1// SPDX-License-Identifier: GPL-2.0
2
3/* net/sched/sch_taprio.c	 Time Aware Priority Scheduler
4 *
5 * Authors:	Vinicius Costa Gomes <vinicius.gomes@intel.com>
6 *
7 */
8
9#include <linux/ethtool.h>
10#include <linux/ethtool_netlink.h>
11#include <linux/types.h>
12#include <linux/slab.h>
13#include <linux/kernel.h>
14#include <linux/string.h>
15#include <linux/list.h>
16#include <linux/errno.h>
17#include <linux/skbuff.h>
18#include <linux/math64.h>
19#include <linux/module.h>
20#include <linux/spinlock.h>
21#include <linux/rcupdate.h>
22#include <linux/time.h>
23#include <net/gso.h>
24#include <net/netlink.h>
25#include <net/pkt_sched.h>
26#include <net/pkt_cls.h>
27#include <net/sch_generic.h>
28#include <net/sock.h>
29#include <net/tcp.h>
30
31#define TAPRIO_STAT_NOT_SET	(~0ULL)
32
33#include "sch_mqprio_lib.h"
34
35static LIST_HEAD(taprio_list);
36static struct static_key_false taprio_have_broken_mqprio;
37static struct static_key_false taprio_have_working_mqprio;
38
39#define TAPRIO_ALL_GATES_OPEN -1
40
41#define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
42#define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
43#define TAPRIO_SUPPORTED_FLAGS \
44	(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST | TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
45#define TAPRIO_FLAGS_INVALID U32_MAX
46
47struct sched_entry {
48	/* Durations between this GCL entry and the GCL entry where the
49	 * respective traffic class gate closes
50	 */
51	u64 gate_duration[TC_MAX_QUEUE];
52	atomic_t budget[TC_MAX_QUEUE];
53	/* The qdisc makes some effort so that no packet leaves
54	 * after this time
55	 */
56	ktime_t gate_close_time[TC_MAX_QUEUE];
57	struct list_head list;
58	/* Used to calculate when to advance the schedule */
59	ktime_t end_time;
60	ktime_t next_txtime;
61	int index;
62	u32 gate_mask;
63	u32 interval;
64	u8 command;
65};
66
67struct sched_gate_list {
68	/* Longest non-zero contiguous gate durations per traffic class,
69	 * or 0 if a traffic class gate never opens during the schedule.
70	 */
71	u64 max_open_gate_duration[TC_MAX_QUEUE];
72	u32 max_frm_len[TC_MAX_QUEUE]; /* for the fast path */
73	u32 max_sdu[TC_MAX_QUEUE]; /* for dump */
74	struct rcu_head rcu;
75	struct list_head entries;
76	size_t num_entries;
77	ktime_t cycle_end_time;
78	s64 cycle_time;
79	s64 cycle_time_extension;
80	s64 base_time;
81};
82
83struct taprio_sched {
84	struct Qdisc **qdiscs;
85	struct Qdisc *root;
86	u32 flags;
87	enum tk_offsets tk_offset;
88	int clockid;
89	bool offloaded;
90	bool detected_mqprio;
91	bool broken_mqprio;
92	atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
93				    * speeds it's sub-nanoseconds per byte
94				    */
95
96	/* Protects the update side of the RCU protected current_entry */
97	spinlock_t current_entry_lock;
98	struct sched_entry __rcu *current_entry;
99	struct sched_gate_list __rcu *oper_sched;
100	struct sched_gate_list __rcu *admin_sched;
101	struct hrtimer advance_timer;
102	struct list_head taprio_list;
103	int cur_txq[TC_MAX_QUEUE];
104	u32 max_sdu[TC_MAX_QUEUE]; /* save info from the user */
105	u32 fp[TC_QOPT_MAX_QUEUE]; /* only for dump and offloading */
106	u32 txtime_delay;
107};
108
109struct __tc_taprio_qopt_offload {
110	refcount_t users;
111	struct tc_taprio_qopt_offload offload;
112};
113
114static void taprio_calculate_gate_durations(struct taprio_sched *q,
115					    struct sched_gate_list *sched)
116{
117	struct net_device *dev = qdisc_dev(q->root);
118	int num_tc = netdev_get_num_tc(dev);
119	struct sched_entry *entry, *cur;
120	int tc;
121
122	list_for_each_entry(entry, &sched->entries, list) {
123		u32 gates_still_open = entry->gate_mask;
124
125		/* For each traffic class, calculate each open gate duration,
126		 * starting at this schedule entry and ending at the schedule
127		 * entry containing a gate close event for that TC.
128		 */
129		cur = entry;
130
131		do {
132			if (!gates_still_open)
133				break;
134
135			for (tc = 0; tc < num_tc; tc++) {
136				if (!(gates_still_open & BIT(tc)))
137					continue;
138
139				if (cur->gate_mask & BIT(tc))
140					entry->gate_duration[tc] += cur->interval;
141				else
142					gates_still_open &= ~BIT(tc);
143			}
144
145			cur = list_next_entry_circular(cur, &sched->entries, list);
146		} while (cur != entry);
147
148		/* Keep track of the maximum gate duration for each traffic
149		 * class, taking care to not confuse a traffic class which is
150		 * temporarily closed with one that is always closed.
151		 */
152		for (tc = 0; tc < num_tc; tc++)
153			if (entry->gate_duration[tc] &&
154			    sched->max_open_gate_duration[tc] < entry->gate_duration[tc])
155				sched->max_open_gate_duration[tc] = entry->gate_duration[tc];
156	}
157}
158
159static bool taprio_entry_allows_tx(ktime_t skb_end_time,
160				   struct sched_entry *entry, int tc)
161{
162	return ktime_before(skb_end_time, entry->gate_close_time[tc]);
163}
164
165static ktime_t sched_base_time(const struct sched_gate_list *sched)
166{
167	if (!sched)
168		return KTIME_MAX;
169
170	return ns_to_ktime(sched->base_time);
171}
172
173static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono)
174{
175	/* This pairs with WRITE_ONCE() in taprio_parse_clockid() */
176	enum tk_offsets tk_offset = READ_ONCE(q->tk_offset);
177
178	switch (tk_offset) {
179	case TK_OFFS_MAX:
180		return mono;
181	default:
182		return ktime_mono_to_any(mono, tk_offset);
183	}
184}
185
186static ktime_t taprio_get_time(const struct taprio_sched *q)
187{
188	return taprio_mono_to_any(q, ktime_get());
189}
190
191static void taprio_free_sched_cb(struct rcu_head *head)
192{
193	struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
194	struct sched_entry *entry, *n;
195
196	list_for_each_entry_safe(entry, n, &sched->entries, list) {
197		list_del(&entry->list);
198		kfree(entry);
199	}
200
201	kfree(sched);
202}
203
204static void switch_schedules(struct taprio_sched *q,
205			     struct sched_gate_list **admin,
206			     struct sched_gate_list **oper)
207{
208	rcu_assign_pointer(q->oper_sched, *admin);
209	rcu_assign_pointer(q->admin_sched, NULL);
210
211	if (*oper)
212		call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
213
214	*oper = *admin;
215	*admin = NULL;
216}
217
218/* Get how much time has been already elapsed in the current cycle. */
219static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
220{
221	ktime_t time_since_sched_start;
222	s32 time_elapsed;
223
224	time_since_sched_start = ktime_sub(time, sched->base_time);
225	div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
226
227	return time_elapsed;
228}
229
230static ktime_t get_interval_end_time(struct sched_gate_list *sched,
231				     struct sched_gate_list *admin,
232				     struct sched_entry *entry,
233				     ktime_t intv_start)
234{
235	s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
236	ktime_t intv_end, cycle_ext_end, cycle_end;
237
238	cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
239	intv_end = ktime_add_ns(intv_start, entry->interval);
240	cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
241
242	if (ktime_before(intv_end, cycle_end))
243		return intv_end;
244	else if (admin && admin != sched &&
245		 ktime_after(admin->base_time, cycle_end) &&
246		 ktime_before(admin->base_time, cycle_ext_end))
247		return admin->base_time;
248	else
249		return cycle_end;
250}
251
252static int length_to_duration(struct taprio_sched *q, int len)
253{
254	return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC);
255}
256
257static int duration_to_length(struct taprio_sched *q, u64 duration)
258{
259	return div_u64(duration * PSEC_PER_NSEC, atomic64_read(&q->picos_per_byte));
260}
261
262/* Sets sched->max_sdu[] and sched->max_frm_len[] to the minimum between the
263 * q->max_sdu[] requested by the user and the max_sdu dynamically determined by
264 * the maximum open gate durations at the given link speed.
265 */
266static void taprio_update_queue_max_sdu(struct taprio_sched *q,
267					struct sched_gate_list *sched,
268					struct qdisc_size_table *stab)
269{
270	struct net_device *dev = qdisc_dev(q->root);
271	int num_tc = netdev_get_num_tc(dev);
272	u32 max_sdu_from_user;
273	u32 max_sdu_dynamic;
274	u32 max_sdu;
275	int tc;
276
277	for (tc = 0; tc < num_tc; tc++) {
278		max_sdu_from_user = q->max_sdu[tc] ?: U32_MAX;
279
280		/* TC gate never closes => keep the queueMaxSDU
281		 * selected by the user
282		 */
283		if (sched->max_open_gate_duration[tc] == sched->cycle_time) {
284			max_sdu_dynamic = U32_MAX;
285		} else {
286			u32 max_frm_len;
287
288			max_frm_len = duration_to_length(q, sched->max_open_gate_duration[tc]);
289			/* Compensate for L1 overhead from size table,
290			 * but don't let the frame size go negative
291			 */
292			if (stab) {
293				max_frm_len -= stab->szopts.overhead;
294				max_frm_len = max_t(int, max_frm_len,
295						    dev->hard_header_len + 1);
296			}
297			max_sdu_dynamic = max_frm_len - dev->hard_header_len;
298			if (max_sdu_dynamic > dev->max_mtu)
299				max_sdu_dynamic = U32_MAX;
300		}
301
302		max_sdu = min(max_sdu_dynamic, max_sdu_from_user);
303
304		if (max_sdu != U32_MAX) {
305			sched->max_frm_len[tc] = max_sdu + dev->hard_header_len;
306			sched->max_sdu[tc] = max_sdu;
307		} else {
308			sched->max_frm_len[tc] = U32_MAX; /* never oversized */
309			sched->max_sdu[tc] = 0;
310		}
311	}
312}
313
314/* Returns the entry corresponding to next available interval. If
315 * validate_interval is set, it only validates whether the timestamp occurs
316 * when the gate corresponding to the skb's traffic class is open.
317 */
318static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
319						  struct Qdisc *sch,
320						  struct sched_gate_list *sched,
321						  struct sched_gate_list *admin,
322						  ktime_t time,
323						  ktime_t *interval_start,
324						  ktime_t *interval_end,
325						  bool validate_interval)
326{
327	ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
328	ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
329	struct sched_entry *entry = NULL, *entry_found = NULL;
330	struct taprio_sched *q = qdisc_priv(sch);
331	struct net_device *dev = qdisc_dev(sch);
332	bool entry_available = false;
333	s32 cycle_elapsed;
334	int tc, n;
335
336	tc = netdev_get_prio_tc_map(dev, skb->priority);
337	packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
338
339	*interval_start = 0;
340	*interval_end = 0;
341
342	if (!sched)
343		return NULL;
344
345	cycle = sched->cycle_time;
346	cycle_elapsed = get_cycle_time_elapsed(sched, time);
347	curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
348	cycle_end = ktime_add_ns(curr_intv_end, cycle);
349
350	list_for_each_entry(entry, &sched->entries, list) {
351		curr_intv_start = curr_intv_end;
352		curr_intv_end = get_interval_end_time(sched, admin, entry,
353						      curr_intv_start);
354
355		if (ktime_after(curr_intv_start, cycle_end))
356			break;
357
358		if (!(entry->gate_mask & BIT(tc)) ||
359		    packet_transmit_time > entry->interval)
360			continue;
361
362		txtime = entry->next_txtime;
363
364		if (ktime_before(txtime, time) || validate_interval) {
365			transmit_end_time = ktime_add_ns(time, packet_transmit_time);
366			if ((ktime_before(curr_intv_start, time) &&
367			     ktime_before(transmit_end_time, curr_intv_end)) ||
368			    (ktime_after(curr_intv_start, time) && !validate_interval)) {
369				entry_found = entry;
370				*interval_start = curr_intv_start;
371				*interval_end = curr_intv_end;
372				break;
373			} else if (!entry_available && !validate_interval) {
374				/* Here, we are just trying to find out the
375				 * first available interval in the next cycle.
376				 */
377				entry_available = true;
378				entry_found = entry;
379				*interval_start = ktime_add_ns(curr_intv_start, cycle);
380				*interval_end = ktime_add_ns(curr_intv_end, cycle);
381			}
382		} else if (ktime_before(txtime, earliest_txtime) &&
383			   !entry_available) {
384			earliest_txtime = txtime;
385			entry_found = entry;
386			n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
387			*interval_start = ktime_add(curr_intv_start, n * cycle);
388			*interval_end = ktime_add(curr_intv_end, n * cycle);
389		}
390	}
391
392	return entry_found;
393}
394
395static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
396{
397	struct taprio_sched *q = qdisc_priv(sch);
398	struct sched_gate_list *sched, *admin;
399	ktime_t interval_start, interval_end;
400	struct sched_entry *entry;
401
402	rcu_read_lock();
403	sched = rcu_dereference(q->oper_sched);
404	admin = rcu_dereference(q->admin_sched);
405
406	entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
407				       &interval_start, &interval_end, true);
408	rcu_read_unlock();
409
410	return entry;
411}
412
413/* This returns the tstamp value set by TCP in terms of the set clock. */
414static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
415{
416	unsigned int offset = skb_network_offset(skb);
417	const struct ipv6hdr *ipv6h;
418	const struct iphdr *iph;
419	struct ipv6hdr _ipv6h;
420
421	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
422	if (!ipv6h)
423		return 0;
424
425	if (ipv6h->version == 4) {
426		iph = (struct iphdr *)ipv6h;
427		offset += iph->ihl * 4;
428
429		/* special-case 6in4 tunnelling, as that is a common way to get
430		 * v6 connectivity in the home
431		 */
432		if (iph->protocol == IPPROTO_IPV6) {
433			ipv6h = skb_header_pointer(skb, offset,
434						   sizeof(_ipv6h), &_ipv6h);
435
436			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
437				return 0;
438		} else if (iph->protocol != IPPROTO_TCP) {
439			return 0;
440		}
441	} else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
442		return 0;
443	}
444
445	return taprio_mono_to_any(q, skb->skb_mstamp_ns);
446}
447
448/* There are a few scenarios where we will have to modify the txtime from
449 * what is read from next_txtime in sched_entry. They are:
450 * 1. If txtime is in the past,
451 *    a. The gate for the traffic class is currently open and packet can be
452 *       transmitted before it closes, schedule the packet right away.
453 *    b. If the gate corresponding to the traffic class is going to open later
454 *       in the cycle, set the txtime of packet to the interval start.
455 * 2. If txtime is in the future, there are packets corresponding to the
456 *    current traffic class waiting to be transmitted. So, the following
457 *    possibilities exist:
458 *    a. We can transmit the packet before the window containing the txtime
459 *       closes.
460 *    b. The window might close before the transmission can be completed
461 *       successfully. So, schedule the packet in the next open window.
462 */
463static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
464{
465	ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
466	struct taprio_sched *q = qdisc_priv(sch);
467	struct sched_gate_list *sched, *admin;
468	ktime_t minimum_time, now, txtime;
469	int len, packet_transmit_time;
470	struct sched_entry *entry;
471	bool sched_changed;
472
473	now = taprio_get_time(q);
474	minimum_time = ktime_add_ns(now, q->txtime_delay);
475
476	tcp_tstamp = get_tcp_tstamp(q, skb);
477	minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
478
479	rcu_read_lock();
480	admin = rcu_dereference(q->admin_sched);
481	sched = rcu_dereference(q->oper_sched);
482	if (admin && ktime_after(minimum_time, admin->base_time))
483		switch_schedules(q, &admin, &sched);
484
485	/* Until the schedule starts, all the queues are open */
486	if (!sched || ktime_before(minimum_time, sched->base_time)) {
487		txtime = minimum_time;
488		goto done;
489	}
490
491	len = qdisc_pkt_len(skb);
492	packet_transmit_time = length_to_duration(q, len);
493
494	do {
495		sched_changed = false;
496
497		entry = find_entry_to_transmit(skb, sch, sched, admin,
498					       minimum_time,
499					       &interval_start, &interval_end,
500					       false);
501		if (!entry) {
502			txtime = 0;
503			goto done;
504		}
505
506		txtime = entry->next_txtime;
507		txtime = max_t(ktime_t, txtime, minimum_time);
508		txtime = max_t(ktime_t, txtime, interval_start);
509
510		if (admin && admin != sched &&
511		    ktime_after(txtime, admin->base_time)) {
512			sched = admin;
513			sched_changed = true;
514			continue;
515		}
516
517		transmit_end_time = ktime_add(txtime, packet_transmit_time);
518		minimum_time = transmit_end_time;
519
520		/* Update the txtime of current entry to the next time it's
521		 * interval starts.
522		 */
523		if (ktime_after(transmit_end_time, interval_end))
524			entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
525	} while (sched_changed || ktime_after(transmit_end_time, interval_end));
526
527	entry->next_txtime = transmit_end_time;
528
529done:
530	rcu_read_unlock();
531	return txtime;
532}
533
534/* Devices with full offload are expected to honor this in hardware */
535static bool taprio_skb_exceeds_queue_max_sdu(struct Qdisc *sch,
536					     struct sk_buff *skb)
537{
538	struct taprio_sched *q = qdisc_priv(sch);
539	struct net_device *dev = qdisc_dev(sch);
540	struct sched_gate_list *sched;
541	int prio = skb->priority;
542	bool exceeds = false;
543	u8 tc;
544
545	tc = netdev_get_prio_tc_map(dev, prio);
546
547	rcu_read_lock();
548	sched = rcu_dereference(q->oper_sched);
549	if (sched && skb->len > sched->max_frm_len[tc])
550		exceeds = true;
551	rcu_read_unlock();
552
553	return exceeds;
554}
555
556static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch,
557			      struct Qdisc *child, struct sk_buff **to_free)
558{
559	struct taprio_sched *q = qdisc_priv(sch);
560
561	/* sk_flags are only safe to use on full sockets. */
562	if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) {
563		if (!is_valid_interval(skb, sch))
564			return qdisc_drop(skb, sch, to_free);
565	} else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
566		skb->tstamp = get_packet_txtime(skb, sch);
567		if (!skb->tstamp)
568			return qdisc_drop(skb, sch, to_free);
569	}
570
571	qdisc_qstats_backlog_inc(sch, skb);
572	sch->q.qlen++;
573
574	return qdisc_enqueue(skb, child, to_free);
575}
576
577static int taprio_enqueue_segmented(struct sk_buff *skb, struct Qdisc *sch,
578				    struct Qdisc *child,
579				    struct sk_buff **to_free)
580{
581	unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb);
582	netdev_features_t features = netif_skb_features(skb);
583	struct sk_buff *segs, *nskb;
584	int ret;
585
586	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
587	if (IS_ERR_OR_NULL(segs))
588		return qdisc_drop(skb, sch, to_free);
589
590	skb_list_walk_safe(segs, segs, nskb) {
591		skb_mark_not_on_list(segs);
592		qdisc_skb_cb(segs)->pkt_len = segs->len;
593		slen += segs->len;
594
595		/* FIXME: we should be segmenting to a smaller size
596		 * rather than dropping these
597		 */
598		if (taprio_skb_exceeds_queue_max_sdu(sch, segs))
599			ret = qdisc_drop(segs, sch, to_free);
600		else
601			ret = taprio_enqueue_one(segs, sch, child, to_free);
602
603		if (ret != NET_XMIT_SUCCESS) {
604			if (net_xmit_drop_count(ret))
605				qdisc_qstats_drop(sch);
606		} else {
607			numsegs++;
608		}
609	}
610
611	if (numsegs > 1)
612		qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen);
613	consume_skb(skb);
614
615	return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
616}
617
618/* Will not be called in the full offload case, since the TX queues are
619 * attached to the Qdisc created using qdisc_create_dflt()
620 */
621static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
622			  struct sk_buff **to_free)
623{
624	struct taprio_sched *q = qdisc_priv(sch);
625	struct Qdisc *child;
626	int queue;
627
628	queue = skb_get_queue_mapping(skb);
629
630	child = q->qdiscs[queue];
631	if (unlikely(!child))
632		return qdisc_drop(skb, sch, to_free);
633
634	if (taprio_skb_exceeds_queue_max_sdu(sch, skb)) {
635		/* Large packets might not be transmitted when the transmission
636		 * duration exceeds any configured interval. Therefore, segment
637		 * the skb into smaller chunks. Drivers with full offload are
638		 * expected to handle this in hardware.
639		 */
640		if (skb_is_gso(skb))
641			return taprio_enqueue_segmented(skb, sch, child,
642							to_free);
643
644		return qdisc_drop(skb, sch, to_free);
645	}
646
647	return taprio_enqueue_one(skb, sch, child, to_free);
648}
649
650static struct sk_buff *taprio_peek(struct Qdisc *sch)
651{
652	WARN_ONCE(1, "taprio only supports operating as root qdisc, peek() not implemented");
653	return NULL;
654}
655
656static void taprio_set_budgets(struct taprio_sched *q,
657			       struct sched_gate_list *sched,
658			       struct sched_entry *entry)
659{
660	struct net_device *dev = qdisc_dev(q->root);
661	int num_tc = netdev_get_num_tc(dev);
662	int tc, budget;
663
664	for (tc = 0; tc < num_tc; tc++) {
665		/* Traffic classes which never close have infinite budget */
666		if (entry->gate_duration[tc] == sched->cycle_time)
667			budget = INT_MAX;
668		else
669			budget = div64_u64((u64)entry->gate_duration[tc] * PSEC_PER_NSEC,
670					   atomic64_read(&q->picos_per_byte));
671
672		atomic_set(&entry->budget[tc], budget);
673	}
674}
675
676/* When an skb is sent, it consumes from the budget of all traffic classes */
677static int taprio_update_budgets(struct sched_entry *entry, size_t len,
678				 int tc_consumed, int num_tc)
679{
680	int tc, budget, new_budget = 0;
681
682	for (tc = 0; tc < num_tc; tc++) {
683		budget = atomic_read(&entry->budget[tc]);
684		/* Don't consume from infinite budget */
685		if (budget == INT_MAX) {
686			if (tc == tc_consumed)
687				new_budget = budget;
688			continue;
689		}
690
691		if (tc == tc_consumed)
692			new_budget = atomic_sub_return(len, &entry->budget[tc]);
693		else
694			atomic_sub(len, &entry->budget[tc]);
695	}
696
697	return new_budget;
698}
699
700static struct sk_buff *taprio_dequeue_from_txq(struct Qdisc *sch, int txq,
701					       struct sched_entry *entry,
702					       u32 gate_mask)
703{
704	struct taprio_sched *q = qdisc_priv(sch);
705	struct net_device *dev = qdisc_dev(sch);
706	struct Qdisc *child = q->qdiscs[txq];
707	int num_tc = netdev_get_num_tc(dev);
708	struct sk_buff *skb;
709	ktime_t guard;
710	int prio;
711	int len;
712	u8 tc;
713
714	if (unlikely(!child))
715		return NULL;
716
717	if (TXTIME_ASSIST_IS_ENABLED(q->flags))
718		goto skip_peek_checks;
719
720	skb = child->ops->peek(child);
721	if (!skb)
722		return NULL;
723
724	prio = skb->priority;
725	tc = netdev_get_prio_tc_map(dev, prio);
726
727	if (!(gate_mask & BIT(tc)))
728		return NULL;
729
730	len = qdisc_pkt_len(skb);
731	guard = ktime_add_ns(taprio_get_time(q), length_to_duration(q, len));
732
733	/* In the case that there's no gate entry, there's no
734	 * guard band ...
735	 */
736	if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
737	    !taprio_entry_allows_tx(guard, entry, tc))
738		return NULL;
739
740	/* ... and no budget. */
741	if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
742	    taprio_update_budgets(entry, len, tc, num_tc) < 0)
743		return NULL;
744
745skip_peek_checks:
746	skb = child->ops->dequeue(child);
747	if (unlikely(!skb))
748		return NULL;
749
750	qdisc_bstats_update(sch, skb);
751	qdisc_qstats_backlog_dec(sch, skb);
752	sch->q.qlen--;
753
754	return skb;
755}
756
757static void taprio_next_tc_txq(struct net_device *dev, int tc, int *txq)
758{
759	int offset = dev->tc_to_txq[tc].offset;
760	int count = dev->tc_to_txq[tc].count;
761
762	(*txq)++;
763	if (*txq == offset + count)
764		*txq = offset;
765}
766
767/* Prioritize higher traffic classes, and select among TXQs belonging to the
768 * same TC using round robin
769 */
770static struct sk_buff *taprio_dequeue_tc_priority(struct Qdisc *sch,
771						  struct sched_entry *entry,
772						  u32 gate_mask)
773{
774	struct taprio_sched *q = qdisc_priv(sch);
775	struct net_device *dev = qdisc_dev(sch);
776	int num_tc = netdev_get_num_tc(dev);
777	struct sk_buff *skb;
778	int tc;
779
780	for (tc = num_tc - 1; tc >= 0; tc--) {
781		int first_txq = q->cur_txq[tc];
782
783		if (!(gate_mask & BIT(tc)))
784			continue;
785
786		do {
787			skb = taprio_dequeue_from_txq(sch, q->cur_txq[tc],
788						      entry, gate_mask);
789
790			taprio_next_tc_txq(dev, tc, &q->cur_txq[tc]);
791
792			if (q->cur_txq[tc] >= dev->num_tx_queues)
793				q->cur_txq[tc] = first_txq;
794
795			if (skb)
796				return skb;
797		} while (q->cur_txq[tc] != first_txq);
798	}
799
800	return NULL;
801}
802
803/* Broken way of prioritizing smaller TXQ indices and ignoring the traffic
804 * class other than to determine whether the gate is open or not
805 */
806static struct sk_buff *taprio_dequeue_txq_priority(struct Qdisc *sch,
807						   struct sched_entry *entry,
808						   u32 gate_mask)
809{
810	struct net_device *dev = qdisc_dev(sch);
811	struct sk_buff *skb;
812	int i;
813
814	for (i = 0; i < dev->num_tx_queues; i++) {
815		skb = taprio_dequeue_from_txq(sch, i, entry, gate_mask);
816		if (skb)
817			return skb;
818	}
819
820	return NULL;
821}
822
823/* Will not be called in the full offload case, since the TX queues are
824 * attached to the Qdisc created using qdisc_create_dflt()
825 */
826static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
827{
828	struct taprio_sched *q = qdisc_priv(sch);
829	struct sk_buff *skb = NULL;
830	struct sched_entry *entry;
831	u32 gate_mask;
832
833	rcu_read_lock();
834	entry = rcu_dereference(q->current_entry);
835	/* if there's no entry, it means that the schedule didn't
836	 * start yet, so force all gates to be open, this is in
837	 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
838	 * "AdminGateStates"
839	 */
840	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
841	if (!gate_mask)
842		goto done;
843
844	if (static_branch_unlikely(&taprio_have_broken_mqprio) &&
845	    !static_branch_likely(&taprio_have_working_mqprio)) {
846		/* Single NIC kind which is broken */
847		skb = taprio_dequeue_txq_priority(sch, entry, gate_mask);
848	} else if (static_branch_likely(&taprio_have_working_mqprio) &&
849		   !static_branch_unlikely(&taprio_have_broken_mqprio)) {
850		/* Single NIC kind which prioritizes properly */
851		skb = taprio_dequeue_tc_priority(sch, entry, gate_mask);
852	} else {
853		/* Mixed NIC kinds present in system, need dynamic testing */
854		if (q->broken_mqprio)
855			skb = taprio_dequeue_txq_priority(sch, entry, gate_mask);
856		else
857			skb = taprio_dequeue_tc_priority(sch, entry, gate_mask);
858	}
859
860done:
861	rcu_read_unlock();
862
863	return skb;
864}
865
866static bool should_restart_cycle(const struct sched_gate_list *oper,
867				 const struct sched_entry *entry)
868{
869	if (list_is_last(&entry->list, &oper->entries))
870		return true;
871
872	if (ktime_compare(entry->end_time, oper->cycle_end_time) == 0)
873		return true;
874
875	return false;
876}
877
878static bool should_change_schedules(const struct sched_gate_list *admin,
879				    const struct sched_gate_list *oper,
880				    ktime_t end_time)
881{
882	ktime_t next_base_time, extension_time;
883
884	if (!admin)
885		return false;
886
887	next_base_time = sched_base_time(admin);
888
889	/* This is the simple case, the end_time would fall after
890	 * the next schedule base_time.
891	 */
892	if (ktime_compare(next_base_time, end_time) <= 0)
893		return true;
894
895	/* This is the cycle_time_extension case, if the end_time
896	 * plus the amount that can be extended would fall after the
897	 * next schedule base_time, we can extend the current schedule
898	 * for that amount.
899	 */
900	extension_time = ktime_add_ns(end_time, oper->cycle_time_extension);
901
902	/* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
903	 * how precisely the extension should be made. So after
904	 * conformance testing, this logic may change.
905	 */
906	if (ktime_compare(next_base_time, extension_time) <= 0)
907		return true;
908
909	return false;
910}
911
912static enum hrtimer_restart advance_sched(struct hrtimer *timer)
913{
914	struct taprio_sched *q = container_of(timer, struct taprio_sched,
915					      advance_timer);
916	struct net_device *dev = qdisc_dev(q->root);
917	struct sched_gate_list *oper, *admin;
918	int num_tc = netdev_get_num_tc(dev);
919	struct sched_entry *entry, *next;
920	struct Qdisc *sch = q->root;
921	ktime_t end_time;
922	int tc;
923
924	spin_lock(&q->current_entry_lock);
925	entry = rcu_dereference_protected(q->current_entry,
926					  lockdep_is_held(&q->current_entry_lock));
927	oper = rcu_dereference_protected(q->oper_sched,
928					 lockdep_is_held(&q->current_entry_lock));
929	admin = rcu_dereference_protected(q->admin_sched,
930					  lockdep_is_held(&q->current_entry_lock));
931
932	if (!oper)
933		switch_schedules(q, &admin, &oper);
934
935	/* This can happen in two cases: 1. this is the very first run
936	 * of this function (i.e. we weren't running any schedule
937	 * previously); 2. The previous schedule just ended. The first
938	 * entry of all schedules are pre-calculated during the
939	 * schedule initialization.
940	 */
941	if (unlikely(!entry || entry->end_time == oper->base_time)) {
942		next = list_first_entry(&oper->entries, struct sched_entry,
943					list);
944		end_time = next->end_time;
945		goto first_run;
946	}
947
948	if (should_restart_cycle(oper, entry)) {
949		next = list_first_entry(&oper->entries, struct sched_entry,
950					list);
951		oper->cycle_end_time = ktime_add_ns(oper->cycle_end_time,
952						    oper->cycle_time);
953	} else {
954		next = list_next_entry(entry, list);
955	}
956
957	end_time = ktime_add_ns(entry->end_time, next->interval);
958	end_time = min_t(ktime_t, end_time, oper->cycle_end_time);
959
960	for (tc = 0; tc < num_tc; tc++) {
961		if (next->gate_duration[tc] == oper->cycle_time)
962			next->gate_close_time[tc] = KTIME_MAX;
963		else
964			next->gate_close_time[tc] = ktime_add_ns(entry->end_time,
965								 next->gate_duration[tc]);
966	}
967
968	if (should_change_schedules(admin, oper, end_time)) {
969		/* Set things so the next time this runs, the new
970		 * schedule runs.
971		 */
972		end_time = sched_base_time(admin);
973		switch_schedules(q, &admin, &oper);
974	}
975
976	next->end_time = end_time;
977	taprio_set_budgets(q, oper, next);
978
979first_run:
980	rcu_assign_pointer(q->current_entry, next);
981	spin_unlock(&q->current_entry_lock);
982
983	hrtimer_set_expires(&q->advance_timer, end_time);
984
985	rcu_read_lock();
986	__netif_schedule(sch);
987	rcu_read_unlock();
988
989	return HRTIMER_RESTART;
990}
991
992static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
993	[TCA_TAPRIO_SCHED_ENTRY_INDEX]	   = { .type = NLA_U32 },
994	[TCA_TAPRIO_SCHED_ENTRY_CMD]	   = { .type = NLA_U8 },
995	[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
996	[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
997};
998
999static const struct nla_policy taprio_tc_policy[TCA_TAPRIO_TC_ENTRY_MAX + 1] = {
1000	[TCA_TAPRIO_TC_ENTRY_INDEX]	   = NLA_POLICY_MAX(NLA_U32,
1001							    TC_QOPT_MAX_QUEUE),
1002	[TCA_TAPRIO_TC_ENTRY_MAX_SDU]	   = { .type = NLA_U32 },
1003	[TCA_TAPRIO_TC_ENTRY_FP]	   = NLA_POLICY_RANGE(NLA_U32,
1004							      TC_FP_EXPRESS,
1005							      TC_FP_PREEMPTIBLE),
1006};
1007
1008static const struct netlink_range_validation_signed taprio_cycle_time_range = {
1009	.min = 0,
1010	.max = INT_MAX,
1011};
1012
1013static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
1014	[TCA_TAPRIO_ATTR_PRIOMAP]	       = {
1015		.len = sizeof(struct tc_mqprio_qopt)
1016	},
1017	[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
1018	[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
1019	[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
1020	[TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
1021	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           =
1022		NLA_POLICY_FULL_RANGE_SIGNED(NLA_S64, &taprio_cycle_time_range),
1023	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
1024	[TCA_TAPRIO_ATTR_FLAGS]                      =
1025		NLA_POLICY_MASK(NLA_U32, TAPRIO_SUPPORTED_FLAGS),
1026	[TCA_TAPRIO_ATTR_TXTIME_DELAY]		     = { .type = NLA_U32 },
1027	[TCA_TAPRIO_ATTR_TC_ENTRY]		     = { .type = NLA_NESTED },
1028};
1029
1030static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
1031			    struct sched_entry *entry,
1032			    struct netlink_ext_ack *extack)
1033{
1034	int min_duration = length_to_duration(q, ETH_ZLEN);
1035	u32 interval = 0;
1036
1037	if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
1038		entry->command = nla_get_u8(
1039			tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
1040
1041	if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
1042		entry->gate_mask = nla_get_u32(
1043			tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
1044
1045	if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
1046		interval = nla_get_u32(
1047			tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
1048
1049	/* The interval should allow at least the minimum ethernet
1050	 * frame to go out.
1051	 */
1052	if (interval < min_duration) {
1053		NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
1054		return -EINVAL;
1055	}
1056
1057	entry->interval = interval;
1058
1059	return 0;
1060}
1061
1062static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
1063			     struct sched_entry *entry, int index,
1064			     struct netlink_ext_ack *extack)
1065{
1066	struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
1067	int err;
1068
1069	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
1070					  entry_policy, NULL);
1071	if (err < 0) {
1072		NL_SET_ERR_MSG(extack, "Could not parse nested entry");
1073		return -EINVAL;
1074	}
1075
1076	entry->index = index;
1077
1078	return fill_sched_entry(q, tb, entry, extack);
1079}
1080
1081static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
1082			    struct sched_gate_list *sched,
1083			    struct netlink_ext_ack *extack)
1084{
1085	struct nlattr *n;
1086	int err, rem;
1087	int i = 0;
1088
1089	if (!list)
1090		return -EINVAL;
1091
1092	nla_for_each_nested(n, list, rem) {
1093		struct sched_entry *entry;
1094
1095		if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
1096			NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
1097			continue;
1098		}
1099
1100		entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1101		if (!entry) {
1102			NL_SET_ERR_MSG(extack, "Not enough memory for entry");
1103			return -ENOMEM;
1104		}
1105
1106		err = parse_sched_entry(q, n, entry, i, extack);
1107		if (err < 0) {
1108			kfree(entry);
1109			return err;
1110		}
1111
1112		list_add_tail(&entry->list, &sched->entries);
1113		i++;
1114	}
1115
1116	sched->num_entries = i;
1117
1118	return i;
1119}
1120
1121static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
1122				 struct sched_gate_list *new,
1123				 struct netlink_ext_ack *extack)
1124{
1125	int err = 0;
1126
1127	if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
1128		NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
1129		return -ENOTSUPP;
1130	}
1131
1132	if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
1133		new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
1134
1135	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
1136		new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
1137
1138	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
1139		new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
1140
1141	if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
1142		err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
1143				       new, extack);
1144	if (err < 0)
1145		return err;
1146
1147	if (!new->cycle_time) {
1148		struct sched_entry *entry;
1149		ktime_t cycle = 0;
1150
1151		list_for_each_entry(entry, &new->entries, list)
1152			cycle = ktime_add_ns(cycle, entry->interval);
1153
1154		if (!cycle) {
1155			NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0");
1156			return -EINVAL;
1157		}
1158
1159		if (cycle < 0 || cycle > INT_MAX) {
1160			NL_SET_ERR_MSG(extack, "'cycle_time' is too big");
1161			return -EINVAL;
1162		}
1163
1164		new->cycle_time = cycle;
1165	}
1166
1167	taprio_calculate_gate_durations(q, new);
1168
1169	return 0;
1170}
1171
1172static int taprio_parse_mqprio_opt(struct net_device *dev,
1173				   struct tc_mqprio_qopt *qopt,
1174				   struct netlink_ext_ack *extack,
1175				   u32 taprio_flags)
1176{
1177	bool allow_overlapping_txqs = TXTIME_ASSIST_IS_ENABLED(taprio_flags);
1178
1179	if (!qopt && !dev->num_tc) {
1180		NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
1181		return -EINVAL;
1182	}
1183
1184	/* If num_tc is already set, it means that the user already
1185	 * configured the mqprio part
1186	 */
1187	if (dev->num_tc)
1188		return 0;
1189
1190	/* taprio imposes that traffic classes map 1:n to tx queues */
1191	if (qopt->num_tc > dev->num_tx_queues) {
1192		NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
1193		return -EINVAL;
1194	}
1195
1196	/* For some reason, in txtime-assist mode, we allow TXQ ranges for
1197	 * different TCs to overlap, and just validate the TXQ ranges.
1198	 */
1199	return mqprio_validate_qopt(dev, qopt, true, allow_overlapping_txqs,
1200				    extack);
1201}
1202
1203static int taprio_get_start_time(struct Qdisc *sch,
1204				 struct sched_gate_list *sched,
1205				 ktime_t *start)
1206{
1207	struct taprio_sched *q = qdisc_priv(sch);
1208	ktime_t now, base, cycle;
1209	s64 n;
1210
1211	base = sched_base_time(sched);
1212	now = taprio_get_time(q);
1213
1214	if (ktime_after(base, now)) {
1215		*start = base;
1216		return 0;
1217	}
1218
1219	cycle = sched->cycle_time;
1220
1221	/* The qdisc is expected to have at least one sched_entry.  Moreover,
1222	 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
1223	 * something went really wrong. In that case, we should warn about this
1224	 * inconsistent state and return error.
1225	 */
1226	if (WARN_ON(!cycle))
1227		return -EFAULT;
1228
1229	/* Schedule the start time for the beginning of the next
1230	 * cycle.
1231	 */
1232	n = div64_s64(ktime_sub_ns(now, base), cycle);
1233	*start = ktime_add_ns(base, (n + 1) * cycle);
1234	return 0;
1235}
1236
1237static void setup_first_end_time(struct taprio_sched *q,
1238				 struct sched_gate_list *sched, ktime_t base)
1239{
1240	struct net_device *dev = qdisc_dev(q->root);
1241	int num_tc = netdev_get_num_tc(dev);
1242	struct sched_entry *first;
1243	ktime_t cycle;
1244	int tc;
1245
1246	first = list_first_entry(&sched->entries,
1247				 struct sched_entry, list);
1248
1249	cycle = sched->cycle_time;
1250
1251	/* FIXME: find a better place to do this */
1252	sched->cycle_end_time = ktime_add_ns(base, cycle);
1253
1254	first->end_time = ktime_add_ns(base, first->interval);
1255	taprio_set_budgets(q, sched, first);
1256
1257	for (tc = 0; tc < num_tc; tc++) {
1258		if (first->gate_duration[tc] == sched->cycle_time)
1259			first->gate_close_time[tc] = KTIME_MAX;
1260		else
1261			first->gate_close_time[tc] = ktime_add_ns(base, first->gate_duration[tc]);
1262	}
1263
1264	rcu_assign_pointer(q->current_entry, NULL);
1265}
1266
1267static void taprio_start_sched(struct Qdisc *sch,
1268			       ktime_t start, struct sched_gate_list *new)
1269{
1270	struct taprio_sched *q = qdisc_priv(sch);
1271	ktime_t expires;
1272
1273	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1274		return;
1275
1276	expires = hrtimer_get_expires(&q->advance_timer);
1277	if (expires == 0)
1278		expires = KTIME_MAX;
1279
1280	/* If the new schedule starts before the next expiration, we
1281	 * reprogram it to the earliest one, so we change the admin
1282	 * schedule to the operational one at the right time.
1283	 */
1284	start = min_t(ktime_t, start, expires);
1285
1286	hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1287}
1288
1289static void taprio_set_picos_per_byte(struct net_device *dev,
1290				      struct taprio_sched *q)
1291{
1292	struct ethtool_link_ksettings ecmd;
1293	int speed = SPEED_10;
1294	int picos_per_byte;
1295	int err;
1296
1297	err = __ethtool_get_link_ksettings(dev, &ecmd);
1298	if (err < 0)
1299		goto skip;
1300
1301	if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1302		speed = ecmd.base.speed;
1303
1304skip:
1305	picos_per_byte = (USEC_PER_SEC * 8) / speed;
1306
1307	atomic64_set(&q->picos_per_byte, picos_per_byte);
1308	netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1309		   dev->name, (long long)atomic64_read(&q->picos_per_byte),
1310		   ecmd.base.speed);
1311}
1312
1313static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1314			       void *ptr)
1315{
1316	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1317	struct sched_gate_list *oper, *admin;
1318	struct qdisc_size_table *stab;
1319	struct taprio_sched *q;
1320
1321	ASSERT_RTNL();
1322
1323	if (event != NETDEV_UP && event != NETDEV_CHANGE)
1324		return NOTIFY_DONE;
1325
1326	list_for_each_entry(q, &taprio_list, taprio_list) {
1327		if (dev != qdisc_dev(q->root))
1328			continue;
1329
1330		taprio_set_picos_per_byte(dev, q);
1331
1332		stab = rtnl_dereference(q->root->stab);
1333
1334		oper = rtnl_dereference(q->oper_sched);
1335		if (oper)
1336			taprio_update_queue_max_sdu(q, oper, stab);
1337
1338		admin = rtnl_dereference(q->admin_sched);
1339		if (admin)
1340			taprio_update_queue_max_sdu(q, admin, stab);
1341
1342		break;
1343	}
1344
1345	return NOTIFY_DONE;
1346}
1347
1348static void setup_txtime(struct taprio_sched *q,
1349			 struct sched_gate_list *sched, ktime_t base)
1350{
1351	struct sched_entry *entry;
1352	u64 interval = 0;
1353
1354	list_for_each_entry(entry, &sched->entries, list) {
1355		entry->next_txtime = ktime_add_ns(base, interval);
1356		interval += entry->interval;
1357	}
1358}
1359
1360static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1361{
1362	struct __tc_taprio_qopt_offload *__offload;
1363
1364	__offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1365			    GFP_KERNEL);
1366	if (!__offload)
1367		return NULL;
1368
1369	refcount_set(&__offload->users, 1);
1370
1371	return &__offload->offload;
1372}
1373
1374struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1375						  *offload)
1376{
1377	struct __tc_taprio_qopt_offload *__offload;
1378
1379	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1380				 offload);
1381
1382	refcount_inc(&__offload->users);
1383
1384	return offload;
1385}
1386EXPORT_SYMBOL_GPL(taprio_offload_get);
1387
1388void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1389{
1390	struct __tc_taprio_qopt_offload *__offload;
1391
1392	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1393				 offload);
1394
1395	if (!refcount_dec_and_test(&__offload->users))
1396		return;
1397
1398	kfree(__offload);
1399}
1400EXPORT_SYMBOL_GPL(taprio_offload_free);
1401
1402/* The function will only serve to keep the pointers to the "oper" and "admin"
1403 * schedules valid in relation to their base times, so when calling dump() the
1404 * users looks at the right schedules.
1405 * When using full offload, the admin configuration is promoted to oper at the
1406 * base_time in the PHC time domain.  But because the system time is not
1407 * necessarily in sync with that, we can't just trigger a hrtimer to call
1408 * switch_schedules at the right hardware time.
1409 * At the moment we call this by hand right away from taprio, but in the future
1410 * it will be useful to create a mechanism for drivers to notify taprio of the
1411 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1412 * This is left as TODO.
1413 */
1414static void taprio_offload_config_changed(struct taprio_sched *q)
1415{
1416	struct sched_gate_list *oper, *admin;
1417
1418	oper = rtnl_dereference(q->oper_sched);
1419	admin = rtnl_dereference(q->admin_sched);
1420
1421	switch_schedules(q, &admin, &oper);
1422}
1423
1424static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1425{
1426	u32 i, queue_mask = 0;
1427
1428	for (i = 0; i < dev->num_tc; i++) {
1429		u32 offset, count;
1430
1431		if (!(tc_mask & BIT(i)))
1432			continue;
1433
1434		offset = dev->tc_to_txq[i].offset;
1435		count = dev->tc_to_txq[i].count;
1436
1437		queue_mask |= GENMASK(offset + count - 1, offset);
1438	}
1439
1440	return queue_mask;
1441}
1442
1443static void taprio_sched_to_offload(struct net_device *dev,
1444				    struct sched_gate_list *sched,
1445				    struct tc_taprio_qopt_offload *offload,
1446				    const struct tc_taprio_caps *caps)
1447{
1448	struct sched_entry *entry;
1449	int i = 0;
1450
1451	offload->base_time = sched->base_time;
1452	offload->cycle_time = sched->cycle_time;
1453	offload->cycle_time_extension = sched->cycle_time_extension;
1454
1455	list_for_each_entry(entry, &sched->entries, list) {
1456		struct tc_taprio_sched_entry *e = &offload->entries[i];
1457
1458		e->command = entry->command;
1459		e->interval = entry->interval;
1460		if (caps->gate_mask_per_txq)
1461			e->gate_mask = tc_map_to_queue_mask(dev,
1462							    entry->gate_mask);
1463		else
1464			e->gate_mask = entry->gate_mask;
1465
1466		i++;
1467	}
1468
1469	offload->num_entries = i;
1470}
1471
1472static void taprio_detect_broken_mqprio(struct taprio_sched *q)
1473{
1474	struct net_device *dev = qdisc_dev(q->root);
1475	struct tc_taprio_caps caps;
1476
1477	qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO,
1478				 &caps, sizeof(caps));
1479
1480	q->broken_mqprio = caps.broken_mqprio;
1481	if (q->broken_mqprio)
1482		static_branch_inc(&taprio_have_broken_mqprio);
1483	else
1484		static_branch_inc(&taprio_have_working_mqprio);
1485
1486	q->detected_mqprio = true;
1487}
1488
1489static void taprio_cleanup_broken_mqprio(struct taprio_sched *q)
1490{
1491	if (!q->detected_mqprio)
1492		return;
1493
1494	if (q->broken_mqprio)
1495		static_branch_dec(&taprio_have_broken_mqprio);
1496	else
1497		static_branch_dec(&taprio_have_working_mqprio);
1498}
1499
1500static int taprio_enable_offload(struct net_device *dev,
1501				 struct taprio_sched *q,
1502				 struct sched_gate_list *sched,
1503				 struct netlink_ext_ack *extack)
1504{
1505	const struct net_device_ops *ops = dev->netdev_ops;
1506	struct tc_taprio_qopt_offload *offload;
1507	struct tc_taprio_caps caps;
1508	int tc, err = 0;
1509
1510	if (!ops->ndo_setup_tc) {
1511		NL_SET_ERR_MSG(extack,
1512			       "Device does not support taprio offload");
1513		return -EOPNOTSUPP;
1514	}
1515
1516	qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO,
1517				 &caps, sizeof(caps));
1518
1519	if (!caps.supports_queue_max_sdu) {
1520		for (tc = 0; tc < TC_MAX_QUEUE; tc++) {
1521			if (q->max_sdu[tc]) {
1522				NL_SET_ERR_MSG_MOD(extack,
1523						   "Device does not handle queueMaxSDU");
1524				return -EOPNOTSUPP;
1525			}
1526		}
1527	}
1528
1529	offload = taprio_offload_alloc(sched->num_entries);
1530	if (!offload) {
1531		NL_SET_ERR_MSG(extack,
1532			       "Not enough memory for enabling offload mode");
1533		return -ENOMEM;
1534	}
1535	offload->cmd = TAPRIO_CMD_REPLACE;
1536	offload->extack = extack;
1537	mqprio_qopt_reconstruct(dev, &offload->mqprio.qopt);
1538	offload->mqprio.extack = extack;
1539	taprio_sched_to_offload(dev, sched, offload, &caps);
1540	mqprio_fp_to_offload(q->fp, &offload->mqprio);
1541
1542	for (tc = 0; tc < TC_MAX_QUEUE; tc++)
1543		offload->max_sdu[tc] = q->max_sdu[tc];
1544
1545	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1546	if (err < 0) {
1547		NL_SET_ERR_MSG_WEAK(extack,
1548				    "Device failed to setup taprio offload");
1549		goto done;
1550	}
1551
1552	q->offloaded = true;
1553
1554done:
1555	/* The offload structure may linger around via a reference taken by the
1556	 * device driver, so clear up the netlink extack pointer so that the
1557	 * driver isn't tempted to dereference data which stopped being valid
1558	 */
1559	offload->extack = NULL;
1560	offload->mqprio.extack = NULL;
1561	taprio_offload_free(offload);
1562
1563	return err;
1564}
1565
1566static int taprio_disable_offload(struct net_device *dev,
1567				  struct taprio_sched *q,
1568				  struct netlink_ext_ack *extack)
1569{
1570	const struct net_device_ops *ops = dev->netdev_ops;
1571	struct tc_taprio_qopt_offload *offload;
1572	int err;
1573
1574	if (!q->offloaded)
1575		return 0;
1576
1577	offload = taprio_offload_alloc(0);
1578	if (!offload) {
1579		NL_SET_ERR_MSG(extack,
1580			       "Not enough memory to disable offload mode");
1581		return -ENOMEM;
1582	}
1583	offload->cmd = TAPRIO_CMD_DESTROY;
1584
1585	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1586	if (err < 0) {
1587		NL_SET_ERR_MSG(extack,
1588			       "Device failed to disable offload");
1589		goto out;
1590	}
1591
1592	q->offloaded = false;
1593
1594out:
1595	taprio_offload_free(offload);
1596
1597	return err;
1598}
1599
1600/* If full offload is enabled, the only possible clockid is the net device's
1601 * PHC. For that reason, specifying a clockid through netlink is incorrect.
1602 * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1603 * in sync with the specified clockid via a user space daemon such as phc2sys.
1604 * For both software taprio and txtime-assist, the clockid is used for the
1605 * hrtimer that advances the schedule and hence mandatory.
1606 */
1607static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1608				struct netlink_ext_ack *extack)
1609{
1610	struct taprio_sched *q = qdisc_priv(sch);
1611	struct net_device *dev = qdisc_dev(sch);
1612	int err = -EINVAL;
1613
1614	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1615		const struct ethtool_ops *ops = dev->ethtool_ops;
1616		struct ethtool_ts_info info = {
1617			.cmd = ETHTOOL_GET_TS_INFO,
1618			.phc_index = -1,
1619		};
1620
1621		if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1622			NL_SET_ERR_MSG(extack,
1623				       "The 'clockid' cannot be specified for full offload");
1624			goto out;
1625		}
1626
1627		if (ops && ops->get_ts_info)
1628			err = ops->get_ts_info(dev, &info);
1629
1630		if (err || info.phc_index < 0) {
1631			NL_SET_ERR_MSG(extack,
1632				       "Device does not have a PTP clock");
1633			err = -ENOTSUPP;
1634			goto out;
1635		}
1636	} else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1637		int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1638		enum tk_offsets tk_offset;
1639
1640		/* We only support static clockids and we don't allow
1641		 * for it to be modified after the first init.
1642		 */
1643		if (clockid < 0 ||
1644		    (q->clockid != -1 && q->clockid != clockid)) {
1645			NL_SET_ERR_MSG(extack,
1646				       "Changing the 'clockid' of a running schedule is not supported");
1647			err = -ENOTSUPP;
1648			goto out;
1649		}
1650
1651		switch (clockid) {
1652		case CLOCK_REALTIME:
1653			tk_offset = TK_OFFS_REAL;
1654			break;
1655		case CLOCK_MONOTONIC:
1656			tk_offset = TK_OFFS_MAX;
1657			break;
1658		case CLOCK_BOOTTIME:
1659			tk_offset = TK_OFFS_BOOT;
1660			break;
1661		case CLOCK_TAI:
1662			tk_offset = TK_OFFS_TAI;
1663			break;
1664		default:
1665			NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1666			err = -EINVAL;
1667			goto out;
1668		}
1669		/* This pairs with READ_ONCE() in taprio_mono_to_any */
1670		WRITE_ONCE(q->tk_offset, tk_offset);
1671
1672		q->clockid = clockid;
1673	} else {
1674		NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1675		goto out;
1676	}
1677
1678	/* Everything went ok, return success. */
1679	err = 0;
1680
1681out:
1682	return err;
1683}
1684
1685static int taprio_parse_tc_entry(struct Qdisc *sch,
1686				 struct nlattr *opt,
1687				 u32 max_sdu[TC_QOPT_MAX_QUEUE],
1688				 u32 fp[TC_QOPT_MAX_QUEUE],
1689				 unsigned long *seen_tcs,
1690				 struct netlink_ext_ack *extack)
1691{
1692	struct nlattr *tb[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { };
1693	struct net_device *dev = qdisc_dev(sch);
1694	int err, tc;
1695	u32 val;
1696
1697	err = nla_parse_nested(tb, TCA_TAPRIO_TC_ENTRY_MAX, opt,
1698			       taprio_tc_policy, extack);
1699	if (err < 0)
1700		return err;
1701
1702	if (!tb[TCA_TAPRIO_TC_ENTRY_INDEX]) {
1703		NL_SET_ERR_MSG_MOD(extack, "TC entry index missing");
1704		return -EINVAL;
1705	}
1706
1707	tc = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]);
1708	if (tc >= TC_QOPT_MAX_QUEUE) {
1709		NL_SET_ERR_MSG_MOD(extack, "TC entry index out of range");
1710		return -ERANGE;
1711	}
1712
1713	if (*seen_tcs & BIT(tc)) {
1714		NL_SET_ERR_MSG_MOD(extack, "Duplicate TC entry");
1715		return -EINVAL;
1716	}
1717
1718	*seen_tcs |= BIT(tc);
1719
1720	if (tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]) {
1721		val = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]);
1722		if (val > dev->max_mtu) {
1723			NL_SET_ERR_MSG_MOD(extack, "TC max SDU exceeds device max MTU");
1724			return -ERANGE;
1725		}
1726
1727		max_sdu[tc] = val;
1728	}
1729
1730	if (tb[TCA_TAPRIO_TC_ENTRY_FP])
1731		fp[tc] = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_FP]);
1732
1733	return 0;
1734}
1735
1736static int taprio_parse_tc_entries(struct Qdisc *sch,
1737				   struct nlattr *opt,
1738				   struct netlink_ext_ack *extack)
1739{
1740	struct taprio_sched *q = qdisc_priv(sch);
1741	struct net_device *dev = qdisc_dev(sch);
1742	u32 max_sdu[TC_QOPT_MAX_QUEUE];
1743	bool have_preemption = false;
1744	unsigned long seen_tcs = 0;
1745	u32 fp[TC_QOPT_MAX_QUEUE];
1746	struct nlattr *n;
1747	int tc, rem;
1748	int err = 0;
1749
1750	for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) {
1751		max_sdu[tc] = q->max_sdu[tc];
1752		fp[tc] = q->fp[tc];
1753	}
1754
1755	nla_for_each_nested(n, opt, rem) {
1756		if (nla_type(n) != TCA_TAPRIO_ATTR_TC_ENTRY)
1757			continue;
1758
1759		err = taprio_parse_tc_entry(sch, n, max_sdu, fp, &seen_tcs,
1760					    extack);
1761		if (err)
1762			return err;
1763	}
1764
1765	for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) {
1766		q->max_sdu[tc] = max_sdu[tc];
1767		q->fp[tc] = fp[tc];
1768		if (fp[tc] != TC_FP_EXPRESS)
1769			have_preemption = true;
1770	}
1771
1772	if (have_preemption) {
1773		if (!FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1774			NL_SET_ERR_MSG(extack,
1775				       "Preemption only supported with full offload");
1776			return -EOPNOTSUPP;
1777		}
1778
1779		if (!ethtool_dev_mm_supported(dev)) {
1780			NL_SET_ERR_MSG(extack,
1781				       "Device does not support preemption");
1782			return -EOPNOTSUPP;
1783		}
1784	}
1785
1786	return err;
1787}
1788
1789static int taprio_mqprio_cmp(const struct net_device *dev,
1790			     const struct tc_mqprio_qopt *mqprio)
1791{
1792	int i;
1793
1794	if (!mqprio || mqprio->num_tc != dev->num_tc)
1795		return -1;
1796
1797	for (i = 0; i < mqprio->num_tc; i++)
1798		if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1799		    dev->tc_to_txq[i].offset != mqprio->offset[i])
1800			return -1;
1801
1802	for (i = 0; i <= TC_BITMASK; i++)
1803		if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1804			return -1;
1805
1806	return 0;
1807}
1808
1809static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1810			 struct netlink_ext_ack *extack)
1811{
1812	struct qdisc_size_table *stab = rtnl_dereference(sch->stab);
1813	struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1814	struct sched_gate_list *oper, *admin, *new_admin;
1815	struct taprio_sched *q = qdisc_priv(sch);
1816	struct net_device *dev = qdisc_dev(sch);
1817	struct tc_mqprio_qopt *mqprio = NULL;
1818	unsigned long flags;
1819	u32 taprio_flags;
1820	ktime_t start;
1821	int i, err;
1822
1823	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1824					  taprio_policy, extack);
1825	if (err < 0)
1826		return err;
1827
1828	if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1829		mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1830
1831	/* The semantics of the 'flags' argument in relation to 'change()'
1832	 * requests, are interpreted following two rules (which are applied in
1833	 * this order): (1) an omitted 'flags' argument is interpreted as
1834	 * zero; (2) the 'flags' of a "running" taprio instance cannot be
1835	 * changed.
1836	 */
1837	taprio_flags = tb[TCA_TAPRIO_ATTR_FLAGS] ? nla_get_u32(tb[TCA_TAPRIO_ATTR_FLAGS]) : 0;
1838
1839	/* txtime-assist and full offload are mutually exclusive */
1840	if ((taprio_flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
1841	    (taprio_flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) {
1842		NL_SET_ERR_MSG_ATTR(extack, tb[TCA_TAPRIO_ATTR_FLAGS],
1843				    "TXTIME_ASSIST and FULL_OFFLOAD are mutually exclusive");
1844		return -EINVAL;
1845	}
1846
1847	if (q->flags != TAPRIO_FLAGS_INVALID && q->flags != taprio_flags) {
1848		NL_SET_ERR_MSG_MOD(extack,
1849				   "Changing 'flags' of a running schedule is not supported");
1850		return -EOPNOTSUPP;
1851	}
1852	q->flags = taprio_flags;
1853
1854	err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1855	if (err < 0)
1856		return err;
1857
1858	err = taprio_parse_tc_entries(sch, opt, extack);
1859	if (err)
1860		return err;
1861
1862	new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1863	if (!new_admin) {
1864		NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1865		return -ENOMEM;
1866	}
1867	INIT_LIST_HEAD(&new_admin->entries);
1868
1869	oper = rtnl_dereference(q->oper_sched);
1870	admin = rtnl_dereference(q->admin_sched);
1871
1872	/* no changes - no new mqprio settings */
1873	if (!taprio_mqprio_cmp(dev, mqprio))
1874		mqprio = NULL;
1875
1876	if (mqprio && (oper || admin)) {
1877		NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1878		err = -ENOTSUPP;
1879		goto free_sched;
1880	}
1881
1882	if (mqprio) {
1883		err = netdev_set_num_tc(dev, mqprio->num_tc);
1884		if (err)
1885			goto free_sched;
1886		for (i = 0; i < mqprio->num_tc; i++) {
1887			netdev_set_tc_queue(dev, i,
1888					    mqprio->count[i],
1889					    mqprio->offset[i]);
1890			q->cur_txq[i] = mqprio->offset[i];
1891		}
1892
1893		/* Always use supplied priority mappings */
1894		for (i = 0; i <= TC_BITMASK; i++)
1895			netdev_set_prio_tc_map(dev, i,
1896					       mqprio->prio_tc_map[i]);
1897	}
1898
1899	err = parse_taprio_schedule(q, tb, new_admin, extack);
1900	if (err < 0)
1901		goto free_sched;
1902
1903	if (new_admin->num_entries == 0) {
1904		NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1905		err = -EINVAL;
1906		goto free_sched;
1907	}
1908
1909	err = taprio_parse_clockid(sch, tb, extack);
1910	if (err < 0)
1911		goto free_sched;
1912
1913	taprio_set_picos_per_byte(dev, q);
1914	taprio_update_queue_max_sdu(q, new_admin, stab);
1915
1916	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1917		err = taprio_enable_offload(dev, q, new_admin, extack);
1918	else
1919		err = taprio_disable_offload(dev, q, extack);
1920	if (err)
1921		goto free_sched;
1922
1923	/* Protects against enqueue()/dequeue() */
1924	spin_lock_bh(qdisc_lock(sch));
1925
1926	if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1927		if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1928			NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1929			err = -EINVAL;
1930			goto unlock;
1931		}
1932
1933		q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1934	}
1935
1936	if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1937	    !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1938	    !hrtimer_active(&q->advance_timer)) {
1939		hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1940		q->advance_timer.function = advance_sched;
1941	}
1942
1943	err = taprio_get_start_time(sch, new_admin, &start);
1944	if (err < 0) {
1945		NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1946		goto unlock;
1947	}
1948
1949	setup_txtime(q, new_admin, start);
1950
1951	if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1952		if (!oper) {
1953			rcu_assign_pointer(q->oper_sched, new_admin);
1954			err = 0;
1955			new_admin = NULL;
1956			goto unlock;
1957		}
1958
1959		rcu_assign_pointer(q->admin_sched, new_admin);
1960		if (admin)
1961			call_rcu(&admin->rcu, taprio_free_sched_cb);
1962	} else {
1963		setup_first_end_time(q, new_admin, start);
1964
1965		/* Protects against advance_sched() */
1966		spin_lock_irqsave(&q->current_entry_lock, flags);
1967
1968		taprio_start_sched(sch, start, new_admin);
1969
1970		rcu_assign_pointer(q->admin_sched, new_admin);
1971		if (admin)
1972			call_rcu(&admin->rcu, taprio_free_sched_cb);
1973
1974		spin_unlock_irqrestore(&q->current_entry_lock, flags);
1975
1976		if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1977			taprio_offload_config_changed(q);
1978	}
1979
1980	new_admin = NULL;
1981	err = 0;
1982
1983	if (!stab)
1984		NL_SET_ERR_MSG_MOD(extack,
1985				   "Size table not specified, frame length estimations may be inaccurate");
1986
1987unlock:
1988	spin_unlock_bh(qdisc_lock(sch));
1989
1990free_sched:
1991	if (new_admin)
1992		call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1993
1994	return err;
1995}
1996
1997static void taprio_reset(struct Qdisc *sch)
1998{
1999	struct taprio_sched *q = qdisc_priv(sch);
2000	struct net_device *dev = qdisc_dev(sch);
2001	int i;
2002
2003	hrtimer_cancel(&q->advance_timer);
2004
2005	if (q->qdiscs) {
2006		for (i = 0; i < dev->num_tx_queues; i++)
2007			if (q->qdiscs[i])
2008				qdisc_reset(q->qdiscs[i]);
2009	}
2010}
2011
2012static void taprio_destroy(struct Qdisc *sch)
2013{
2014	struct taprio_sched *q = qdisc_priv(sch);
2015	struct net_device *dev = qdisc_dev(sch);
2016	struct sched_gate_list *oper, *admin;
2017	unsigned int i;
2018
2019	list_del(&q->taprio_list);
2020
2021	/* Note that taprio_reset() might not be called if an error
2022	 * happens in qdisc_create(), after taprio_init() has been called.
2023	 */
2024	hrtimer_cancel(&q->advance_timer);
2025	qdisc_synchronize(sch);
2026
2027	taprio_disable_offload(dev, q, NULL);
2028
2029	if (q->qdiscs) {
2030		for (i = 0; i < dev->num_tx_queues; i++)
2031			qdisc_put(q->qdiscs[i]);
2032
2033		kfree(q->qdiscs);
2034	}
2035	q->qdiscs = NULL;
2036
2037	netdev_reset_tc(dev);
2038
2039	oper = rtnl_dereference(q->oper_sched);
2040	admin = rtnl_dereference(q->admin_sched);
2041
2042	if (oper)
2043		call_rcu(&oper->rcu, taprio_free_sched_cb);
2044
2045	if (admin)
2046		call_rcu(&admin->rcu, taprio_free_sched_cb);
2047
2048	taprio_cleanup_broken_mqprio(q);
2049}
2050
2051static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
2052		       struct netlink_ext_ack *extack)
2053{
2054	struct taprio_sched *q = qdisc_priv(sch);
2055	struct net_device *dev = qdisc_dev(sch);
2056	int i, tc;
2057
2058	spin_lock_init(&q->current_entry_lock);
2059
2060	hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
2061	q->advance_timer.function = advance_sched;
2062
2063	q->root = sch;
2064
2065	/* We only support static clockids. Use an invalid value as default
2066	 * and get the valid one on taprio_change().
2067	 */
2068	q->clockid = -1;
2069	q->flags = TAPRIO_FLAGS_INVALID;
2070
2071	list_add(&q->taprio_list, &taprio_list);
2072
2073	if (sch->parent != TC_H_ROOT) {
2074		NL_SET_ERR_MSG_MOD(extack, "Can only be attached as root qdisc");
2075		return -EOPNOTSUPP;
2076	}
2077
2078	if (!netif_is_multiqueue(dev)) {
2079		NL_SET_ERR_MSG_MOD(extack, "Multi-queue device is required");
2080		return -EOPNOTSUPP;
2081	}
2082
2083	q->qdiscs = kcalloc(dev->num_tx_queues, sizeof(q->qdiscs[0]),
2084			    GFP_KERNEL);
2085	if (!q->qdiscs)
2086		return -ENOMEM;
2087
2088	if (!opt)
2089		return -EINVAL;
2090
2091	for (i = 0; i < dev->num_tx_queues; i++) {
2092		struct netdev_queue *dev_queue;
2093		struct Qdisc *qdisc;
2094
2095		dev_queue = netdev_get_tx_queue(dev, i);
2096		qdisc = qdisc_create_dflt(dev_queue,
2097					  &pfifo_qdisc_ops,
2098					  TC_H_MAKE(TC_H_MAJ(sch->handle),
2099						    TC_H_MIN(i + 1)),
2100					  extack);
2101		if (!qdisc)
2102			return -ENOMEM;
2103
2104		if (i < dev->real_num_tx_queues)
2105			qdisc_hash_add(qdisc, false);
2106
2107		q->qdiscs[i] = qdisc;
2108	}
2109
2110	for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++)
2111		q->fp[tc] = TC_FP_EXPRESS;
2112
2113	taprio_detect_broken_mqprio(q);
2114
2115	return taprio_change(sch, opt, extack);
2116}
2117
2118static void taprio_attach(struct Qdisc *sch)
2119{
2120	struct taprio_sched *q = qdisc_priv(sch);
2121	struct net_device *dev = qdisc_dev(sch);
2122	unsigned int ntx;
2123
2124	/* Attach underlying qdisc */
2125	for (ntx = 0; ntx < dev->num_tx_queues; ntx++) {
2126		struct netdev_queue *dev_queue = netdev_get_tx_queue(dev, ntx);
2127		struct Qdisc *old, *dev_queue_qdisc;
2128
2129		if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
2130			struct Qdisc *qdisc = q->qdiscs[ntx];
2131
2132			/* In offload mode, the root taprio qdisc is bypassed
2133			 * and the netdev TX queues see the children directly
2134			 */
2135			qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
2136			dev_queue_qdisc = qdisc;
2137		} else {
2138			/* In software mode, attach the root taprio qdisc
2139			 * to all netdev TX queues, so that dev_qdisc_enqueue()
2140			 * goes through taprio_enqueue().
2141			 */
2142			dev_queue_qdisc = sch;
2143		}
2144		old = dev_graft_qdisc(dev_queue, dev_queue_qdisc);
2145		/* The qdisc's refcount requires to be elevated once
2146		 * for each netdev TX queue it is grafted onto
2147		 */
2148		qdisc_refcount_inc(dev_queue_qdisc);
2149		if (old)
2150			qdisc_put(old);
2151	}
2152}
2153
2154static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
2155					     unsigned long cl)
2156{
2157	struct net_device *dev = qdisc_dev(sch);
2158	unsigned long ntx = cl - 1;
2159
2160	if (ntx >= dev->num_tx_queues)
2161		return NULL;
2162
2163	return netdev_get_tx_queue(dev, ntx);
2164}
2165
2166static int taprio_graft(struct Qdisc *sch, unsigned long cl,
2167			struct Qdisc *new, struct Qdisc **old,
2168			struct netlink_ext_ack *extack)
2169{
2170	struct taprio_sched *q = qdisc_priv(sch);
2171	struct net_device *dev = qdisc_dev(sch);
2172	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
2173
2174	if (!dev_queue)
2175		return -EINVAL;
2176
2177	if (dev->flags & IFF_UP)
2178		dev_deactivate(dev);
2179
2180	/* In offload mode, the child Qdisc is directly attached to the netdev
2181	 * TX queue, and thus, we need to keep its refcount elevated in order
2182	 * to counteract qdisc_graft()'s call to qdisc_put() once per TX queue.
2183	 * However, save the reference to the new qdisc in the private array in
2184	 * both software and offload cases, to have an up-to-date reference to
2185	 * our children.
2186	 */
2187	*old = q->qdiscs[cl - 1];
2188	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
2189		WARN_ON_ONCE(dev_graft_qdisc(dev_queue, new) != *old);
2190		if (new)
2191			qdisc_refcount_inc(new);
2192		if (*old)
2193			qdisc_put(*old);
2194	}
2195
2196	q->qdiscs[cl - 1] = new;
2197	if (new)
2198		new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
2199
2200	if (dev->flags & IFF_UP)
2201		dev_activate(dev);
2202
2203	return 0;
2204}
2205
2206static int dump_entry(struct sk_buff *msg,
2207		      const struct sched_entry *entry)
2208{
2209	struct nlattr *item;
2210
2211	item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
2212	if (!item)
2213		return -ENOSPC;
2214
2215	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
2216		goto nla_put_failure;
2217
2218	if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
2219		goto nla_put_failure;
2220
2221	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
2222			entry->gate_mask))
2223		goto nla_put_failure;
2224
2225	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
2226			entry->interval))
2227		goto nla_put_failure;
2228
2229	return nla_nest_end(msg, item);
2230
2231nla_put_failure:
2232	nla_nest_cancel(msg, item);
2233	return -1;
2234}
2235
2236static int dump_schedule(struct sk_buff *msg,
2237			 const struct sched_gate_list *root)
2238{
2239	struct nlattr *entry_list;
2240	struct sched_entry *entry;
2241
2242	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
2243			root->base_time, TCA_TAPRIO_PAD))
2244		return -1;
2245
2246	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
2247			root->cycle_time, TCA_TAPRIO_PAD))
2248		return -1;
2249
2250	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
2251			root->cycle_time_extension, TCA_TAPRIO_PAD))
2252		return -1;
2253
2254	entry_list = nla_nest_start_noflag(msg,
2255					   TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
2256	if (!entry_list)
2257		goto error_nest;
2258
2259	list_for_each_entry(entry, &root->entries, list) {
2260		if (dump_entry(msg, entry) < 0)
2261			goto error_nest;
2262	}
2263
2264	nla_nest_end(msg, entry_list);
2265	return 0;
2266
2267error_nest:
2268	nla_nest_cancel(msg, entry_list);
2269	return -1;
2270}
2271
2272static int taprio_dump_tc_entries(struct sk_buff *skb,
2273				  struct taprio_sched *q,
2274				  struct sched_gate_list *sched)
2275{
2276	struct nlattr *n;
2277	int tc;
2278
2279	for (tc = 0; tc < TC_MAX_QUEUE; tc++) {
2280		n = nla_nest_start(skb, TCA_TAPRIO_ATTR_TC_ENTRY);
2281		if (!n)
2282			return -EMSGSIZE;
2283
2284		if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_INDEX, tc))
2285			goto nla_put_failure;
2286
2287		if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_MAX_SDU,
2288				sched->max_sdu[tc]))
2289			goto nla_put_failure;
2290
2291		if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_FP, q->fp[tc]))
2292			goto nla_put_failure;
2293
2294		nla_nest_end(skb, n);
2295	}
2296
2297	return 0;
2298
2299nla_put_failure:
2300	nla_nest_cancel(skb, n);
2301	return -EMSGSIZE;
2302}
2303
2304static int taprio_put_stat(struct sk_buff *skb, u64 val, u16 attrtype)
2305{
2306	if (val == TAPRIO_STAT_NOT_SET)
2307		return 0;
2308	if (nla_put_u64_64bit(skb, attrtype, val, TCA_TAPRIO_OFFLOAD_STATS_PAD))
2309		return -EMSGSIZE;
2310	return 0;
2311}
2312
2313static int taprio_dump_xstats(struct Qdisc *sch, struct gnet_dump *d,
2314			      struct tc_taprio_qopt_offload *offload,
2315			      struct tc_taprio_qopt_stats *stats)
2316{
2317	struct net_device *dev = qdisc_dev(sch);
2318	const struct net_device_ops *ops;
2319	struct sk_buff *skb = d->skb;
2320	struct nlattr *xstats;
2321	int err;
2322
2323	ops = qdisc_dev(sch)->netdev_ops;
2324
2325	/* FIXME I could use qdisc_offload_dump_helper(), but that messes
2326	 * with sch->flags depending on whether the device reports taprio
2327	 * stats, and I'm not sure whether that's a good idea, considering
2328	 * that stats are optional to the offload itself
2329	 */
2330	if (!ops->ndo_setup_tc)
2331		return 0;
2332
2333	memset(stats, 0xff, sizeof(*stats));
2334
2335	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
2336	if (err == -EOPNOTSUPP)
2337		return 0;
2338	if (err)
2339		return err;
2340
2341	xstats = nla_nest_start(skb, TCA_STATS_APP);
2342	if (!xstats)
2343		goto err;
2344
2345	if (taprio_put_stat(skb, stats->window_drops,
2346			    TCA_TAPRIO_OFFLOAD_STATS_WINDOW_DROPS) ||
2347	    taprio_put_stat(skb, stats->tx_overruns,
2348			    TCA_TAPRIO_OFFLOAD_STATS_TX_OVERRUNS))
2349		goto err_cancel;
2350
2351	nla_nest_end(skb, xstats);
2352
2353	return 0;
2354
2355err_cancel:
2356	nla_nest_cancel(skb, xstats);
2357err:
2358	return -EMSGSIZE;
2359}
2360
2361static int taprio_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
2362{
2363	struct tc_taprio_qopt_offload offload = {
2364		.cmd = TAPRIO_CMD_STATS,
2365	};
2366
2367	return taprio_dump_xstats(sch, d, &offload, &offload.stats);
2368}
2369
2370static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
2371{
2372	struct taprio_sched *q = qdisc_priv(sch);
2373	struct net_device *dev = qdisc_dev(sch);
2374	struct sched_gate_list *oper, *admin;
2375	struct tc_mqprio_qopt opt = { 0 };
2376	struct nlattr *nest, *sched_nest;
2377
2378	oper = rtnl_dereference(q->oper_sched);
2379	admin = rtnl_dereference(q->admin_sched);
2380
2381	mqprio_qopt_reconstruct(dev, &opt);
2382
2383	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
2384	if (!nest)
2385		goto start_error;
2386
2387	if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
2388		goto options_error;
2389
2390	if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
2391	    nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
2392		goto options_error;
2393
2394	if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
2395		goto options_error;
2396
2397	if (q->txtime_delay &&
2398	    nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
2399		goto options_error;
2400
2401	if (oper && taprio_dump_tc_entries(skb, q, oper))
2402		goto options_error;
2403
2404	if (oper && dump_schedule(skb, oper))
2405		goto options_error;
2406
2407	if (!admin)
2408		goto done;
2409
2410	sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
2411	if (!sched_nest)
2412		goto options_error;
2413
2414	if (dump_schedule(skb, admin))
2415		goto admin_error;
2416
2417	nla_nest_end(skb, sched_nest);
2418
2419done:
2420	return nla_nest_end(skb, nest);
2421
2422admin_error:
2423	nla_nest_cancel(skb, sched_nest);
2424
2425options_error:
2426	nla_nest_cancel(skb, nest);
2427
2428start_error:
2429	return -ENOSPC;
2430}
2431
2432static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
2433{
2434	struct taprio_sched *q = qdisc_priv(sch);
2435	struct net_device *dev = qdisc_dev(sch);
2436	unsigned int ntx = cl - 1;
2437
2438	if (ntx >= dev->num_tx_queues)
2439		return NULL;
2440
2441	return q->qdiscs[ntx];
2442}
2443
2444static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
2445{
2446	unsigned int ntx = TC_H_MIN(classid);
2447
2448	if (!taprio_queue_get(sch, ntx))
2449		return 0;
2450	return ntx;
2451}
2452
2453static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
2454			     struct sk_buff *skb, struct tcmsg *tcm)
2455{
2456	struct Qdisc *child = taprio_leaf(sch, cl);
2457
2458	tcm->tcm_parent = TC_H_ROOT;
2459	tcm->tcm_handle |= TC_H_MIN(cl);
2460	tcm->tcm_info = child->handle;
2461
2462	return 0;
2463}
2464
2465static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
2466				   struct gnet_dump *d)
2467	__releases(d->lock)
2468	__acquires(d->lock)
2469{
2470	struct Qdisc *child = taprio_leaf(sch, cl);
2471	struct tc_taprio_qopt_offload offload = {
2472		.cmd = TAPRIO_CMD_QUEUE_STATS,
2473		.queue_stats = {
2474			.queue = cl - 1,
2475		},
2476	};
2477
2478	if (gnet_stats_copy_basic(d, NULL, &child->bstats, true) < 0 ||
2479	    qdisc_qstats_copy(d, child) < 0)
2480		return -1;
2481
2482	return taprio_dump_xstats(sch, d, &offload, &offload.queue_stats.stats);
2483}
2484
2485static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
2486{
2487	struct net_device *dev = qdisc_dev(sch);
2488	unsigned long ntx;
2489
2490	if (arg->stop)
2491		return;
2492
2493	arg->count = arg->skip;
2494	for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
2495		if (!tc_qdisc_stats_dump(sch, ntx + 1, arg))
2496			break;
2497	}
2498}
2499
2500static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
2501						struct tcmsg *tcm)
2502{
2503	return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
2504}
2505
2506static const struct Qdisc_class_ops taprio_class_ops = {
2507	.graft		= taprio_graft,
2508	.leaf		= taprio_leaf,
2509	.find		= taprio_find,
2510	.walk		= taprio_walk,
2511	.dump		= taprio_dump_class,
2512	.dump_stats	= taprio_dump_class_stats,
2513	.select_queue	= taprio_select_queue,
2514};
2515
2516static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
2517	.cl_ops		= &taprio_class_ops,
2518	.id		= "taprio",
2519	.priv_size	= sizeof(struct taprio_sched),
2520	.init		= taprio_init,
2521	.change		= taprio_change,
2522	.destroy	= taprio_destroy,
2523	.reset		= taprio_reset,
2524	.attach		= taprio_attach,
2525	.peek		= taprio_peek,
2526	.dequeue	= taprio_dequeue,
2527	.enqueue	= taprio_enqueue,
2528	.dump		= taprio_dump,
2529	.dump_stats	= taprio_dump_stats,
2530	.owner		= THIS_MODULE,
2531};
2532MODULE_ALIAS_NET_SCH("taprio");
2533
2534static struct notifier_block taprio_device_notifier = {
2535	.notifier_call = taprio_dev_notifier,
2536};
2537
2538static int __init taprio_module_init(void)
2539{
2540	int err = register_netdevice_notifier(&taprio_device_notifier);
2541
2542	if (err)
2543		return err;
2544
2545	return register_qdisc(&taprio_qdisc_ops);
2546}
2547
2548static void __exit taprio_module_exit(void)
2549{
2550	unregister_qdisc(&taprio_qdisc_ops);
2551	unregister_netdevice_notifier(&taprio_device_notifier);
2552}
2553
2554module_init(taprio_module_init);
2555module_exit(taprio_module_exit);
2556MODULE_LICENSE("GPL");
2557MODULE_DESCRIPTION("Time Aware Priority qdisc");
2558