const struct sctp_association *asoc,
234				    gfp_t gfp)
235{
236	return sctp_auth_make_key_vector(asoc->peer.peer_random,
237					 asoc->peer.peer_chunks,
238					 asoc->peer.peer_hmacs,
239					 gfp);
240}
241
242
243/* Set the value of the association shared key base on the parameters
244 * given.  The algorithm is:
245 *    From the endpoint pair shared keys and the key vectors the
246 *    association shared keys are computed.  This is performed by selecting
247 *    the numerically smaller key vector and concatenating it to the
248 *    endpoint pair shared key, and then concatenating the numerically
249 *    larger key vector to that.  The result of the concatenation is the
250 *    association shared key.
251 */
252static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
253			struct sctp_shared_key *ep_key,
254			struct sctp_auth_bytes *first_vector,
255			struct sctp_auth_bytes *last_vector,
256			gfp_t gfp)
257{
258	struct sctp_auth_bytes *secret;
259	__u32 offset = 0;
260	__u32 auth_len;
261
262	auth_len = first_vector->len + last_vector->len;
263	if (ep_key->key)
264		auth_len += ep_key->key->len;
265
266	secret = sctp_auth_create_key(auth_len, gfp);
267	if (!secret)
268		return NULL;
269
270	if (ep_key->key) {
271		memcpy(secret->data, ep_key->key->data, ep_key->key->len);
272		offset += ep_key->key->len;
273	}
274
275	memcpy(secret->data + offset, first_vector->data, first_vector->len);
276	offset += first_vector->len;
277
278	memcpy(secret->data + offset, last_vector->data, last_vector->len);
279
280	return secret;
281}
282
283/* Create an association shared key.  Follow the algorithm
284 * described in SCTP-AUTH, Section 6.1
285 */
286static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
287				 const struct sctp_association *asoc,
288				 struct sctp_shared_key *ep_key,
289				 gfp_t gfp)
290{
291	struct sctp_auth_bytes *local_key_vector;
292	struct sctp_auth_bytes *peer_key_vector;
293	struct sctp_auth_bytes	*first_vector,
294				*last_vector;
295	struct sctp_auth_bytes	*secret = NULL;
296	int	cmp;
297
298
299	/* Now we need to build the key vectors
300	 * SCTP-AUTH , Section 6.1
301	 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
302	 *    parameter sent by each endpoint are concatenated as byte vectors.
303	 *    These parameters include the parameter type, parameter length, and
304	 *    the parameter value, but padding is omitted; all padding MUST be
305	 *    removed from this concatenation before proceeding with further
306	 *    computation of keys.  Parameters which were not sent are simply
307	 *    omitted from the concatenation process.  The resulting two vectors
308	 *    are called the two key vectors.
309	 */
310
311	local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
312	peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
313
314	if (!peer_key_vector || !local_key_vector)
315		goto out;
316
317	/* Figure out the order in which the key_vectors will be
318	 * added to the endpoint shared key.
319	 * SCTP-AUTH, Section 6.1:
320	 *   This is performed by selecting the numerically smaller key
321	 *   vector and concatenating it to the endpoint pair shared
322	 *   key, and then concatenating the numerically larger key
323	 *   vector to that.  If the key vectors are equal as numbers
324	 *   but differ in length, then the concatenation order is the
325	 *   endpoint shared key, followed by the shorter key vector,
326	 *   followed by the longer key vector.  Otherwise, the key
327	 *   vectors are identical, and may be concatenated to the
328	 *   endpoint pair key in any order.
329	 */
330	cmp = sctp_auth_compare_vectors(local_key_vector,
331					peer_key_vector);
332	if (cmp < 0) {
333		first_vector = local_key_vector;
334		last_vector = peer_key_vector;
335	} else {
336		first_vector = peer_key_vector;
337		last_vector = local_key_vector;
338	}
339
340	secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
341					    gfp);
342out:
343	sctp_auth_key_put(local_key_vector);
344	sctp_auth_key_put(peer_key_vector);
345
346	return secret;
347}
348
349/*
350 * Populate the association overlay list with the list
351 * from the endpoint.
352 */
353int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
354				struct sctp_association *asoc,
355				gfp_t gfp)
356{
357	struct sctp_shared_key *sh_key;
358	struct sctp_shared_key *new;
359
360	BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
361
362	key_for_each(sh_key, &ep->endpoint_shared_keys) {
363		new = sctp_auth_shkey_create(sh_key->key_id, gfp);
364		if (!new)
365			goto nomem;
366
367		new->key = sh_key->key;
368		sctp_auth_key_hold(new->key);
369		list_add(&new->key_list, &asoc->endpoint_shared_keys);
370	}
371
372	return 0;
373
374nomem:
375	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
376	return -ENOMEM;
377}
378
379
380/* Public interface to create the association shared key.
381 * See code above for the algorithm.
382 */
383int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
384{
385	struct sctp_auth_bytes	*secret;
386	struct sctp_shared_key *ep_key;
387	struct sctp_chunk *chunk;
388
389	/* If we don't support AUTH, or peer is not capable
390	 * we don't need to do anything.
391	 */
392	if (!asoc->peer.auth_capable)
393		return 0;
394
395	/* If the key_id is non-zero and we couldn't find an
396	 * endpoint pair shared key, we can't compute the
397	 * secret.
398	 * For key_id 0, endpoint pair shared key is a NULL key.
399	 */
400	ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
401	BUG_ON(!ep_key);
402
403	secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
404	if (!secret)
405		return -ENOMEM;
406
407	sctp_auth_key_put(asoc->asoc_shared_key);
408	asoc->asoc_shared_key = secret;
409	asoc->shkey = ep_key;
410
411	/* Update send queue in case any chunk already in there now
412	 * needs authenticating
413	 */
414	list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) {
415		if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc)) {
416			chunk->auth = 1;
417			if (!chunk->shkey) {
418				chunk->shkey = asoc->shkey;
419				sctp_auth_shkey_hold(chunk->shkey);
420			}
421		}
422	}
423
424	return 0;
425}
426
427
428/* Find the endpoint pair shared key based on the key_id */
429struct sctp_shared_key *sctp_auth_get_shkey(
430				const struct sctp_association *asoc,
431				__u16 key_id)
432{
433	struct sctp_shared_key *key;
434
435	/* First search associations set of endpoint pair shared keys */
436	key_for_each(key, &asoc->endpoint_shared_keys) {
437		if (key->key_id == key_id) {
438			if (!key->deactivated)
439				return key;
440			break;
441		}
442	}
443
444	return NULL;
445}
446
447/*
448 * Initialize all the possible digest transforms that we can use.  Right
449 * now, the supported digests are SHA1 and SHA256.  We do this here once
450 * because of the restrictiong that transforms may only be allocated in
451 * user context.  This forces us to pre-allocated all possible transforms
452 * at the endpoint init time.
453 */
454int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
455{
456	struct crypto_shash *tfm = NULL;
457	__u16   id;
458
459	/* If the transforms are already allocated, we are done */
460	if (ep->auth_hmacs)
461		return 0;
462
463	/* Allocated the array of pointers to transorms */
464	ep->auth_hmacs = kcalloc(SCTP_AUTH_NUM_HMACS,
465				 sizeof(struct crypto_shash *),
466				 gfp);
467	if (!ep->auth_hmacs)
468		return -ENOMEM;
469
470	for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
471
472		/* See is we support the id.  Supported IDs have name and
473		 * length fields set, so that we can allocated and use
474		 * them.  We can safely just check for name, for without the
475		 * name, we can't allocate the TFM.
476		 */
477		if (!sctp_hmac_list[id].hmac_name)
478			continue;
479
480		/* If this TFM has been allocated, we are all set */
481		if (ep->auth_hmacs[id])
482			continue;
483
484		/* Allocate the ID */
485		tfm = crypto_alloc_shash(sctp_hmac_list[id].hmac_name, 0, 0);
486		if (IS_ERR(tfm))
487			goto out_err;
488
489		ep->auth_hmacs[id] = tfm;
490	}
491
492	return 0;
493
494out_err:
495	/* Clean up any successful allocations */
496	sctp_auth_destroy_hmacs(ep->auth_hmacs);
497	ep->auth_hmacs = NULL;
498	return -ENOMEM;
499}
500
501/* Destroy the hmac tfm array */
502void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[])
503{
504	int i;
505
506	if (!auth_hmacs)
507		return;
508
509	for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) {
510		crypto_free_shash(auth_hmacs[i]);
511	}
512	kfree(auth_hmacs);
513}
514
515
516struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
517{
518	return &sctp_hmac_list[hmac_id];
519}
520
521/* Get an hmac description information that we can use to build
522 * the AUTH chunk
523 */
524struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
525{
526	struct sctp_hmac_algo_param *hmacs;
527	__u16 n_elt;
528	__u16 id = 0;
529	int i;
530
531	/* If we have a default entry, use it */
532	if (asoc->default_hmac_id)
533		return &sctp_hmac_list[asoc->default_hmac_id];
534
535	/* Since we do not have a default entry, find the first entry
536	 * we support and return that.  Do not cache that id.
537	 */
538	hmacs = asoc->peer.peer_hmacs;
539	if (!hmacs)
540		return NULL;
541
542	n_elt = (ntohs(hmacs->param_hdr.length) -
543		 sizeof(struct sctp_paramhdr)) >> 1;
544	for (i = 0; i < n_elt; i++) {
545		id = ntohs(hmacs->hmac_ids[i]);
546
547		/* Check the id is in the supported range. And
548		 * see if we support the id.  Supported IDs have name and
549		 * length fields set, so that we can allocate and use
550		 * them.  We can safely just check for name, for without the
551		 * name, we can't allocate the TFM.
552		 */
553		if (id > SCTP_AUTH_HMAC_ID_MAX ||
554		    !sctp_hmac_list[id].hmac_name) {
555			id = 0;
556			continue;
557		}
558
559		break;
560	}
561
562	if (id == 0)
563		return NULL;
564
565	return &sctp_hmac_list[id];
566}
567
568static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
569{
570	int  found = 0;
571	int  i;
572
573	for (i = 0; i < n_elts; i++) {
574		if (hmac_id == hmacs[i]) {
575			found = 1;
576			break;
577		}
578	}
579
580	return found;
581}
582
583/* See if the HMAC_ID is one that we claim as supported */
584int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
585				    __be16 hmac_id)
586{
587	struct sctp_hmac_algo_param *hmacs;
588	__u16 n_elt;
589
590	if (!asoc)
591		return 0;
592
593	hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
594	n_elt = (ntohs(hmacs->param_hdr.length) -
595		 sizeof(struct sctp_paramhdr)) >> 1;
596
597	return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
598}
599
600
601/* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
602 * Section 6.1:
603 *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
604 *   algorithm it supports.
605 */
606void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
607				     struct sctp_hmac_algo_param *hmacs)
608{
609	struct sctp_endpoint *ep;
610	__u16   id;
611	int	i;
612	int	n_params;
613
614	/* if the default id is already set, use it */
615	if (asoc->default_hmac_id)
616		return;
617
618	n_params = (ntohs(hmacs->param_hdr.length) -
619		    sizeof(struct sctp_paramhdr)) >> 1;
620	ep = asoc->ep;
621	for (i = 0; i < n_params; i++) {
622		id = ntohs(hmacs->hmac_ids[i]);
623
624		/* Check the id is in the supported range */
625		if (id > SCTP_AUTH_HMAC_ID_MAX)
626			continue;
627
628		/* If this TFM has been allocated, use this id */
629		if (ep->auth_hmacs[id]) {
630			asoc->default_hmac_id = id;
631			break;
632		}
633	}
634}
635
636
637/* Check to see if the given chunk is supposed to be authenticated */
638static int __sctp_auth_cid(enum sctp_cid chunk, struct sctp_chunks_param *param)
639{
640	unsigned short len;
641	int found = 0;
642	int i;
643
644	if (!param || param->param_hdr.length == 0)
645		return 0;
646
647	len = ntohs(param->param_hdr.length) - sizeof(struct sctp_paramhdr);
648
649	/* SCTP-AUTH, Section 3.2
650	 *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
651	 *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
652	 *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
653	 *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
654	 */
655	for (i = 0; !found && i < len; i++) {
656		switch (param->chunks[i]) {
657		case SCTP_CID_INIT:
658		case SCTP_CID_INIT_ACK:
659		case SCTP_CID_SHUTDOWN_COMPLETE:
660		case SCTP_CID_AUTH:
661			break;
662
663		default:
664			if (param->chunks[i] == chunk)
665				found = 1;
666			break;
667		}
668	}
669
670	return found;
671}
672
673/* Check if peer requested that this chunk is authenticated */
674int sctp_auth_send_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
675{
676	if (!asoc)
677		return 0;
678
679	if (!asoc->peer.auth_capable)
680		return 0;
681
682	return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
683}
684
685/* Check if we requested that peer authenticate this chunk. */
686int sctp_auth_recv_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
687{
688	if (!asoc)
689		return 0;
690
691	if (!asoc->peer.auth_capable)
692		return 0;
693
694	return __sctp_auth_cid(chunk,
695			      (struct sctp_chunks_param *)asoc->c.auth_chunks);
696}
697
698/* SCTP-AUTH: Section 6.2:
699 *    The sender MUST calculate the MAC as described in RFC2104 [2] using
700 *    the hash function H as described by the MAC Identifier and the shared
701 *    association key K based on the endpoint pair shared key described by
702 *    the shared key identifier.  The 'data' used for the computation of
703 *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
704 *    zero (as shown in Figure 6) followed by all chunks that are placed
705 *    after the AUTH chunk in the SCTP packet.
706 */
707void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
708			      struct sk_buff *skb, struct sctp_auth_chunk *auth,
709			      struct sctp_shared_key *ep_key, gfp_t gfp)
710{
711	struct sctp_auth_bytes *asoc_key;
712	struct crypto_shash *tfm;
713	__u16 key_id, hmac_id;
714	unsigned char *end;
715	int free_key = 0;
716	__u8 *digest;
717
718	/* Extract the info we need:
719	 * - hmac id
720	 * - key id
721	 */
722	key_id = ntohs(auth->auth_hdr.shkey_id);
723	hmac_id = ntohs(auth->auth_hdr.hmac_id);
724
725	if (key_id == asoc->active_key_id)
726		asoc_key = asoc->asoc_shared_key;
727	else {
728		/* ep_key can't be NULL here */
729		asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
730		if (!asoc_key)
731			return;
732
733		free_key = 1;
734	}
735
736	/* set up scatter list */
737	end = skb_tail_pointer(skb);
738
739	tfm = asoc->ep->auth_hmacs[hmac_id];
740
741	digest = (u8 *)(&auth->auth_hdr + 1);
742	if (crypto_shash_setkey(tfm, &asoc_key->data[0], asoc_key->len))
743		goto free;
744
745	crypto_shash_tfm_digest(tfm, (u8 *)auth, end - (unsigned char *)auth,
746				digest);
747
748free:
749	if (free_key)
750		sctp_auth_key_put(asoc_key);
751}
752
753/* API Helpers */
754
755/* Add a chunk to the endpoint authenticated chunk list */
756int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
757{
758	struct sctp_chunks_param *p = ep->auth_chunk_list;
759	__u16 nchunks;
760	__u16 param_len;
761
762	/* If this chunk is already specified, we are done */
763	if (__sctp_auth_cid(chunk_id, p))
764		return 0;
765
766	/* Check if we can add this chunk to the array */
767	param_len = ntohs(p->param_hdr.length);
768	nchunks = param_len - sizeof(struct sctp_paramhdr);
769	if (nchunks == SCTP_NUM_CHUNK_TYPES)
770		return -EINVAL;
771
772	p->chunks[nchunks] = chunk_id;
773	p->param_hdr.length = htons(param_len + 1);
774	return 0;
775}
776
777/* Add hmac identifires to the endpoint list of supported hmac ids */
778int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
779			   struct sctp_hmacalgo *hmacs)
780{
781	int has_sha1 = 0;
782	__u16 id;
783	int i;
784
785	/* Scan the list looking for unsupported id.  Also make sure that
786	 * SHA1 is specified.
787	 */
788	for (i = 0; i < hmacs->shmac_num_idents; i++) {
789		id = hmacs->shmac_idents[i];
790
791		if (id > SCTP_AUTH_HMAC_ID_MAX)
792			return -EOPNOTSUPP;
793
794		if (SCTP_AUTH_HMAC_ID_SHA1 == id)
795			has_sha1 = 1;
796
797		if (!sctp_hmac_list[id].hmac_name)
798			return -EOPNOTSUPP;
799	}
800
801	if (!has_sha1)
802		return -EINVAL;
803
804	for (i = 0; i < hmacs->shmac_num_idents; i++)
805		ep->auth_hmacs_list->hmac_ids[i] =
806				htons(hmacs->shmac_idents[i]);
807	ep->auth_hmacs_list->param_hdr.length =
808			htons(sizeof(struct sctp_paramhdr) +
809			hmacs->shmac_num_idents * sizeof(__u16));
810	return 0;
811}
812
813/* Set a new shared key on either endpoint or association.  If the
814 * key with a same ID already exists, replace the key (remove the
815 * old key and add a new one).
816 */
817int sctp_auth_set_key(struct sctp_endpoint *ep,
818		      struct sctp_association *asoc,
819		      struct sctp_authkey *auth_key)
820{
821	struct sctp_shared_key *cur_key, *shkey;
822	struct sctp_auth_bytes *key;
823	struct list_head *sh_keys;
824	int replace = 0;
825
826	/* Try to find the given key id to see if
827	 * we are doing a replace, or adding a new key
828	 */
829	if (asoc) {
830		if (!asoc->peer.auth_capable)
831			return -EACCES;
832		sh_keys = &asoc->endpoint_shared_keys;
833	} else {
834		if (!ep->auth_enable)
835			return -EACCES;
836		sh_keys = &ep->endpoint_shared_keys;
837	}
838
839	key_for_each(shkey, sh_keys) {
840		if (shkey->key_id == auth_key->sca_keynumber) {
841			replace = 1;
842			break;
843		}
844	}
845
846	cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, GFP_KERNEL);
847	if (!cur_key)
848		return -ENOMEM;
849
850	/* Create a new key data based on the info passed in */
851	key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
852	if (!key) {
853		kfree(cur_key);
854		return -ENOMEM;
855	}
856
857	memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
858	cur_key->key = key;
859
860	if (!replace) {
861		list_add(&cur_key->key_list, sh_keys);
862		return 0;
863	}
864
865	list_del_init(&shkey->key_list);
866	list_add(&cur_key->key_list, sh_keys);
867
868	if (asoc && asoc->active_key_id == auth_key->sca_keynumber &&
869	    sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL)) {
870		list_del_init(&cur_key->key_list);
871		sctp_auth_shkey_release(cur_key);
872		list_add(&shkey->key_list, sh_keys);
873		return -ENOMEM;
874	}
875
876	sctp_auth_shkey_release(shkey);
877	return 0;
878}
879
880int sctp_auth_set_active_key(struct sctp_endpoint *ep,
881			     struct sctp_association *asoc,
882			     __u16  key_id)
883{
884	struct sctp_shared_key *key;
885	struct list_head *sh_keys;
886	int found = 0;
887
888	/* The key identifier MUST correst to an existing key */
889	if (asoc) {
890		if (!asoc->peer.auth_capable)
891			return -EACCES;
892		sh_keys = &asoc->endpoint_shared_keys;
893	} else {
894		if (!ep->auth_enable)
895			return -EACCES;
896		sh_keys = &ep->endpoint_shared_keys;
897	}
898
899	key_for_each(key, sh_keys) {
900		if (key->key_id == key_id) {
901			found = 1;
902			break;
903		}
904	}
905
906	if (!found || key->deactivated)
907		return -EINVAL;
908
909	if (asoc) {
910		__u16  active_key_id = asoc->active_key_id;
911
912		asoc->active_key_id = key_id;
913		if (sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL)) {
914			asoc->active_key_id = active_key_id;
915			return -ENOMEM;
916		}
917	} else
918		ep->active_key_id = key_id;
919
920	return 0;
921}
922
923int sctp_auth_del_key_id(struct sctp_endpoint *ep,
924			 struct sctp_association *asoc,
925			 __u16  key_id)
926{
927	struct sctp_shared_key *key;
928	struct list_head *sh_keys;
929	int found = 0;
930
931	/* The key identifier MUST NOT be the current active key
932	 * The key identifier MUST correst to an existing key
933	 */
934	if (asoc) {
935		if (!asoc->peer.auth_capable)
936			return -EACCES;
937		if (asoc->active_key_id == key_id)
938			return -EINVAL;
939
940		sh_keys = &asoc->endpoint_shared_keys;
941	} else {
942		if (!ep->auth_enable)
943			return -EACCES;
944		if (ep->active_key_id == key_id)
945			return -EINVAL;
946
947		sh_keys = &ep->endpoint_shared_keys;
948	}
949
950	key_for_each(key, sh_keys) {
951		if (key->key_id == key_id) {
952			found = 1;
953			break;
954		}
955	}
956
957	if (!found)
958		return -EINVAL;
959
960	/* Delete the shared key */
961	list_del_init(&key->key_list);
962	sctp_auth_shkey_release(key);
963
964	return 0;
965}
966
967int sctp_auth_deact_key_id(struct sctp_endpoint *ep,
968			   struct sctp_association *asoc, __u16  key_id)
969{
970	struct sctp_shared_key *key;
971	struct list_head *sh_keys;
972	int found = 0;
973
974	/* The key identifier MUST NOT be the current active key
975	 * The key identifier MUST correst to an existing key
976	 */
977	if (asoc) {
978		if (!asoc->peer.auth_capable)
979			return -EACCES;
980		if (asoc->active_key_id == key_id)
981			return -EINVAL;
982
983		sh_keys = &asoc->endpoint_shared_keys;
984	} else {
985		if (!ep->auth_enable)
986			return -EACCES;
987		if (ep->active_key_id == key_id)
988			return -EINVAL;
989
990		sh_keys = &ep->endpoint_shared_keys;
991	}
992
993	key_for_each(key, sh_keys) {
994		if (key->key_id == key_id) {
995			found = 1;
996			break;
997		}
998	}
999
1000	if (!found)
1001		return -EINVAL;
1002
1003	/* refcnt == 1 and !list_empty mean it's not being used anywhere
1004	 * and deactivated will be set, so it's time to notify userland
1005	 * that this shkey can be freed.
1006	 */
1007	if (asoc && !list_empty(&key->key_list) &&
1008	    refcount_read(&key->refcnt) == 1) {
1009		struct sctp_ulpevent *ev;
1010
1011		ev = sctp_ulpevent_make_authkey(asoc, key->key_id,
1012						SCTP_AUTH_FREE_KEY, GFP_KERNEL);
1013		if (ev)
1014			asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
1015	}
1016
1017	key->deactivated = 1;
1018
1019	return 0;
1020}
1021
1022int sctp_auth_init(struct sctp_endpoint *ep, gfp_t gfp)
1023{
1024	int err = -ENOMEM;
1025
1026	/* Allocate space for HMACS and CHUNKS authentication
1027	 * variables.  There are arrays that we encode directly
1028	 * into parameters to make the rest of the operations easier.
1029	 */
1030	if (!ep->auth_hmacs_list) {
1031		struct sctp_hmac_algo_param *auth_hmacs;
1032
1033		auth_hmacs = kzalloc(struct_size(auth_hmacs, hmac_ids,
1034						 SCTP_AUTH_NUM_HMACS), gfp);
1035		if (!auth_hmacs)
1036			goto nomem;
1037		/* Initialize the HMACS parameter.
1038		 * SCTP-AUTH: Section 3.3
1039		 *    Every endpoint supporting SCTP chunk authentication MUST
1040		 *    support the HMAC based on the SHA-1 algorithm.
1041		 */
1042		auth_hmacs->param_hdr.type = SCTP_PARAM_HMAC_ALGO;
1043		auth_hmacs->param_hdr.length =
1044				htons(sizeof(struct sctp_paramhdr) + 2);
1045		auth_hmacs->hmac_ids[0] = htons(SCTP_AUTH_HMAC_ID_SHA1);
1046		ep->auth_hmacs_list = auth_hmacs;
1047	}
1048
1049	if (!ep->auth_chunk_list) {
1050		struct sctp_chunks_param *auth_chunks;
1051
1052		auth_chunks = kzalloc(sizeof(*auth_chunks) +
1053				      SCTP_NUM_CHUNK_TYPES, gfp);
1054		if (!auth_chunks)
1055			goto nomem;
1056		/* Initialize the CHUNKS parameter */
1057		auth_chunks->param_hdr.type = SCTP_PARAM_CHUNKS;
1058		auth_chunks->param_hdr.length =
1059				htons(sizeof(struct sctp_paramhdr));
1060		ep->auth_chunk_list = auth_chunks;
1061	}
1062
1063	/* Allocate and initialize transorms arrays for supported
1064	 * HMACs.
1065	 */
1066	err = sctp_auth_init_hmacs(ep, gfp);
1067	if (err)
1068		goto nomem;
1069
1070	return 0;
1071
1072nomem:
1073	/* Free all allocations */
1074	kfree(ep->auth_hmacs_list);
1075	kfree(ep->auth_chunk_list);
1076	ep->auth_hmacs_list = NULL;
1077	ep->auth_chunk_list = NULL;
1078	return err;
1079}
1080
1081void sctp_auth_free(struct sctp_endpoint *ep)
1082{
1083	kfree(ep->auth_hmacs_list);
1084	kfree(ep->auth_chunk_list);
1085	ep->auth_hmacs_list = NULL;
1086	ep->auth_chunk_list = NULL;
1087	sctp_auth_destroy_hmacs(ep->auth_hmacs);
1088	ep->auth_hmacs = NULL;
1089}
1090