1/*
2 * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 *     Redistribution and use in source and binary forms, with or
11 *     without modification, are permitted provided that the following
12 *     conditions are met:
13 *
14 *      - Redistributions of source code must retain the above
15 *        copyright notice, this list of conditions and the following
16 *        disclaimer.
17 *
18 *      - Redistributions in binary form must reproduce the above
19 *        copyright notice, this list of conditions and the following
20 *        disclaimer in the documentation and/or other materials
21 *        provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33#include <linux/kernel.h>
34#include <linux/moduleparam.h>
35#include <linux/gfp.h>
36#include <net/sock.h>
37#include <linux/in.h>
38#include <linux/list.h>
39#include <linux/ratelimit.h>
40#include <linux/export.h>
41#include <linux/sizes.h>
42
43#include "rds.h"
44
45/* When transmitting messages in rds_send_xmit, we need to emerge from
46 * time to time and briefly release the CPU. Otherwise the softlock watchdog
47 * will kick our shin.
48 * Also, it seems fairer to not let one busy connection stall all the
49 * others.
50 *
51 * send_batch_count is the number of times we'll loop in send_xmit. Setting
52 * it to 0 will restore the old behavior (where we looped until we had
53 * drained the queue).
54 */
55static int send_batch_count = SZ_1K;
56module_param(send_batch_count, int, 0444);
57MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
58
59static void rds_send_remove_from_sock(struct list_head *messages, int status);
60
61/*
62 * Reset the send state.  Callers must ensure that this doesn't race with
63 * rds_send_xmit().
64 */
65void rds_send_path_reset(struct rds_conn_path *cp)
66{
67	struct rds_message *rm, *tmp;
68	unsigned long flags;
69
70	if (cp->cp_xmit_rm) {
71		rm = cp->cp_xmit_rm;
72		cp->cp_xmit_rm = NULL;
73		/* Tell the user the RDMA op is no longer mapped by the
74		 * transport. This isn't entirely true (it's flushed out
75		 * independently) but as the connection is down, there's
76		 * no ongoing RDMA to/from that memory */
77		rds_message_unmapped(rm);
78		rds_message_put(rm);
79	}
80
81	cp->cp_xmit_sg = 0;
82	cp->cp_xmit_hdr_off = 0;
83	cp->cp_xmit_data_off = 0;
84	cp->cp_xmit_atomic_sent = 0;
85	cp->cp_xmit_rdma_sent = 0;
86	cp->cp_xmit_data_sent = 0;
87
88	cp->cp_conn->c_map_queued = 0;
89
90	cp->cp_unacked_packets = rds_sysctl_max_unacked_packets;
91	cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes;
92
93	/* Mark messages as retransmissions, and move them to the send q */
94	spin_lock_irqsave(&cp->cp_lock, flags);
95	list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
96		set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
97		set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
98	}
99	list_splice_init(&cp->cp_retrans, &cp->cp_send_queue);
100	spin_unlock_irqrestore(&cp->cp_lock, flags);
101}
102EXPORT_SYMBOL_GPL(rds_send_path_reset);
103
104static int acquire_in_xmit(struct rds_conn_path *cp)
105{
106	return test_and_set_bit_lock(RDS_IN_XMIT, &cp->cp_flags) == 0;
107}
108
109static void release_in_xmit(struct rds_conn_path *cp)
110{
111	clear_bit_unlock(RDS_IN_XMIT, &cp->cp_flags);
112	/*
113	 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
114	 * hot path and finding waiters is very rare.  We don't want to walk
115	 * the system-wide hashed waitqueue buckets in the fast path only to
116	 * almost never find waiters.
117	 */
118	if (waitqueue_active(&cp->cp_waitq))
119		wake_up_all(&cp->cp_waitq);
120}
121
122/*
123 * We're making the conscious trade-off here to only send one message
124 * down the connection at a time.
125 *   Pro:
126 *      - tx queueing is a simple fifo list
127 *   	- reassembly is optional and easily done by transports per conn
128 *      - no per flow rx lookup at all, straight to the socket
129 *   	- less per-frag memory and wire overhead
130 *   Con:
131 *      - queued acks can be delayed behind large messages
132 *   Depends:
133 *      - small message latency is higher behind queued large messages
134 *      - large message latency isn't starved by intervening small sends
135 */
136int rds_send_xmit(struct rds_conn_path *cp)
137{
138	struct rds_connection *conn = cp->cp_conn;
139	struct rds_message *rm;
140	unsigned long flags;
141	unsigned int tmp;
142	struct scatterlist *sg;
143	int ret = 0;
144	LIST_HEAD(to_be_dropped);
145	int batch_count;
146	unsigned long send_gen = 0;
147	int same_rm = 0;
148
149restart:
150	batch_count = 0;
151
152	/*
153	 * sendmsg calls here after having queued its message on the send
154	 * queue.  We only have one task feeding the connection at a time.  If
155	 * another thread is already feeding the queue then we back off.  This
156	 * avoids blocking the caller and trading per-connection data between
157	 * caches per message.
158	 */
159	if (!acquire_in_xmit(cp)) {
160		rds_stats_inc(s_send_lock_contention);
161		ret = -ENOMEM;
162		goto out;
163	}
164
165	if (rds_destroy_pending(cp->cp_conn)) {
166		release_in_xmit(cp);
167		ret = -ENETUNREACH; /* dont requeue send work */
168		goto out;
169	}
170
171	/*
172	 * we record the send generation after doing the xmit acquire.
173	 * if someone else manages to jump in and do some work, we'll use
174	 * this to avoid a goto restart farther down.
175	 *
176	 * The acquire_in_xmit() check above ensures that only one
177	 * caller can increment c_send_gen at any time.
178	 */
179	send_gen = READ_ONCE(cp->cp_send_gen) + 1;
180	WRITE_ONCE(cp->cp_send_gen, send_gen);
181
182	/*
183	 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
184	 * we do the opposite to avoid races.
185	 */
186	if (!rds_conn_path_up(cp)) {
187		release_in_xmit(cp);
188		ret = 0;
189		goto out;
190	}
191
192	if (conn->c_trans->xmit_path_prepare)
193		conn->c_trans->xmit_path_prepare(cp);
194
195	/*
196	 * spin trying to push headers and data down the connection until
197	 * the connection doesn't make forward progress.
198	 */
199	while (1) {
200
201		rm = cp->cp_xmit_rm;
202
203		if (!rm) {
204			same_rm = 0;
205		} else {
206			same_rm++;
207			if (same_rm >= 4096) {
208				rds_stats_inc(s_send_stuck_rm);
209				ret = -EAGAIN;
210				break;
211			}
212		}
213
214		/*
215		 * If between sending messages, we can send a pending congestion
216		 * map update.
217		 */
218		if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
219			rm = rds_cong_update_alloc(conn);
220			if (IS_ERR(rm)) {
221				ret = PTR_ERR(rm);
222				break;
223			}
224			rm->data.op_active = 1;
225			rm->m_inc.i_conn_path = cp;
226			rm->m_inc.i_conn = cp->cp_conn;
227
228			cp->cp_xmit_rm = rm;
229		}
230
231		/*
232		 * If not already working on one, grab the next message.
233		 *
234		 * cp_xmit_rm holds a ref while we're sending this message down
235		 * the connction.  We can use this ref while holding the
236		 * send_sem.. rds_send_reset() is serialized with it.
237		 */
238		if (!rm) {
239			unsigned int len;
240
241			batch_count++;
242
243			/* we want to process as big a batch as we can, but
244			 * we also want to avoid softlockups.  If we've been
245			 * through a lot of messages, lets back off and see
246			 * if anyone else jumps in
247			 */
248			if (batch_count >= send_batch_count)
249				goto over_batch;
250
251			spin_lock_irqsave(&cp->cp_lock, flags);
252
253			if (!list_empty(&cp->cp_send_queue)) {
254				rm = list_entry(cp->cp_send_queue.next,
255						struct rds_message,
256						m_conn_item);
257				rds_message_addref(rm);
258
259				/*
260				 * Move the message from the send queue to the retransmit
261				 * list right away.
262				 */
263				list_move_tail(&rm->m_conn_item,
264					       &cp->cp_retrans);
265			}
266
267			spin_unlock_irqrestore(&cp->cp_lock, flags);
268
269			if (!rm)
270				break;
271
272			/* Unfortunately, the way Infiniband deals with
273			 * RDMA to a bad MR key is by moving the entire
274			 * queue pair to error state. We could possibly
275			 * recover from that, but right now we drop the
276			 * connection.
277			 * Therefore, we never retransmit messages with RDMA ops.
278			 */
279			if (test_bit(RDS_MSG_FLUSH, &rm->m_flags) ||
280			    (rm->rdma.op_active &&
281			    test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))) {
282				spin_lock_irqsave(&cp->cp_lock, flags);
283				if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
284					list_move(&rm->m_conn_item, &to_be_dropped);
285				spin_unlock_irqrestore(&cp->cp_lock, flags);
286				continue;
287			}
288
289			/* Require an ACK every once in a while */
290			len = ntohl(rm->m_inc.i_hdr.h_len);
291			if (cp->cp_unacked_packets == 0 ||
292			    cp->cp_unacked_bytes < len) {
293				set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
294
295				cp->cp_unacked_packets =
296					rds_sysctl_max_unacked_packets;
297				cp->cp_unacked_bytes =
298					rds_sysctl_max_unacked_bytes;
299				rds_stats_inc(s_send_ack_required);
300			} else {
301				cp->cp_unacked_bytes -= len;
302				cp->cp_unacked_packets--;
303			}
304
305			cp->cp_xmit_rm = rm;
306		}
307
308		/* The transport either sends the whole rdma or none of it */
309		if (rm->rdma.op_active && !cp->cp_xmit_rdma_sent) {
310			rm->m_final_op = &rm->rdma;
311			/* The transport owns the mapped memory for now.
312			 * You can't unmap it while it's on the send queue
313			 */
314			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
315			ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
316			if (ret) {
317				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
318				wake_up_interruptible(&rm->m_flush_wait);
319				break;
320			}
321			cp->cp_xmit_rdma_sent = 1;
322
323		}
324
325		if (rm->atomic.op_active && !cp->cp_xmit_atomic_sent) {
326			rm->m_final_op = &rm->atomic;
327			/* The transport owns the mapped memory for now.
328			 * You can't unmap it while it's on the send queue
329			 */
330			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
331			ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
332			if (ret) {
333				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
334				wake_up_interruptible(&rm->m_flush_wait);
335				break;
336			}
337			cp->cp_xmit_atomic_sent = 1;
338
339		}
340
341		/*
342		 * A number of cases require an RDS header to be sent
343		 * even if there is no data.
344		 * We permit 0-byte sends; rds-ping depends on this.
345		 * However, if there are exclusively attached silent ops,
346		 * we skip the hdr/data send, to enable silent operation.
347		 */
348		if (rm->data.op_nents == 0) {
349			int ops_present;
350			int all_ops_are_silent = 1;
351
352			ops_present = (rm->atomic.op_active || rm->rdma.op_active);
353			if (rm->atomic.op_active && !rm->atomic.op_silent)
354				all_ops_are_silent = 0;
355			if (rm->rdma.op_active && !rm->rdma.op_silent)
356				all_ops_are_silent = 0;
357
358			if (ops_present && all_ops_are_silent
359			    && !rm->m_rdma_cookie)
360				rm->data.op_active = 0;
361		}
362
363		if (rm->data.op_active && !cp->cp_xmit_data_sent) {
364			rm->m_final_op = &rm->data;
365
366			ret = conn->c_trans->xmit(conn, rm,
367						  cp->cp_xmit_hdr_off,
368						  cp->cp_xmit_sg,
369						  cp->cp_xmit_data_off);
370			if (ret <= 0)
371				break;
372
373			if (cp->cp_xmit_hdr_off < sizeof(struct rds_header)) {
374				tmp = min_t(int, ret,
375					    sizeof(struct rds_header) -
376					    cp->cp_xmit_hdr_off);
377				cp->cp_xmit_hdr_off += tmp;
378				ret -= tmp;
379			}
380
381			sg = &rm->data.op_sg[cp->cp_xmit_sg];
382			while (ret) {
383				tmp = min_t(int, ret, sg->length -
384						      cp->cp_xmit_data_off);
385				cp->cp_xmit_data_off += tmp;
386				ret -= tmp;
387				if (cp->cp_xmit_data_off == sg->length) {
388					cp->cp_xmit_data_off = 0;
389					sg++;
390					cp->cp_xmit_sg++;
391					BUG_ON(ret != 0 && cp->cp_xmit_sg ==
392					       rm->data.op_nents);
393				}
394			}
395
396			if (cp->cp_xmit_hdr_off == sizeof(struct rds_header) &&
397			    (cp->cp_xmit_sg == rm->data.op_nents))
398				cp->cp_xmit_data_sent = 1;
399		}
400
401		/*
402		 * A rm will only take multiple times through this loop
403		 * if there is a data op. Thus, if the data is sent (or there was
404		 * none), then we're done with the rm.
405		 */
406		if (!rm->data.op_active || cp->cp_xmit_data_sent) {
407			cp->cp_xmit_rm = NULL;
408			cp->cp_xmit_sg = 0;
409			cp->cp_xmit_hdr_off = 0;
410			cp->cp_xmit_data_off = 0;
411			cp->cp_xmit_rdma_sent = 0;
412			cp->cp_xmit_atomic_sent = 0;
413			cp->cp_xmit_data_sent = 0;
414
415			rds_message_put(rm);
416		}
417	}
418
419over_batch:
420	if (conn->c_trans->xmit_path_complete)
421		conn->c_trans->xmit_path_complete(cp);
422	release_in_xmit(cp);
423
424	/* Nuke any messages we decided not to retransmit. */
425	if (!list_empty(&to_be_dropped)) {
426		/* irqs on here, so we can put(), unlike above */
427		list_for_each_entry(rm, &to_be_dropped, m_conn_item)
428			rds_message_put(rm);
429		rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
430	}
431
432	/*
433	 * Other senders can queue a message after we last test the send queue
434	 * but before we clear RDS_IN_XMIT.  In that case they'd back off and
435	 * not try and send their newly queued message.  We need to check the
436	 * send queue after having cleared RDS_IN_XMIT so that their message
437	 * doesn't get stuck on the send queue.
438	 *
439	 * If the transport cannot continue (i.e ret != 0), then it must
440	 * call us when more room is available, such as from the tx
441	 * completion handler.
442	 *
443	 * We have an extra generation check here so that if someone manages
444	 * to jump in after our release_in_xmit, we'll see that they have done
445	 * some work and we will skip our goto
446	 */
447	if (ret == 0) {
448		bool raced;
449
450		smp_mb();
451		raced = send_gen != READ_ONCE(cp->cp_send_gen);
452
453		if ((test_bit(0, &conn->c_map_queued) ||
454		    !list_empty(&cp->cp_send_queue)) && !raced) {
455			if (batch_count < send_batch_count)
456				goto restart;
457			rcu_read_lock();
458			if (rds_destroy_pending(cp->cp_conn))
459				ret = -ENETUNREACH;
460			else
461				queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
462			rcu_read_unlock();
463		} else if (raced) {
464			rds_stats_inc(s_send_lock_queue_raced);
465		}
466	}
467out:
468	return ret;
469}
470EXPORT_SYMBOL_GPL(rds_send_xmit);
471
472static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
473{
474	u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
475
476	assert_spin_locked(&rs->rs_lock);
477
478	BUG_ON(rs->rs_snd_bytes < len);
479	rs->rs_snd_bytes -= len;
480
481	if (rs->rs_snd_bytes == 0)
482		rds_stats_inc(s_send_queue_empty);
483}
484
485static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
486				    is_acked_func is_acked)
487{
488	if (is_acked)
489		return is_acked(rm, ack);
490	return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
491}
492
493/*
494 * This is pretty similar to what happens below in the ACK
495 * handling code - except that we call here as soon as we get
496 * the IB send completion on the RDMA op and the accompanying
497 * message.
498 */
499void rds_rdma_send_complete(struct rds_message *rm, int status)
500{
501	struct rds_sock *rs = NULL;
502	struct rm_rdma_op *ro;
503	struct rds_notifier *notifier;
504	unsigned long flags;
505
506	spin_lock_irqsave(&rm->m_rs_lock, flags);
507
508	ro = &rm->rdma;
509	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
510	    ro->op_active && ro->op_notify && ro->op_notifier) {
511		notifier = ro->op_notifier;
512		rs = rm->m_rs;
513		sock_hold(rds_rs_to_sk(rs));
514
515		notifier->n_status = status;
516		spin_lock(&rs->rs_lock);
517		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
518		spin_unlock(&rs->rs_lock);
519
520		ro->op_notifier = NULL;
521	}
522
523	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
524
525	if (rs) {
526		rds_wake_sk_sleep(rs);
527		sock_put(rds_rs_to_sk(rs));
528	}
529}
530EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
531
532/*
533 * Just like above, except looks at atomic op
534 */
535void rds_atomic_send_complete(struct rds_message *rm, int status)
536{
537	struct rds_sock *rs = NULL;
538	struct rm_atomic_op *ao;
539	struct rds_notifier *notifier;
540	unsigned long flags;
541
542	spin_lock_irqsave(&rm->m_rs_lock, flags);
543
544	ao = &rm->atomic;
545	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
546	    && ao->op_active && ao->op_notify && ao->op_notifier) {
547		notifier = ao->op_notifier;
548		rs = rm->m_rs;
549		sock_hold(rds_rs_to_sk(rs));
550
551		notifier->n_status = status;
552		spin_lock(&rs->rs_lock);
553		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
554		spin_unlock(&rs->rs_lock);
555
556		ao->op_notifier = NULL;
557	}
558
559	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
560
561	if (rs) {
562		rds_wake_sk_sleep(rs);
563		sock_put(rds_rs_to_sk(rs));
564	}
565}
566EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
567
568/*
569 * This is the same as rds_rdma_send_complete except we
570 * don't do any locking - we have all the ingredients (message,
571 * socket, socket lock) and can just move the notifier.
572 */
573static inline void
574__rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
575{
576	struct rm_rdma_op *ro;
577	struct rm_atomic_op *ao;
578
579	ro = &rm->rdma;
580	if (ro->op_active && ro->op_notify && ro->op_notifier) {
581		ro->op_notifier->n_status = status;
582		list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
583		ro->op_notifier = NULL;
584	}
585
586	ao = &rm->atomic;
587	if (ao->op_active && ao->op_notify && ao->op_notifier) {
588		ao->op_notifier->n_status = status;
589		list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
590		ao->op_notifier = NULL;
591	}
592
593	/* No need to wake the app - caller does this */
594}
595
596/*
597 * This removes messages from the socket's list if they're on it.  The list
598 * argument must be private to the caller, we must be able to modify it
599 * without locks.  The messages must have a reference held for their
600 * position on the list.  This function will drop that reference after
601 * removing the messages from the 'messages' list regardless of if it found
602 * the messages on the socket list or not.
603 */
604static void rds_send_remove_from_sock(struct list_head *messages, int status)
605{
606	unsigned long flags;
607	struct rds_sock *rs = NULL;
608	struct rds_message *rm;
609
610	while (!list_empty(messages)) {
611		int was_on_sock = 0;
612
613		rm = list_entry(messages->next, struct rds_message,
614				m_conn_item);
615		list_del_init(&rm->m_conn_item);
616
617		/*
618		 * If we see this flag cleared then we're *sure* that someone
619		 * else beat us to removing it from the sock.  If we race
620		 * with their flag update we'll get the lock and then really
621		 * see that the flag has been cleared.
622		 *
623		 * The message spinlock makes sure nobody clears rm->m_rs
624		 * while we're messing with it. It does not prevent the
625		 * message from being removed from the socket, though.
626		 */
627		spin_lock_irqsave(&rm->m_rs_lock, flags);
628		if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
629			goto unlock_and_drop;
630
631		if (rs != rm->m_rs) {
632			if (rs) {
633				rds_wake_sk_sleep(rs);
634				sock_put(rds_rs_to_sk(rs));
635			}
636			rs = rm->m_rs;
637			if (rs)
638				sock_hold(rds_rs_to_sk(rs));
639		}
640		if (!rs)
641			goto unlock_and_drop;
642		spin_lock(&rs->rs_lock);
643
644		if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
645			struct rm_rdma_op *ro = &rm->rdma;
646			struct rds_notifier *notifier;
647
648			list_del_init(&rm->m_sock_item);
649			rds_send_sndbuf_remove(rs, rm);
650
651			if (ro->op_active && ro->op_notifier &&
652			       (ro->op_notify || (ro->op_recverr && status))) {
653				notifier = ro->op_notifier;
654				list_add_tail(&notifier->n_list,
655						&rs->rs_notify_queue);
656				if (!notifier->n_status)
657					notifier->n_status = status;
658				rm->rdma.op_notifier = NULL;
659			}
660			was_on_sock = 1;
661		}
662		spin_unlock(&rs->rs_lock);
663
664unlock_and_drop:
665		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
666		rds_message_put(rm);
667		if (was_on_sock)
668			rds_message_put(rm);
669	}
670
671	if (rs) {
672		rds_wake_sk_sleep(rs);
673		sock_put(rds_rs_to_sk(rs));
674	}
675}
676
677/*
678 * Transports call here when they've determined that the receiver queued
679 * messages up to, and including, the given sequence number.  Messages are
680 * moved to the retrans queue when rds_send_xmit picks them off the send
681 * queue. This means that in the TCP case, the message may not have been
682 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
683 * checks the RDS_MSG_HAS_ACK_SEQ bit.
684 */
685void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack,
686			      is_acked_func is_acked)
687{
688	struct rds_message *rm, *tmp;
689	unsigned long flags;
690	LIST_HEAD(list);
691
692	spin_lock_irqsave(&cp->cp_lock, flags);
693
694	list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
695		if (!rds_send_is_acked(rm, ack, is_acked))
696			break;
697
698		list_move(&rm->m_conn_item, &list);
699		clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
700	}
701
702	/* order flag updates with spin locks */
703	if (!list_empty(&list))
704		smp_mb__after_atomic();
705
706	spin_unlock_irqrestore(&cp->cp_lock, flags);
707
708	/* now remove the messages from the sock list as needed */
709	rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
710}
711EXPORT_SYMBOL_GPL(rds_send_path_drop_acked);
712
713void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
714			 is_acked_func is_acked)
715{
716	WARN_ON(conn->c_trans->t_mp_capable);
717	rds_send_path_drop_acked(&conn->c_path[0], ack, is_acked);
718}
719EXPORT_SYMBOL_GPL(rds_send_drop_acked);
720
721void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in6 *dest)
722{
723	struct rds_message *rm, *tmp;
724	struct rds_connection *conn;
725	struct rds_conn_path *cp;
726	unsigned long flags;
727	LIST_HEAD(list);
728
729	/* get all the messages we're dropping under the rs lock */
730	spin_lock_irqsave(&rs->rs_lock, flags);
731
732	list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
733		if (dest &&
734		    (!ipv6_addr_equal(&dest->sin6_addr, &rm->m_daddr) ||
735		     dest->sin6_port != rm->m_inc.i_hdr.h_dport))
736			continue;
737
738		list_move(&rm->m_sock_item, &list);
739		rds_send_sndbuf_remove(rs, rm);
740		clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
741	}
742
743	/* order flag updates with the rs lock */
744	smp_mb__after_atomic();
745
746	spin_unlock_irqrestore(&rs->rs_lock, flags);
747
748	if (list_empty(&list))
749		return;
750
751	/* Remove the messages from the conn */
752	list_for_each_entry(rm, &list, m_sock_item) {
753
754		conn = rm->m_inc.i_conn;
755		if (conn->c_trans->t_mp_capable)
756			cp = rm->m_inc.i_conn_path;
757		else
758			cp = &conn->c_path[0];
759
760		spin_lock_irqsave(&cp->cp_lock, flags);
761		/*
762		 * Maybe someone else beat us to removing rm from the conn.
763		 * If we race with their flag update we'll get the lock and
764		 * then really see that the flag has been cleared.
765		 */
766		if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
767			spin_unlock_irqrestore(&cp->cp_lock, flags);
768			continue;
769		}
770		list_del_init(&rm->m_conn_item);
771		spin_unlock_irqrestore(&cp->cp_lock, flags);
772
773		/*
774		 * Couldn't grab m_rs_lock in top loop (lock ordering),
775		 * but we can now.
776		 */
777		spin_lock_irqsave(&rm->m_rs_lock, flags);
778
779		spin_lock(&rs->rs_lock);
780		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
781		spin_unlock(&rs->rs_lock);
782
783		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
784
785		rds_message_put(rm);
786	}
787
788	rds_wake_sk_sleep(rs);
789
790	while (!list_empty(&list)) {
791		rm = list_entry(list.next, struct rds_message, m_sock_item);
792		list_del_init(&rm->m_sock_item);
793		rds_message_wait(rm);
794
795		/* just in case the code above skipped this message
796		 * because RDS_MSG_ON_CONN wasn't set, run it again here
797		 * taking m_rs_lock is the only thing that keeps us
798		 * from racing with ack processing.
799		 */
800		spin_lock_irqsave(&rm->m_rs_lock, flags);
801
802		spin_lock(&rs->rs_lock);
803		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
804		spin_unlock(&rs->rs_lock);
805
806		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
807
808		rds_message_put(rm);
809	}
810}
811
812/*
813 * we only want this to fire once so we use the callers 'queued'.  It's
814 * possible that another thread can race with us and remove the
815 * message from the flow with RDS_CANCEL_SENT_TO.
816 */
817static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
818			     struct rds_conn_path *cp,
819			     struct rds_message *rm, __be16 sport,
820			     __be16 dport, int *queued)
821{
822	unsigned long flags;
823	u32 len;
824
825	if (*queued)
826		goto out;
827
828	len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
829
830	/* this is the only place which holds both the socket's rs_lock
831	 * and the connection's c_lock */
832	spin_lock_irqsave(&rs->rs_lock, flags);
833
834	/*
835	 * If there is a little space in sndbuf, we don't queue anything,
836	 * and userspace gets -EAGAIN. But poll() indicates there's send
837	 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
838	 * freed up by incoming acks. So we check the *old* value of
839	 * rs_snd_bytes here to allow the last msg to exceed the buffer,
840	 * and poll() now knows no more data can be sent.
841	 */
842	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
843		rs->rs_snd_bytes += len;
844
845		/* let recv side know we are close to send space exhaustion.
846		 * This is probably not the optimal way to do it, as this
847		 * means we set the flag on *all* messages as soon as our
848		 * throughput hits a certain threshold.
849		 */
850		if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
851			set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
852
853		list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
854		set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
855		rds_message_addref(rm);
856		sock_hold(rds_rs_to_sk(rs));
857		rm->m_rs = rs;
858
859		/* The code ordering is a little weird, but we're
860		   trying to minimize the time we hold c_lock */
861		rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
862		rm->m_inc.i_conn = conn;
863		rm->m_inc.i_conn_path = cp;
864		rds_message_addref(rm);
865
866		spin_lock(&cp->cp_lock);
867		rm->m_inc.i_hdr.h_sequence = cpu_to_be64(cp->cp_next_tx_seq++);
868		list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
869		set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
870		spin_unlock(&cp->cp_lock);
871
872		rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
873			 rm, len, rs, rs->rs_snd_bytes,
874			 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
875
876		*queued = 1;
877	}
878
879	spin_unlock_irqrestore(&rs->rs_lock, flags);
880out:
881	return *queued;
882}
883
884/*
885 * rds_message is getting to be quite complicated, and we'd like to allocate
886 * it all in one go. This figures out how big it needs to be up front.
887 */
888static int rds_rm_size(struct msghdr *msg, int num_sgs,
889		       struct rds_iov_vector_arr *vct)
890{
891	struct cmsghdr *cmsg;
892	int size = 0;
893	int cmsg_groups = 0;
894	int retval;
895	bool zcopy_cookie = false;
896	struct rds_iov_vector *iov, *tmp_iov;
897
898	if (num_sgs < 0)
899		return -EINVAL;
900
901	for_each_cmsghdr(cmsg, msg) {
902		if (!CMSG_OK(msg, cmsg))
903			return -EINVAL;
904
905		if (cmsg->cmsg_level != SOL_RDS)
906			continue;
907
908		switch (cmsg->cmsg_type) {
909		case RDS_CMSG_RDMA_ARGS:
910			if (vct->indx >= vct->len) {
911				vct->len += vct->incr;
912				tmp_iov =
913					krealloc(vct->vec,
914						 vct->len *
915						 sizeof(struct rds_iov_vector),
916						 GFP_KERNEL);
917				if (!tmp_iov) {
918					vct->len -= vct->incr;
919					return -ENOMEM;
920				}
921				vct->vec = tmp_iov;
922			}
923			iov = &vct->vec[vct->indx];
924			memset(iov, 0, sizeof(struct rds_iov_vector));
925			vct->indx++;
926			cmsg_groups |= 1;
927			retval = rds_rdma_extra_size(CMSG_DATA(cmsg), iov);
928			if (retval < 0)
929				return retval;
930			size += retval;
931
932			break;
933
934		case RDS_CMSG_ZCOPY_COOKIE:
935			zcopy_cookie = true;
936			fallthrough;
937
938		case RDS_CMSG_RDMA_DEST:
939		case RDS_CMSG_RDMA_MAP:
940			cmsg_groups |= 2;
941			/* these are valid but do no add any size */
942			break;
943
944		case RDS_CMSG_ATOMIC_CSWP:
945		case RDS_CMSG_ATOMIC_FADD:
946		case RDS_CMSG_MASKED_ATOMIC_CSWP:
947		case RDS_CMSG_MASKED_ATOMIC_FADD:
948			cmsg_groups |= 1;
949			size += sizeof(struct scatterlist);
950			break;
951
952		default:
953			return -EINVAL;
954		}
955
956	}
957
958	if ((msg->msg_flags & MSG_ZEROCOPY) && !zcopy_cookie)
959		return -EINVAL;
960
961	size += num_sgs * sizeof(struct scatterlist);
962
963	/* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
964	if (cmsg_groups == 3)
965		return -EINVAL;
966
967	return size;
968}
969
970static int rds_cmsg_zcopy(struct rds_sock *rs, struct rds_message *rm,
971			  struct cmsghdr *cmsg)
972{
973	u32 *cookie;
974
975	if (cmsg->cmsg_len < CMSG_LEN(sizeof(*cookie)) ||
976	    !rm->data.op_mmp_znotifier)
977		return -EINVAL;
978	cookie = CMSG_DATA(cmsg);
979	rm->data.op_mmp_znotifier->z_cookie = *cookie;
980	return 0;
981}
982
983static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
984			 struct msghdr *msg, int *allocated_mr,
985			 struct rds_iov_vector_arr *vct)
986{
987	struct cmsghdr *cmsg;
988	int ret = 0, ind = 0;
989
990	for_each_cmsghdr(cmsg, msg) {
991		if (!CMSG_OK(msg, cmsg))
992			return -EINVAL;
993
994		if (cmsg->cmsg_level != SOL_RDS)
995			continue;
996
997		/* As a side effect, RDMA_DEST and RDMA_MAP will set
998		 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
999		 */
1000		switch (cmsg->cmsg_type) {
1001		case RDS_CMSG_RDMA_ARGS:
1002			if (ind >= vct->indx)
1003				return -ENOMEM;
1004			ret = rds_cmsg_rdma_args(rs, rm, cmsg, &vct->vec[ind]);
1005			ind++;
1006			break;
1007
1008		case RDS_CMSG_RDMA_DEST:
1009			ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
1010			break;
1011
1012		case RDS_CMSG_RDMA_MAP:
1013			ret = rds_cmsg_rdma_map(rs, rm, cmsg);
1014			if (!ret)
1015				*allocated_mr = 1;
1016			else if (ret == -ENODEV)
1017				/* Accommodate the get_mr() case which can fail
1018				 * if connection isn't established yet.
1019				 */
1020				ret = -EAGAIN;
1021			break;
1022		case RDS_CMSG_ATOMIC_CSWP:
1023		case RDS_CMSG_ATOMIC_FADD:
1024		case RDS_CMSG_MASKED_ATOMIC_CSWP:
1025		case RDS_CMSG_MASKED_ATOMIC_FADD:
1026			ret = rds_cmsg_atomic(rs, rm, cmsg);
1027			break;
1028
1029		case RDS_CMSG_ZCOPY_COOKIE:
1030			ret = rds_cmsg_zcopy(rs, rm, cmsg);
1031			break;
1032
1033		default:
1034			return -EINVAL;
1035		}
1036
1037		if (ret)
1038			break;
1039	}
1040
1041	return ret;
1042}
1043
1044static int rds_send_mprds_hash(struct rds_sock *rs,
1045			       struct rds_connection *conn, int nonblock)
1046{
1047	int hash;
1048
1049	if (conn->c_npaths == 0)
1050		hash = RDS_MPATH_HASH(rs, RDS_MPATH_WORKERS);
1051	else
1052		hash = RDS_MPATH_HASH(rs, conn->c_npaths);
1053	if (conn->c_npaths == 0 && hash != 0) {
1054		rds_send_ping(conn, 0);
1055
1056		/* The underlying connection is not up yet.  Need to wait
1057		 * until it is up to be sure that the non-zero c_path can be
1058		 * used.  But if we are interrupted, we have to use the zero
1059		 * c_path in case the connection ends up being non-MP capable.
1060		 */
1061		if (conn->c_npaths == 0) {
1062			/* Cannot wait for the connection be made, so just use
1063			 * the base c_path.
1064			 */
1065			if (nonblock)
1066				return 0;
1067			if (wait_event_interruptible(conn->c_hs_waitq,
1068						     conn->c_npaths != 0))
1069				hash = 0;
1070		}
1071		if (conn->c_npaths == 1)
1072			hash = 0;
1073	}
1074	return hash;
1075}
1076
1077static int rds_rdma_bytes(struct msghdr *msg, size_t *rdma_bytes)
1078{
1079	struct rds_rdma_args *args;
1080	struct cmsghdr *cmsg;
1081
1082	for_each_cmsghdr(cmsg, msg) {
1083		if (!CMSG_OK(msg, cmsg))
1084			return -EINVAL;
1085
1086		if (cmsg->cmsg_level != SOL_RDS)
1087			continue;
1088
1089		if (cmsg->cmsg_type == RDS_CMSG_RDMA_ARGS) {
1090			if (cmsg->cmsg_len <
1091			    CMSG_LEN(sizeof(struct rds_rdma_args)))
1092				return -EINVAL;
1093			args = CMSG_DATA(cmsg);
1094			*rdma_bytes += args->remote_vec.bytes;
1095		}
1096	}
1097	return 0;
1098}
1099
1100int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len)
1101{
1102	struct sock *sk = sock->sk;
1103	struct rds_sock *rs = rds_sk_to_rs(sk);
1104	DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name);
1105	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1106	__be16 dport;
1107	struct rds_message *rm = NULL;
1108	struct rds_connection *conn;
1109	int ret = 0;
1110	int queued = 0, allocated_mr = 0;
1111	int nonblock = msg->msg_flags & MSG_DONTWAIT;
1112	long timeo = sock_sndtimeo(sk, nonblock);
1113	struct rds_conn_path *cpath;
1114	struct in6_addr daddr;
1115	__u32 scope_id = 0;
1116	size_t rdma_payload_len = 0;
1117	bool zcopy = ((msg->msg_flags & MSG_ZEROCOPY) &&
1118		      sock_flag(rds_rs_to_sk(rs), SOCK_ZEROCOPY));
1119	int num_sgs = DIV_ROUND_UP(payload_len, PAGE_SIZE);
1120	int namelen;
1121	struct rds_iov_vector_arr vct;
1122	int ind;
1123
1124	memset(&vct, 0, sizeof(vct));
1125
1126	/* expect 1 RDMA CMSG per rds_sendmsg. can still grow if more needed. */
1127	vct.incr = 1;
1128
1129	/* Mirror Linux UDP mirror of BSD error message compatibility */
1130	/* XXX: Perhaps MSG_MORE someday */
1131	if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT | MSG_ZEROCOPY)) {
1132		ret = -EOPNOTSUPP;
1133		goto out;
1134	}
1135
1136	namelen = msg->msg_namelen;
1137	if (namelen != 0) {
1138		if (namelen < sizeof(*usin)) {
1139			ret = -EINVAL;
1140			goto out;
1141		}
1142		switch (usin->sin_family) {
1143		case AF_INET:
1144			if (usin->sin_addr.s_addr == htonl(INADDR_ANY) ||
1145			    usin->sin_addr.s_addr == htonl(INADDR_BROADCAST) ||
1146			    ipv4_is_multicast(usin->sin_addr.s_addr)) {
1147				ret = -EINVAL;
1148				goto out;
1149			}
1150			ipv6_addr_set_v4mapped(usin->sin_addr.s_addr, &daddr);
1151			dport = usin->sin_port;
1152			break;
1153
1154#if IS_ENABLED(CONFIG_IPV6)
1155		case AF_INET6: {
1156			int addr_type;
1157
1158			if (namelen < sizeof(*sin6)) {
1159				ret = -EINVAL;
1160				goto out;
1161			}
1162			addr_type = ipv6_addr_type(&sin6->sin6_addr);
1163			if (!(addr_type & IPV6_ADDR_UNICAST)) {
1164				__be32 addr4;
1165
1166				if (!(addr_type & IPV6_ADDR_MAPPED)) {
1167					ret = -EINVAL;
1168					goto out;
1169				}
1170
1171				/* It is a mapped address.  Need to do some
1172				 * sanity checks.
1173				 */
1174				addr4 = sin6->sin6_addr.s6_addr32[3];
1175				if (addr4 == htonl(INADDR_ANY) ||
1176				    addr4 == htonl(INADDR_BROADCAST) ||
1177				    ipv4_is_multicast(addr4)) {
1178					ret = -EINVAL;
1179					goto out;
1180				}
1181			}
1182			if (addr_type & IPV6_ADDR_LINKLOCAL) {
1183				if (sin6->sin6_scope_id == 0) {
1184					ret = -EINVAL;
1185					goto out;
1186				}
1187				scope_id = sin6->sin6_scope_id;
1188			}
1189
1190			daddr = sin6->sin6_addr;
1191			dport = sin6->sin6_port;
1192			break;
1193		}
1194#endif
1195
1196		default:
1197			ret = -EINVAL;
1198			goto out;
1199		}
1200	} else {
1201		/* We only care about consistency with ->connect() */
1202		lock_sock(sk);
1203		daddr = rs->rs_conn_addr;
1204		dport = rs->rs_conn_port;
1205		scope_id = rs->rs_bound_scope_id;
1206		release_sock(sk);
1207	}
1208
1209	lock_sock(sk);
1210	if (ipv6_addr_any(&rs->rs_bound_addr) || ipv6_addr_any(&daddr)) {
1211		release_sock(sk);
1212		ret = -ENOTCONN;
1213		goto out;
1214	} else if (namelen != 0) {
1215		/* Cannot send to an IPv4 address using an IPv6 source
1216		 * address and cannot send to an IPv6 address using an
1217		 * IPv4 source address.
1218		 */
1219		if (ipv6_addr_v4mapped(&daddr) ^
1220		    ipv6_addr_v4mapped(&rs->rs_bound_addr)) {
1221			release_sock(sk);
1222			ret = -EOPNOTSUPP;
1223			goto out;
1224		}
1225		/* If the socket is already bound to a link local address,
1226		 * it can only send to peers on the same link.  But allow
1227		 * communicating between link local and non-link local address.
1228		 */
1229		if (scope_id != rs->rs_bound_scope_id) {
1230			if (!scope_id) {
1231				scope_id = rs->rs_bound_scope_id;
1232			} else if (rs->rs_bound_scope_id) {
1233				release_sock(sk);
1234				ret = -EINVAL;
1235				goto out;
1236			}
1237		}
1238	}
1239	release_sock(sk);
1240
1241	ret = rds_rdma_bytes(msg, &rdma_payload_len);
1242	if (ret)
1243		goto out;
1244
1245	if (max_t(size_t, payload_len, rdma_payload_len) > RDS_MAX_MSG_SIZE) {
1246		ret = -EMSGSIZE;
1247		goto out;
1248	}
1249
1250	if (payload_len > rds_sk_sndbuf(rs)) {
1251		ret = -EMSGSIZE;
1252		goto out;
1253	}
1254
1255	if (zcopy) {
1256		if (rs->rs_transport->t_type != RDS_TRANS_TCP) {
1257			ret = -EOPNOTSUPP;
1258			goto out;
1259		}
1260		num_sgs = iov_iter_npages(&msg->msg_iter, INT_MAX);
1261	}
1262	/* size of rm including all sgs */
1263	ret = rds_rm_size(msg, num_sgs, &vct);
1264	if (ret < 0)
1265		goto out;
1266
1267	rm = rds_message_alloc(ret, GFP_KERNEL);
1268	if (!rm) {
1269		ret = -ENOMEM;
1270		goto out;
1271	}
1272
1273	/* Attach data to the rm */
1274	if (payload_len) {
1275		rm->data.op_sg = rds_message_alloc_sgs(rm, num_sgs);
1276		if (IS_ERR(rm->data.op_sg)) {
1277			ret = PTR_ERR(rm->data.op_sg);
1278			goto out;
1279		}
1280		ret = rds_message_copy_from_user(rm, &msg->msg_iter, zcopy);
1281		if (ret)
1282			goto out;
1283	}
1284	rm->data.op_active = 1;
1285
1286	rm->m_daddr = daddr;
1287
1288	/* rds_conn_create has a spinlock that runs with IRQ off.
1289	 * Caching the conn in the socket helps a lot. */
1290	if (rs->rs_conn && ipv6_addr_equal(&rs->rs_conn->c_faddr, &daddr) &&
1291	    rs->rs_tos == rs->rs_conn->c_tos) {
1292		conn = rs->rs_conn;
1293	} else {
1294		conn = rds_conn_create_outgoing(sock_net(sock->sk),
1295						&rs->rs_bound_addr, &daddr,
1296						rs->rs_transport, rs->rs_tos,
1297						sock->sk->sk_allocation,
1298						scope_id);
1299		if (IS_ERR(conn)) {
1300			ret = PTR_ERR(conn);
1301			goto out;
1302		}
1303		rs->rs_conn = conn;
1304	}
1305
1306	if (conn->c_trans->t_mp_capable)
1307		cpath = &conn->c_path[rds_send_mprds_hash(rs, conn, nonblock)];
1308	else
1309		cpath = &conn->c_path[0];
1310
1311	rm->m_conn_path = cpath;
1312
1313	/* Parse any control messages the user may have included. */
1314	ret = rds_cmsg_send(rs, rm, msg, &allocated_mr, &vct);
1315	if (ret)
1316		goto out;
1317
1318	if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1319		printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1320			       &rm->rdma, conn->c_trans->xmit_rdma);
1321		ret = -EOPNOTSUPP;
1322		goto out;
1323	}
1324
1325	if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1326		printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1327			       &rm->atomic, conn->c_trans->xmit_atomic);
1328		ret = -EOPNOTSUPP;
1329		goto out;
1330	}
1331
1332	if (rds_destroy_pending(conn)) {
1333		ret = -EAGAIN;
1334		goto out;
1335	}
1336
1337	if (rds_conn_path_down(cpath))
1338		rds_check_all_paths(conn);
1339
1340	ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1341	if (ret) {
1342		rs->rs_seen_congestion = 1;
1343		goto out;
1344	}
1345	while (!rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port,
1346				  dport, &queued)) {
1347		rds_stats_inc(s_send_queue_full);
1348
1349		if (nonblock) {
1350			ret = -EAGAIN;
1351			goto out;
1352		}
1353
1354		timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1355					rds_send_queue_rm(rs, conn, cpath, rm,
1356							  rs->rs_bound_port,
1357							  dport,
1358							  &queued),
1359					timeo);
1360		rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1361		if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1362			continue;
1363
1364		ret = timeo;
1365		if (ret == 0)
1366			ret = -ETIMEDOUT;
1367		goto out;
1368	}
1369
1370	/*
1371	 * By now we've committed to the send.  We reuse rds_send_worker()
1372	 * to retry sends in the rds thread if the transport asks us to.
1373	 */
1374	rds_stats_inc(s_send_queued);
1375
1376	ret = rds_send_xmit(cpath);
1377	if (ret == -ENOMEM || ret == -EAGAIN) {
1378		ret = 0;
1379		rcu_read_lock();
1380		if (rds_destroy_pending(cpath->cp_conn))
1381			ret = -ENETUNREACH;
1382		else
1383			queue_delayed_work(rds_wq, &cpath->cp_send_w, 1);
1384		rcu_read_unlock();
1385	}
1386	if (ret)
1387		goto out;
1388	rds_message_put(rm);
1389
1390	for (ind = 0; ind < vct.indx; ind++)
1391		kfree(vct.vec[ind].iov);
1392	kfree(vct.vec);
1393
1394	return payload_len;
1395
1396out:
1397	for (ind = 0; ind < vct.indx; ind++)
1398		kfree(vct.vec[ind].iov);
1399	kfree(vct.vec);
1400
1401	/* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1402	 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1403	 * or in any other way, we need to destroy the MR again */
1404	if (allocated_mr)
1405		rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1406
1407	if (rm)
1408		rds_message_put(rm);
1409	return ret;
1410}
1411
1412/*
1413 * send out a probe. Can be shared by rds_send_ping,
1414 * rds_send_pong, rds_send_hb.
1415 * rds_send_hb should use h_flags
1416 *   RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED
1417 * or
1418 *   RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED
1419 */
1420static int
1421rds_send_probe(struct rds_conn_path *cp, __be16 sport,
1422	       __be16 dport, u8 h_flags)
1423{
1424	struct rds_message *rm;
1425	unsigned long flags;
1426	int ret = 0;
1427
1428	rm = rds_message_alloc(0, GFP_ATOMIC);
1429	if (!rm) {
1430		ret = -ENOMEM;
1431		goto out;
1432	}
1433
1434	rm->m_daddr = cp->cp_conn->c_faddr;
1435	rm->data.op_active = 1;
1436
1437	rds_conn_path_connect_if_down(cp);
1438
1439	ret = rds_cong_wait(cp->cp_conn->c_fcong, dport, 1, NULL);
1440	if (ret)
1441		goto out;
1442
1443	spin_lock_irqsave(&cp->cp_lock, flags);
1444	list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
1445	set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1446	rds_message_addref(rm);
1447	rm->m_inc.i_conn = cp->cp_conn;
1448	rm->m_inc.i_conn_path = cp;
1449
1450	rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport,
1451				    cp->cp_next_tx_seq);
1452	rm->m_inc.i_hdr.h_flags |= h_flags;
1453	cp->cp_next_tx_seq++;
1454
1455	if (RDS_HS_PROBE(be16_to_cpu(sport), be16_to_cpu(dport)) &&
1456	    cp->cp_conn->c_trans->t_mp_capable) {
1457		u16 npaths = cpu_to_be16(RDS_MPATH_WORKERS);
1458		u32 my_gen_num = cpu_to_be32(cp->cp_conn->c_my_gen_num);
1459
1460		rds_message_add_extension(&rm->m_inc.i_hdr,
1461					  RDS_EXTHDR_NPATHS, &npaths,
1462					  sizeof(npaths));
1463		rds_message_add_extension(&rm->m_inc.i_hdr,
1464					  RDS_EXTHDR_GEN_NUM,
1465					  &my_gen_num,
1466					  sizeof(u32));
1467	}
1468	spin_unlock_irqrestore(&cp->cp_lock, flags);
1469
1470	rds_stats_inc(s_send_queued);
1471	rds_stats_inc(s_send_pong);
1472
1473	/* schedule the send work on rds_wq */
1474	rcu_read_lock();
1475	if (!rds_destroy_pending(cp->cp_conn))
1476		queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
1477	rcu_read_unlock();
1478
1479	rds_message_put(rm);
1480	return 0;
1481
1482out:
1483	if (rm)
1484		rds_message_put(rm);
1485	return ret;
1486}
1487
1488int
1489rds_send_pong(struct rds_conn_path *cp, __be16 dport)
1490{
1491	return rds_send_probe(cp, 0, dport, 0);
1492}
1493
1494void
1495rds_send_ping(struct rds_connection *conn, int cp_index)
1496{
1497	unsigned long flags;
1498	struct rds_conn_path *cp = &conn->c_path[cp_index];
1499
1500	spin_lock_irqsave(&cp->cp_lock, flags);
1501	if (conn->c_ping_triggered) {
1502		spin_unlock_irqrestore(&cp->cp_lock, flags);
1503		return;
1504	}
1505	conn->c_ping_triggered = 1;
1506	spin_unlock_irqrestore(&cp->cp_lock, flags);
1507	rds_send_probe(cp, cpu_to_be16(RDS_FLAG_PROBE_PORT), 0, 0);
1508}
1509EXPORT_SYMBOL_GPL(rds_send_ping);
1510