1/*
2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 *     Redistribution and use in source and binary forms, with or
11 *     without modification, are permitted provided that the following
12 *     conditions are met:
13 *
14 *      - Redistributions of source code must retain the above
15 *        copyright notice, this list of conditions and the following
16 *        disclaimer.
17 *
18 *      - Redistributions in binary form must reproduce the above
19 *        copyright notice, this list of conditions and the following
20 *        disclaimer in the documentation and/or other materials
21 *        provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33#include <linux/kernel.h>
34#include <linux/sched/clock.h>
35#include <linux/slab.h>
36#include <linux/pci.h>
37#include <linux/dma-mapping.h>
38#include <rdma/rdma_cm.h>
39
40#include "rds_single_path.h"
41#include "rds.h"
42#include "ib.h"
43
44static struct kmem_cache *rds_ib_incoming_slab;
45static struct kmem_cache *rds_ib_frag_slab;
46static atomic_t	rds_ib_allocation = ATOMIC_INIT(0);
47
48void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
49{
50	struct rds_ib_recv_work *recv;
51	u32 i;
52
53	for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
54		struct ib_sge *sge;
55
56		recv->r_ibinc = NULL;
57		recv->r_frag = NULL;
58
59		recv->r_wr.next = NULL;
60		recv->r_wr.wr_id = i;
61		recv->r_wr.sg_list = recv->r_sge;
62		recv->r_wr.num_sge = RDS_IB_RECV_SGE;
63
64		sge = &recv->r_sge[0];
65		sge->addr = ic->i_recv_hdrs_dma[i];
66		sge->length = sizeof(struct rds_header);
67		sge->lkey = ic->i_pd->local_dma_lkey;
68
69		sge = &recv->r_sge[1];
70		sge->addr = 0;
71		sge->length = RDS_FRAG_SIZE;
72		sge->lkey = ic->i_pd->local_dma_lkey;
73	}
74}
75
76/*
77 * The entire 'from' list, including the from element itself, is put on
78 * to the tail of the 'to' list.
79 */
80static void list_splice_entire_tail(struct list_head *from,
81				    struct list_head *to)
82{
83	struct list_head *from_last = from->prev;
84
85	list_splice_tail(from_last, to);
86	list_add_tail(from_last, to);
87}
88
89static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
90{
91	struct list_head *tmp;
92
93	tmp = xchg(&cache->xfer, NULL);
94	if (tmp) {
95		if (cache->ready)
96			list_splice_entire_tail(tmp, cache->ready);
97		else
98			cache->ready = tmp;
99	}
100}
101
102static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache, gfp_t gfp)
103{
104	struct rds_ib_cache_head *head;
105	int cpu;
106
107	cache->percpu = alloc_percpu_gfp(struct rds_ib_cache_head, gfp);
108	if (!cache->percpu)
109	       return -ENOMEM;
110
111	for_each_possible_cpu(cpu) {
112		head = per_cpu_ptr(cache->percpu, cpu);
113		head->first = NULL;
114		head->count = 0;
115	}
116	cache->xfer = NULL;
117	cache->ready = NULL;
118
119	return 0;
120}
121
122int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic, gfp_t gfp)
123{
124	int ret;
125
126	ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs, gfp);
127	if (!ret) {
128		ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags, gfp);
129		if (ret)
130			free_percpu(ic->i_cache_incs.percpu);
131	}
132
133	return ret;
134}
135
136static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
137					  struct list_head *caller_list)
138{
139	struct rds_ib_cache_head *head;
140	int cpu;
141
142	for_each_possible_cpu(cpu) {
143		head = per_cpu_ptr(cache->percpu, cpu);
144		if (head->first) {
145			list_splice_entire_tail(head->first, caller_list);
146			head->first = NULL;
147		}
148	}
149
150	if (cache->ready) {
151		list_splice_entire_tail(cache->ready, caller_list);
152		cache->ready = NULL;
153	}
154}
155
156void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
157{
158	struct rds_ib_incoming *inc;
159	struct rds_ib_incoming *inc_tmp;
160	struct rds_page_frag *frag;
161	struct rds_page_frag *frag_tmp;
162	LIST_HEAD(list);
163
164	rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
165	rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
166	free_percpu(ic->i_cache_incs.percpu);
167
168	list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
169		list_del(&inc->ii_cache_entry);
170		WARN_ON(!list_empty(&inc->ii_frags));
171		kmem_cache_free(rds_ib_incoming_slab, inc);
172		atomic_dec(&rds_ib_allocation);
173	}
174
175	rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
176	rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
177	free_percpu(ic->i_cache_frags.percpu);
178
179	list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
180		list_del(&frag->f_cache_entry);
181		WARN_ON(!list_empty(&frag->f_item));
182		kmem_cache_free(rds_ib_frag_slab, frag);
183	}
184}
185
186/* fwd decl */
187static void rds_ib_recv_cache_put(struct list_head *new_item,
188				  struct rds_ib_refill_cache *cache);
189static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
190
191
192/* Recycle frag and attached recv buffer f_sg */
193static void rds_ib_frag_free(struct rds_ib_connection *ic,
194			     struct rds_page_frag *frag)
195{
196	rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
197
198	rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
199	atomic_add(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
200	rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
201}
202
203/* Recycle inc after freeing attached frags */
204void rds_ib_inc_free(struct rds_incoming *inc)
205{
206	struct rds_ib_incoming *ibinc;
207	struct rds_page_frag *frag;
208	struct rds_page_frag *pos;
209	struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
210
211	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
212
213	/* Free attached frags */
214	list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
215		list_del_init(&frag->f_item);
216		rds_ib_frag_free(ic, frag);
217	}
218	BUG_ON(!list_empty(&ibinc->ii_frags));
219
220	rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
221	rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
222}
223
224static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
225				  struct rds_ib_recv_work *recv)
226{
227	if (recv->r_ibinc) {
228		rds_inc_put(&recv->r_ibinc->ii_inc);
229		recv->r_ibinc = NULL;
230	}
231	if (recv->r_frag) {
232		ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
233		rds_ib_frag_free(ic, recv->r_frag);
234		recv->r_frag = NULL;
235	}
236}
237
238void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
239{
240	u32 i;
241
242	for (i = 0; i < ic->i_recv_ring.w_nr; i++)
243		rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
244}
245
246static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
247						     gfp_t slab_mask)
248{
249	struct rds_ib_incoming *ibinc;
250	struct list_head *cache_item;
251	int avail_allocs;
252
253	cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
254	if (cache_item) {
255		ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
256	} else {
257		avail_allocs = atomic_add_unless(&rds_ib_allocation,
258						 1, rds_ib_sysctl_max_recv_allocation);
259		if (!avail_allocs) {
260			rds_ib_stats_inc(s_ib_rx_alloc_limit);
261			return NULL;
262		}
263		ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
264		if (!ibinc) {
265			atomic_dec(&rds_ib_allocation);
266			return NULL;
267		}
268		rds_ib_stats_inc(s_ib_rx_total_incs);
269	}
270	INIT_LIST_HEAD(&ibinc->ii_frags);
271	rds_inc_init(&ibinc->ii_inc, ic->conn, &ic->conn->c_faddr);
272
273	return ibinc;
274}
275
276static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
277						    gfp_t slab_mask, gfp_t page_mask)
278{
279	struct rds_page_frag *frag;
280	struct list_head *cache_item;
281	int ret;
282
283	cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
284	if (cache_item) {
285		frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
286		atomic_sub(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
287		rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
288	} else {
289		frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
290		if (!frag)
291			return NULL;
292
293		sg_init_table(&frag->f_sg, 1);
294		ret = rds_page_remainder_alloc(&frag->f_sg,
295					       RDS_FRAG_SIZE, page_mask);
296		if (ret) {
297			kmem_cache_free(rds_ib_frag_slab, frag);
298			return NULL;
299		}
300		rds_ib_stats_inc(s_ib_rx_total_frags);
301	}
302
303	INIT_LIST_HEAD(&frag->f_item);
304
305	return frag;
306}
307
308static int rds_ib_recv_refill_one(struct rds_connection *conn,
309				  struct rds_ib_recv_work *recv, gfp_t gfp)
310{
311	struct rds_ib_connection *ic = conn->c_transport_data;
312	struct ib_sge *sge;
313	int ret = -ENOMEM;
314	gfp_t slab_mask = gfp;
315	gfp_t page_mask = gfp;
316
317	if (gfp & __GFP_DIRECT_RECLAIM) {
318		slab_mask = GFP_KERNEL;
319		page_mask = GFP_HIGHUSER;
320	}
321
322	if (!ic->i_cache_incs.ready)
323		rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
324	if (!ic->i_cache_frags.ready)
325		rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
326
327	/*
328	 * ibinc was taken from recv if recv contained the start of a message.
329	 * recvs that were continuations will still have this allocated.
330	 */
331	if (!recv->r_ibinc) {
332		recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
333		if (!recv->r_ibinc)
334			goto out;
335	}
336
337	WARN_ON(recv->r_frag); /* leak! */
338	recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
339	if (!recv->r_frag)
340		goto out;
341
342	ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
343			    1, DMA_FROM_DEVICE);
344	WARN_ON(ret != 1);
345
346	sge = &recv->r_sge[0];
347	sge->addr = ic->i_recv_hdrs_dma[recv - ic->i_recvs];
348	sge->length = sizeof(struct rds_header);
349
350	sge = &recv->r_sge[1];
351	sge->addr = sg_dma_address(&recv->r_frag->f_sg);
352	sge->length = sg_dma_len(&recv->r_frag->f_sg);
353
354	ret = 0;
355out:
356	return ret;
357}
358
359static int acquire_refill(struct rds_connection *conn)
360{
361	return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
362}
363
364static void release_refill(struct rds_connection *conn)
365{
366	clear_bit(RDS_RECV_REFILL, &conn->c_flags);
367	smp_mb__after_atomic();
368
369	/* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
370	 * hot path and finding waiters is very rare.  We don't want to walk
371	 * the system-wide hashed waitqueue buckets in the fast path only to
372	 * almost never find waiters.
373	 */
374	if (waitqueue_active(&conn->c_waitq))
375		wake_up_all(&conn->c_waitq);
376}
377
378/*
379 * This tries to allocate and post unused work requests after making sure that
380 * they have all the allocations they need to queue received fragments into
381 * sockets.
382 */
383void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
384{
385	struct rds_ib_connection *ic = conn->c_transport_data;
386	struct rds_ib_recv_work *recv;
387	unsigned int posted = 0;
388	int ret = 0;
389	bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM);
390	bool must_wake = false;
391	u32 pos;
392
393	/* the goal here is to just make sure that someone, somewhere
394	 * is posting buffers.  If we can't get the refill lock,
395	 * let them do their thing
396	 */
397	if (!acquire_refill(conn))
398		return;
399
400	while ((prefill || rds_conn_up(conn)) &&
401	       rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
402		if (pos >= ic->i_recv_ring.w_nr) {
403			printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
404					pos);
405			break;
406		}
407
408		recv = &ic->i_recvs[pos];
409		ret = rds_ib_recv_refill_one(conn, recv, gfp);
410		if (ret) {
411			must_wake = true;
412			break;
413		}
414
415		rdsdebug("recv %p ibinc %p page %p addr %lu\n", recv,
416			 recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
417			 (long)sg_dma_address(&recv->r_frag->f_sg));
418
419		/* XXX when can this fail? */
420		ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, NULL);
421		if (ret) {
422			rds_ib_conn_error(conn, "recv post on "
423			       "%pI6c returned %d, disconnecting and "
424			       "reconnecting\n", &conn->c_faddr,
425			       ret);
426			break;
427		}
428
429		posted++;
430
431		if ((posted > 128 && need_resched()) || posted > 8192) {
432			must_wake = true;
433			break;
434		}
435	}
436
437	/* We're doing flow control - update the window. */
438	if (ic->i_flowctl && posted)
439		rds_ib_advertise_credits(conn, posted);
440
441	if (ret)
442		rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
443
444	release_refill(conn);
445
446	/* if we're called from the softirq handler, we'll be GFP_NOWAIT.
447	 * in this case the ring being low is going to lead to more interrupts
448	 * and we can safely let the softirq code take care of it unless the
449	 * ring is completely empty.
450	 *
451	 * if we're called from krdsd, we'll be GFP_KERNEL.  In this case
452	 * we might have raced with the softirq code while we had the refill
453	 * lock held.  Use rds_ib_ring_low() instead of ring_empty to decide
454	 * if we should requeue.
455	 */
456	if (rds_conn_up(conn) &&
457	    (must_wake ||
458	    (can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
459	    rds_ib_ring_empty(&ic->i_recv_ring))) {
460		queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
461	}
462	if (can_wait)
463		cond_resched();
464}
465
466/*
467 * We want to recycle several types of recv allocations, like incs and frags.
468 * To use this, the *_free() function passes in the ptr to a list_head within
469 * the recyclee, as well as the cache to put it on.
470 *
471 * First, we put the memory on a percpu list. When this reaches a certain size,
472 * We move it to an intermediate non-percpu list in a lockless manner, with some
473 * xchg/compxchg wizardry.
474 *
475 * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
476 * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
477 * list_empty() will return true with one element is actually present.
478 */
479static void rds_ib_recv_cache_put(struct list_head *new_item,
480				 struct rds_ib_refill_cache *cache)
481{
482	unsigned long flags;
483	struct list_head *old, *chpfirst;
484
485	local_irq_save(flags);
486
487	chpfirst = __this_cpu_read(cache->percpu->first);
488	if (!chpfirst)
489		INIT_LIST_HEAD(new_item);
490	else /* put on front */
491		list_add_tail(new_item, chpfirst);
492
493	__this_cpu_write(cache->percpu->first, new_item);
494	__this_cpu_inc(cache->percpu->count);
495
496	if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
497		goto end;
498
499	/*
500	 * Return our per-cpu first list to the cache's xfer by atomically
501	 * grabbing the current xfer list, appending it to our per-cpu list,
502	 * and then atomically returning that entire list back to the
503	 * cache's xfer list as long as it's still empty.
504	 */
505	do {
506		old = xchg(&cache->xfer, NULL);
507		if (old)
508			list_splice_entire_tail(old, chpfirst);
509		old = cmpxchg(&cache->xfer, NULL, chpfirst);
510	} while (old);
511
512
513	__this_cpu_write(cache->percpu->first, NULL);
514	__this_cpu_write(cache->percpu->count, 0);
515end:
516	local_irq_restore(flags);
517}
518
519static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
520{
521	struct list_head *head = cache->ready;
522
523	if (head) {
524		if (!list_empty(head)) {
525			cache->ready = head->next;
526			list_del_init(head);
527		} else
528			cache->ready = NULL;
529	}
530
531	return head;
532}
533
534int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
535{
536	struct rds_ib_incoming *ibinc;
537	struct rds_page_frag *frag;
538	unsigned long to_copy;
539	unsigned long frag_off = 0;
540	int copied = 0;
541	int ret;
542	u32 len;
543
544	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
545	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
546	len = be32_to_cpu(inc->i_hdr.h_len);
547
548	while (iov_iter_count(to) && copied < len) {
549		if (frag_off == RDS_FRAG_SIZE) {
550			frag = list_entry(frag->f_item.next,
551					  struct rds_page_frag, f_item);
552			frag_off = 0;
553		}
554		to_copy = min_t(unsigned long, iov_iter_count(to),
555				RDS_FRAG_SIZE - frag_off);
556		to_copy = min_t(unsigned long, to_copy, len - copied);
557
558		/* XXX needs + offset for multiple recvs per page */
559		rds_stats_add(s_copy_to_user, to_copy);
560		ret = copy_page_to_iter(sg_page(&frag->f_sg),
561					frag->f_sg.offset + frag_off,
562					to_copy,
563					to);
564		if (ret != to_copy)
565			return -EFAULT;
566
567		frag_off += to_copy;
568		copied += to_copy;
569	}
570
571	return copied;
572}
573
574/* ic starts out kzalloc()ed */
575void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
576{
577	struct ib_send_wr *wr = &ic->i_ack_wr;
578	struct ib_sge *sge = &ic->i_ack_sge;
579
580	sge->addr = ic->i_ack_dma;
581	sge->length = sizeof(struct rds_header);
582	sge->lkey = ic->i_pd->local_dma_lkey;
583
584	wr->sg_list = sge;
585	wr->num_sge = 1;
586	wr->opcode = IB_WR_SEND;
587	wr->wr_id = RDS_IB_ACK_WR_ID;
588	wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
589}
590
591/*
592 * You'd think that with reliable IB connections you wouldn't need to ack
593 * messages that have been received.  The problem is that IB hardware generates
594 * an ack message before it has DMAed the message into memory.  This creates a
595 * potential message loss if the HCA is disabled for any reason between when it
596 * sends the ack and before the message is DMAed and processed.  This is only a
597 * potential issue if another HCA is available for fail-over.
598 *
599 * When the remote host receives our ack they'll free the sent message from
600 * their send queue.  To decrease the latency of this we always send an ack
601 * immediately after we've received messages.
602 *
603 * For simplicity, we only have one ack in flight at a time.  This puts
604 * pressure on senders to have deep enough send queues to absorb the latency of
605 * a single ack frame being in flight.  This might not be good enough.
606 *
607 * This is implemented by have a long-lived send_wr and sge which point to a
608 * statically allocated ack frame.  This ack wr does not fall under the ring
609 * accounting that the tx and rx wrs do.  The QP attribute specifically makes
610 * room for it beyond the ring size.  Send completion notices its special
611 * wr_id and avoids working with the ring in that case.
612 */
613#ifndef KERNEL_HAS_ATOMIC64
614void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
615{
616	unsigned long flags;
617
618	spin_lock_irqsave(&ic->i_ack_lock, flags);
619	ic->i_ack_next = seq;
620	if (ack_required)
621		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
622	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
623}
624
625static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
626{
627	unsigned long flags;
628	u64 seq;
629
630	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
631
632	spin_lock_irqsave(&ic->i_ack_lock, flags);
633	seq = ic->i_ack_next;
634	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
635
636	return seq;
637}
638#else
639void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
640{
641	atomic64_set(&ic->i_ack_next, seq);
642	if (ack_required) {
643		smp_mb__before_atomic();
644		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
645	}
646}
647
648static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
649{
650	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
651	smp_mb__after_atomic();
652
653	return atomic64_read(&ic->i_ack_next);
654}
655#endif
656
657
658static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
659{
660	struct rds_header *hdr = ic->i_ack;
661	u64 seq;
662	int ret;
663
664	seq = rds_ib_get_ack(ic);
665
666	rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
667
668	ib_dma_sync_single_for_cpu(ic->rds_ibdev->dev, ic->i_ack_dma,
669				   sizeof(*hdr), DMA_TO_DEVICE);
670	rds_message_populate_header(hdr, 0, 0, 0);
671	hdr->h_ack = cpu_to_be64(seq);
672	hdr->h_credit = adv_credits;
673	rds_message_make_checksum(hdr);
674	ib_dma_sync_single_for_device(ic->rds_ibdev->dev, ic->i_ack_dma,
675				      sizeof(*hdr), DMA_TO_DEVICE);
676
677	ic->i_ack_queued = jiffies;
678
679	ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, NULL);
680	if (unlikely(ret)) {
681		/* Failed to send. Release the WR, and
682		 * force another ACK.
683		 */
684		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
685		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
686
687		rds_ib_stats_inc(s_ib_ack_send_failure);
688
689		rds_ib_conn_error(ic->conn, "sending ack failed\n");
690	} else
691		rds_ib_stats_inc(s_ib_ack_sent);
692}
693
694/*
695 * There are 3 ways of getting acknowledgements to the peer:
696 *  1.	We call rds_ib_attempt_ack from the recv completion handler
697 *	to send an ACK-only frame.
698 *	However, there can be only one such frame in the send queue
699 *	at any time, so we may have to postpone it.
700 *  2.	When another (data) packet is transmitted while there's
701 *	an ACK in the queue, we piggyback the ACK sequence number
702 *	on the data packet.
703 *  3.	If the ACK WR is done sending, we get called from the
704 *	send queue completion handler, and check whether there's
705 *	another ACK pending (postponed because the WR was on the
706 *	queue). If so, we transmit it.
707 *
708 * We maintain 2 variables:
709 *  -	i_ack_flags, which keeps track of whether the ACK WR
710 *	is currently in the send queue or not (IB_ACK_IN_FLIGHT)
711 *  -	i_ack_next, which is the last sequence number we received
712 *
713 * Potentially, send queue and receive queue handlers can run concurrently.
714 * It would be nice to not have to use a spinlock to synchronize things,
715 * but the one problem that rules this out is that 64bit updates are
716 * not atomic on all platforms. Things would be a lot simpler if
717 * we had atomic64 or maybe cmpxchg64 everywhere.
718 *
719 * Reconnecting complicates this picture just slightly. When we
720 * reconnect, we may be seeing duplicate packets. The peer
721 * is retransmitting them, because it hasn't seen an ACK for
722 * them. It is important that we ACK these.
723 *
724 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
725 * this flag set *MUST* be acknowledged immediately.
726 */
727
728/*
729 * When we get here, we're called from the recv queue handler.
730 * Check whether we ought to transmit an ACK.
731 */
732void rds_ib_attempt_ack(struct rds_ib_connection *ic)
733{
734	unsigned int adv_credits;
735
736	if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
737		return;
738
739	if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
740		rds_ib_stats_inc(s_ib_ack_send_delayed);
741		return;
742	}
743
744	/* Can we get a send credit? */
745	if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
746		rds_ib_stats_inc(s_ib_tx_throttle);
747		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
748		return;
749	}
750
751	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
752	rds_ib_send_ack(ic, adv_credits);
753}
754
755/*
756 * We get here from the send completion handler, when the
757 * adapter tells us the ACK frame was sent.
758 */
759void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
760{
761	clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
762	rds_ib_attempt_ack(ic);
763}
764
765/*
766 * This is called by the regular xmit code when it wants to piggyback
767 * an ACK on an outgoing frame.
768 */
769u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
770{
771	if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
772		rds_ib_stats_inc(s_ib_ack_send_piggybacked);
773	return rds_ib_get_ack(ic);
774}
775
776/*
777 * It's kind of lame that we're copying from the posted receive pages into
778 * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
779 * them.  But receiving new congestion bitmaps should be a *rare* event, so
780 * hopefully we won't need to invest that complexity in making it more
781 * efficient.  By copying we can share a simpler core with TCP which has to
782 * copy.
783 */
784static void rds_ib_cong_recv(struct rds_connection *conn,
785			      struct rds_ib_incoming *ibinc)
786{
787	struct rds_cong_map *map;
788	unsigned int map_off;
789	unsigned int map_page;
790	struct rds_page_frag *frag;
791	unsigned long frag_off;
792	unsigned long to_copy;
793	unsigned long copied;
794	__le64 uncongested = 0;
795	void *addr;
796
797	/* catch completely corrupt packets */
798	if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
799		return;
800
801	map = conn->c_fcong;
802	map_page = 0;
803	map_off = 0;
804
805	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
806	frag_off = 0;
807
808	copied = 0;
809
810	while (copied < RDS_CONG_MAP_BYTES) {
811		__le64 *src, *dst;
812		unsigned int k;
813
814		to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
815		BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
816
817		addr = kmap_atomic(sg_page(&frag->f_sg));
818
819		src = addr + frag->f_sg.offset + frag_off;
820		dst = (void *)map->m_page_addrs[map_page] + map_off;
821		for (k = 0; k < to_copy; k += 8) {
822			/* Record ports that became uncongested, ie
823			 * bits that changed from 0 to 1. */
824			uncongested |= ~(*src) & *dst;
825			*dst++ = *src++;
826		}
827		kunmap_atomic(addr);
828
829		copied += to_copy;
830
831		map_off += to_copy;
832		if (map_off == PAGE_SIZE) {
833			map_off = 0;
834			map_page++;
835		}
836
837		frag_off += to_copy;
838		if (frag_off == RDS_FRAG_SIZE) {
839			frag = list_entry(frag->f_item.next,
840					  struct rds_page_frag, f_item);
841			frag_off = 0;
842		}
843	}
844
845	/* the congestion map is in little endian order */
846	rds_cong_map_updated(map, le64_to_cpu(uncongested));
847}
848
849static void rds_ib_process_recv(struct rds_connection *conn,
850				struct rds_ib_recv_work *recv, u32 data_len,
851				struct rds_ib_ack_state *state)
852{
853	struct rds_ib_connection *ic = conn->c_transport_data;
854	struct rds_ib_incoming *ibinc = ic->i_ibinc;
855	struct rds_header *ihdr, *hdr;
856	dma_addr_t dma_addr = ic->i_recv_hdrs_dma[recv - ic->i_recvs];
857
858	/* XXX shut down the connection if port 0,0 are seen? */
859
860	rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
861		 data_len);
862
863	if (data_len < sizeof(struct rds_header)) {
864		rds_ib_conn_error(conn, "incoming message "
865		       "from %pI6c didn't include a "
866		       "header, disconnecting and "
867		       "reconnecting\n",
868		       &conn->c_faddr);
869		return;
870	}
871	data_len -= sizeof(struct rds_header);
872
873	ihdr = ic->i_recv_hdrs[recv - ic->i_recvs];
874
875	ib_dma_sync_single_for_cpu(ic->rds_ibdev->dev, dma_addr,
876				   sizeof(*ihdr), DMA_FROM_DEVICE);
877	/* Validate the checksum. */
878	if (!rds_message_verify_checksum(ihdr)) {
879		rds_ib_conn_error(conn, "incoming message "
880		       "from %pI6c has corrupted header - "
881		       "forcing a reconnect\n",
882		       &conn->c_faddr);
883		rds_stats_inc(s_recv_drop_bad_checksum);
884		goto done;
885	}
886
887	/* Process the ACK sequence which comes with every packet */
888	state->ack_recv = be64_to_cpu(ihdr->h_ack);
889	state->ack_recv_valid = 1;
890
891	/* Process the credits update if there was one */
892	if (ihdr->h_credit)
893		rds_ib_send_add_credits(conn, ihdr->h_credit);
894
895	if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
896		/* This is an ACK-only packet. The fact that it gets
897		 * special treatment here is that historically, ACKs
898		 * were rather special beasts.
899		 */
900		rds_ib_stats_inc(s_ib_ack_received);
901
902		/*
903		 * Usually the frags make their way on to incs and are then freed as
904		 * the inc is freed.  We don't go that route, so we have to drop the
905		 * page ref ourselves.  We can't just leave the page on the recv
906		 * because that confuses the dma mapping of pages and each recv's use
907		 * of a partial page.
908		 *
909		 * FIXME: Fold this into the code path below.
910		 */
911		rds_ib_frag_free(ic, recv->r_frag);
912		recv->r_frag = NULL;
913		goto done;
914	}
915
916	/*
917	 * If we don't already have an inc on the connection then this
918	 * fragment has a header and starts a message.. copy its header
919	 * into the inc and save the inc so we can hang upcoming fragments
920	 * off its list.
921	 */
922	if (!ibinc) {
923		ibinc = recv->r_ibinc;
924		recv->r_ibinc = NULL;
925		ic->i_ibinc = ibinc;
926
927		hdr = &ibinc->ii_inc.i_hdr;
928		ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_HDR] =
929				local_clock();
930		memcpy(hdr, ihdr, sizeof(*hdr));
931		ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
932		ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_START] =
933				local_clock();
934
935		rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
936			 ic->i_recv_data_rem, hdr->h_flags);
937	} else {
938		hdr = &ibinc->ii_inc.i_hdr;
939		/* We can't just use memcmp here; fragments of a
940		 * single message may carry different ACKs */
941		if (hdr->h_sequence != ihdr->h_sequence ||
942		    hdr->h_len != ihdr->h_len ||
943		    hdr->h_sport != ihdr->h_sport ||
944		    hdr->h_dport != ihdr->h_dport) {
945			rds_ib_conn_error(conn,
946				"fragment header mismatch; forcing reconnect\n");
947			goto done;
948		}
949	}
950
951	list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
952	recv->r_frag = NULL;
953
954	if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
955		ic->i_recv_data_rem -= RDS_FRAG_SIZE;
956	else {
957		ic->i_recv_data_rem = 0;
958		ic->i_ibinc = NULL;
959
960		if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) {
961			rds_ib_cong_recv(conn, ibinc);
962		} else {
963			rds_recv_incoming(conn, &conn->c_faddr, &conn->c_laddr,
964					  &ibinc->ii_inc, GFP_ATOMIC);
965			state->ack_next = be64_to_cpu(hdr->h_sequence);
966			state->ack_next_valid = 1;
967		}
968
969		/* Evaluate the ACK_REQUIRED flag *after* we received
970		 * the complete frame, and after bumping the next_rx
971		 * sequence. */
972		if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
973			rds_stats_inc(s_recv_ack_required);
974			state->ack_required = 1;
975		}
976
977		rds_inc_put(&ibinc->ii_inc);
978	}
979done:
980	ib_dma_sync_single_for_device(ic->rds_ibdev->dev, dma_addr,
981				      sizeof(*ihdr), DMA_FROM_DEVICE);
982}
983
984void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic,
985			     struct ib_wc *wc,
986			     struct rds_ib_ack_state *state)
987{
988	struct rds_connection *conn = ic->conn;
989	struct rds_ib_recv_work *recv;
990
991	rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
992		 (unsigned long long)wc->wr_id, wc->status,
993		 ib_wc_status_msg(wc->status), wc->byte_len,
994		 be32_to_cpu(wc->ex.imm_data));
995
996	rds_ib_stats_inc(s_ib_rx_cq_event);
997	recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
998	ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1,
999			DMA_FROM_DEVICE);
1000
1001	/* Also process recvs in connecting state because it is possible
1002	 * to get a recv completion _before_ the rdmacm ESTABLISHED
1003	 * event is processed.
1004	 */
1005	if (wc->status == IB_WC_SUCCESS) {
1006		rds_ib_process_recv(conn, recv, wc->byte_len, state);
1007	} else {
1008		/* We expect errors as the qp is drained during shutdown */
1009		if (rds_conn_up(conn) || rds_conn_connecting(conn))
1010			rds_ib_conn_error(conn, "recv completion on <%pI6c,%pI6c, %d> had status %u (%s), vendor err 0x%x, disconnecting and reconnecting\n",
1011					  &conn->c_laddr, &conn->c_faddr,
1012					  conn->c_tos, wc->status,
1013					  ib_wc_status_msg(wc->status),
1014					  wc->vendor_err);
1015	}
1016
1017	/* rds_ib_process_recv() doesn't always consume the frag, and
1018	 * we might not have called it at all if the wc didn't indicate
1019	 * success. We already unmapped the frag's pages, though, and
1020	 * the following rds_ib_ring_free() call tells the refill path
1021	 * that it will not find an allocated frag here. Make sure we
1022	 * keep that promise by freeing a frag that's still on the ring.
1023	 */
1024	if (recv->r_frag) {
1025		rds_ib_frag_free(ic, recv->r_frag);
1026		recv->r_frag = NULL;
1027	}
1028	rds_ib_ring_free(&ic->i_recv_ring, 1);
1029
1030	/* If we ever end up with a really empty receive ring, we're
1031	 * in deep trouble, as the sender will definitely see RNR
1032	 * timeouts. */
1033	if (rds_ib_ring_empty(&ic->i_recv_ring))
1034		rds_ib_stats_inc(s_ib_rx_ring_empty);
1035
1036	if (rds_ib_ring_low(&ic->i_recv_ring)) {
1037		rds_ib_recv_refill(conn, 0, GFP_NOWAIT | __GFP_NOWARN);
1038		rds_ib_stats_inc(s_ib_rx_refill_from_cq);
1039	}
1040}
1041
1042int rds_ib_recv_path(struct rds_conn_path *cp)
1043{
1044	struct rds_connection *conn = cp->cp_conn;
1045	struct rds_ib_connection *ic = conn->c_transport_data;
1046
1047	rdsdebug("conn %p\n", conn);
1048	if (rds_conn_up(conn)) {
1049		rds_ib_attempt_ack(ic);
1050		rds_ib_recv_refill(conn, 0, GFP_KERNEL);
1051		rds_ib_stats_inc(s_ib_rx_refill_from_thread);
1052	}
1053
1054	return 0;
1055}
1056
1057int rds_ib_recv_init(void)
1058{
1059	struct sysinfo si;
1060	int ret = -ENOMEM;
1061
1062	/* Default to 30% of all available RAM for recv memory */
1063	si_meminfo(&si);
1064	rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
1065
1066	rds_ib_incoming_slab =
1067		kmem_cache_create_usercopy("rds_ib_incoming",
1068					   sizeof(struct rds_ib_incoming),
1069					   0, SLAB_HWCACHE_ALIGN,
1070					   offsetof(struct rds_ib_incoming,
1071						    ii_inc.i_usercopy),
1072					   sizeof(struct rds_inc_usercopy),
1073					   NULL);
1074	if (!rds_ib_incoming_slab)
1075		goto out;
1076
1077	rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
1078					sizeof(struct rds_page_frag),
1079					0, SLAB_HWCACHE_ALIGN, NULL);
1080	if (!rds_ib_frag_slab) {
1081		kmem_cache_destroy(rds_ib_incoming_slab);
1082		rds_ib_incoming_slab = NULL;
1083	} else
1084		ret = 0;
1085out:
1086	return ret;
1087}
1088
1089void rds_ib_recv_exit(void)
1090{
1091	WARN_ON(atomic_read(&rds_ib_allocation));
1092
1093	kmem_cache_destroy(rds_ib_incoming_slab);
1094	kmem_cache_destroy(rds_ib_frag_slab);
1095}
1096