1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/kernel.h>
3#include <linux/skbuff.h>
4#include <linux/export.h>
5#include <linux/ip.h>
6#include <linux/ipv6.h>
7#include <linux/if_vlan.h>
8#include <linux/filter.h>
9#include <net/dsa.h>
10#include <net/dst_metadata.h>
11#include <net/ip.h>
12#include <net/ipv6.h>
13#include <net/gre.h>
14#include <net/pptp.h>
15#include <net/tipc.h>
16#include <linux/igmp.h>
17#include <linux/icmp.h>
18#include <linux/sctp.h>
19#include <linux/dccp.h>
20#include <linux/if_tunnel.h>
21#include <linux/if_pppox.h>
22#include <linux/ppp_defs.h>
23#include <linux/stddef.h>
24#include <linux/if_ether.h>
25#include <linux/if_hsr.h>
26#include <linux/mpls.h>
27#include <linux/tcp.h>
28#include <linux/ptp_classify.h>
29#include <net/flow_dissector.h>
30#include <net/pkt_cls.h>
31#include <scsi/fc/fc_fcoe.h>
32#include <uapi/linux/batadv_packet.h>
33#include <linux/bpf.h>
34#if IS_ENABLED(CONFIG_NF_CONNTRACK)
35#include <net/netfilter/nf_conntrack_core.h>
36#include <net/netfilter/nf_conntrack_labels.h>
37#endif
38#include <linux/bpf-netns.h>
39
40static void dissector_set_key(struct flow_dissector *flow_dissector,
41			      enum flow_dissector_key_id key_id)
42{
43	flow_dissector->used_keys |= (1ULL << key_id);
44}
45
46void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
47			     const struct flow_dissector_key *key,
48			     unsigned int key_count)
49{
50	unsigned int i;
51
52	memset(flow_dissector, 0, sizeof(*flow_dissector));
53
54	for (i = 0; i < key_count; i++, key++) {
55		/* User should make sure that every key target offset is within
56		 * boundaries of unsigned short.
57		 */
58		BUG_ON(key->offset > USHRT_MAX);
59		BUG_ON(dissector_uses_key(flow_dissector,
60					  key->key_id));
61
62		dissector_set_key(flow_dissector, key->key_id);
63		flow_dissector->offset[key->key_id] = key->offset;
64	}
65
66	/* Ensure that the dissector always includes control and basic key.
67	 * That way we are able to avoid handling lack of these in fast path.
68	 */
69	BUG_ON(!dissector_uses_key(flow_dissector,
70				   FLOW_DISSECTOR_KEY_CONTROL));
71	BUG_ON(!dissector_uses_key(flow_dissector,
72				   FLOW_DISSECTOR_KEY_BASIC));
73}
74EXPORT_SYMBOL(skb_flow_dissector_init);
75
76#ifdef CONFIG_BPF_SYSCALL
77int flow_dissector_bpf_prog_attach_check(struct net *net,
78					 struct bpf_prog *prog)
79{
80	enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR;
81
82	if (net == &init_net) {
83		/* BPF flow dissector in the root namespace overrides
84		 * any per-net-namespace one. When attaching to root,
85		 * make sure we don't have any BPF program attached
86		 * to the non-root namespaces.
87		 */
88		struct net *ns;
89
90		for_each_net(ns) {
91			if (ns == &init_net)
92				continue;
93			if (rcu_access_pointer(ns->bpf.run_array[type]))
94				return -EEXIST;
95		}
96	} else {
97		/* Make sure root flow dissector is not attached
98		 * when attaching to the non-root namespace.
99		 */
100		if (rcu_access_pointer(init_net.bpf.run_array[type]))
101			return -EEXIST;
102	}
103
104	return 0;
105}
106#endif /* CONFIG_BPF_SYSCALL */
107
108/**
109 * __skb_flow_get_ports - extract the upper layer ports and return them
110 * @skb: sk_buff to extract the ports from
111 * @thoff: transport header offset
112 * @ip_proto: protocol for which to get port offset
113 * @data: raw buffer pointer to the packet, if NULL use skb->data
114 * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
115 *
116 * The function will try to retrieve the ports at offset thoff + poff where poff
117 * is the protocol port offset returned from proto_ports_offset
118 */
119__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
120			    const void *data, int hlen)
121{
122	int poff = proto_ports_offset(ip_proto);
123
124	if (!data) {
125		data = skb->data;
126		hlen = skb_headlen(skb);
127	}
128
129	if (poff >= 0) {
130		__be32 *ports, _ports;
131
132		ports = __skb_header_pointer(skb, thoff + poff,
133					     sizeof(_ports), data, hlen, &_ports);
134		if (ports)
135			return *ports;
136	}
137
138	return 0;
139}
140EXPORT_SYMBOL(__skb_flow_get_ports);
141
142static bool icmp_has_id(u8 type)
143{
144	switch (type) {
145	case ICMP_ECHO:
146	case ICMP_ECHOREPLY:
147	case ICMP_TIMESTAMP:
148	case ICMP_TIMESTAMPREPLY:
149	case ICMPV6_ECHO_REQUEST:
150	case ICMPV6_ECHO_REPLY:
151		return true;
152	}
153
154	return false;
155}
156
157/**
158 * skb_flow_get_icmp_tci - extract ICMP(6) Type, Code and Identifier fields
159 * @skb: sk_buff to extract from
160 * @key_icmp: struct flow_dissector_key_icmp to fill
161 * @data: raw buffer pointer to the packet
162 * @thoff: offset to extract at
163 * @hlen: packet header length
164 */
165void skb_flow_get_icmp_tci(const struct sk_buff *skb,
166			   struct flow_dissector_key_icmp *key_icmp,
167			   const void *data, int thoff, int hlen)
168{
169	struct icmphdr *ih, _ih;
170
171	ih = __skb_header_pointer(skb, thoff, sizeof(_ih), data, hlen, &_ih);
172	if (!ih)
173		return;
174
175	key_icmp->type = ih->type;
176	key_icmp->code = ih->code;
177
178	/* As we use 0 to signal that the Id field is not present,
179	 * avoid confusion with packets without such field
180	 */
181	if (icmp_has_id(ih->type))
182		key_icmp->id = ih->un.echo.id ? ntohs(ih->un.echo.id) : 1;
183	else
184		key_icmp->id = 0;
185}
186EXPORT_SYMBOL(skb_flow_get_icmp_tci);
187
188/* If FLOW_DISSECTOR_KEY_ICMP is set, dissect an ICMP packet
189 * using skb_flow_get_icmp_tci().
190 */
191static void __skb_flow_dissect_icmp(const struct sk_buff *skb,
192				    struct flow_dissector *flow_dissector,
193				    void *target_container, const void *data,
194				    int thoff, int hlen)
195{
196	struct flow_dissector_key_icmp *key_icmp;
197
198	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ICMP))
199		return;
200
201	key_icmp = skb_flow_dissector_target(flow_dissector,
202					     FLOW_DISSECTOR_KEY_ICMP,
203					     target_container);
204
205	skb_flow_get_icmp_tci(skb, key_icmp, data, thoff, hlen);
206}
207
208static void __skb_flow_dissect_ah(const struct sk_buff *skb,
209				  struct flow_dissector *flow_dissector,
210				  void *target_container, const void *data,
211				  int nhoff, int hlen)
212{
213	struct flow_dissector_key_ipsec *key_ah;
214	struct ip_auth_hdr _hdr, *hdr;
215
216	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPSEC))
217		return;
218
219	hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
220	if (!hdr)
221		return;
222
223	key_ah = skb_flow_dissector_target(flow_dissector,
224					   FLOW_DISSECTOR_KEY_IPSEC,
225					   target_container);
226
227	key_ah->spi = hdr->spi;
228}
229
230static void __skb_flow_dissect_esp(const struct sk_buff *skb,
231				   struct flow_dissector *flow_dissector,
232				   void *target_container, const void *data,
233				   int nhoff, int hlen)
234{
235	struct flow_dissector_key_ipsec *key_esp;
236	struct ip_esp_hdr _hdr, *hdr;
237
238	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPSEC))
239		return;
240
241	hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
242	if (!hdr)
243		return;
244
245	key_esp = skb_flow_dissector_target(flow_dissector,
246					    FLOW_DISSECTOR_KEY_IPSEC,
247					    target_container);
248
249	key_esp->spi = hdr->spi;
250}
251
252static void __skb_flow_dissect_l2tpv3(const struct sk_buff *skb,
253				      struct flow_dissector *flow_dissector,
254				      void *target_container, const void *data,
255				      int nhoff, int hlen)
256{
257	struct flow_dissector_key_l2tpv3 *key_l2tpv3;
258	struct {
259		__be32 session_id;
260	} *hdr, _hdr;
261
262	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_L2TPV3))
263		return;
264
265	hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
266	if (!hdr)
267		return;
268
269	key_l2tpv3 = skb_flow_dissector_target(flow_dissector,
270					       FLOW_DISSECTOR_KEY_L2TPV3,
271					       target_container);
272
273	key_l2tpv3->session_id = hdr->session_id;
274}
275
276void skb_flow_dissect_meta(const struct sk_buff *skb,
277			   struct flow_dissector *flow_dissector,
278			   void *target_container)
279{
280	struct flow_dissector_key_meta *meta;
281
282	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_META))
283		return;
284
285	meta = skb_flow_dissector_target(flow_dissector,
286					 FLOW_DISSECTOR_KEY_META,
287					 target_container);
288	meta->ingress_ifindex = skb->skb_iif;
289#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
290	if (tc_skb_ext_tc_enabled()) {
291		struct tc_skb_ext *ext;
292
293		ext = skb_ext_find(skb, TC_SKB_EXT);
294		if (ext)
295			meta->l2_miss = ext->l2_miss;
296	}
297#endif
298}
299EXPORT_SYMBOL(skb_flow_dissect_meta);
300
301static void
302skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
303				   struct flow_dissector *flow_dissector,
304				   void *target_container)
305{
306	struct flow_dissector_key_control *ctrl;
307
308	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
309		return;
310
311	ctrl = skb_flow_dissector_target(flow_dissector,
312					 FLOW_DISSECTOR_KEY_ENC_CONTROL,
313					 target_container);
314	ctrl->addr_type = type;
315}
316
317void
318skb_flow_dissect_ct(const struct sk_buff *skb,
319		    struct flow_dissector *flow_dissector,
320		    void *target_container, u16 *ctinfo_map,
321		    size_t mapsize, bool post_ct, u16 zone)
322{
323#if IS_ENABLED(CONFIG_NF_CONNTRACK)
324	struct flow_dissector_key_ct *key;
325	enum ip_conntrack_info ctinfo;
326	struct nf_conn_labels *cl;
327	struct nf_conn *ct;
328
329	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CT))
330		return;
331
332	ct = nf_ct_get(skb, &ctinfo);
333	if (!ct && !post_ct)
334		return;
335
336	key = skb_flow_dissector_target(flow_dissector,
337					FLOW_DISSECTOR_KEY_CT,
338					target_container);
339
340	if (!ct) {
341		key->ct_state = TCA_FLOWER_KEY_CT_FLAGS_TRACKED |
342				TCA_FLOWER_KEY_CT_FLAGS_INVALID;
343		key->ct_zone = zone;
344		return;
345	}
346
347	if (ctinfo < mapsize)
348		key->ct_state = ctinfo_map[ctinfo];
349#if IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)
350	key->ct_zone = ct->zone.id;
351#endif
352#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
353	key->ct_mark = READ_ONCE(ct->mark);
354#endif
355
356	cl = nf_ct_labels_find(ct);
357	if (cl)
358		memcpy(key->ct_labels, cl->bits, sizeof(key->ct_labels));
359#endif /* CONFIG_NF_CONNTRACK */
360}
361EXPORT_SYMBOL(skb_flow_dissect_ct);
362
363void
364skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
365			     struct flow_dissector *flow_dissector,
366			     void *target_container)
367{
368	struct ip_tunnel_info *info;
369	struct ip_tunnel_key *key;
370
371	/* A quick check to see if there might be something to do. */
372	if (!dissector_uses_key(flow_dissector,
373				FLOW_DISSECTOR_KEY_ENC_KEYID) &&
374	    !dissector_uses_key(flow_dissector,
375				FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
376	    !dissector_uses_key(flow_dissector,
377				FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
378	    !dissector_uses_key(flow_dissector,
379				FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
380	    !dissector_uses_key(flow_dissector,
381				FLOW_DISSECTOR_KEY_ENC_PORTS) &&
382	    !dissector_uses_key(flow_dissector,
383				FLOW_DISSECTOR_KEY_ENC_IP) &&
384	    !dissector_uses_key(flow_dissector,
385				FLOW_DISSECTOR_KEY_ENC_OPTS))
386		return;
387
388	info = skb_tunnel_info(skb);
389	if (!info)
390		return;
391
392	key = &info->key;
393
394	switch (ip_tunnel_info_af(info)) {
395	case AF_INET:
396		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
397						   flow_dissector,
398						   target_container);
399		if (dissector_uses_key(flow_dissector,
400				       FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
401			struct flow_dissector_key_ipv4_addrs *ipv4;
402
403			ipv4 = skb_flow_dissector_target(flow_dissector,
404							 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
405							 target_container);
406			ipv4->src = key->u.ipv4.src;
407			ipv4->dst = key->u.ipv4.dst;
408		}
409		break;
410	case AF_INET6:
411		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
412						   flow_dissector,
413						   target_container);
414		if (dissector_uses_key(flow_dissector,
415				       FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
416			struct flow_dissector_key_ipv6_addrs *ipv6;
417
418			ipv6 = skb_flow_dissector_target(flow_dissector,
419							 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
420							 target_container);
421			ipv6->src = key->u.ipv6.src;
422			ipv6->dst = key->u.ipv6.dst;
423		}
424		break;
425	}
426
427	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
428		struct flow_dissector_key_keyid *keyid;
429
430		keyid = skb_flow_dissector_target(flow_dissector,
431						  FLOW_DISSECTOR_KEY_ENC_KEYID,
432						  target_container);
433		keyid->keyid = tunnel_id_to_key32(key->tun_id);
434	}
435
436	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
437		struct flow_dissector_key_ports *tp;
438
439		tp = skb_flow_dissector_target(flow_dissector,
440					       FLOW_DISSECTOR_KEY_ENC_PORTS,
441					       target_container);
442		tp->src = key->tp_src;
443		tp->dst = key->tp_dst;
444	}
445
446	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
447		struct flow_dissector_key_ip *ip;
448
449		ip = skb_flow_dissector_target(flow_dissector,
450					       FLOW_DISSECTOR_KEY_ENC_IP,
451					       target_container);
452		ip->tos = key->tos;
453		ip->ttl = key->ttl;
454	}
455
456	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
457		struct flow_dissector_key_enc_opts *enc_opt;
458
459		enc_opt = skb_flow_dissector_target(flow_dissector,
460						    FLOW_DISSECTOR_KEY_ENC_OPTS,
461						    target_container);
462
463		if (info->options_len) {
464			enc_opt->len = info->options_len;
465			ip_tunnel_info_opts_get(enc_opt->data, info);
466			enc_opt->dst_opt_type = info->key.tun_flags &
467						TUNNEL_OPTIONS_PRESENT;
468		}
469	}
470}
471EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
472
473void skb_flow_dissect_hash(const struct sk_buff *skb,
474			   struct flow_dissector *flow_dissector,
475			   void *target_container)
476{
477	struct flow_dissector_key_hash *key;
478
479	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_HASH))
480		return;
481
482	key = skb_flow_dissector_target(flow_dissector,
483					FLOW_DISSECTOR_KEY_HASH,
484					target_container);
485
486	key->hash = skb_get_hash_raw(skb);
487}
488EXPORT_SYMBOL(skb_flow_dissect_hash);
489
490static enum flow_dissect_ret
491__skb_flow_dissect_mpls(const struct sk_buff *skb,
492			struct flow_dissector *flow_dissector,
493			void *target_container, const void *data, int nhoff,
494			int hlen, int lse_index, bool *entropy_label)
495{
496	struct mpls_label *hdr, _hdr;
497	u32 entry, label, bos;
498
499	if (!dissector_uses_key(flow_dissector,
500				FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
501	    !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
502		return FLOW_DISSECT_RET_OUT_GOOD;
503
504	if (lse_index >= FLOW_DIS_MPLS_MAX)
505		return FLOW_DISSECT_RET_OUT_GOOD;
506
507	hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
508				   hlen, &_hdr);
509	if (!hdr)
510		return FLOW_DISSECT_RET_OUT_BAD;
511
512	entry = ntohl(hdr->entry);
513	label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
514	bos = (entry & MPLS_LS_S_MASK) >> MPLS_LS_S_SHIFT;
515
516	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
517		struct flow_dissector_key_mpls *key_mpls;
518		struct flow_dissector_mpls_lse *lse;
519
520		key_mpls = skb_flow_dissector_target(flow_dissector,
521						     FLOW_DISSECTOR_KEY_MPLS,
522						     target_container);
523		lse = &key_mpls->ls[lse_index];
524
525		lse->mpls_ttl = (entry & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
526		lse->mpls_bos = bos;
527		lse->mpls_tc = (entry & MPLS_LS_TC_MASK) >> MPLS_LS_TC_SHIFT;
528		lse->mpls_label = label;
529		dissector_set_mpls_lse(key_mpls, lse_index);
530	}
531
532	if (*entropy_label &&
533	    dissector_uses_key(flow_dissector,
534			       FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
535		struct flow_dissector_key_keyid *key_keyid;
536
537		key_keyid = skb_flow_dissector_target(flow_dissector,
538						      FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
539						      target_container);
540		key_keyid->keyid = cpu_to_be32(label);
541	}
542
543	*entropy_label = label == MPLS_LABEL_ENTROPY;
544
545	return bos ? FLOW_DISSECT_RET_OUT_GOOD : FLOW_DISSECT_RET_PROTO_AGAIN;
546}
547
548static enum flow_dissect_ret
549__skb_flow_dissect_arp(const struct sk_buff *skb,
550		       struct flow_dissector *flow_dissector,
551		       void *target_container, const void *data,
552		       int nhoff, int hlen)
553{
554	struct flow_dissector_key_arp *key_arp;
555	struct {
556		unsigned char ar_sha[ETH_ALEN];
557		unsigned char ar_sip[4];
558		unsigned char ar_tha[ETH_ALEN];
559		unsigned char ar_tip[4];
560	} *arp_eth, _arp_eth;
561	const struct arphdr *arp;
562	struct arphdr _arp;
563
564	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
565		return FLOW_DISSECT_RET_OUT_GOOD;
566
567	arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
568				   hlen, &_arp);
569	if (!arp)
570		return FLOW_DISSECT_RET_OUT_BAD;
571
572	if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
573	    arp->ar_pro != htons(ETH_P_IP) ||
574	    arp->ar_hln != ETH_ALEN ||
575	    arp->ar_pln != 4 ||
576	    (arp->ar_op != htons(ARPOP_REPLY) &&
577	     arp->ar_op != htons(ARPOP_REQUEST)))
578		return FLOW_DISSECT_RET_OUT_BAD;
579
580	arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
581				       sizeof(_arp_eth), data,
582				       hlen, &_arp_eth);
583	if (!arp_eth)
584		return FLOW_DISSECT_RET_OUT_BAD;
585
586	key_arp = skb_flow_dissector_target(flow_dissector,
587					    FLOW_DISSECTOR_KEY_ARP,
588					    target_container);
589
590	memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
591	memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
592
593	/* Only store the lower byte of the opcode;
594	 * this covers ARPOP_REPLY and ARPOP_REQUEST.
595	 */
596	key_arp->op = ntohs(arp->ar_op) & 0xff;
597
598	ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
599	ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
600
601	return FLOW_DISSECT_RET_OUT_GOOD;
602}
603
604static enum flow_dissect_ret
605__skb_flow_dissect_cfm(const struct sk_buff *skb,
606		       struct flow_dissector *flow_dissector,
607		       void *target_container, const void *data,
608		       int nhoff, int hlen)
609{
610	struct flow_dissector_key_cfm *key, *hdr, _hdr;
611
612	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CFM))
613		return FLOW_DISSECT_RET_OUT_GOOD;
614
615	hdr = __skb_header_pointer(skb, nhoff, sizeof(*key), data, hlen, &_hdr);
616	if (!hdr)
617		return FLOW_DISSECT_RET_OUT_BAD;
618
619	key = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_CFM,
620					target_container);
621
622	key->mdl_ver = hdr->mdl_ver;
623	key->opcode = hdr->opcode;
624
625	return FLOW_DISSECT_RET_OUT_GOOD;
626}
627
628static enum flow_dissect_ret
629__skb_flow_dissect_gre(const struct sk_buff *skb,
630		       struct flow_dissector_key_control *key_control,
631		       struct flow_dissector *flow_dissector,
632		       void *target_container, const void *data,
633		       __be16 *p_proto, int *p_nhoff, int *p_hlen,
634		       unsigned int flags)
635{
636	struct flow_dissector_key_keyid *key_keyid;
637	struct gre_base_hdr *hdr, _hdr;
638	int offset = 0;
639	u16 gre_ver;
640
641	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
642				   data, *p_hlen, &_hdr);
643	if (!hdr)
644		return FLOW_DISSECT_RET_OUT_BAD;
645
646	/* Only look inside GRE without routing */
647	if (hdr->flags & GRE_ROUTING)
648		return FLOW_DISSECT_RET_OUT_GOOD;
649
650	/* Only look inside GRE for version 0 and 1 */
651	gre_ver = ntohs(hdr->flags & GRE_VERSION);
652	if (gre_ver > 1)
653		return FLOW_DISSECT_RET_OUT_GOOD;
654
655	*p_proto = hdr->protocol;
656	if (gre_ver) {
657		/* Version1 must be PPTP, and check the flags */
658		if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
659			return FLOW_DISSECT_RET_OUT_GOOD;
660	}
661
662	offset += sizeof(struct gre_base_hdr);
663
664	if (hdr->flags & GRE_CSUM)
665		offset += sizeof_field(struct gre_full_hdr, csum) +
666			  sizeof_field(struct gre_full_hdr, reserved1);
667
668	if (hdr->flags & GRE_KEY) {
669		const __be32 *keyid;
670		__be32 _keyid;
671
672		keyid = __skb_header_pointer(skb, *p_nhoff + offset,
673					     sizeof(_keyid),
674					     data, *p_hlen, &_keyid);
675		if (!keyid)
676			return FLOW_DISSECT_RET_OUT_BAD;
677
678		if (dissector_uses_key(flow_dissector,
679				       FLOW_DISSECTOR_KEY_GRE_KEYID)) {
680			key_keyid = skb_flow_dissector_target(flow_dissector,
681							      FLOW_DISSECTOR_KEY_GRE_KEYID,
682							      target_container);
683			if (gre_ver == 0)
684				key_keyid->keyid = *keyid;
685			else
686				key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
687		}
688		offset += sizeof_field(struct gre_full_hdr, key);
689	}
690
691	if (hdr->flags & GRE_SEQ)
692		offset += sizeof_field(struct pptp_gre_header, seq);
693
694	if (gre_ver == 0) {
695		if (*p_proto == htons(ETH_P_TEB)) {
696			const struct ethhdr *eth;
697			struct ethhdr _eth;
698
699			eth = __skb_header_pointer(skb, *p_nhoff + offset,
700						   sizeof(_eth),
701						   data, *p_hlen, &_eth);
702			if (!eth)
703				return FLOW_DISSECT_RET_OUT_BAD;
704			*p_proto = eth->h_proto;
705			offset += sizeof(*eth);
706
707			/* Cap headers that we access via pointers at the
708			 * end of the Ethernet header as our maximum alignment
709			 * at that point is only 2 bytes.
710			 */
711			if (NET_IP_ALIGN)
712				*p_hlen = *p_nhoff + offset;
713		}
714	} else { /* version 1, must be PPTP */
715		u8 _ppp_hdr[PPP_HDRLEN];
716		u8 *ppp_hdr;
717
718		if (hdr->flags & GRE_ACK)
719			offset += sizeof_field(struct pptp_gre_header, ack);
720
721		ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
722					       sizeof(_ppp_hdr),
723					       data, *p_hlen, _ppp_hdr);
724		if (!ppp_hdr)
725			return FLOW_DISSECT_RET_OUT_BAD;
726
727		switch (PPP_PROTOCOL(ppp_hdr)) {
728		case PPP_IP:
729			*p_proto = htons(ETH_P_IP);
730			break;
731		case PPP_IPV6:
732			*p_proto = htons(ETH_P_IPV6);
733			break;
734		default:
735			/* Could probably catch some more like MPLS */
736			break;
737		}
738
739		offset += PPP_HDRLEN;
740	}
741
742	*p_nhoff += offset;
743	key_control->flags |= FLOW_DIS_ENCAPSULATION;
744	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
745		return FLOW_DISSECT_RET_OUT_GOOD;
746
747	return FLOW_DISSECT_RET_PROTO_AGAIN;
748}
749
750/**
751 * __skb_flow_dissect_batadv() - dissect batman-adv header
752 * @skb: sk_buff to with the batman-adv header
753 * @key_control: flow dissectors control key
754 * @data: raw buffer pointer to the packet, if NULL use skb->data
755 * @p_proto: pointer used to update the protocol to process next
756 * @p_nhoff: pointer used to update inner network header offset
757 * @hlen: packet header length
758 * @flags: any combination of FLOW_DISSECTOR_F_*
759 *
760 * ETH_P_BATMAN packets are tried to be dissected. Only
761 * &struct batadv_unicast packets are actually processed because they contain an
762 * inner ethernet header and are usually followed by actual network header. This
763 * allows the flow dissector to continue processing the packet.
764 *
765 * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
766 *  FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
767 *  otherwise FLOW_DISSECT_RET_OUT_BAD
768 */
769static enum flow_dissect_ret
770__skb_flow_dissect_batadv(const struct sk_buff *skb,
771			  struct flow_dissector_key_control *key_control,
772			  const void *data, __be16 *p_proto, int *p_nhoff,
773			  int hlen, unsigned int flags)
774{
775	struct {
776		struct batadv_unicast_packet batadv_unicast;
777		struct ethhdr eth;
778	} *hdr, _hdr;
779
780	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
781				   &_hdr);
782	if (!hdr)
783		return FLOW_DISSECT_RET_OUT_BAD;
784
785	if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
786		return FLOW_DISSECT_RET_OUT_BAD;
787
788	if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
789		return FLOW_DISSECT_RET_OUT_BAD;
790
791	*p_proto = hdr->eth.h_proto;
792	*p_nhoff += sizeof(*hdr);
793
794	key_control->flags |= FLOW_DIS_ENCAPSULATION;
795	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
796		return FLOW_DISSECT_RET_OUT_GOOD;
797
798	return FLOW_DISSECT_RET_PROTO_AGAIN;
799}
800
801static void
802__skb_flow_dissect_tcp(const struct sk_buff *skb,
803		       struct flow_dissector *flow_dissector,
804		       void *target_container, const void *data,
805		       int thoff, int hlen)
806{
807	struct flow_dissector_key_tcp *key_tcp;
808	struct tcphdr *th, _th;
809
810	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
811		return;
812
813	th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
814	if (!th)
815		return;
816
817	if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
818		return;
819
820	key_tcp = skb_flow_dissector_target(flow_dissector,
821					    FLOW_DISSECTOR_KEY_TCP,
822					    target_container);
823	key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
824}
825
826static void
827__skb_flow_dissect_ports(const struct sk_buff *skb,
828			 struct flow_dissector *flow_dissector,
829			 void *target_container, const void *data,
830			 int nhoff, u8 ip_proto, int hlen)
831{
832	enum flow_dissector_key_id dissector_ports = FLOW_DISSECTOR_KEY_MAX;
833	struct flow_dissector_key_ports *key_ports;
834
835	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
836		dissector_ports = FLOW_DISSECTOR_KEY_PORTS;
837	else if (dissector_uses_key(flow_dissector,
838				    FLOW_DISSECTOR_KEY_PORTS_RANGE))
839		dissector_ports = FLOW_DISSECTOR_KEY_PORTS_RANGE;
840
841	if (dissector_ports == FLOW_DISSECTOR_KEY_MAX)
842		return;
843
844	key_ports = skb_flow_dissector_target(flow_dissector,
845					      dissector_ports,
846					      target_container);
847	key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
848						data, hlen);
849}
850
851static void
852__skb_flow_dissect_ipv4(const struct sk_buff *skb,
853			struct flow_dissector *flow_dissector,
854			void *target_container, const void *data,
855			const struct iphdr *iph)
856{
857	struct flow_dissector_key_ip *key_ip;
858
859	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
860		return;
861
862	key_ip = skb_flow_dissector_target(flow_dissector,
863					   FLOW_DISSECTOR_KEY_IP,
864					   target_container);
865	key_ip->tos = iph->tos;
866	key_ip->ttl = iph->ttl;
867}
868
869static void
870__skb_flow_dissect_ipv6(const struct sk_buff *skb,
871			struct flow_dissector *flow_dissector,
872			void *target_container, const void *data,
873			const struct ipv6hdr *iph)
874{
875	struct flow_dissector_key_ip *key_ip;
876
877	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
878		return;
879
880	key_ip = skb_flow_dissector_target(flow_dissector,
881					   FLOW_DISSECTOR_KEY_IP,
882					   target_container);
883	key_ip->tos = ipv6_get_dsfield(iph);
884	key_ip->ttl = iph->hop_limit;
885}
886
887/* Maximum number of protocol headers that can be parsed in
888 * __skb_flow_dissect
889 */
890#define MAX_FLOW_DISSECT_HDRS	15
891
892static bool skb_flow_dissect_allowed(int *num_hdrs)
893{
894	++*num_hdrs;
895
896	return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
897}
898
899static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
900				     struct flow_dissector *flow_dissector,
901				     void *target_container)
902{
903	struct flow_dissector_key_ports *key_ports = NULL;
904	struct flow_dissector_key_control *key_control;
905	struct flow_dissector_key_basic *key_basic;
906	struct flow_dissector_key_addrs *key_addrs;
907	struct flow_dissector_key_tags *key_tags;
908
909	key_control = skb_flow_dissector_target(flow_dissector,
910						FLOW_DISSECTOR_KEY_CONTROL,
911						target_container);
912	key_control->thoff = flow_keys->thoff;
913	if (flow_keys->is_frag)
914		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
915	if (flow_keys->is_first_frag)
916		key_control->flags |= FLOW_DIS_FIRST_FRAG;
917	if (flow_keys->is_encap)
918		key_control->flags |= FLOW_DIS_ENCAPSULATION;
919
920	key_basic = skb_flow_dissector_target(flow_dissector,
921					      FLOW_DISSECTOR_KEY_BASIC,
922					      target_container);
923	key_basic->n_proto = flow_keys->n_proto;
924	key_basic->ip_proto = flow_keys->ip_proto;
925
926	if (flow_keys->addr_proto == ETH_P_IP &&
927	    dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
928		key_addrs = skb_flow_dissector_target(flow_dissector,
929						      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
930						      target_container);
931		key_addrs->v4addrs.src = flow_keys->ipv4_src;
932		key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
933		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
934	} else if (flow_keys->addr_proto == ETH_P_IPV6 &&
935		   dissector_uses_key(flow_dissector,
936				      FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
937		key_addrs = skb_flow_dissector_target(flow_dissector,
938						      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
939						      target_container);
940		memcpy(&key_addrs->v6addrs.src, &flow_keys->ipv6_src,
941		       sizeof(key_addrs->v6addrs.src));
942		memcpy(&key_addrs->v6addrs.dst, &flow_keys->ipv6_dst,
943		       sizeof(key_addrs->v6addrs.dst));
944		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
945	}
946
947	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
948		key_ports = skb_flow_dissector_target(flow_dissector,
949						      FLOW_DISSECTOR_KEY_PORTS,
950						      target_container);
951	else if (dissector_uses_key(flow_dissector,
952				    FLOW_DISSECTOR_KEY_PORTS_RANGE))
953		key_ports = skb_flow_dissector_target(flow_dissector,
954						      FLOW_DISSECTOR_KEY_PORTS_RANGE,
955						      target_container);
956
957	if (key_ports) {
958		key_ports->src = flow_keys->sport;
959		key_ports->dst = flow_keys->dport;
960	}
961
962	if (dissector_uses_key(flow_dissector,
963			       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
964		key_tags = skb_flow_dissector_target(flow_dissector,
965						     FLOW_DISSECTOR_KEY_FLOW_LABEL,
966						     target_container);
967		key_tags->flow_label = ntohl(flow_keys->flow_label);
968	}
969}
970
971u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
972		     __be16 proto, int nhoff, int hlen, unsigned int flags)
973{
974	struct bpf_flow_keys *flow_keys = ctx->flow_keys;
975	u32 result;
976
977	/* Pass parameters to the BPF program */
978	memset(flow_keys, 0, sizeof(*flow_keys));
979	flow_keys->n_proto = proto;
980	flow_keys->nhoff = nhoff;
981	flow_keys->thoff = flow_keys->nhoff;
982
983	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG !=
984		     (int)FLOW_DISSECTOR_F_PARSE_1ST_FRAG);
985	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL !=
986		     (int)FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
987	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP !=
988		     (int)FLOW_DISSECTOR_F_STOP_AT_ENCAP);
989	flow_keys->flags = flags;
990
991	result = bpf_prog_run_pin_on_cpu(prog, ctx);
992
993	flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen);
994	flow_keys->thoff = clamp_t(u16, flow_keys->thoff,
995				   flow_keys->nhoff, hlen);
996
997	return result;
998}
999
1000static bool is_pppoe_ses_hdr_valid(const struct pppoe_hdr *hdr)
1001{
1002	return hdr->ver == 1 && hdr->type == 1 && hdr->code == 0;
1003}
1004
1005/**
1006 * __skb_flow_dissect - extract the flow_keys struct and return it
1007 * @net: associated network namespace, derived from @skb if NULL
1008 * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
1009 * @flow_dissector: list of keys to dissect
1010 * @target_container: target structure to put dissected values into
1011 * @data: raw buffer pointer to the packet, if NULL use skb->data
1012 * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
1013 * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
1014 * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
1015 * @flags: flags that control the dissection process, e.g.
1016 *         FLOW_DISSECTOR_F_STOP_AT_ENCAP.
1017 *
1018 * The function will try to retrieve individual keys into target specified
1019 * by flow_dissector from either the skbuff or a raw buffer specified by the
1020 * rest parameters.
1021 *
1022 * Caller must take care of zeroing target container memory.
1023 */
1024bool __skb_flow_dissect(const struct net *net,
1025			const struct sk_buff *skb,
1026			struct flow_dissector *flow_dissector,
1027			void *target_container, const void *data,
1028			__be16 proto, int nhoff, int hlen, unsigned int flags)
1029{
1030	struct flow_dissector_key_control *key_control;
1031	struct flow_dissector_key_basic *key_basic;
1032	struct flow_dissector_key_addrs *key_addrs;
1033	struct flow_dissector_key_tags *key_tags;
1034	struct flow_dissector_key_vlan *key_vlan;
1035	enum flow_dissect_ret fdret;
1036	enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
1037	bool mpls_el = false;
1038	int mpls_lse = 0;
1039	int num_hdrs = 0;
1040	u8 ip_proto = 0;
1041	bool ret;
1042
1043	if (!data) {
1044		data = skb->data;
1045		proto = skb_vlan_tag_present(skb) ?
1046			 skb->vlan_proto : skb->protocol;
1047		nhoff = skb_network_offset(skb);
1048		hlen = skb_headlen(skb);
1049#if IS_ENABLED(CONFIG_NET_DSA)
1050		if (unlikely(skb->dev && netdev_uses_dsa(skb->dev) &&
1051			     proto == htons(ETH_P_XDSA))) {
1052			struct metadata_dst *md_dst = skb_metadata_dst(skb);
1053			const struct dsa_device_ops *ops;
1054			int offset = 0;
1055
1056			ops = skb->dev->dsa_ptr->tag_ops;
1057			/* Only DSA header taggers break flow dissection */
1058			if (ops->needed_headroom &&
1059			    (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)) {
1060				if (ops->flow_dissect)
1061					ops->flow_dissect(skb, &proto, &offset);
1062				else
1063					dsa_tag_generic_flow_dissect(skb,
1064								     &proto,
1065								     &offset);
1066				hlen -= offset;
1067				nhoff += offset;
1068			}
1069		}
1070#endif
1071	}
1072
1073	/* It is ensured by skb_flow_dissector_init() that control key will
1074	 * be always present.
1075	 */
1076	key_control = skb_flow_dissector_target(flow_dissector,
1077						FLOW_DISSECTOR_KEY_CONTROL,
1078						target_container);
1079
1080	/* It is ensured by skb_flow_dissector_init() that basic key will
1081	 * be always present.
1082	 */
1083	key_basic = skb_flow_dissector_target(flow_dissector,
1084					      FLOW_DISSECTOR_KEY_BASIC,
1085					      target_container);
1086
1087	if (skb) {
1088		if (!net) {
1089			if (skb->dev)
1090				net = dev_net(skb->dev);
1091			else if (skb->sk)
1092				net = sock_net(skb->sk);
1093		}
1094	}
1095
1096	WARN_ON_ONCE(!net);
1097	if (net) {
1098		enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR;
1099		struct bpf_prog_array *run_array;
1100
1101		rcu_read_lock();
1102		run_array = rcu_dereference(init_net.bpf.run_array[type]);
1103		if (!run_array)
1104			run_array = rcu_dereference(net->bpf.run_array[type]);
1105
1106		if (run_array) {
1107			struct bpf_flow_keys flow_keys;
1108			struct bpf_flow_dissector ctx = {
1109				.flow_keys = &flow_keys,
1110				.data = data,
1111				.data_end = data + hlen,
1112			};
1113			__be16 n_proto = proto;
1114			struct bpf_prog *prog;
1115			u32 result;
1116
1117			if (skb) {
1118				ctx.skb = skb;
1119				/* we can't use 'proto' in the skb case
1120				 * because it might be set to skb->vlan_proto
1121				 * which has been pulled from the data
1122				 */
1123				n_proto = skb->protocol;
1124			}
1125
1126			prog = READ_ONCE(run_array->items[0].prog);
1127			result = bpf_flow_dissect(prog, &ctx, n_proto, nhoff,
1128						  hlen, flags);
1129			if (result == BPF_FLOW_DISSECTOR_CONTINUE)
1130				goto dissect_continue;
1131			__skb_flow_bpf_to_target(&flow_keys, flow_dissector,
1132						 target_container);
1133			rcu_read_unlock();
1134			return result == BPF_OK;
1135		}
1136dissect_continue:
1137		rcu_read_unlock();
1138	}
1139
1140	if (dissector_uses_key(flow_dissector,
1141			       FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
1142		struct ethhdr *eth = eth_hdr(skb);
1143		struct flow_dissector_key_eth_addrs *key_eth_addrs;
1144
1145		key_eth_addrs = skb_flow_dissector_target(flow_dissector,
1146							  FLOW_DISSECTOR_KEY_ETH_ADDRS,
1147							  target_container);
1148		memcpy(key_eth_addrs, eth, sizeof(*key_eth_addrs));
1149	}
1150
1151	if (dissector_uses_key(flow_dissector,
1152			       FLOW_DISSECTOR_KEY_NUM_OF_VLANS)) {
1153		struct flow_dissector_key_num_of_vlans *key_num_of_vlans;
1154
1155		key_num_of_vlans = skb_flow_dissector_target(flow_dissector,
1156							     FLOW_DISSECTOR_KEY_NUM_OF_VLANS,
1157							     target_container);
1158		key_num_of_vlans->num_of_vlans = 0;
1159	}
1160
1161proto_again:
1162	fdret = FLOW_DISSECT_RET_CONTINUE;
1163
1164	switch (proto) {
1165	case htons(ETH_P_IP): {
1166		const struct iphdr *iph;
1167		struct iphdr _iph;
1168
1169		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1170		if (!iph || iph->ihl < 5) {
1171			fdret = FLOW_DISSECT_RET_OUT_BAD;
1172			break;
1173		}
1174
1175		nhoff += iph->ihl * 4;
1176
1177		ip_proto = iph->protocol;
1178
1179		if (dissector_uses_key(flow_dissector,
1180				       FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
1181			key_addrs = skb_flow_dissector_target(flow_dissector,
1182							      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1183							      target_container);
1184
1185			memcpy(&key_addrs->v4addrs.src, &iph->saddr,
1186			       sizeof(key_addrs->v4addrs.src));
1187			memcpy(&key_addrs->v4addrs.dst, &iph->daddr,
1188			       sizeof(key_addrs->v4addrs.dst));
1189			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
1190		}
1191
1192		__skb_flow_dissect_ipv4(skb, flow_dissector,
1193					target_container, data, iph);
1194
1195		if (ip_is_fragment(iph)) {
1196			key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1197
1198			if (iph->frag_off & htons(IP_OFFSET)) {
1199				fdret = FLOW_DISSECT_RET_OUT_GOOD;
1200				break;
1201			} else {
1202				key_control->flags |= FLOW_DIS_FIRST_FRAG;
1203				if (!(flags &
1204				      FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
1205					fdret = FLOW_DISSECT_RET_OUT_GOOD;
1206					break;
1207				}
1208			}
1209		}
1210
1211		break;
1212	}
1213	case htons(ETH_P_IPV6): {
1214		const struct ipv6hdr *iph;
1215		struct ipv6hdr _iph;
1216
1217		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1218		if (!iph) {
1219			fdret = FLOW_DISSECT_RET_OUT_BAD;
1220			break;
1221		}
1222
1223		ip_proto = iph->nexthdr;
1224		nhoff += sizeof(struct ipv6hdr);
1225
1226		if (dissector_uses_key(flow_dissector,
1227				       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
1228			key_addrs = skb_flow_dissector_target(flow_dissector,
1229							      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1230							      target_container);
1231
1232			memcpy(&key_addrs->v6addrs.src, &iph->saddr,
1233			       sizeof(key_addrs->v6addrs.src));
1234			memcpy(&key_addrs->v6addrs.dst, &iph->daddr,
1235			       sizeof(key_addrs->v6addrs.dst));
1236			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1237		}
1238
1239		if ((dissector_uses_key(flow_dissector,
1240					FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
1241		     (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
1242		    ip6_flowlabel(iph)) {
1243			__be32 flow_label = ip6_flowlabel(iph);
1244
1245			if (dissector_uses_key(flow_dissector,
1246					       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
1247				key_tags = skb_flow_dissector_target(flow_dissector,
1248								     FLOW_DISSECTOR_KEY_FLOW_LABEL,
1249								     target_container);
1250				key_tags->flow_label = ntohl(flow_label);
1251			}
1252			if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
1253				fdret = FLOW_DISSECT_RET_OUT_GOOD;
1254				break;
1255			}
1256		}
1257
1258		__skb_flow_dissect_ipv6(skb, flow_dissector,
1259					target_container, data, iph);
1260
1261		break;
1262	}
1263	case htons(ETH_P_8021AD):
1264	case htons(ETH_P_8021Q): {
1265		const struct vlan_hdr *vlan = NULL;
1266		struct vlan_hdr _vlan;
1267		__be16 saved_vlan_tpid = proto;
1268
1269		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
1270		    skb && skb_vlan_tag_present(skb)) {
1271			proto = skb->protocol;
1272		} else {
1273			vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
1274						    data, hlen, &_vlan);
1275			if (!vlan) {
1276				fdret = FLOW_DISSECT_RET_OUT_BAD;
1277				break;
1278			}
1279
1280			proto = vlan->h_vlan_encapsulated_proto;
1281			nhoff += sizeof(*vlan);
1282		}
1283
1284		if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_NUM_OF_VLANS) &&
1285		    !(key_control->flags & FLOW_DIS_ENCAPSULATION)) {
1286			struct flow_dissector_key_num_of_vlans *key_nvs;
1287
1288			key_nvs = skb_flow_dissector_target(flow_dissector,
1289							    FLOW_DISSECTOR_KEY_NUM_OF_VLANS,
1290							    target_container);
1291			key_nvs->num_of_vlans++;
1292		}
1293
1294		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
1295			dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
1296		} else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
1297			dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
1298		} else {
1299			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1300			break;
1301		}
1302
1303		if (dissector_uses_key(flow_dissector, dissector_vlan)) {
1304			key_vlan = skb_flow_dissector_target(flow_dissector,
1305							     dissector_vlan,
1306							     target_container);
1307
1308			if (!vlan) {
1309				key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
1310				key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb);
1311			} else {
1312				key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
1313					VLAN_VID_MASK;
1314				key_vlan->vlan_priority =
1315					(ntohs(vlan->h_vlan_TCI) &
1316					 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1317			}
1318			key_vlan->vlan_tpid = saved_vlan_tpid;
1319			key_vlan->vlan_eth_type = proto;
1320		}
1321
1322		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1323		break;
1324	}
1325	case htons(ETH_P_PPP_SES): {
1326		struct {
1327			struct pppoe_hdr hdr;
1328			__be16 proto;
1329		} *hdr, _hdr;
1330		u16 ppp_proto;
1331
1332		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
1333		if (!hdr) {
1334			fdret = FLOW_DISSECT_RET_OUT_BAD;
1335			break;
1336		}
1337
1338		if (!is_pppoe_ses_hdr_valid(&hdr->hdr)) {
1339			fdret = FLOW_DISSECT_RET_OUT_BAD;
1340			break;
1341		}
1342
1343		/* least significant bit of the most significant octet
1344		 * indicates if protocol field was compressed
1345		 */
1346		ppp_proto = ntohs(hdr->proto);
1347		if (ppp_proto & 0x0100) {
1348			ppp_proto = ppp_proto >> 8;
1349			nhoff += PPPOE_SES_HLEN - 1;
1350		} else {
1351			nhoff += PPPOE_SES_HLEN;
1352		}
1353
1354		if (ppp_proto == PPP_IP) {
1355			proto = htons(ETH_P_IP);
1356			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1357		} else if (ppp_proto == PPP_IPV6) {
1358			proto = htons(ETH_P_IPV6);
1359			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1360		} else if (ppp_proto == PPP_MPLS_UC) {
1361			proto = htons(ETH_P_MPLS_UC);
1362			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1363		} else if (ppp_proto == PPP_MPLS_MC) {
1364			proto = htons(ETH_P_MPLS_MC);
1365			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1366		} else if (ppp_proto_is_valid(ppp_proto)) {
1367			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1368		} else {
1369			fdret = FLOW_DISSECT_RET_OUT_BAD;
1370			break;
1371		}
1372
1373		if (dissector_uses_key(flow_dissector,
1374				       FLOW_DISSECTOR_KEY_PPPOE)) {
1375			struct flow_dissector_key_pppoe *key_pppoe;
1376
1377			key_pppoe = skb_flow_dissector_target(flow_dissector,
1378							      FLOW_DISSECTOR_KEY_PPPOE,
1379							      target_container);
1380			key_pppoe->session_id = hdr->hdr.sid;
1381			key_pppoe->ppp_proto = htons(ppp_proto);
1382			key_pppoe->type = htons(ETH_P_PPP_SES);
1383		}
1384		break;
1385	}
1386	case htons(ETH_P_TIPC): {
1387		struct tipc_basic_hdr *hdr, _hdr;
1388
1389		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
1390					   data, hlen, &_hdr);
1391		if (!hdr) {
1392			fdret = FLOW_DISSECT_RET_OUT_BAD;
1393			break;
1394		}
1395
1396		if (dissector_uses_key(flow_dissector,
1397				       FLOW_DISSECTOR_KEY_TIPC)) {
1398			key_addrs = skb_flow_dissector_target(flow_dissector,
1399							      FLOW_DISSECTOR_KEY_TIPC,
1400							      target_container);
1401			key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
1402			key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
1403		}
1404		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1405		break;
1406	}
1407
1408	case htons(ETH_P_MPLS_UC):
1409	case htons(ETH_P_MPLS_MC):
1410		fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
1411						target_container, data,
1412						nhoff, hlen, mpls_lse,
1413						&mpls_el);
1414		nhoff += sizeof(struct mpls_label);
1415		mpls_lse++;
1416		break;
1417	case htons(ETH_P_FCOE):
1418		if ((hlen - nhoff) < FCOE_HEADER_LEN) {
1419			fdret = FLOW_DISSECT_RET_OUT_BAD;
1420			break;
1421		}
1422
1423		nhoff += FCOE_HEADER_LEN;
1424		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1425		break;
1426
1427	case htons(ETH_P_ARP):
1428	case htons(ETH_P_RARP):
1429		fdret = __skb_flow_dissect_arp(skb, flow_dissector,
1430					       target_container, data,
1431					       nhoff, hlen);
1432		break;
1433
1434	case htons(ETH_P_BATMAN):
1435		fdret = __skb_flow_dissect_batadv(skb, key_control, data,
1436						  &proto, &nhoff, hlen, flags);
1437		break;
1438
1439	case htons(ETH_P_1588): {
1440		struct ptp_header *hdr, _hdr;
1441
1442		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
1443					   hlen, &_hdr);
1444		if (!hdr) {
1445			fdret = FLOW_DISSECT_RET_OUT_BAD;
1446			break;
1447		}
1448
1449		nhoff += sizeof(struct ptp_header);
1450		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1451		break;
1452	}
1453
1454	case htons(ETH_P_PRP):
1455	case htons(ETH_P_HSR): {
1456		struct hsr_tag *hdr, _hdr;
1457
1458		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen,
1459					   &_hdr);
1460		if (!hdr) {
1461			fdret = FLOW_DISSECT_RET_OUT_BAD;
1462			break;
1463		}
1464
1465		proto = hdr->encap_proto;
1466		nhoff += HSR_HLEN;
1467		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1468		break;
1469	}
1470
1471	case htons(ETH_P_CFM):
1472		fdret = __skb_flow_dissect_cfm(skb, flow_dissector,
1473					       target_container, data,
1474					       nhoff, hlen);
1475		break;
1476
1477	default:
1478		fdret = FLOW_DISSECT_RET_OUT_BAD;
1479		break;
1480	}
1481
1482	/* Process result of proto processing */
1483	switch (fdret) {
1484	case FLOW_DISSECT_RET_OUT_GOOD:
1485		goto out_good;
1486	case FLOW_DISSECT_RET_PROTO_AGAIN:
1487		if (skb_flow_dissect_allowed(&num_hdrs))
1488			goto proto_again;
1489		goto out_good;
1490	case FLOW_DISSECT_RET_CONTINUE:
1491	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1492		break;
1493	case FLOW_DISSECT_RET_OUT_BAD:
1494	default:
1495		goto out_bad;
1496	}
1497
1498ip_proto_again:
1499	fdret = FLOW_DISSECT_RET_CONTINUE;
1500
1501	switch (ip_proto) {
1502	case IPPROTO_GRE:
1503		if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) {
1504			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1505			break;
1506		}
1507
1508		fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
1509					       target_container, data,
1510					       &proto, &nhoff, &hlen, flags);
1511		break;
1512
1513	case NEXTHDR_HOP:
1514	case NEXTHDR_ROUTING:
1515	case NEXTHDR_DEST: {
1516		u8 _opthdr[2], *opthdr;
1517
1518		if (proto != htons(ETH_P_IPV6))
1519			break;
1520
1521		opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
1522					      data, hlen, &_opthdr);
1523		if (!opthdr) {
1524			fdret = FLOW_DISSECT_RET_OUT_BAD;
1525			break;
1526		}
1527
1528		ip_proto = opthdr[0];
1529		nhoff += (opthdr[1] + 1) << 3;
1530
1531		fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1532		break;
1533	}
1534	case NEXTHDR_FRAGMENT: {
1535		struct frag_hdr _fh, *fh;
1536
1537		if (proto != htons(ETH_P_IPV6))
1538			break;
1539
1540		fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
1541					  data, hlen, &_fh);
1542
1543		if (!fh) {
1544			fdret = FLOW_DISSECT_RET_OUT_BAD;
1545			break;
1546		}
1547
1548		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1549
1550		nhoff += sizeof(_fh);
1551		ip_proto = fh->nexthdr;
1552
1553		if (!(fh->frag_off & htons(IP6_OFFSET))) {
1554			key_control->flags |= FLOW_DIS_FIRST_FRAG;
1555			if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
1556				fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1557				break;
1558			}
1559		}
1560
1561		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1562		break;
1563	}
1564	case IPPROTO_IPIP:
1565		if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) {
1566			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1567			break;
1568		}
1569
1570		proto = htons(ETH_P_IP);
1571
1572		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1573		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1574			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1575			break;
1576		}
1577
1578		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1579		break;
1580
1581	case IPPROTO_IPV6:
1582		if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) {
1583			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1584			break;
1585		}
1586
1587		proto = htons(ETH_P_IPV6);
1588
1589		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1590		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1591			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1592			break;
1593		}
1594
1595		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1596		break;
1597
1598
1599	case IPPROTO_MPLS:
1600		proto = htons(ETH_P_MPLS_UC);
1601		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1602		break;
1603
1604	case IPPROTO_TCP:
1605		__skb_flow_dissect_tcp(skb, flow_dissector, target_container,
1606				       data, nhoff, hlen);
1607		break;
1608
1609	case IPPROTO_ICMP:
1610	case IPPROTO_ICMPV6:
1611		__skb_flow_dissect_icmp(skb, flow_dissector, target_container,
1612					data, nhoff, hlen);
1613		break;
1614	case IPPROTO_L2TP:
1615		__skb_flow_dissect_l2tpv3(skb, flow_dissector, target_container,
1616					  data, nhoff, hlen);
1617		break;
1618	case IPPROTO_ESP:
1619		__skb_flow_dissect_esp(skb, flow_dissector, target_container,
1620				       data, nhoff, hlen);
1621		break;
1622	case IPPROTO_AH:
1623		__skb_flow_dissect_ah(skb, flow_dissector, target_container,
1624				      data, nhoff, hlen);
1625		break;
1626	default:
1627		break;
1628	}
1629
1630	if (!(key_control->flags & FLOW_DIS_IS_FRAGMENT))
1631		__skb_flow_dissect_ports(skb, flow_dissector, target_container,
1632					 data, nhoff, ip_proto, hlen);
1633
1634	/* Process result of IP proto processing */
1635	switch (fdret) {
1636	case FLOW_DISSECT_RET_PROTO_AGAIN:
1637		if (skb_flow_dissect_allowed(&num_hdrs))
1638			goto proto_again;
1639		break;
1640	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1641		if (skb_flow_dissect_allowed(&num_hdrs))
1642			goto ip_proto_again;
1643		break;
1644	case FLOW_DISSECT_RET_OUT_GOOD:
1645	case FLOW_DISSECT_RET_CONTINUE:
1646		break;
1647	case FLOW_DISSECT_RET_OUT_BAD:
1648	default:
1649		goto out_bad;
1650	}
1651
1652out_good:
1653	ret = true;
1654
1655out:
1656	key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
1657	key_basic->n_proto = proto;
1658	key_basic->ip_proto = ip_proto;
1659
1660	return ret;
1661
1662out_bad:
1663	ret = false;
1664	goto out;
1665}
1666EXPORT_SYMBOL(__skb_flow_dissect);
1667
1668static siphash_aligned_key_t hashrnd;
1669static __always_inline void __flow_hash_secret_init(void)
1670{
1671	net_get_random_once(&hashrnd, sizeof(hashrnd));
1672}
1673
1674static const void *flow_keys_hash_start(const struct flow_keys *flow)
1675{
1676	BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT);
1677	return &flow->FLOW_KEYS_HASH_START_FIELD;
1678}
1679
1680static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
1681{
1682	size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
1683
1684	BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
1685
1686	switch (flow->control.addr_type) {
1687	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1688		diff -= sizeof(flow->addrs.v4addrs);
1689		break;
1690	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1691		diff -= sizeof(flow->addrs.v6addrs);
1692		break;
1693	case FLOW_DISSECTOR_KEY_TIPC:
1694		diff -= sizeof(flow->addrs.tipckey);
1695		break;
1696	}
1697	return sizeof(*flow) - diff;
1698}
1699
1700__be32 flow_get_u32_src(const struct flow_keys *flow)
1701{
1702	switch (flow->control.addr_type) {
1703	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1704		return flow->addrs.v4addrs.src;
1705	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1706		return (__force __be32)ipv6_addr_hash(
1707			&flow->addrs.v6addrs.src);
1708	case FLOW_DISSECTOR_KEY_TIPC:
1709		return flow->addrs.tipckey.key;
1710	default:
1711		return 0;
1712	}
1713}
1714EXPORT_SYMBOL(flow_get_u32_src);
1715
1716__be32 flow_get_u32_dst(const struct flow_keys *flow)
1717{
1718	switch (flow->control.addr_type) {
1719	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1720		return flow->addrs.v4addrs.dst;
1721	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1722		return (__force __be32)ipv6_addr_hash(
1723			&flow->addrs.v6addrs.dst);
1724	default:
1725		return 0;
1726	}
1727}
1728EXPORT_SYMBOL(flow_get_u32_dst);
1729
1730/* Sort the source and destination IP and the ports,
1731 * to have consistent hash within the two directions
1732 */
1733static inline void __flow_hash_consistentify(struct flow_keys *keys)
1734{
1735	int addr_diff, i;
1736
1737	switch (keys->control.addr_type) {
1738	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1739		if ((__force u32)keys->addrs.v4addrs.dst <
1740		    (__force u32)keys->addrs.v4addrs.src)
1741			swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
1742
1743		if ((__force u16)keys->ports.dst <
1744		    (__force u16)keys->ports.src) {
1745			swap(keys->ports.src, keys->ports.dst);
1746		}
1747		break;
1748	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1749		addr_diff = memcmp(&keys->addrs.v6addrs.dst,
1750				   &keys->addrs.v6addrs.src,
1751				   sizeof(keys->addrs.v6addrs.dst));
1752		if (addr_diff < 0) {
1753			for (i = 0; i < 4; i++)
1754				swap(keys->addrs.v6addrs.src.s6_addr32[i],
1755				     keys->addrs.v6addrs.dst.s6_addr32[i]);
1756		}
1757		if ((__force u16)keys->ports.dst <
1758		    (__force u16)keys->ports.src) {
1759			swap(keys->ports.src, keys->ports.dst);
1760		}
1761		break;
1762	}
1763}
1764
1765static inline u32 __flow_hash_from_keys(struct flow_keys *keys,
1766					const siphash_key_t *keyval)
1767{
1768	u32 hash;
1769
1770	__flow_hash_consistentify(keys);
1771
1772	hash = siphash(flow_keys_hash_start(keys),
1773		       flow_keys_hash_length(keys), keyval);
1774	if (!hash)
1775		hash = 1;
1776
1777	return hash;
1778}
1779
1780u32 flow_hash_from_keys(struct flow_keys *keys)
1781{
1782	__flow_hash_secret_init();
1783	return __flow_hash_from_keys(keys, &hashrnd);
1784}
1785EXPORT_SYMBOL(flow_hash_from_keys);
1786
1787static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1788				  struct flow_keys *keys,
1789				  const siphash_key_t *keyval)
1790{
1791	skb_flow_dissect_flow_keys(skb, keys,
1792				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1793
1794	return __flow_hash_from_keys(keys, keyval);
1795}
1796
1797struct _flow_keys_digest_data {
1798	__be16	n_proto;
1799	u8	ip_proto;
1800	u8	padding;
1801	__be32	ports;
1802	__be32	src;
1803	__be32	dst;
1804};
1805
1806void make_flow_keys_digest(struct flow_keys_digest *digest,
1807			   const struct flow_keys *flow)
1808{
1809	struct _flow_keys_digest_data *data =
1810	    (struct _flow_keys_digest_data *)digest;
1811
1812	BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
1813
1814	memset(digest, 0, sizeof(*digest));
1815
1816	data->n_proto = flow->basic.n_proto;
1817	data->ip_proto = flow->basic.ip_proto;
1818	data->ports = flow->ports.ports;
1819	data->src = flow->addrs.v4addrs.src;
1820	data->dst = flow->addrs.v4addrs.dst;
1821}
1822EXPORT_SYMBOL(make_flow_keys_digest);
1823
1824static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
1825
1826u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1827{
1828	struct flow_keys keys;
1829
1830	__flow_hash_secret_init();
1831
1832	memset(&keys, 0, sizeof(keys));
1833	__skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric,
1834			   &keys, NULL, 0, 0, 0, 0);
1835
1836	return __flow_hash_from_keys(&keys, &hashrnd);
1837}
1838EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
1839
1840/**
1841 * __skb_get_hash: calculate a flow hash
1842 * @skb: sk_buff to calculate flow hash from
1843 *
1844 * This function calculates a flow hash based on src/dst addresses
1845 * and src/dst port numbers.  Sets hash in skb to non-zero hash value
1846 * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
1847 * if hash is a canonical 4-tuple hash over transport ports.
1848 */
1849void __skb_get_hash(struct sk_buff *skb)
1850{
1851	struct flow_keys keys;
1852	u32 hash;
1853
1854	__flow_hash_secret_init();
1855
1856	hash = ___skb_get_hash(skb, &keys, &hashrnd);
1857
1858	__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1859}
1860EXPORT_SYMBOL(__skb_get_hash);
1861
1862__u32 skb_get_hash_perturb(const struct sk_buff *skb,
1863			   const siphash_key_t *perturb)
1864{
1865	struct flow_keys keys;
1866
1867	return ___skb_get_hash(skb, &keys, perturb);
1868}
1869EXPORT_SYMBOL(skb_get_hash_perturb);
1870
1871u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1872		   const struct flow_keys_basic *keys, int hlen)
1873{
1874	u32 poff = keys->control.thoff;
1875
1876	/* skip L4 headers for fragments after the first */
1877	if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1878	    !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1879		return poff;
1880
1881	switch (keys->basic.ip_proto) {
1882	case IPPROTO_TCP: {
1883		/* access doff as u8 to avoid unaligned access */
1884		const u8 *doff;
1885		u8 _doff;
1886
1887		doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1888					    data, hlen, &_doff);
1889		if (!doff)
1890			return poff;
1891
1892		poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1893		break;
1894	}
1895	case IPPROTO_UDP:
1896	case IPPROTO_UDPLITE:
1897		poff += sizeof(struct udphdr);
1898		break;
1899	/* For the rest, we do not really care about header
1900	 * extensions at this point for now.
1901	 */
1902	case IPPROTO_ICMP:
1903		poff += sizeof(struct icmphdr);
1904		break;
1905	case IPPROTO_ICMPV6:
1906		poff += sizeof(struct icmp6hdr);
1907		break;
1908	case IPPROTO_IGMP:
1909		poff += sizeof(struct igmphdr);
1910		break;
1911	case IPPROTO_DCCP:
1912		poff += sizeof(struct dccp_hdr);
1913		break;
1914	case IPPROTO_SCTP:
1915		poff += sizeof(struct sctphdr);
1916		break;
1917	}
1918
1919	return poff;
1920}
1921
1922/**
1923 * skb_get_poff - get the offset to the payload
1924 * @skb: sk_buff to get the payload offset from
1925 *
1926 * The function will get the offset to the payload as far as it could
1927 * be dissected.  The main user is currently BPF, so that we can dynamically
1928 * truncate packets without needing to push actual payload to the user
1929 * space and can analyze headers only, instead.
1930 */
1931u32 skb_get_poff(const struct sk_buff *skb)
1932{
1933	struct flow_keys_basic keys;
1934
1935	if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
1936					      NULL, 0, 0, 0, 0))
1937		return 0;
1938
1939	return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1940}
1941
1942__u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1943{
1944	memset(keys, 0, sizeof(*keys));
1945
1946	memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1947	    sizeof(keys->addrs.v6addrs.src));
1948	memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1949	    sizeof(keys->addrs.v6addrs.dst));
1950	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1951	keys->ports.src = fl6->fl6_sport;
1952	keys->ports.dst = fl6->fl6_dport;
1953	keys->keyid.keyid = fl6->fl6_gre_key;
1954	keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1955	keys->basic.ip_proto = fl6->flowi6_proto;
1956
1957	return flow_hash_from_keys(keys);
1958}
1959EXPORT_SYMBOL(__get_hash_from_flowi6);
1960
1961static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1962	{
1963		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1964		.offset = offsetof(struct flow_keys, control),
1965	},
1966	{
1967		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1968		.offset = offsetof(struct flow_keys, basic),
1969	},
1970	{
1971		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1972		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1973	},
1974	{
1975		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1976		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1977	},
1978	{
1979		.key_id = FLOW_DISSECTOR_KEY_TIPC,
1980		.offset = offsetof(struct flow_keys, addrs.tipckey),
1981	},
1982	{
1983		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1984		.offset = offsetof(struct flow_keys, ports),
1985	},
1986	{
1987		.key_id = FLOW_DISSECTOR_KEY_VLAN,
1988		.offset = offsetof(struct flow_keys, vlan),
1989	},
1990	{
1991		.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1992		.offset = offsetof(struct flow_keys, tags),
1993	},
1994	{
1995		.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1996		.offset = offsetof(struct flow_keys, keyid),
1997	},
1998};
1999
2000static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
2001	{
2002		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
2003		.offset = offsetof(struct flow_keys, control),
2004	},
2005	{
2006		.key_id = FLOW_DISSECTOR_KEY_BASIC,
2007		.offset = offsetof(struct flow_keys, basic),
2008	},
2009	{
2010		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
2011		.offset = offsetof(struct flow_keys, addrs.v4addrs),
2012	},
2013	{
2014		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
2015		.offset = offsetof(struct flow_keys, addrs.v6addrs),
2016	},
2017	{
2018		.key_id = FLOW_DISSECTOR_KEY_PORTS,
2019		.offset = offsetof(struct flow_keys, ports),
2020	},
2021};
2022
2023static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
2024	{
2025		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
2026		.offset = offsetof(struct flow_keys, control),
2027	},
2028	{
2029		.key_id = FLOW_DISSECTOR_KEY_BASIC,
2030		.offset = offsetof(struct flow_keys, basic),
2031	},
2032};
2033
2034struct flow_dissector flow_keys_dissector __read_mostly;
2035EXPORT_SYMBOL(flow_keys_dissector);
2036
2037struct flow_dissector flow_keys_basic_dissector __read_mostly;
2038EXPORT_SYMBOL(flow_keys_basic_dissector);
2039
2040static int __init init_default_flow_dissectors(void)
2041{
2042	skb_flow_dissector_init(&flow_keys_dissector,
2043				flow_keys_dissector_keys,
2044				ARRAY_SIZE(flow_keys_dissector_keys));
2045	skb_flow_dissector_init(&flow_keys_dissector_symmetric,
2046				flow_keys_dissector_symmetric_keys,
2047				ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
2048	skb_flow_dissector_init(&flow_keys_basic_dissector,
2049				flow_keys_basic_dissector_keys,
2050				ARRAY_SIZE(flow_keys_basic_dissector_keys));
2051	return 0;
2052}
2053core_initcall(init_default_flow_dissectors);
2054