1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Linux Socket Filter - Kernel level socket filtering
4 *
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
7 *
8 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9 *
10 * Authors:
11 *
12 *	Jay Schulist <jschlst@samba.org>
13 *	Alexei Starovoitov <ast@plumgrid.com>
14 *	Daniel Borkmann <dborkman@redhat.com>
15 *
16 * Andi Kleen - Fix a few bad bugs and races.
17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18 */
19
20#include <linux/atomic.h>
21#include <linux/bpf_verifier.h>
22#include <linux/module.h>
23#include <linux/types.h>
24#include <linux/mm.h>
25#include <linux/fcntl.h>
26#include <linux/socket.h>
27#include <linux/sock_diag.h>
28#include <linux/in.h>
29#include <linux/inet.h>
30#include <linux/netdevice.h>
31#include <linux/if_packet.h>
32#include <linux/if_arp.h>
33#include <linux/gfp.h>
34#include <net/inet_common.h>
35#include <net/ip.h>
36#include <net/protocol.h>
37#include <net/netlink.h>
38#include <linux/skbuff.h>
39#include <linux/skmsg.h>
40#include <net/sock.h>
41#include <net/flow_dissector.h>
42#include <linux/errno.h>
43#include <linux/timer.h>
44#include <linux/uaccess.h>
45#include <asm/unaligned.h>
46#include <linux/filter.h>
47#include <linux/ratelimit.h>
48#include <linux/seccomp.h>
49#include <linux/if_vlan.h>
50#include <linux/bpf.h>
51#include <linux/btf.h>
52#include <net/sch_generic.h>
53#include <net/cls_cgroup.h>
54#include <net/dst_metadata.h>
55#include <net/dst.h>
56#include <net/sock_reuseport.h>
57#include <net/busy_poll.h>
58#include <net/tcp.h>
59#include <net/xfrm.h>
60#include <net/udp.h>
61#include <linux/bpf_trace.h>
62#include <net/xdp_sock.h>
63#include <linux/inetdevice.h>
64#include <net/inet_hashtables.h>
65#include <net/inet6_hashtables.h>
66#include <net/ip_fib.h>
67#include <net/nexthop.h>
68#include <net/flow.h>
69#include <net/arp.h>
70#include <net/ipv6.h>
71#include <net/net_namespace.h>
72#include <linux/seg6_local.h>
73#include <net/seg6.h>
74#include <net/seg6_local.h>
75#include <net/lwtunnel.h>
76#include <net/ipv6_stubs.h>
77#include <net/bpf_sk_storage.h>
78#include <net/transp_v6.h>
79#include <linux/btf_ids.h>
80#include <net/tls.h>
81#include <net/xdp.h>
82#include <net/mptcp.h>
83#include <net/netfilter/nf_conntrack_bpf.h>
84#include <net/netkit.h>
85#include <linux/un.h>
86#include <net/xdp_sock_drv.h>
87
88#include "dev.h"
89
90static const struct bpf_func_proto *
91bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
92
93int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
94{
95	if (in_compat_syscall()) {
96		struct compat_sock_fprog f32;
97
98		if (len != sizeof(f32))
99			return -EINVAL;
100		if (copy_from_sockptr(&f32, src, sizeof(f32)))
101			return -EFAULT;
102		memset(dst, 0, sizeof(*dst));
103		dst->len = f32.len;
104		dst->filter = compat_ptr(f32.filter);
105	} else {
106		if (len != sizeof(*dst))
107			return -EINVAL;
108		if (copy_from_sockptr(dst, src, sizeof(*dst)))
109			return -EFAULT;
110	}
111
112	return 0;
113}
114EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
115
116/**
117 *	sk_filter_trim_cap - run a packet through a socket filter
118 *	@sk: sock associated with &sk_buff
119 *	@skb: buffer to filter
120 *	@cap: limit on how short the eBPF program may trim the packet
121 *
122 * Run the eBPF program and then cut skb->data to correct size returned by
123 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
124 * than pkt_len we keep whole skb->data. This is the socket level
125 * wrapper to bpf_prog_run. It returns 0 if the packet should
126 * be accepted or -EPERM if the packet should be tossed.
127 *
128 */
129int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
130{
131	int err;
132	struct sk_filter *filter;
133
134	/*
135	 * If the skb was allocated from pfmemalloc reserves, only
136	 * allow SOCK_MEMALLOC sockets to use it as this socket is
137	 * helping free memory
138	 */
139	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
140		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
141		return -ENOMEM;
142	}
143	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
144	if (err)
145		return err;
146
147	err = security_sock_rcv_skb(sk, skb);
148	if (err)
149		return err;
150
151	rcu_read_lock();
152	filter = rcu_dereference(sk->sk_filter);
153	if (filter) {
154		struct sock *save_sk = skb->sk;
155		unsigned int pkt_len;
156
157		skb->sk = sk;
158		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
159		skb->sk = save_sk;
160		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
161	}
162	rcu_read_unlock();
163
164	return err;
165}
166EXPORT_SYMBOL(sk_filter_trim_cap);
167
168BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
169{
170	return skb_get_poff(skb);
171}
172
173BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
174{
175	struct nlattr *nla;
176
177	if (skb_is_nonlinear(skb))
178		return 0;
179
180	if (skb->len < sizeof(struct nlattr))
181		return 0;
182
183	if (a > skb->len - sizeof(struct nlattr))
184		return 0;
185
186	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
187	if (nla)
188		return (void *) nla - (void *) skb->data;
189
190	return 0;
191}
192
193BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
194{
195	struct nlattr *nla;
196
197	if (skb_is_nonlinear(skb))
198		return 0;
199
200	if (skb->len < sizeof(struct nlattr))
201		return 0;
202
203	if (a > skb->len - sizeof(struct nlattr))
204		return 0;
205
206	nla = (struct nlattr *) &skb->data[a];
207	if (!nla_ok(nla, skb->len - a))
208		return 0;
209
210	nla = nla_find_nested(nla, x);
211	if (nla)
212		return (void *) nla - (void *) skb->data;
213
214	return 0;
215}
216
217BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
218	   data, int, headlen, int, offset)
219{
220	u8 tmp, *ptr;
221	const int len = sizeof(tmp);
222
223	if (offset >= 0) {
224		if (headlen - offset >= len)
225			return *(u8 *)(data + offset);
226		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
227			return tmp;
228	} else {
229		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
230		if (likely(ptr))
231			return *(u8 *)ptr;
232	}
233
234	return -EFAULT;
235}
236
237BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
238	   int, offset)
239{
240	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
241					 offset);
242}
243
244BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
245	   data, int, headlen, int, offset)
246{
247	__be16 tmp, *ptr;
248	const int len = sizeof(tmp);
249
250	if (offset >= 0) {
251		if (headlen - offset >= len)
252			return get_unaligned_be16(data + offset);
253		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
254			return be16_to_cpu(tmp);
255	} else {
256		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
257		if (likely(ptr))
258			return get_unaligned_be16(ptr);
259	}
260
261	return -EFAULT;
262}
263
264BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
265	   int, offset)
266{
267	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
268					  offset);
269}
270
271BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
272	   data, int, headlen, int, offset)
273{
274	__be32 tmp, *ptr;
275	const int len = sizeof(tmp);
276
277	if (likely(offset >= 0)) {
278		if (headlen - offset >= len)
279			return get_unaligned_be32(data + offset);
280		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
281			return be32_to_cpu(tmp);
282	} else {
283		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
284		if (likely(ptr))
285			return get_unaligned_be32(ptr);
286	}
287
288	return -EFAULT;
289}
290
291BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
292	   int, offset)
293{
294	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
295					  offset);
296}
297
298static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
299			      struct bpf_insn *insn_buf)
300{
301	struct bpf_insn *insn = insn_buf;
302
303	switch (skb_field) {
304	case SKF_AD_MARK:
305		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
306
307		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
308				      offsetof(struct sk_buff, mark));
309		break;
310
311	case SKF_AD_PKTTYPE:
312		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
313		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
314#ifdef __BIG_ENDIAN_BITFIELD
315		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
316#endif
317		break;
318
319	case SKF_AD_QUEUE:
320		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
321
322		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
323				      offsetof(struct sk_buff, queue_mapping));
324		break;
325
326	case SKF_AD_VLAN_TAG:
327		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
328
329		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
330		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
331				      offsetof(struct sk_buff, vlan_tci));
332		break;
333	case SKF_AD_VLAN_TAG_PRESENT:
334		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
335		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
336				      offsetof(struct sk_buff, vlan_all));
337		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
338		*insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
339		break;
340	}
341
342	return insn - insn_buf;
343}
344
345static bool convert_bpf_extensions(struct sock_filter *fp,
346				   struct bpf_insn **insnp)
347{
348	struct bpf_insn *insn = *insnp;
349	u32 cnt;
350
351	switch (fp->k) {
352	case SKF_AD_OFF + SKF_AD_PROTOCOL:
353		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
354
355		/* A = *(u16 *) (CTX + offsetof(protocol)) */
356		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
357				      offsetof(struct sk_buff, protocol));
358		/* A = ntohs(A) [emitting a nop or swap16] */
359		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
360		break;
361
362	case SKF_AD_OFF + SKF_AD_PKTTYPE:
363		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
364		insn += cnt - 1;
365		break;
366
367	case SKF_AD_OFF + SKF_AD_IFINDEX:
368	case SKF_AD_OFF + SKF_AD_HATYPE:
369		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
370		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
371
372		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
373				      BPF_REG_TMP, BPF_REG_CTX,
374				      offsetof(struct sk_buff, dev));
375		/* if (tmp != 0) goto pc + 1 */
376		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
377		*insn++ = BPF_EXIT_INSN();
378		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
379			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
380					    offsetof(struct net_device, ifindex));
381		else
382			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
383					    offsetof(struct net_device, type));
384		break;
385
386	case SKF_AD_OFF + SKF_AD_MARK:
387		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
388		insn += cnt - 1;
389		break;
390
391	case SKF_AD_OFF + SKF_AD_RXHASH:
392		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
393
394		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
395				    offsetof(struct sk_buff, hash));
396		break;
397
398	case SKF_AD_OFF + SKF_AD_QUEUE:
399		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
400		insn += cnt - 1;
401		break;
402
403	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
404		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
405					 BPF_REG_A, BPF_REG_CTX, insn);
406		insn += cnt - 1;
407		break;
408
409	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
410		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
411					 BPF_REG_A, BPF_REG_CTX, insn);
412		insn += cnt - 1;
413		break;
414
415	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
416		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
417
418		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
419		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
420				      offsetof(struct sk_buff, vlan_proto));
421		/* A = ntohs(A) [emitting a nop or swap16] */
422		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
423		break;
424
425	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
426	case SKF_AD_OFF + SKF_AD_NLATTR:
427	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
428	case SKF_AD_OFF + SKF_AD_CPU:
429	case SKF_AD_OFF + SKF_AD_RANDOM:
430		/* arg1 = CTX */
431		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
432		/* arg2 = A */
433		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
434		/* arg3 = X */
435		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
436		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
437		switch (fp->k) {
438		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
439			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
440			break;
441		case SKF_AD_OFF + SKF_AD_NLATTR:
442			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
443			break;
444		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
445			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
446			break;
447		case SKF_AD_OFF + SKF_AD_CPU:
448			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
449			break;
450		case SKF_AD_OFF + SKF_AD_RANDOM:
451			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
452			bpf_user_rnd_init_once();
453			break;
454		}
455		break;
456
457	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
458		/* A ^= X */
459		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
460		break;
461
462	default:
463		/* This is just a dummy call to avoid letting the compiler
464		 * evict __bpf_call_base() as an optimization. Placed here
465		 * where no-one bothers.
466		 */
467		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
468		return false;
469	}
470
471	*insnp = insn;
472	return true;
473}
474
475static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
476{
477	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
478	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
479	bool endian = BPF_SIZE(fp->code) == BPF_H ||
480		      BPF_SIZE(fp->code) == BPF_W;
481	bool indirect = BPF_MODE(fp->code) == BPF_IND;
482	const int ip_align = NET_IP_ALIGN;
483	struct bpf_insn *insn = *insnp;
484	int offset = fp->k;
485
486	if (!indirect &&
487	    ((unaligned_ok && offset >= 0) ||
488	     (!unaligned_ok && offset >= 0 &&
489	      offset + ip_align >= 0 &&
490	      offset + ip_align % size == 0))) {
491		bool ldx_off_ok = offset <= S16_MAX;
492
493		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
494		if (offset)
495			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
496		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
497				      size, 2 + endian + (!ldx_off_ok * 2));
498		if (ldx_off_ok) {
499			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
500					      BPF_REG_D, offset);
501		} else {
502			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
503			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
504			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
505					      BPF_REG_TMP, 0);
506		}
507		if (endian)
508			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
509		*insn++ = BPF_JMP_A(8);
510	}
511
512	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
513	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
514	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
515	if (!indirect) {
516		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
517	} else {
518		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
519		if (fp->k)
520			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
521	}
522
523	switch (BPF_SIZE(fp->code)) {
524	case BPF_B:
525		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
526		break;
527	case BPF_H:
528		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
529		break;
530	case BPF_W:
531		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
532		break;
533	default:
534		return false;
535	}
536
537	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
538	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
539	*insn   = BPF_EXIT_INSN();
540
541	*insnp = insn;
542	return true;
543}
544
545/**
546 *	bpf_convert_filter - convert filter program
547 *	@prog: the user passed filter program
548 *	@len: the length of the user passed filter program
549 *	@new_prog: allocated 'struct bpf_prog' or NULL
550 *	@new_len: pointer to store length of converted program
551 *	@seen_ld_abs: bool whether we've seen ld_abs/ind
552 *
553 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
554 * style extended BPF (eBPF).
555 * Conversion workflow:
556 *
557 * 1) First pass for calculating the new program length:
558 *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
559 *
560 * 2) 2nd pass to remap in two passes: 1st pass finds new
561 *    jump offsets, 2nd pass remapping:
562 *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
563 */
564static int bpf_convert_filter(struct sock_filter *prog, int len,
565			      struct bpf_prog *new_prog, int *new_len,
566			      bool *seen_ld_abs)
567{
568	int new_flen = 0, pass = 0, target, i, stack_off;
569	struct bpf_insn *new_insn, *first_insn = NULL;
570	struct sock_filter *fp;
571	int *addrs = NULL;
572	u8 bpf_src;
573
574	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
575	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
576
577	if (len <= 0 || len > BPF_MAXINSNS)
578		return -EINVAL;
579
580	if (new_prog) {
581		first_insn = new_prog->insnsi;
582		addrs = kcalloc(len, sizeof(*addrs),
583				GFP_KERNEL | __GFP_NOWARN);
584		if (!addrs)
585			return -ENOMEM;
586	}
587
588do_pass:
589	new_insn = first_insn;
590	fp = prog;
591
592	/* Classic BPF related prologue emission. */
593	if (new_prog) {
594		/* Classic BPF expects A and X to be reset first. These need
595		 * to be guaranteed to be the first two instructions.
596		 */
597		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
598		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
599
600		/* All programs must keep CTX in callee saved BPF_REG_CTX.
601		 * In eBPF case it's done by the compiler, here we need to
602		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
603		 */
604		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
605		if (*seen_ld_abs) {
606			/* For packet access in classic BPF, cache skb->data
607			 * in callee-saved BPF R8 and skb->len - skb->data_len
608			 * (headlen) in BPF R9. Since classic BPF is read-only
609			 * on CTX, we only need to cache it once.
610			 */
611			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
612						  BPF_REG_D, BPF_REG_CTX,
613						  offsetof(struct sk_buff, data));
614			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
615						  offsetof(struct sk_buff, len));
616			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
617						  offsetof(struct sk_buff, data_len));
618			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
619		}
620	} else {
621		new_insn += 3;
622	}
623
624	for (i = 0; i < len; fp++, i++) {
625		struct bpf_insn tmp_insns[32] = { };
626		struct bpf_insn *insn = tmp_insns;
627
628		if (addrs)
629			addrs[i] = new_insn - first_insn;
630
631		switch (fp->code) {
632		/* All arithmetic insns and skb loads map as-is. */
633		case BPF_ALU | BPF_ADD | BPF_X:
634		case BPF_ALU | BPF_ADD | BPF_K:
635		case BPF_ALU | BPF_SUB | BPF_X:
636		case BPF_ALU | BPF_SUB | BPF_K:
637		case BPF_ALU | BPF_AND | BPF_X:
638		case BPF_ALU | BPF_AND | BPF_K:
639		case BPF_ALU | BPF_OR | BPF_X:
640		case BPF_ALU | BPF_OR | BPF_K:
641		case BPF_ALU | BPF_LSH | BPF_X:
642		case BPF_ALU | BPF_LSH | BPF_K:
643		case BPF_ALU | BPF_RSH | BPF_X:
644		case BPF_ALU | BPF_RSH | BPF_K:
645		case BPF_ALU | BPF_XOR | BPF_X:
646		case BPF_ALU | BPF_XOR | BPF_K:
647		case BPF_ALU | BPF_MUL | BPF_X:
648		case BPF_ALU | BPF_MUL | BPF_K:
649		case BPF_ALU | BPF_DIV | BPF_X:
650		case BPF_ALU | BPF_DIV | BPF_K:
651		case BPF_ALU | BPF_MOD | BPF_X:
652		case BPF_ALU | BPF_MOD | BPF_K:
653		case BPF_ALU | BPF_NEG:
654		case BPF_LD | BPF_ABS | BPF_W:
655		case BPF_LD | BPF_ABS | BPF_H:
656		case BPF_LD | BPF_ABS | BPF_B:
657		case BPF_LD | BPF_IND | BPF_W:
658		case BPF_LD | BPF_IND | BPF_H:
659		case BPF_LD | BPF_IND | BPF_B:
660			/* Check for overloaded BPF extension and
661			 * directly convert it if found, otherwise
662			 * just move on with mapping.
663			 */
664			if (BPF_CLASS(fp->code) == BPF_LD &&
665			    BPF_MODE(fp->code) == BPF_ABS &&
666			    convert_bpf_extensions(fp, &insn))
667				break;
668			if (BPF_CLASS(fp->code) == BPF_LD &&
669			    convert_bpf_ld_abs(fp, &insn)) {
670				*seen_ld_abs = true;
671				break;
672			}
673
674			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
675			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
676				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
677				/* Error with exception code on div/mod by 0.
678				 * For cBPF programs, this was always return 0.
679				 */
680				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
681				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
682				*insn++ = BPF_EXIT_INSN();
683			}
684
685			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
686			break;
687
688		/* Jump transformation cannot use BPF block macros
689		 * everywhere as offset calculation and target updates
690		 * require a bit more work than the rest, i.e. jump
691		 * opcodes map as-is, but offsets need adjustment.
692		 */
693
694#define BPF_EMIT_JMP							\
695	do {								\
696		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
697		s32 off;						\
698									\
699		if (target >= len || target < 0)			\
700			goto err;					\
701		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
702		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
703		off -= insn - tmp_insns;				\
704		/* Reject anything not fitting into insn->off. */	\
705		if (off < off_min || off > off_max)			\
706			goto err;					\
707		insn->off = off;					\
708	} while (0)
709
710		case BPF_JMP | BPF_JA:
711			target = i + fp->k + 1;
712			insn->code = fp->code;
713			BPF_EMIT_JMP;
714			break;
715
716		case BPF_JMP | BPF_JEQ | BPF_K:
717		case BPF_JMP | BPF_JEQ | BPF_X:
718		case BPF_JMP | BPF_JSET | BPF_K:
719		case BPF_JMP | BPF_JSET | BPF_X:
720		case BPF_JMP | BPF_JGT | BPF_K:
721		case BPF_JMP | BPF_JGT | BPF_X:
722		case BPF_JMP | BPF_JGE | BPF_K:
723		case BPF_JMP | BPF_JGE | BPF_X:
724			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
725				/* BPF immediates are signed, zero extend
726				 * immediate into tmp register and use it
727				 * in compare insn.
728				 */
729				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
730
731				insn->dst_reg = BPF_REG_A;
732				insn->src_reg = BPF_REG_TMP;
733				bpf_src = BPF_X;
734			} else {
735				insn->dst_reg = BPF_REG_A;
736				insn->imm = fp->k;
737				bpf_src = BPF_SRC(fp->code);
738				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
739			}
740
741			/* Common case where 'jump_false' is next insn. */
742			if (fp->jf == 0) {
743				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
744				target = i + fp->jt + 1;
745				BPF_EMIT_JMP;
746				break;
747			}
748
749			/* Convert some jumps when 'jump_true' is next insn. */
750			if (fp->jt == 0) {
751				switch (BPF_OP(fp->code)) {
752				case BPF_JEQ:
753					insn->code = BPF_JMP | BPF_JNE | bpf_src;
754					break;
755				case BPF_JGT:
756					insn->code = BPF_JMP | BPF_JLE | bpf_src;
757					break;
758				case BPF_JGE:
759					insn->code = BPF_JMP | BPF_JLT | bpf_src;
760					break;
761				default:
762					goto jmp_rest;
763				}
764
765				target = i + fp->jf + 1;
766				BPF_EMIT_JMP;
767				break;
768			}
769jmp_rest:
770			/* Other jumps are mapped into two insns: Jxx and JA. */
771			target = i + fp->jt + 1;
772			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
773			BPF_EMIT_JMP;
774			insn++;
775
776			insn->code = BPF_JMP | BPF_JA;
777			target = i + fp->jf + 1;
778			BPF_EMIT_JMP;
779			break;
780
781		/* ldxb 4 * ([14] & 0xf) is remapped into 6 insns. */
782		case BPF_LDX | BPF_MSH | BPF_B: {
783			struct sock_filter tmp = {
784				.code	= BPF_LD | BPF_ABS | BPF_B,
785				.k	= fp->k,
786			};
787
788			*seen_ld_abs = true;
789
790			/* X = A */
791			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
792			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
793			convert_bpf_ld_abs(&tmp, &insn);
794			insn++;
795			/* A &= 0xf */
796			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
797			/* A <<= 2 */
798			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
799			/* tmp = X */
800			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
801			/* X = A */
802			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
803			/* A = tmp */
804			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
805			break;
806		}
807		/* RET_K is remapped into 2 insns. RET_A case doesn't need an
808		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
809		 */
810		case BPF_RET | BPF_A:
811		case BPF_RET | BPF_K:
812			if (BPF_RVAL(fp->code) == BPF_K)
813				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
814							0, fp->k);
815			*insn = BPF_EXIT_INSN();
816			break;
817
818		/* Store to stack. */
819		case BPF_ST:
820		case BPF_STX:
821			stack_off = fp->k * 4  + 4;
822			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
823					    BPF_ST ? BPF_REG_A : BPF_REG_X,
824					    -stack_off);
825			/* check_load_and_stores() verifies that classic BPF can
826			 * load from stack only after write, so tracking
827			 * stack_depth for ST|STX insns is enough
828			 */
829			if (new_prog && new_prog->aux->stack_depth < stack_off)
830				new_prog->aux->stack_depth = stack_off;
831			break;
832
833		/* Load from stack. */
834		case BPF_LD | BPF_MEM:
835		case BPF_LDX | BPF_MEM:
836			stack_off = fp->k * 4  + 4;
837			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
838					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
839					    -stack_off);
840			break;
841
842		/* A = K or X = K */
843		case BPF_LD | BPF_IMM:
844		case BPF_LDX | BPF_IMM:
845			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
846					      BPF_REG_A : BPF_REG_X, fp->k);
847			break;
848
849		/* X = A */
850		case BPF_MISC | BPF_TAX:
851			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
852			break;
853
854		/* A = X */
855		case BPF_MISC | BPF_TXA:
856			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
857			break;
858
859		/* A = skb->len or X = skb->len */
860		case BPF_LD | BPF_W | BPF_LEN:
861		case BPF_LDX | BPF_W | BPF_LEN:
862			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
863					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
864					    offsetof(struct sk_buff, len));
865			break;
866
867		/* Access seccomp_data fields. */
868		case BPF_LDX | BPF_ABS | BPF_W:
869			/* A = *(u32 *) (ctx + K) */
870			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
871			break;
872
873		/* Unknown instruction. */
874		default:
875			goto err;
876		}
877
878		insn++;
879		if (new_prog)
880			memcpy(new_insn, tmp_insns,
881			       sizeof(*insn) * (insn - tmp_insns));
882		new_insn += insn - tmp_insns;
883	}
884
885	if (!new_prog) {
886		/* Only calculating new length. */
887		*new_len = new_insn - first_insn;
888		if (*seen_ld_abs)
889			*new_len += 4; /* Prologue bits. */
890		return 0;
891	}
892
893	pass++;
894	if (new_flen != new_insn - first_insn) {
895		new_flen = new_insn - first_insn;
896		if (pass > 2)
897			goto err;
898		goto do_pass;
899	}
900
901	kfree(addrs);
902	BUG_ON(*new_len != new_flen);
903	return 0;
904err:
905	kfree(addrs);
906	return -EINVAL;
907}
908
909/* Security:
910 *
911 * As we dont want to clear mem[] array for each packet going through
912 * __bpf_prog_run(), we check that filter loaded by user never try to read
913 * a cell if not previously written, and we check all branches to be sure
914 * a malicious user doesn't try to abuse us.
915 */
916static int check_load_and_stores(const struct sock_filter *filter, int flen)
917{
918	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
919	int pc, ret = 0;
920
921	BUILD_BUG_ON(BPF_MEMWORDS > 16);
922
923	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
924	if (!masks)
925		return -ENOMEM;
926
927	memset(masks, 0xff, flen * sizeof(*masks));
928
929	for (pc = 0; pc < flen; pc++) {
930		memvalid &= masks[pc];
931
932		switch (filter[pc].code) {
933		case BPF_ST:
934		case BPF_STX:
935			memvalid |= (1 << filter[pc].k);
936			break;
937		case BPF_LD | BPF_MEM:
938		case BPF_LDX | BPF_MEM:
939			if (!(memvalid & (1 << filter[pc].k))) {
940				ret = -EINVAL;
941				goto error;
942			}
943			break;
944		case BPF_JMP | BPF_JA:
945			/* A jump must set masks on target */
946			masks[pc + 1 + filter[pc].k] &= memvalid;
947			memvalid = ~0;
948			break;
949		case BPF_JMP | BPF_JEQ | BPF_K:
950		case BPF_JMP | BPF_JEQ | BPF_X:
951		case BPF_JMP | BPF_JGE | BPF_K:
952		case BPF_JMP | BPF_JGE | BPF_X:
953		case BPF_JMP | BPF_JGT | BPF_K:
954		case BPF_JMP | BPF_JGT | BPF_X:
955		case BPF_JMP | BPF_JSET | BPF_K:
956		case BPF_JMP | BPF_JSET | BPF_X:
957			/* A jump must set masks on targets */
958			masks[pc + 1 + filter[pc].jt] &= memvalid;
959			masks[pc + 1 + filter[pc].jf] &= memvalid;
960			memvalid = ~0;
961			break;
962		}
963	}
964error:
965	kfree(masks);
966	return ret;
967}
968
969static bool chk_code_allowed(u16 code_to_probe)
970{
971	static const bool codes[] = {
972		/* 32 bit ALU operations */
973		[BPF_ALU | BPF_ADD | BPF_K] = true,
974		[BPF_ALU | BPF_ADD | BPF_X] = true,
975		[BPF_ALU | BPF_SUB | BPF_K] = true,
976		[BPF_ALU | BPF_SUB | BPF_X] = true,
977		[BPF_ALU | BPF_MUL | BPF_K] = true,
978		[BPF_ALU | BPF_MUL | BPF_X] = true,
979		[BPF_ALU | BPF_DIV | BPF_K] = true,
980		[BPF_ALU | BPF_DIV | BPF_X] = true,
981		[BPF_ALU | BPF_MOD | BPF_K] = true,
982		[BPF_ALU | BPF_MOD | BPF_X] = true,
983		[BPF_ALU | BPF_AND | BPF_K] = true,
984		[BPF_ALU | BPF_AND | BPF_X] = true,
985		[BPF_ALU | BPF_OR | BPF_K] = true,
986		[BPF_ALU | BPF_OR | BPF_X] = true,
987		[BPF_ALU | BPF_XOR | BPF_K] = true,
988		[BPF_ALU | BPF_XOR | BPF_X] = true,
989		[BPF_ALU | BPF_LSH | BPF_K] = true,
990		[BPF_ALU | BPF_LSH | BPF_X] = true,
991		[BPF_ALU | BPF_RSH | BPF_K] = true,
992		[BPF_ALU | BPF_RSH | BPF_X] = true,
993		[BPF_ALU | BPF_NEG] = true,
994		/* Load instructions */
995		[BPF_LD | BPF_W | BPF_ABS] = true,
996		[BPF_LD | BPF_H | BPF_ABS] = true,
997		[BPF_LD | BPF_B | BPF_ABS] = true,
998		[BPF_LD | BPF_W | BPF_LEN] = true,
999		[BPF_LD | BPF_W | BPF_IND] = true,
1000		[BPF_LD | BPF_H | BPF_IND] = true,
1001		[BPF_LD | BPF_B | BPF_IND] = true,
1002		[BPF_LD | BPF_IMM] = true,
1003		[BPF_LD | BPF_MEM] = true,
1004		[BPF_LDX | BPF_W | BPF_LEN] = true,
1005		[BPF_LDX | BPF_B | BPF_MSH] = true,
1006		[BPF_LDX | BPF_IMM] = true,
1007		[BPF_LDX | BPF_MEM] = true,
1008		/* Store instructions */
1009		[BPF_ST] = true,
1010		[BPF_STX] = true,
1011		/* Misc instructions */
1012		[BPF_MISC | BPF_TAX] = true,
1013		[BPF_MISC | BPF_TXA] = true,
1014		/* Return instructions */
1015		[BPF_RET | BPF_K] = true,
1016		[BPF_RET | BPF_A] = true,
1017		/* Jump instructions */
1018		[BPF_JMP | BPF_JA] = true,
1019		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1020		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1021		[BPF_JMP | BPF_JGE | BPF_K] = true,
1022		[BPF_JMP | BPF_JGE | BPF_X] = true,
1023		[BPF_JMP | BPF_JGT | BPF_K] = true,
1024		[BPF_JMP | BPF_JGT | BPF_X] = true,
1025		[BPF_JMP | BPF_JSET | BPF_K] = true,
1026		[BPF_JMP | BPF_JSET | BPF_X] = true,
1027	};
1028
1029	if (code_to_probe >= ARRAY_SIZE(codes))
1030		return false;
1031
1032	return codes[code_to_probe];
1033}
1034
1035static bool bpf_check_basics_ok(const struct sock_filter *filter,
1036				unsigned int flen)
1037{
1038	if (filter == NULL)
1039		return false;
1040	if (flen == 0 || flen > BPF_MAXINSNS)
1041		return false;
1042
1043	return true;
1044}
1045
1046/**
1047 *	bpf_check_classic - verify socket filter code
1048 *	@filter: filter to verify
1049 *	@flen: length of filter
1050 *
1051 * Check the user's filter code. If we let some ugly
1052 * filter code slip through kaboom! The filter must contain
1053 * no references or jumps that are out of range, no illegal
1054 * instructions, and must end with a RET instruction.
1055 *
1056 * All jumps are forward as they are not signed.
1057 *
1058 * Returns 0 if the rule set is legal or -EINVAL if not.
1059 */
1060static int bpf_check_classic(const struct sock_filter *filter,
1061			     unsigned int flen)
1062{
1063	bool anc_found;
1064	int pc;
1065
1066	/* Check the filter code now */
1067	for (pc = 0; pc < flen; pc++) {
1068		const struct sock_filter *ftest = &filter[pc];
1069
1070		/* May we actually operate on this code? */
1071		if (!chk_code_allowed(ftest->code))
1072			return -EINVAL;
1073
1074		/* Some instructions need special checks */
1075		switch (ftest->code) {
1076		case BPF_ALU | BPF_DIV | BPF_K:
1077		case BPF_ALU | BPF_MOD | BPF_K:
1078			/* Check for division by zero */
1079			if (ftest->k == 0)
1080				return -EINVAL;
1081			break;
1082		case BPF_ALU | BPF_LSH | BPF_K:
1083		case BPF_ALU | BPF_RSH | BPF_K:
1084			if (ftest->k >= 32)
1085				return -EINVAL;
1086			break;
1087		case BPF_LD | BPF_MEM:
1088		case BPF_LDX | BPF_MEM:
1089		case BPF_ST:
1090		case BPF_STX:
1091			/* Check for invalid memory addresses */
1092			if (ftest->k >= BPF_MEMWORDS)
1093				return -EINVAL;
1094			break;
1095		case BPF_JMP | BPF_JA:
1096			/* Note, the large ftest->k might cause loops.
1097			 * Compare this with conditional jumps below,
1098			 * where offsets are limited. --ANK (981016)
1099			 */
1100			if (ftest->k >= (unsigned int)(flen - pc - 1))
1101				return -EINVAL;
1102			break;
1103		case BPF_JMP | BPF_JEQ | BPF_K:
1104		case BPF_JMP | BPF_JEQ | BPF_X:
1105		case BPF_JMP | BPF_JGE | BPF_K:
1106		case BPF_JMP | BPF_JGE | BPF_X:
1107		case BPF_JMP | BPF_JGT | BPF_K:
1108		case BPF_JMP | BPF_JGT | BPF_X:
1109		case BPF_JMP | BPF_JSET | BPF_K:
1110		case BPF_JMP | BPF_JSET | BPF_X:
1111			/* Both conditionals must be safe */
1112			if (pc + ftest->jt + 1 >= flen ||
1113			    pc + ftest->jf + 1 >= flen)
1114				return -EINVAL;
1115			break;
1116		case BPF_LD | BPF_W | BPF_ABS:
1117		case BPF_LD | BPF_H | BPF_ABS:
1118		case BPF_LD | BPF_B | BPF_ABS:
1119			anc_found = false;
1120			if (bpf_anc_helper(ftest) & BPF_ANC)
1121				anc_found = true;
1122			/* Ancillary operation unknown or unsupported */
1123			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1124				return -EINVAL;
1125		}
1126	}
1127
1128	/* Last instruction must be a RET code */
1129	switch (filter[flen - 1].code) {
1130	case BPF_RET | BPF_K:
1131	case BPF_RET | BPF_A:
1132		return check_load_and_stores(filter, flen);
1133	}
1134
1135	return -EINVAL;
1136}
1137
1138static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1139				      const struct sock_fprog *fprog)
1140{
1141	unsigned int fsize = bpf_classic_proglen(fprog);
1142	struct sock_fprog_kern *fkprog;
1143
1144	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1145	if (!fp->orig_prog)
1146		return -ENOMEM;
1147
1148	fkprog = fp->orig_prog;
1149	fkprog->len = fprog->len;
1150
1151	fkprog->filter = kmemdup(fp->insns, fsize,
1152				 GFP_KERNEL | __GFP_NOWARN);
1153	if (!fkprog->filter) {
1154		kfree(fp->orig_prog);
1155		return -ENOMEM;
1156	}
1157
1158	return 0;
1159}
1160
1161static void bpf_release_orig_filter(struct bpf_prog *fp)
1162{
1163	struct sock_fprog_kern *fprog = fp->orig_prog;
1164
1165	if (fprog) {
1166		kfree(fprog->filter);
1167		kfree(fprog);
1168	}
1169}
1170
1171static void __bpf_prog_release(struct bpf_prog *prog)
1172{
1173	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1174		bpf_prog_put(prog);
1175	} else {
1176		bpf_release_orig_filter(prog);
1177		bpf_prog_free(prog);
1178	}
1179}
1180
1181static void __sk_filter_release(struct sk_filter *fp)
1182{
1183	__bpf_prog_release(fp->prog);
1184	kfree(fp);
1185}
1186
1187/**
1188 * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1189 *	@rcu: rcu_head that contains the sk_filter to free
1190 */
1191static void sk_filter_release_rcu(struct rcu_head *rcu)
1192{
1193	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1194
1195	__sk_filter_release(fp);
1196}
1197
1198/**
1199 *	sk_filter_release - release a socket filter
1200 *	@fp: filter to remove
1201 *
1202 *	Remove a filter from a socket and release its resources.
1203 */
1204static void sk_filter_release(struct sk_filter *fp)
1205{
1206	if (refcount_dec_and_test(&fp->refcnt))
1207		call_rcu(&fp->rcu, sk_filter_release_rcu);
1208}
1209
1210void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1211{
1212	u32 filter_size = bpf_prog_size(fp->prog->len);
1213
1214	atomic_sub(filter_size, &sk->sk_omem_alloc);
1215	sk_filter_release(fp);
1216}
1217
1218/* try to charge the socket memory if there is space available
1219 * return true on success
1220 */
1221static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1222{
1223	int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1224	u32 filter_size = bpf_prog_size(fp->prog->len);
1225
1226	/* same check as in sock_kmalloc() */
1227	if (filter_size <= optmem_max &&
1228	    atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1229		atomic_add(filter_size, &sk->sk_omem_alloc);
1230		return true;
1231	}
1232	return false;
1233}
1234
1235bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1236{
1237	if (!refcount_inc_not_zero(&fp->refcnt))
1238		return false;
1239
1240	if (!__sk_filter_charge(sk, fp)) {
1241		sk_filter_release(fp);
1242		return false;
1243	}
1244	return true;
1245}
1246
1247static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1248{
1249	struct sock_filter *old_prog;
1250	struct bpf_prog *old_fp;
1251	int err, new_len, old_len = fp->len;
1252	bool seen_ld_abs = false;
1253
1254	/* We are free to overwrite insns et al right here as it won't be used at
1255	 * this point in time anymore internally after the migration to the eBPF
1256	 * instruction representation.
1257	 */
1258	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1259		     sizeof(struct bpf_insn));
1260
1261	/* Conversion cannot happen on overlapping memory areas,
1262	 * so we need to keep the user BPF around until the 2nd
1263	 * pass. At this time, the user BPF is stored in fp->insns.
1264	 */
1265	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1266			   GFP_KERNEL | __GFP_NOWARN);
1267	if (!old_prog) {
1268		err = -ENOMEM;
1269		goto out_err;
1270	}
1271
1272	/* 1st pass: calculate the new program length. */
1273	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1274				 &seen_ld_abs);
1275	if (err)
1276		goto out_err_free;
1277
1278	/* Expand fp for appending the new filter representation. */
1279	old_fp = fp;
1280	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1281	if (!fp) {
1282		/* The old_fp is still around in case we couldn't
1283		 * allocate new memory, so uncharge on that one.
1284		 */
1285		fp = old_fp;
1286		err = -ENOMEM;
1287		goto out_err_free;
1288	}
1289
1290	fp->len = new_len;
1291
1292	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1293	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1294				 &seen_ld_abs);
1295	if (err)
1296		/* 2nd bpf_convert_filter() can fail only if it fails
1297		 * to allocate memory, remapping must succeed. Note,
1298		 * that at this time old_fp has already been released
1299		 * by krealloc().
1300		 */
1301		goto out_err_free;
1302
1303	fp = bpf_prog_select_runtime(fp, &err);
1304	if (err)
1305		goto out_err_free;
1306
1307	kfree(old_prog);
1308	return fp;
1309
1310out_err_free:
1311	kfree(old_prog);
1312out_err:
1313	__bpf_prog_release(fp);
1314	return ERR_PTR(err);
1315}
1316
1317static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1318					   bpf_aux_classic_check_t trans)
1319{
1320	int err;
1321
1322	fp->bpf_func = NULL;
1323	fp->jited = 0;
1324
1325	err = bpf_check_classic(fp->insns, fp->len);
1326	if (err) {
1327		__bpf_prog_release(fp);
1328		return ERR_PTR(err);
1329	}
1330
1331	/* There might be additional checks and transformations
1332	 * needed on classic filters, f.e. in case of seccomp.
1333	 */
1334	if (trans) {
1335		err = trans(fp->insns, fp->len);
1336		if (err) {
1337			__bpf_prog_release(fp);
1338			return ERR_PTR(err);
1339		}
1340	}
1341
1342	/* Probe if we can JIT compile the filter and if so, do
1343	 * the compilation of the filter.
1344	 */
1345	bpf_jit_compile(fp);
1346
1347	/* JIT compiler couldn't process this filter, so do the eBPF translation
1348	 * for the optimized interpreter.
1349	 */
1350	if (!fp->jited)
1351		fp = bpf_migrate_filter(fp);
1352
1353	return fp;
1354}
1355
1356/**
1357 *	bpf_prog_create - create an unattached filter
1358 *	@pfp: the unattached filter that is created
1359 *	@fprog: the filter program
1360 *
1361 * Create a filter independent of any socket. We first run some
1362 * sanity checks on it to make sure it does not explode on us later.
1363 * If an error occurs or there is insufficient memory for the filter
1364 * a negative errno code is returned. On success the return is zero.
1365 */
1366int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1367{
1368	unsigned int fsize = bpf_classic_proglen(fprog);
1369	struct bpf_prog *fp;
1370
1371	/* Make sure new filter is there and in the right amounts. */
1372	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1373		return -EINVAL;
1374
1375	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1376	if (!fp)
1377		return -ENOMEM;
1378
1379	memcpy(fp->insns, fprog->filter, fsize);
1380
1381	fp->len = fprog->len;
1382	/* Since unattached filters are not copied back to user
1383	 * space through sk_get_filter(), we do not need to hold
1384	 * a copy here, and can spare us the work.
1385	 */
1386	fp->orig_prog = NULL;
1387
1388	/* bpf_prepare_filter() already takes care of freeing
1389	 * memory in case something goes wrong.
1390	 */
1391	fp = bpf_prepare_filter(fp, NULL);
1392	if (IS_ERR(fp))
1393		return PTR_ERR(fp);
1394
1395	*pfp = fp;
1396	return 0;
1397}
1398EXPORT_SYMBOL_GPL(bpf_prog_create);
1399
1400/**
1401 *	bpf_prog_create_from_user - create an unattached filter from user buffer
1402 *	@pfp: the unattached filter that is created
1403 *	@fprog: the filter program
1404 *	@trans: post-classic verifier transformation handler
1405 *	@save_orig: save classic BPF program
1406 *
1407 * This function effectively does the same as bpf_prog_create(), only
1408 * that it builds up its insns buffer from user space provided buffer.
1409 * It also allows for passing a bpf_aux_classic_check_t handler.
1410 */
1411int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1412			      bpf_aux_classic_check_t trans, bool save_orig)
1413{
1414	unsigned int fsize = bpf_classic_proglen(fprog);
1415	struct bpf_prog *fp;
1416	int err;
1417
1418	/* Make sure new filter is there and in the right amounts. */
1419	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1420		return -EINVAL;
1421
1422	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1423	if (!fp)
1424		return -ENOMEM;
1425
1426	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1427		__bpf_prog_free(fp);
1428		return -EFAULT;
1429	}
1430
1431	fp->len = fprog->len;
1432	fp->orig_prog = NULL;
1433
1434	if (save_orig) {
1435		err = bpf_prog_store_orig_filter(fp, fprog);
1436		if (err) {
1437			__bpf_prog_free(fp);
1438			return -ENOMEM;
1439		}
1440	}
1441
1442	/* bpf_prepare_filter() already takes care of freeing
1443	 * memory in case something goes wrong.
1444	 */
1445	fp = bpf_prepare_filter(fp, trans);
1446	if (IS_ERR(fp))
1447		return PTR_ERR(fp);
1448
1449	*pfp = fp;
1450	return 0;
1451}
1452EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1453
1454void bpf_prog_destroy(struct bpf_prog *fp)
1455{
1456	__bpf_prog_release(fp);
1457}
1458EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1459
1460static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1461{
1462	struct sk_filter *fp, *old_fp;
1463
1464	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1465	if (!fp)
1466		return -ENOMEM;
1467
1468	fp->prog = prog;
1469
1470	if (!__sk_filter_charge(sk, fp)) {
1471		kfree(fp);
1472		return -ENOMEM;
1473	}
1474	refcount_set(&fp->refcnt, 1);
1475
1476	old_fp = rcu_dereference_protected(sk->sk_filter,
1477					   lockdep_sock_is_held(sk));
1478	rcu_assign_pointer(sk->sk_filter, fp);
1479
1480	if (old_fp)
1481		sk_filter_uncharge(sk, old_fp);
1482
1483	return 0;
1484}
1485
1486static
1487struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1488{
1489	unsigned int fsize = bpf_classic_proglen(fprog);
1490	struct bpf_prog *prog;
1491	int err;
1492
1493	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1494		return ERR_PTR(-EPERM);
1495
1496	/* Make sure new filter is there and in the right amounts. */
1497	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1498		return ERR_PTR(-EINVAL);
1499
1500	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1501	if (!prog)
1502		return ERR_PTR(-ENOMEM);
1503
1504	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1505		__bpf_prog_free(prog);
1506		return ERR_PTR(-EFAULT);
1507	}
1508
1509	prog->len = fprog->len;
1510
1511	err = bpf_prog_store_orig_filter(prog, fprog);
1512	if (err) {
1513		__bpf_prog_free(prog);
1514		return ERR_PTR(-ENOMEM);
1515	}
1516
1517	/* bpf_prepare_filter() already takes care of freeing
1518	 * memory in case something goes wrong.
1519	 */
1520	return bpf_prepare_filter(prog, NULL);
1521}
1522
1523/**
1524 *	sk_attach_filter - attach a socket filter
1525 *	@fprog: the filter program
1526 *	@sk: the socket to use
1527 *
1528 * Attach the user's filter code. We first run some sanity checks on
1529 * it to make sure it does not explode on us later. If an error
1530 * occurs or there is insufficient memory for the filter a negative
1531 * errno code is returned. On success the return is zero.
1532 */
1533int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1534{
1535	struct bpf_prog *prog = __get_filter(fprog, sk);
1536	int err;
1537
1538	if (IS_ERR(prog))
1539		return PTR_ERR(prog);
1540
1541	err = __sk_attach_prog(prog, sk);
1542	if (err < 0) {
1543		__bpf_prog_release(prog);
1544		return err;
1545	}
1546
1547	return 0;
1548}
1549EXPORT_SYMBOL_GPL(sk_attach_filter);
1550
1551int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1552{
1553	struct bpf_prog *prog = __get_filter(fprog, sk);
1554	int err, optmem_max;
1555
1556	if (IS_ERR(prog))
1557		return PTR_ERR(prog);
1558
1559	optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1560	if (bpf_prog_size(prog->len) > optmem_max)
1561		err = -ENOMEM;
1562	else
1563		err = reuseport_attach_prog(sk, prog);
1564
1565	if (err)
1566		__bpf_prog_release(prog);
1567
1568	return err;
1569}
1570
1571static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1572{
1573	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1574		return ERR_PTR(-EPERM);
1575
1576	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1577}
1578
1579int sk_attach_bpf(u32 ufd, struct sock *sk)
1580{
1581	struct bpf_prog *prog = __get_bpf(ufd, sk);
1582	int err;
1583
1584	if (IS_ERR(prog))
1585		return PTR_ERR(prog);
1586
1587	err = __sk_attach_prog(prog, sk);
1588	if (err < 0) {
1589		bpf_prog_put(prog);
1590		return err;
1591	}
1592
1593	return 0;
1594}
1595
1596int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1597{
1598	struct bpf_prog *prog;
1599	int err, optmem_max;
1600
1601	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1602		return -EPERM;
1603
1604	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1605	if (PTR_ERR(prog) == -EINVAL)
1606		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1607	if (IS_ERR(prog))
1608		return PTR_ERR(prog);
1609
1610	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1611		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1612		 * bpf prog (e.g. sockmap).  It depends on the
1613		 * limitation imposed by bpf_prog_load().
1614		 * Hence, sysctl_optmem_max is not checked.
1615		 */
1616		if ((sk->sk_type != SOCK_STREAM &&
1617		     sk->sk_type != SOCK_DGRAM) ||
1618		    (sk->sk_protocol != IPPROTO_UDP &&
1619		     sk->sk_protocol != IPPROTO_TCP) ||
1620		    (sk->sk_family != AF_INET &&
1621		     sk->sk_family != AF_INET6)) {
1622			err = -ENOTSUPP;
1623			goto err_prog_put;
1624		}
1625	} else {
1626		/* BPF_PROG_TYPE_SOCKET_FILTER */
1627		optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1628		if (bpf_prog_size(prog->len) > optmem_max) {
1629			err = -ENOMEM;
1630			goto err_prog_put;
1631		}
1632	}
1633
1634	err = reuseport_attach_prog(sk, prog);
1635err_prog_put:
1636	if (err)
1637		bpf_prog_put(prog);
1638
1639	return err;
1640}
1641
1642void sk_reuseport_prog_free(struct bpf_prog *prog)
1643{
1644	if (!prog)
1645		return;
1646
1647	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1648		bpf_prog_put(prog);
1649	else
1650		bpf_prog_destroy(prog);
1651}
1652
1653struct bpf_scratchpad {
1654	union {
1655		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1656		u8     buff[MAX_BPF_STACK];
1657	};
1658};
1659
1660static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1661
1662static inline int __bpf_try_make_writable(struct sk_buff *skb,
1663					  unsigned int write_len)
1664{
1665	return skb_ensure_writable(skb, write_len);
1666}
1667
1668static inline int bpf_try_make_writable(struct sk_buff *skb,
1669					unsigned int write_len)
1670{
1671	int err = __bpf_try_make_writable(skb, write_len);
1672
1673	bpf_compute_data_pointers(skb);
1674	return err;
1675}
1676
1677static int bpf_try_make_head_writable(struct sk_buff *skb)
1678{
1679	return bpf_try_make_writable(skb, skb_headlen(skb));
1680}
1681
1682static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1683{
1684	if (skb_at_tc_ingress(skb))
1685		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1686}
1687
1688static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1689{
1690	if (skb_at_tc_ingress(skb))
1691		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1692}
1693
1694BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1695	   const void *, from, u32, len, u64, flags)
1696{
1697	void *ptr;
1698
1699	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1700		return -EINVAL;
1701	if (unlikely(offset > INT_MAX))
1702		return -EFAULT;
1703	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1704		return -EFAULT;
1705
1706	ptr = skb->data + offset;
1707	if (flags & BPF_F_RECOMPUTE_CSUM)
1708		__skb_postpull_rcsum(skb, ptr, len, offset);
1709
1710	memcpy(ptr, from, len);
1711
1712	if (flags & BPF_F_RECOMPUTE_CSUM)
1713		__skb_postpush_rcsum(skb, ptr, len, offset);
1714	if (flags & BPF_F_INVALIDATE_HASH)
1715		skb_clear_hash(skb);
1716
1717	return 0;
1718}
1719
1720static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1721	.func		= bpf_skb_store_bytes,
1722	.gpl_only	= false,
1723	.ret_type	= RET_INTEGER,
1724	.arg1_type	= ARG_PTR_TO_CTX,
1725	.arg2_type	= ARG_ANYTHING,
1726	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1727	.arg4_type	= ARG_CONST_SIZE,
1728	.arg5_type	= ARG_ANYTHING,
1729};
1730
1731int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1732			  u32 len, u64 flags)
1733{
1734	return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
1735}
1736
1737BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1738	   void *, to, u32, len)
1739{
1740	void *ptr;
1741
1742	if (unlikely(offset > INT_MAX))
1743		goto err_clear;
1744
1745	ptr = skb_header_pointer(skb, offset, len, to);
1746	if (unlikely(!ptr))
1747		goto err_clear;
1748	if (ptr != to)
1749		memcpy(to, ptr, len);
1750
1751	return 0;
1752err_clear:
1753	memset(to, 0, len);
1754	return -EFAULT;
1755}
1756
1757static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1758	.func		= bpf_skb_load_bytes,
1759	.gpl_only	= false,
1760	.ret_type	= RET_INTEGER,
1761	.arg1_type	= ARG_PTR_TO_CTX,
1762	.arg2_type	= ARG_ANYTHING,
1763	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1764	.arg4_type	= ARG_CONST_SIZE,
1765};
1766
1767int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1768{
1769	return ____bpf_skb_load_bytes(skb, offset, to, len);
1770}
1771
1772BPF_CALL_4(bpf_flow_dissector_load_bytes,
1773	   const struct bpf_flow_dissector *, ctx, u32, offset,
1774	   void *, to, u32, len)
1775{
1776	void *ptr;
1777
1778	if (unlikely(offset > 0xffff))
1779		goto err_clear;
1780
1781	if (unlikely(!ctx->skb))
1782		goto err_clear;
1783
1784	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1785	if (unlikely(!ptr))
1786		goto err_clear;
1787	if (ptr != to)
1788		memcpy(to, ptr, len);
1789
1790	return 0;
1791err_clear:
1792	memset(to, 0, len);
1793	return -EFAULT;
1794}
1795
1796static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1797	.func		= bpf_flow_dissector_load_bytes,
1798	.gpl_only	= false,
1799	.ret_type	= RET_INTEGER,
1800	.arg1_type	= ARG_PTR_TO_CTX,
1801	.arg2_type	= ARG_ANYTHING,
1802	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1803	.arg4_type	= ARG_CONST_SIZE,
1804};
1805
1806BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1807	   u32, offset, void *, to, u32, len, u32, start_header)
1808{
1809	u8 *end = skb_tail_pointer(skb);
1810	u8 *start, *ptr;
1811
1812	if (unlikely(offset > 0xffff))
1813		goto err_clear;
1814
1815	switch (start_header) {
1816	case BPF_HDR_START_MAC:
1817		if (unlikely(!skb_mac_header_was_set(skb)))
1818			goto err_clear;
1819		start = skb_mac_header(skb);
1820		break;
1821	case BPF_HDR_START_NET:
1822		start = skb_network_header(skb);
1823		break;
1824	default:
1825		goto err_clear;
1826	}
1827
1828	ptr = start + offset;
1829
1830	if (likely(ptr + len <= end)) {
1831		memcpy(to, ptr, len);
1832		return 0;
1833	}
1834
1835err_clear:
1836	memset(to, 0, len);
1837	return -EFAULT;
1838}
1839
1840static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1841	.func		= bpf_skb_load_bytes_relative,
1842	.gpl_only	= false,
1843	.ret_type	= RET_INTEGER,
1844	.arg1_type	= ARG_PTR_TO_CTX,
1845	.arg2_type	= ARG_ANYTHING,
1846	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1847	.arg4_type	= ARG_CONST_SIZE,
1848	.arg5_type	= ARG_ANYTHING,
1849};
1850
1851BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1852{
1853	/* Idea is the following: should the needed direct read/write
1854	 * test fail during runtime, we can pull in more data and redo
1855	 * again, since implicitly, we invalidate previous checks here.
1856	 *
1857	 * Or, since we know how much we need to make read/writeable,
1858	 * this can be done once at the program beginning for direct
1859	 * access case. By this we overcome limitations of only current
1860	 * headroom being accessible.
1861	 */
1862	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1863}
1864
1865static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1866	.func		= bpf_skb_pull_data,
1867	.gpl_only	= false,
1868	.ret_type	= RET_INTEGER,
1869	.arg1_type	= ARG_PTR_TO_CTX,
1870	.arg2_type	= ARG_ANYTHING,
1871};
1872
1873BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1874{
1875	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1876}
1877
1878static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1879	.func		= bpf_sk_fullsock,
1880	.gpl_only	= false,
1881	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1882	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1883};
1884
1885static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1886					   unsigned int write_len)
1887{
1888	return __bpf_try_make_writable(skb, write_len);
1889}
1890
1891BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1892{
1893	/* Idea is the following: should the needed direct read/write
1894	 * test fail during runtime, we can pull in more data and redo
1895	 * again, since implicitly, we invalidate previous checks here.
1896	 *
1897	 * Or, since we know how much we need to make read/writeable,
1898	 * this can be done once at the program beginning for direct
1899	 * access case. By this we overcome limitations of only current
1900	 * headroom being accessible.
1901	 */
1902	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1903}
1904
1905static const struct bpf_func_proto sk_skb_pull_data_proto = {
1906	.func		= sk_skb_pull_data,
1907	.gpl_only	= false,
1908	.ret_type	= RET_INTEGER,
1909	.arg1_type	= ARG_PTR_TO_CTX,
1910	.arg2_type	= ARG_ANYTHING,
1911};
1912
1913BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1914	   u64, from, u64, to, u64, flags)
1915{
1916	__sum16 *ptr;
1917
1918	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1919		return -EINVAL;
1920	if (unlikely(offset > 0xffff || offset & 1))
1921		return -EFAULT;
1922	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1923		return -EFAULT;
1924
1925	ptr = (__sum16 *)(skb->data + offset);
1926	switch (flags & BPF_F_HDR_FIELD_MASK) {
1927	case 0:
1928		if (unlikely(from != 0))
1929			return -EINVAL;
1930
1931		csum_replace_by_diff(ptr, to);
1932		break;
1933	case 2:
1934		csum_replace2(ptr, from, to);
1935		break;
1936	case 4:
1937		csum_replace4(ptr, from, to);
1938		break;
1939	default:
1940		return -EINVAL;
1941	}
1942
1943	return 0;
1944}
1945
1946static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1947	.func		= bpf_l3_csum_replace,
1948	.gpl_only	= false,
1949	.ret_type	= RET_INTEGER,
1950	.arg1_type	= ARG_PTR_TO_CTX,
1951	.arg2_type	= ARG_ANYTHING,
1952	.arg3_type	= ARG_ANYTHING,
1953	.arg4_type	= ARG_ANYTHING,
1954	.arg5_type	= ARG_ANYTHING,
1955};
1956
1957BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1958	   u64, from, u64, to, u64, flags)
1959{
1960	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1961	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1962	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1963	__sum16 *ptr;
1964
1965	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1966			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1967		return -EINVAL;
1968	if (unlikely(offset > 0xffff || offset & 1))
1969		return -EFAULT;
1970	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1971		return -EFAULT;
1972
1973	ptr = (__sum16 *)(skb->data + offset);
1974	if (is_mmzero && !do_mforce && !*ptr)
1975		return 0;
1976
1977	switch (flags & BPF_F_HDR_FIELD_MASK) {
1978	case 0:
1979		if (unlikely(from != 0))
1980			return -EINVAL;
1981
1982		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1983		break;
1984	case 2:
1985		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1986		break;
1987	case 4:
1988		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1989		break;
1990	default:
1991		return -EINVAL;
1992	}
1993
1994	if (is_mmzero && !*ptr)
1995		*ptr = CSUM_MANGLED_0;
1996	return 0;
1997}
1998
1999static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
2000	.func		= bpf_l4_csum_replace,
2001	.gpl_only	= false,
2002	.ret_type	= RET_INTEGER,
2003	.arg1_type	= ARG_PTR_TO_CTX,
2004	.arg2_type	= ARG_ANYTHING,
2005	.arg3_type	= ARG_ANYTHING,
2006	.arg4_type	= ARG_ANYTHING,
2007	.arg5_type	= ARG_ANYTHING,
2008};
2009
2010BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
2011	   __be32 *, to, u32, to_size, __wsum, seed)
2012{
2013	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
2014	u32 diff_size = from_size + to_size;
2015	int i, j = 0;
2016
2017	/* This is quite flexible, some examples:
2018	 *
2019	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2020	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2021	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2022	 *
2023	 * Even for diffing, from_size and to_size don't need to be equal.
2024	 */
2025	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2026		     diff_size > sizeof(sp->diff)))
2027		return -EINVAL;
2028
2029	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2030		sp->diff[j] = ~from[i];
2031	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2032		sp->diff[j] = to[i];
2033
2034	return csum_partial(sp->diff, diff_size, seed);
2035}
2036
2037static const struct bpf_func_proto bpf_csum_diff_proto = {
2038	.func		= bpf_csum_diff,
2039	.gpl_only	= false,
2040	.pkt_access	= true,
2041	.ret_type	= RET_INTEGER,
2042	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2043	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2044	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2045	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2046	.arg5_type	= ARG_ANYTHING,
2047};
2048
2049BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2050{
2051	/* The interface is to be used in combination with bpf_csum_diff()
2052	 * for direct packet writes. csum rotation for alignment as well
2053	 * as emulating csum_sub() can be done from the eBPF program.
2054	 */
2055	if (skb->ip_summed == CHECKSUM_COMPLETE)
2056		return (skb->csum = csum_add(skb->csum, csum));
2057
2058	return -ENOTSUPP;
2059}
2060
2061static const struct bpf_func_proto bpf_csum_update_proto = {
2062	.func		= bpf_csum_update,
2063	.gpl_only	= false,
2064	.ret_type	= RET_INTEGER,
2065	.arg1_type	= ARG_PTR_TO_CTX,
2066	.arg2_type	= ARG_ANYTHING,
2067};
2068
2069BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2070{
2071	/* The interface is to be used in combination with bpf_skb_adjust_room()
2072	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2073	 * is passed as flags, for example.
2074	 */
2075	switch (level) {
2076	case BPF_CSUM_LEVEL_INC:
2077		__skb_incr_checksum_unnecessary(skb);
2078		break;
2079	case BPF_CSUM_LEVEL_DEC:
2080		__skb_decr_checksum_unnecessary(skb);
2081		break;
2082	case BPF_CSUM_LEVEL_RESET:
2083		__skb_reset_checksum_unnecessary(skb);
2084		break;
2085	case BPF_CSUM_LEVEL_QUERY:
2086		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2087		       skb->csum_level : -EACCES;
2088	default:
2089		return -EINVAL;
2090	}
2091
2092	return 0;
2093}
2094
2095static const struct bpf_func_proto bpf_csum_level_proto = {
2096	.func		= bpf_csum_level,
2097	.gpl_only	= false,
2098	.ret_type	= RET_INTEGER,
2099	.arg1_type	= ARG_PTR_TO_CTX,
2100	.arg2_type	= ARG_ANYTHING,
2101};
2102
2103static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2104{
2105	return dev_forward_skb_nomtu(dev, skb);
2106}
2107
2108static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2109				      struct sk_buff *skb)
2110{
2111	int ret = ____dev_forward_skb(dev, skb, false);
2112
2113	if (likely(!ret)) {
2114		skb->dev = dev;
2115		ret = netif_rx(skb);
2116	}
2117
2118	return ret;
2119}
2120
2121static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2122{
2123	int ret;
2124
2125	if (dev_xmit_recursion()) {
2126		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2127		kfree_skb(skb);
2128		return -ENETDOWN;
2129	}
2130
2131	skb->dev = dev;
2132	skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb));
2133	skb_clear_tstamp(skb);
2134
2135	dev_xmit_recursion_inc();
2136	ret = dev_queue_xmit(skb);
2137	dev_xmit_recursion_dec();
2138
2139	return ret;
2140}
2141
2142static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2143				 u32 flags)
2144{
2145	unsigned int mlen = skb_network_offset(skb);
2146
2147	if (unlikely(skb->len <= mlen)) {
2148		kfree_skb(skb);
2149		return -ERANGE;
2150	}
2151
2152	if (mlen) {
2153		__skb_pull(skb, mlen);
2154
2155		/* At ingress, the mac header has already been pulled once.
2156		 * At egress, skb_pospull_rcsum has to be done in case that
2157		 * the skb is originated from ingress (i.e. a forwarded skb)
2158		 * to ensure that rcsum starts at net header.
2159		 */
2160		if (!skb_at_tc_ingress(skb))
2161			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2162	}
2163	skb_pop_mac_header(skb);
2164	skb_reset_mac_len(skb);
2165	return flags & BPF_F_INGRESS ?
2166	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2167}
2168
2169static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2170				 u32 flags)
2171{
2172	/* Verify that a link layer header is carried */
2173	if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2174		kfree_skb(skb);
2175		return -ERANGE;
2176	}
2177
2178	bpf_push_mac_rcsum(skb);
2179	return flags & BPF_F_INGRESS ?
2180	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2181}
2182
2183static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2184			  u32 flags)
2185{
2186	if (dev_is_mac_header_xmit(dev))
2187		return __bpf_redirect_common(skb, dev, flags);
2188	else
2189		return __bpf_redirect_no_mac(skb, dev, flags);
2190}
2191
2192#if IS_ENABLED(CONFIG_IPV6)
2193static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2194			    struct net_device *dev, struct bpf_nh_params *nh)
2195{
2196	u32 hh_len = LL_RESERVED_SPACE(dev);
2197	const struct in6_addr *nexthop;
2198	struct dst_entry *dst = NULL;
2199	struct neighbour *neigh;
2200
2201	if (dev_xmit_recursion()) {
2202		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2203		goto out_drop;
2204	}
2205
2206	skb->dev = dev;
2207	skb_clear_tstamp(skb);
2208
2209	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2210		skb = skb_expand_head(skb, hh_len);
2211		if (!skb)
2212			return -ENOMEM;
2213	}
2214
2215	rcu_read_lock();
2216	if (!nh) {
2217		dst = skb_dst(skb);
2218		nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2219				      &ipv6_hdr(skb)->daddr);
2220	} else {
2221		nexthop = &nh->ipv6_nh;
2222	}
2223	neigh = ip_neigh_gw6(dev, nexthop);
2224	if (likely(!IS_ERR(neigh))) {
2225		int ret;
2226
2227		sock_confirm_neigh(skb, neigh);
2228		local_bh_disable();
2229		dev_xmit_recursion_inc();
2230		ret = neigh_output(neigh, skb, false);
2231		dev_xmit_recursion_dec();
2232		local_bh_enable();
2233		rcu_read_unlock();
2234		return ret;
2235	}
2236	rcu_read_unlock_bh();
2237	if (dst)
2238		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2239out_drop:
2240	kfree_skb(skb);
2241	return -ENETDOWN;
2242}
2243
2244static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2245				   struct bpf_nh_params *nh)
2246{
2247	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2248	struct net *net = dev_net(dev);
2249	int err, ret = NET_XMIT_DROP;
2250
2251	if (!nh) {
2252		struct dst_entry *dst;
2253		struct flowi6 fl6 = {
2254			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2255			.flowi6_mark  = skb->mark,
2256			.flowlabel    = ip6_flowinfo(ip6h),
2257			.flowi6_oif   = dev->ifindex,
2258			.flowi6_proto = ip6h->nexthdr,
2259			.daddr	      = ip6h->daddr,
2260			.saddr	      = ip6h->saddr,
2261		};
2262
2263		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2264		if (IS_ERR(dst))
2265			goto out_drop;
2266
2267		skb_dst_set(skb, dst);
2268	} else if (nh->nh_family != AF_INET6) {
2269		goto out_drop;
2270	}
2271
2272	err = bpf_out_neigh_v6(net, skb, dev, nh);
2273	if (unlikely(net_xmit_eval(err)))
2274		dev->stats.tx_errors++;
2275	else
2276		ret = NET_XMIT_SUCCESS;
2277	goto out_xmit;
2278out_drop:
2279	dev->stats.tx_errors++;
2280	kfree_skb(skb);
2281out_xmit:
2282	return ret;
2283}
2284#else
2285static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2286				   struct bpf_nh_params *nh)
2287{
2288	kfree_skb(skb);
2289	return NET_XMIT_DROP;
2290}
2291#endif /* CONFIG_IPV6 */
2292
2293#if IS_ENABLED(CONFIG_INET)
2294static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2295			    struct net_device *dev, struct bpf_nh_params *nh)
2296{
2297	u32 hh_len = LL_RESERVED_SPACE(dev);
2298	struct neighbour *neigh;
2299	bool is_v6gw = false;
2300
2301	if (dev_xmit_recursion()) {
2302		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2303		goto out_drop;
2304	}
2305
2306	skb->dev = dev;
2307	skb_clear_tstamp(skb);
2308
2309	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2310		skb = skb_expand_head(skb, hh_len);
2311		if (!skb)
2312			return -ENOMEM;
2313	}
2314
2315	rcu_read_lock();
2316	if (!nh) {
2317		struct dst_entry *dst = skb_dst(skb);
2318		struct rtable *rt = container_of(dst, struct rtable, dst);
2319
2320		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2321	} else if (nh->nh_family == AF_INET6) {
2322		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2323		is_v6gw = true;
2324	} else if (nh->nh_family == AF_INET) {
2325		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2326	} else {
2327		rcu_read_unlock();
2328		goto out_drop;
2329	}
2330
2331	if (likely(!IS_ERR(neigh))) {
2332		int ret;
2333
2334		sock_confirm_neigh(skb, neigh);
2335		local_bh_disable();
2336		dev_xmit_recursion_inc();
2337		ret = neigh_output(neigh, skb, is_v6gw);
2338		dev_xmit_recursion_dec();
2339		local_bh_enable();
2340		rcu_read_unlock();
2341		return ret;
2342	}
2343	rcu_read_unlock();
2344out_drop:
2345	kfree_skb(skb);
2346	return -ENETDOWN;
2347}
2348
2349static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2350				   struct bpf_nh_params *nh)
2351{
2352	const struct iphdr *ip4h = ip_hdr(skb);
2353	struct net *net = dev_net(dev);
2354	int err, ret = NET_XMIT_DROP;
2355
2356	if (!nh) {
2357		struct flowi4 fl4 = {
2358			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2359			.flowi4_mark  = skb->mark,
2360			.flowi4_tos   = RT_TOS(ip4h->tos),
2361			.flowi4_oif   = dev->ifindex,
2362			.flowi4_proto = ip4h->protocol,
2363			.daddr	      = ip4h->daddr,
2364			.saddr	      = ip4h->saddr,
2365		};
2366		struct rtable *rt;
2367
2368		rt = ip_route_output_flow(net, &fl4, NULL);
2369		if (IS_ERR(rt))
2370			goto out_drop;
2371		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2372			ip_rt_put(rt);
2373			goto out_drop;
2374		}
2375
2376		skb_dst_set(skb, &rt->dst);
2377	}
2378
2379	err = bpf_out_neigh_v4(net, skb, dev, nh);
2380	if (unlikely(net_xmit_eval(err)))
2381		dev->stats.tx_errors++;
2382	else
2383		ret = NET_XMIT_SUCCESS;
2384	goto out_xmit;
2385out_drop:
2386	dev->stats.tx_errors++;
2387	kfree_skb(skb);
2388out_xmit:
2389	return ret;
2390}
2391#else
2392static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2393				   struct bpf_nh_params *nh)
2394{
2395	kfree_skb(skb);
2396	return NET_XMIT_DROP;
2397}
2398#endif /* CONFIG_INET */
2399
2400static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2401				struct bpf_nh_params *nh)
2402{
2403	struct ethhdr *ethh = eth_hdr(skb);
2404
2405	if (unlikely(skb->mac_header >= skb->network_header))
2406		goto out;
2407	bpf_push_mac_rcsum(skb);
2408	if (is_multicast_ether_addr(ethh->h_dest))
2409		goto out;
2410
2411	skb_pull(skb, sizeof(*ethh));
2412	skb_unset_mac_header(skb);
2413	skb_reset_network_header(skb);
2414
2415	if (skb->protocol == htons(ETH_P_IP))
2416		return __bpf_redirect_neigh_v4(skb, dev, nh);
2417	else if (skb->protocol == htons(ETH_P_IPV6))
2418		return __bpf_redirect_neigh_v6(skb, dev, nh);
2419out:
2420	kfree_skb(skb);
2421	return -ENOTSUPP;
2422}
2423
2424/* Internal, non-exposed redirect flags. */
2425enum {
2426	BPF_F_NEIGH	= (1ULL << 1),
2427	BPF_F_PEER	= (1ULL << 2),
2428	BPF_F_NEXTHOP	= (1ULL << 3),
2429#define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2430};
2431
2432BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2433{
2434	struct net_device *dev;
2435	struct sk_buff *clone;
2436	int ret;
2437
2438	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2439		return -EINVAL;
2440
2441	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2442	if (unlikely(!dev))
2443		return -EINVAL;
2444
2445	clone = skb_clone(skb, GFP_ATOMIC);
2446	if (unlikely(!clone))
2447		return -ENOMEM;
2448
2449	/* For direct write, we need to keep the invariant that the skbs
2450	 * we're dealing with need to be uncloned. Should uncloning fail
2451	 * here, we need to free the just generated clone to unclone once
2452	 * again.
2453	 */
2454	ret = bpf_try_make_head_writable(skb);
2455	if (unlikely(ret)) {
2456		kfree_skb(clone);
2457		return -ENOMEM;
2458	}
2459
2460	return __bpf_redirect(clone, dev, flags);
2461}
2462
2463static const struct bpf_func_proto bpf_clone_redirect_proto = {
2464	.func           = bpf_clone_redirect,
2465	.gpl_only       = false,
2466	.ret_type       = RET_INTEGER,
2467	.arg1_type      = ARG_PTR_TO_CTX,
2468	.arg2_type      = ARG_ANYTHING,
2469	.arg3_type      = ARG_ANYTHING,
2470};
2471
2472DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2473EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2474
2475static struct net_device *skb_get_peer_dev(struct net_device *dev)
2476{
2477	const struct net_device_ops *ops = dev->netdev_ops;
2478
2479	if (likely(ops->ndo_get_peer_dev))
2480		return INDIRECT_CALL_1(ops->ndo_get_peer_dev,
2481				       netkit_peer_dev, dev);
2482	return NULL;
2483}
2484
2485int skb_do_redirect(struct sk_buff *skb)
2486{
2487	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2488	struct net *net = dev_net(skb->dev);
2489	struct net_device *dev;
2490	u32 flags = ri->flags;
2491
2492	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2493	ri->tgt_index = 0;
2494	ri->flags = 0;
2495	if (unlikely(!dev))
2496		goto out_drop;
2497	if (flags & BPF_F_PEER) {
2498		if (unlikely(!skb_at_tc_ingress(skb)))
2499			goto out_drop;
2500		dev = skb_get_peer_dev(dev);
2501		if (unlikely(!dev ||
2502			     !(dev->flags & IFF_UP) ||
2503			     net_eq(net, dev_net(dev))))
2504			goto out_drop;
2505		skb->dev = dev;
2506		dev_sw_netstats_rx_add(dev, skb->len);
2507		return -EAGAIN;
2508	}
2509	return flags & BPF_F_NEIGH ?
2510	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2511				    &ri->nh : NULL) :
2512	       __bpf_redirect(skb, dev, flags);
2513out_drop:
2514	kfree_skb(skb);
2515	return -EINVAL;
2516}
2517
2518BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2519{
2520	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2521
2522	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2523		return TC_ACT_SHOT;
2524
2525	ri->flags = flags;
2526	ri->tgt_index = ifindex;
2527
2528	return TC_ACT_REDIRECT;
2529}
2530
2531static const struct bpf_func_proto bpf_redirect_proto = {
2532	.func           = bpf_redirect,
2533	.gpl_only       = false,
2534	.ret_type       = RET_INTEGER,
2535	.arg1_type      = ARG_ANYTHING,
2536	.arg2_type      = ARG_ANYTHING,
2537};
2538
2539BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2540{
2541	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2542
2543	if (unlikely(flags))
2544		return TC_ACT_SHOT;
2545
2546	ri->flags = BPF_F_PEER;
2547	ri->tgt_index = ifindex;
2548
2549	return TC_ACT_REDIRECT;
2550}
2551
2552static const struct bpf_func_proto bpf_redirect_peer_proto = {
2553	.func           = bpf_redirect_peer,
2554	.gpl_only       = false,
2555	.ret_type       = RET_INTEGER,
2556	.arg1_type      = ARG_ANYTHING,
2557	.arg2_type      = ARG_ANYTHING,
2558};
2559
2560BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2561	   int, plen, u64, flags)
2562{
2563	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2564
2565	if (unlikely((plen && plen < sizeof(*params)) || flags))
2566		return TC_ACT_SHOT;
2567
2568	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2569	ri->tgt_index = ifindex;
2570
2571	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2572	if (plen)
2573		memcpy(&ri->nh, params, sizeof(ri->nh));
2574
2575	return TC_ACT_REDIRECT;
2576}
2577
2578static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2579	.func		= bpf_redirect_neigh,
2580	.gpl_only	= false,
2581	.ret_type	= RET_INTEGER,
2582	.arg1_type	= ARG_ANYTHING,
2583	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2584	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2585	.arg4_type	= ARG_ANYTHING,
2586};
2587
2588BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2589{
2590	msg->apply_bytes = bytes;
2591	return 0;
2592}
2593
2594static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2595	.func           = bpf_msg_apply_bytes,
2596	.gpl_only       = false,
2597	.ret_type       = RET_INTEGER,
2598	.arg1_type	= ARG_PTR_TO_CTX,
2599	.arg2_type      = ARG_ANYTHING,
2600};
2601
2602BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2603{
2604	msg->cork_bytes = bytes;
2605	return 0;
2606}
2607
2608static void sk_msg_reset_curr(struct sk_msg *msg)
2609{
2610	u32 i = msg->sg.start;
2611	u32 len = 0;
2612
2613	do {
2614		len += sk_msg_elem(msg, i)->length;
2615		sk_msg_iter_var_next(i);
2616		if (len >= msg->sg.size)
2617			break;
2618	} while (i != msg->sg.end);
2619
2620	msg->sg.curr = i;
2621	msg->sg.copybreak = 0;
2622}
2623
2624static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2625	.func           = bpf_msg_cork_bytes,
2626	.gpl_only       = false,
2627	.ret_type       = RET_INTEGER,
2628	.arg1_type	= ARG_PTR_TO_CTX,
2629	.arg2_type      = ARG_ANYTHING,
2630};
2631
2632BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2633	   u32, end, u64, flags)
2634{
2635	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2636	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2637	struct scatterlist *sge;
2638	u8 *raw, *to, *from;
2639	struct page *page;
2640
2641	if (unlikely(flags || end <= start))
2642		return -EINVAL;
2643
2644	/* First find the starting scatterlist element */
2645	i = msg->sg.start;
2646	do {
2647		offset += len;
2648		len = sk_msg_elem(msg, i)->length;
2649		if (start < offset + len)
2650			break;
2651		sk_msg_iter_var_next(i);
2652	} while (i != msg->sg.end);
2653
2654	if (unlikely(start >= offset + len))
2655		return -EINVAL;
2656
2657	first_sge = i;
2658	/* The start may point into the sg element so we need to also
2659	 * account for the headroom.
2660	 */
2661	bytes_sg_total = start - offset + bytes;
2662	if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2663		goto out;
2664
2665	/* At this point we need to linearize multiple scatterlist
2666	 * elements or a single shared page. Either way we need to
2667	 * copy into a linear buffer exclusively owned by BPF. Then
2668	 * place the buffer in the scatterlist and fixup the original
2669	 * entries by removing the entries now in the linear buffer
2670	 * and shifting the remaining entries. For now we do not try
2671	 * to copy partial entries to avoid complexity of running out
2672	 * of sg_entry slots. The downside is reading a single byte
2673	 * will copy the entire sg entry.
2674	 */
2675	do {
2676		copy += sk_msg_elem(msg, i)->length;
2677		sk_msg_iter_var_next(i);
2678		if (bytes_sg_total <= copy)
2679			break;
2680	} while (i != msg->sg.end);
2681	last_sge = i;
2682
2683	if (unlikely(bytes_sg_total > copy))
2684		return -EINVAL;
2685
2686	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2687			   get_order(copy));
2688	if (unlikely(!page))
2689		return -ENOMEM;
2690
2691	raw = page_address(page);
2692	i = first_sge;
2693	do {
2694		sge = sk_msg_elem(msg, i);
2695		from = sg_virt(sge);
2696		len = sge->length;
2697		to = raw + poffset;
2698
2699		memcpy(to, from, len);
2700		poffset += len;
2701		sge->length = 0;
2702		put_page(sg_page(sge));
2703
2704		sk_msg_iter_var_next(i);
2705	} while (i != last_sge);
2706
2707	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2708
2709	/* To repair sg ring we need to shift entries. If we only
2710	 * had a single entry though we can just replace it and
2711	 * be done. Otherwise walk the ring and shift the entries.
2712	 */
2713	WARN_ON_ONCE(last_sge == first_sge);
2714	shift = last_sge > first_sge ?
2715		last_sge - first_sge - 1 :
2716		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2717	if (!shift)
2718		goto out;
2719
2720	i = first_sge;
2721	sk_msg_iter_var_next(i);
2722	do {
2723		u32 move_from;
2724
2725		if (i + shift >= NR_MSG_FRAG_IDS)
2726			move_from = i + shift - NR_MSG_FRAG_IDS;
2727		else
2728			move_from = i + shift;
2729		if (move_from == msg->sg.end)
2730			break;
2731
2732		msg->sg.data[i] = msg->sg.data[move_from];
2733		msg->sg.data[move_from].length = 0;
2734		msg->sg.data[move_from].page_link = 0;
2735		msg->sg.data[move_from].offset = 0;
2736		sk_msg_iter_var_next(i);
2737	} while (1);
2738
2739	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2740		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2741		      msg->sg.end - shift;
2742out:
2743	sk_msg_reset_curr(msg);
2744	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2745	msg->data_end = msg->data + bytes;
2746	return 0;
2747}
2748
2749static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2750	.func		= bpf_msg_pull_data,
2751	.gpl_only	= false,
2752	.ret_type	= RET_INTEGER,
2753	.arg1_type	= ARG_PTR_TO_CTX,
2754	.arg2_type	= ARG_ANYTHING,
2755	.arg3_type	= ARG_ANYTHING,
2756	.arg4_type	= ARG_ANYTHING,
2757};
2758
2759BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2760	   u32, len, u64, flags)
2761{
2762	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2763	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2764	u8 *raw, *to, *from;
2765	struct page *page;
2766
2767	if (unlikely(flags))
2768		return -EINVAL;
2769
2770	if (unlikely(len == 0))
2771		return 0;
2772
2773	/* First find the starting scatterlist element */
2774	i = msg->sg.start;
2775	do {
2776		offset += l;
2777		l = sk_msg_elem(msg, i)->length;
2778
2779		if (start < offset + l)
2780			break;
2781		sk_msg_iter_var_next(i);
2782	} while (i != msg->sg.end);
2783
2784	if (start >= offset + l)
2785		return -EINVAL;
2786
2787	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2788
2789	/* If no space available will fallback to copy, we need at
2790	 * least one scatterlist elem available to push data into
2791	 * when start aligns to the beginning of an element or two
2792	 * when it falls inside an element. We handle the start equals
2793	 * offset case because its the common case for inserting a
2794	 * header.
2795	 */
2796	if (!space || (space == 1 && start != offset))
2797		copy = msg->sg.data[i].length;
2798
2799	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2800			   get_order(copy + len));
2801	if (unlikely(!page))
2802		return -ENOMEM;
2803
2804	if (copy) {
2805		int front, back;
2806
2807		raw = page_address(page);
2808
2809		psge = sk_msg_elem(msg, i);
2810		front = start - offset;
2811		back = psge->length - front;
2812		from = sg_virt(psge);
2813
2814		if (front)
2815			memcpy(raw, from, front);
2816
2817		if (back) {
2818			from += front;
2819			to = raw + front + len;
2820
2821			memcpy(to, from, back);
2822		}
2823
2824		put_page(sg_page(psge));
2825	} else if (start - offset) {
2826		psge = sk_msg_elem(msg, i);
2827		rsge = sk_msg_elem_cpy(msg, i);
2828
2829		psge->length = start - offset;
2830		rsge.length -= psge->length;
2831		rsge.offset += start;
2832
2833		sk_msg_iter_var_next(i);
2834		sg_unmark_end(psge);
2835		sg_unmark_end(&rsge);
2836		sk_msg_iter_next(msg, end);
2837	}
2838
2839	/* Slot(s) to place newly allocated data */
2840	new = i;
2841
2842	/* Shift one or two slots as needed */
2843	if (!copy) {
2844		sge = sk_msg_elem_cpy(msg, i);
2845
2846		sk_msg_iter_var_next(i);
2847		sg_unmark_end(&sge);
2848		sk_msg_iter_next(msg, end);
2849
2850		nsge = sk_msg_elem_cpy(msg, i);
2851		if (rsge.length) {
2852			sk_msg_iter_var_next(i);
2853			nnsge = sk_msg_elem_cpy(msg, i);
2854		}
2855
2856		while (i != msg->sg.end) {
2857			msg->sg.data[i] = sge;
2858			sge = nsge;
2859			sk_msg_iter_var_next(i);
2860			if (rsge.length) {
2861				nsge = nnsge;
2862				nnsge = sk_msg_elem_cpy(msg, i);
2863			} else {
2864				nsge = sk_msg_elem_cpy(msg, i);
2865			}
2866		}
2867	}
2868
2869	/* Place newly allocated data buffer */
2870	sk_mem_charge(msg->sk, len);
2871	msg->sg.size += len;
2872	__clear_bit(new, msg->sg.copy);
2873	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2874	if (rsge.length) {
2875		get_page(sg_page(&rsge));
2876		sk_msg_iter_var_next(new);
2877		msg->sg.data[new] = rsge;
2878	}
2879
2880	sk_msg_reset_curr(msg);
2881	sk_msg_compute_data_pointers(msg);
2882	return 0;
2883}
2884
2885static const struct bpf_func_proto bpf_msg_push_data_proto = {
2886	.func		= bpf_msg_push_data,
2887	.gpl_only	= false,
2888	.ret_type	= RET_INTEGER,
2889	.arg1_type	= ARG_PTR_TO_CTX,
2890	.arg2_type	= ARG_ANYTHING,
2891	.arg3_type	= ARG_ANYTHING,
2892	.arg4_type	= ARG_ANYTHING,
2893};
2894
2895static void sk_msg_shift_left(struct sk_msg *msg, int i)
2896{
2897	int prev;
2898
2899	do {
2900		prev = i;
2901		sk_msg_iter_var_next(i);
2902		msg->sg.data[prev] = msg->sg.data[i];
2903	} while (i != msg->sg.end);
2904
2905	sk_msg_iter_prev(msg, end);
2906}
2907
2908static void sk_msg_shift_right(struct sk_msg *msg, int i)
2909{
2910	struct scatterlist tmp, sge;
2911
2912	sk_msg_iter_next(msg, end);
2913	sge = sk_msg_elem_cpy(msg, i);
2914	sk_msg_iter_var_next(i);
2915	tmp = sk_msg_elem_cpy(msg, i);
2916
2917	while (i != msg->sg.end) {
2918		msg->sg.data[i] = sge;
2919		sk_msg_iter_var_next(i);
2920		sge = tmp;
2921		tmp = sk_msg_elem_cpy(msg, i);
2922	}
2923}
2924
2925BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2926	   u32, len, u64, flags)
2927{
2928	u32 i = 0, l = 0, space, offset = 0;
2929	u64 last = start + len;
2930	int pop;
2931
2932	if (unlikely(flags))
2933		return -EINVAL;
2934
2935	/* First find the starting scatterlist element */
2936	i = msg->sg.start;
2937	do {
2938		offset += l;
2939		l = sk_msg_elem(msg, i)->length;
2940
2941		if (start < offset + l)
2942			break;
2943		sk_msg_iter_var_next(i);
2944	} while (i != msg->sg.end);
2945
2946	/* Bounds checks: start and pop must be inside message */
2947	if (start >= offset + l || last >= msg->sg.size)
2948		return -EINVAL;
2949
2950	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2951
2952	pop = len;
2953	/* --------------| offset
2954	 * -| start      |-------- len -------|
2955	 *
2956	 *  |----- a ----|-------- pop -------|----- b ----|
2957	 *  |______________________________________________| length
2958	 *
2959	 *
2960	 * a:   region at front of scatter element to save
2961	 * b:   region at back of scatter element to save when length > A + pop
2962	 * pop: region to pop from element, same as input 'pop' here will be
2963	 *      decremented below per iteration.
2964	 *
2965	 * Two top-level cases to handle when start != offset, first B is non
2966	 * zero and second B is zero corresponding to when a pop includes more
2967	 * than one element.
2968	 *
2969	 * Then if B is non-zero AND there is no space allocate space and
2970	 * compact A, B regions into page. If there is space shift ring to
2971	 * the right free'ing the next element in ring to place B, leaving
2972	 * A untouched except to reduce length.
2973	 */
2974	if (start != offset) {
2975		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2976		int a = start;
2977		int b = sge->length - pop - a;
2978
2979		sk_msg_iter_var_next(i);
2980
2981		if (pop < sge->length - a) {
2982			if (space) {
2983				sge->length = a;
2984				sk_msg_shift_right(msg, i);
2985				nsge = sk_msg_elem(msg, i);
2986				get_page(sg_page(sge));
2987				sg_set_page(nsge,
2988					    sg_page(sge),
2989					    b, sge->offset + pop + a);
2990			} else {
2991				struct page *page, *orig;
2992				u8 *to, *from;
2993
2994				page = alloc_pages(__GFP_NOWARN |
2995						   __GFP_COMP   | GFP_ATOMIC,
2996						   get_order(a + b));
2997				if (unlikely(!page))
2998					return -ENOMEM;
2999
3000				sge->length = a;
3001				orig = sg_page(sge);
3002				from = sg_virt(sge);
3003				to = page_address(page);
3004				memcpy(to, from, a);
3005				memcpy(to + a, from + a + pop, b);
3006				sg_set_page(sge, page, a + b, 0);
3007				put_page(orig);
3008			}
3009			pop = 0;
3010		} else if (pop >= sge->length - a) {
3011			pop -= (sge->length - a);
3012			sge->length = a;
3013		}
3014	}
3015
3016	/* From above the current layout _must_ be as follows,
3017	 *
3018	 * -| offset
3019	 * -| start
3020	 *
3021	 *  |---- pop ---|---------------- b ------------|
3022	 *  |____________________________________________| length
3023	 *
3024	 * Offset and start of the current msg elem are equal because in the
3025	 * previous case we handled offset != start and either consumed the
3026	 * entire element and advanced to the next element OR pop == 0.
3027	 *
3028	 * Two cases to handle here are first pop is less than the length
3029	 * leaving some remainder b above. Simply adjust the element's layout
3030	 * in this case. Or pop >= length of the element so that b = 0. In this
3031	 * case advance to next element decrementing pop.
3032	 */
3033	while (pop) {
3034		struct scatterlist *sge = sk_msg_elem(msg, i);
3035
3036		if (pop < sge->length) {
3037			sge->length -= pop;
3038			sge->offset += pop;
3039			pop = 0;
3040		} else {
3041			pop -= sge->length;
3042			sk_msg_shift_left(msg, i);
3043		}
3044		sk_msg_iter_var_next(i);
3045	}
3046
3047	sk_mem_uncharge(msg->sk, len - pop);
3048	msg->sg.size -= (len - pop);
3049	sk_msg_reset_curr(msg);
3050	sk_msg_compute_data_pointers(msg);
3051	return 0;
3052}
3053
3054static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3055	.func		= bpf_msg_pop_data,
3056	.gpl_only	= false,
3057	.ret_type	= RET_INTEGER,
3058	.arg1_type	= ARG_PTR_TO_CTX,
3059	.arg2_type	= ARG_ANYTHING,
3060	.arg3_type	= ARG_ANYTHING,
3061	.arg4_type	= ARG_ANYTHING,
3062};
3063
3064#ifdef CONFIG_CGROUP_NET_CLASSID
3065BPF_CALL_0(bpf_get_cgroup_classid_curr)
3066{
3067	return __task_get_classid(current);
3068}
3069
3070const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3071	.func		= bpf_get_cgroup_classid_curr,
3072	.gpl_only	= false,
3073	.ret_type	= RET_INTEGER,
3074};
3075
3076BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3077{
3078	struct sock *sk = skb_to_full_sk(skb);
3079
3080	if (!sk || !sk_fullsock(sk))
3081		return 0;
3082
3083	return sock_cgroup_classid(&sk->sk_cgrp_data);
3084}
3085
3086static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3087	.func		= bpf_skb_cgroup_classid,
3088	.gpl_only	= false,
3089	.ret_type	= RET_INTEGER,
3090	.arg1_type	= ARG_PTR_TO_CTX,
3091};
3092#endif
3093
3094BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3095{
3096	return task_get_classid(skb);
3097}
3098
3099static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3100	.func           = bpf_get_cgroup_classid,
3101	.gpl_only       = false,
3102	.ret_type       = RET_INTEGER,
3103	.arg1_type      = ARG_PTR_TO_CTX,
3104};
3105
3106BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3107{
3108	return dst_tclassid(skb);
3109}
3110
3111static const struct bpf_func_proto bpf_get_route_realm_proto = {
3112	.func           = bpf_get_route_realm,
3113	.gpl_only       = false,
3114	.ret_type       = RET_INTEGER,
3115	.arg1_type      = ARG_PTR_TO_CTX,
3116};
3117
3118BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3119{
3120	/* If skb_clear_hash() was called due to mangling, we can
3121	 * trigger SW recalculation here. Later access to hash
3122	 * can then use the inline skb->hash via context directly
3123	 * instead of calling this helper again.
3124	 */
3125	return skb_get_hash(skb);
3126}
3127
3128static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3129	.func		= bpf_get_hash_recalc,
3130	.gpl_only	= false,
3131	.ret_type	= RET_INTEGER,
3132	.arg1_type	= ARG_PTR_TO_CTX,
3133};
3134
3135BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3136{
3137	/* After all direct packet write, this can be used once for
3138	 * triggering a lazy recalc on next skb_get_hash() invocation.
3139	 */
3140	skb_clear_hash(skb);
3141	return 0;
3142}
3143
3144static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3145	.func		= bpf_set_hash_invalid,
3146	.gpl_only	= false,
3147	.ret_type	= RET_INTEGER,
3148	.arg1_type	= ARG_PTR_TO_CTX,
3149};
3150
3151BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3152{
3153	/* Set user specified hash as L4(+), so that it gets returned
3154	 * on skb_get_hash() call unless BPF prog later on triggers a
3155	 * skb_clear_hash().
3156	 */
3157	__skb_set_sw_hash(skb, hash, true);
3158	return 0;
3159}
3160
3161static const struct bpf_func_proto bpf_set_hash_proto = {
3162	.func		= bpf_set_hash,
3163	.gpl_only	= false,
3164	.ret_type	= RET_INTEGER,
3165	.arg1_type	= ARG_PTR_TO_CTX,
3166	.arg2_type	= ARG_ANYTHING,
3167};
3168
3169BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3170	   u16, vlan_tci)
3171{
3172	int ret;
3173
3174	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3175		     vlan_proto != htons(ETH_P_8021AD)))
3176		vlan_proto = htons(ETH_P_8021Q);
3177
3178	bpf_push_mac_rcsum(skb);
3179	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3180	bpf_pull_mac_rcsum(skb);
3181
3182	bpf_compute_data_pointers(skb);
3183	return ret;
3184}
3185
3186static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3187	.func           = bpf_skb_vlan_push,
3188	.gpl_only       = false,
3189	.ret_type       = RET_INTEGER,
3190	.arg1_type      = ARG_PTR_TO_CTX,
3191	.arg2_type      = ARG_ANYTHING,
3192	.arg3_type      = ARG_ANYTHING,
3193};
3194
3195BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3196{
3197	int ret;
3198
3199	bpf_push_mac_rcsum(skb);
3200	ret = skb_vlan_pop(skb);
3201	bpf_pull_mac_rcsum(skb);
3202
3203	bpf_compute_data_pointers(skb);
3204	return ret;
3205}
3206
3207static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3208	.func           = bpf_skb_vlan_pop,
3209	.gpl_only       = false,
3210	.ret_type       = RET_INTEGER,
3211	.arg1_type      = ARG_PTR_TO_CTX,
3212};
3213
3214static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3215{
3216	/* Caller already did skb_cow() with len as headroom,
3217	 * so no need to do it here.
3218	 */
3219	skb_push(skb, len);
3220	memmove(skb->data, skb->data + len, off);
3221	memset(skb->data + off, 0, len);
3222
3223	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3224	 * needed here as it does not change the skb->csum
3225	 * result for checksum complete when summing over
3226	 * zeroed blocks.
3227	 */
3228	return 0;
3229}
3230
3231static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3232{
3233	void *old_data;
3234
3235	/* skb_ensure_writable() is not needed here, as we're
3236	 * already working on an uncloned skb.
3237	 */
3238	if (unlikely(!pskb_may_pull(skb, off + len)))
3239		return -ENOMEM;
3240
3241	old_data = skb->data;
3242	__skb_pull(skb, len);
3243	skb_postpull_rcsum(skb, old_data + off, len);
3244	memmove(skb->data, old_data, off);
3245
3246	return 0;
3247}
3248
3249static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3250{
3251	bool trans_same = skb->transport_header == skb->network_header;
3252	int ret;
3253
3254	/* There's no need for __skb_push()/__skb_pull() pair to
3255	 * get to the start of the mac header as we're guaranteed
3256	 * to always start from here under eBPF.
3257	 */
3258	ret = bpf_skb_generic_push(skb, off, len);
3259	if (likely(!ret)) {
3260		skb->mac_header -= len;
3261		skb->network_header -= len;
3262		if (trans_same)
3263			skb->transport_header = skb->network_header;
3264	}
3265
3266	return ret;
3267}
3268
3269static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3270{
3271	bool trans_same = skb->transport_header == skb->network_header;
3272	int ret;
3273
3274	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3275	ret = bpf_skb_generic_pop(skb, off, len);
3276	if (likely(!ret)) {
3277		skb->mac_header += len;
3278		skb->network_header += len;
3279		if (trans_same)
3280			skb->transport_header = skb->network_header;
3281	}
3282
3283	return ret;
3284}
3285
3286static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3287{
3288	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3289	u32 off = skb_mac_header_len(skb);
3290	int ret;
3291
3292	ret = skb_cow(skb, len_diff);
3293	if (unlikely(ret < 0))
3294		return ret;
3295
3296	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3297	if (unlikely(ret < 0))
3298		return ret;
3299
3300	if (skb_is_gso(skb)) {
3301		struct skb_shared_info *shinfo = skb_shinfo(skb);
3302
3303		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3304		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3305			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3306			shinfo->gso_type |=  SKB_GSO_TCPV6;
3307		}
3308	}
3309
3310	skb->protocol = htons(ETH_P_IPV6);
3311	skb_clear_hash(skb);
3312
3313	return 0;
3314}
3315
3316static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3317{
3318	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3319	u32 off = skb_mac_header_len(skb);
3320	int ret;
3321
3322	ret = skb_unclone(skb, GFP_ATOMIC);
3323	if (unlikely(ret < 0))
3324		return ret;
3325
3326	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3327	if (unlikely(ret < 0))
3328		return ret;
3329
3330	if (skb_is_gso(skb)) {
3331		struct skb_shared_info *shinfo = skb_shinfo(skb);
3332
3333		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3334		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3335			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3336			shinfo->gso_type |=  SKB_GSO_TCPV4;
3337		}
3338	}
3339
3340	skb->protocol = htons(ETH_P_IP);
3341	skb_clear_hash(skb);
3342
3343	return 0;
3344}
3345
3346static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3347{
3348	__be16 from_proto = skb->protocol;
3349
3350	if (from_proto == htons(ETH_P_IP) &&
3351	      to_proto == htons(ETH_P_IPV6))
3352		return bpf_skb_proto_4_to_6(skb);
3353
3354	if (from_proto == htons(ETH_P_IPV6) &&
3355	      to_proto == htons(ETH_P_IP))
3356		return bpf_skb_proto_6_to_4(skb);
3357
3358	return -ENOTSUPP;
3359}
3360
3361BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3362	   u64, flags)
3363{
3364	int ret;
3365
3366	if (unlikely(flags))
3367		return -EINVAL;
3368
3369	/* General idea is that this helper does the basic groundwork
3370	 * needed for changing the protocol, and eBPF program fills the
3371	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3372	 * and other helpers, rather than passing a raw buffer here.
3373	 *
3374	 * The rationale is to keep this minimal and without a need to
3375	 * deal with raw packet data. F.e. even if we would pass buffers
3376	 * here, the program still needs to call the bpf_lX_csum_replace()
3377	 * helpers anyway. Plus, this way we keep also separation of
3378	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3379	 * care of stores.
3380	 *
3381	 * Currently, additional options and extension header space are
3382	 * not supported, but flags register is reserved so we can adapt
3383	 * that. For offloads, we mark packet as dodgy, so that headers
3384	 * need to be verified first.
3385	 */
3386	ret = bpf_skb_proto_xlat(skb, proto);
3387	bpf_compute_data_pointers(skb);
3388	return ret;
3389}
3390
3391static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3392	.func		= bpf_skb_change_proto,
3393	.gpl_only	= false,
3394	.ret_type	= RET_INTEGER,
3395	.arg1_type	= ARG_PTR_TO_CTX,
3396	.arg2_type	= ARG_ANYTHING,
3397	.arg3_type	= ARG_ANYTHING,
3398};
3399
3400BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3401{
3402	/* We only allow a restricted subset to be changed for now. */
3403	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3404		     !skb_pkt_type_ok(pkt_type)))
3405		return -EINVAL;
3406
3407	skb->pkt_type = pkt_type;
3408	return 0;
3409}
3410
3411static const struct bpf_func_proto bpf_skb_change_type_proto = {
3412	.func		= bpf_skb_change_type,
3413	.gpl_only	= false,
3414	.ret_type	= RET_INTEGER,
3415	.arg1_type	= ARG_PTR_TO_CTX,
3416	.arg2_type	= ARG_ANYTHING,
3417};
3418
3419static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3420{
3421	switch (skb->protocol) {
3422	case htons(ETH_P_IP):
3423		return sizeof(struct iphdr);
3424	case htons(ETH_P_IPV6):
3425		return sizeof(struct ipv6hdr);
3426	default:
3427		return ~0U;
3428	}
3429}
3430
3431#define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3432					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3433
3434#define BPF_F_ADJ_ROOM_DECAP_L3_MASK	(BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3435					 BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3436
3437#define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3438					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3439					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3440					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3441					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3442					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3443					  BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3444					 BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3445
3446static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3447			    u64 flags)
3448{
3449	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3450	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3451	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3452	unsigned int gso_type = SKB_GSO_DODGY;
3453	int ret;
3454
3455	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3456		/* udp gso_size delineates datagrams, only allow if fixed */
3457		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3458		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3459			return -ENOTSUPP;
3460	}
3461
3462	ret = skb_cow_head(skb, len_diff);
3463	if (unlikely(ret < 0))
3464		return ret;
3465
3466	if (encap) {
3467		if (skb->protocol != htons(ETH_P_IP) &&
3468		    skb->protocol != htons(ETH_P_IPV6))
3469			return -ENOTSUPP;
3470
3471		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3472		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3473			return -EINVAL;
3474
3475		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3476		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3477			return -EINVAL;
3478
3479		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3480		    inner_mac_len < ETH_HLEN)
3481			return -EINVAL;
3482
3483		if (skb->encapsulation)
3484			return -EALREADY;
3485
3486		mac_len = skb->network_header - skb->mac_header;
3487		inner_net = skb->network_header;
3488		if (inner_mac_len > len_diff)
3489			return -EINVAL;
3490		inner_trans = skb->transport_header;
3491	}
3492
3493	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3494	if (unlikely(ret < 0))
3495		return ret;
3496
3497	if (encap) {
3498		skb->inner_mac_header = inner_net - inner_mac_len;
3499		skb->inner_network_header = inner_net;
3500		skb->inner_transport_header = inner_trans;
3501
3502		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3503			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3504		else
3505			skb_set_inner_protocol(skb, skb->protocol);
3506
3507		skb->encapsulation = 1;
3508		skb_set_network_header(skb, mac_len);
3509
3510		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3511			gso_type |= SKB_GSO_UDP_TUNNEL;
3512		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3513			gso_type |= SKB_GSO_GRE;
3514		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3515			gso_type |= SKB_GSO_IPXIP6;
3516		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3517			gso_type |= SKB_GSO_IPXIP4;
3518
3519		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3520		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3521			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3522					sizeof(struct ipv6hdr) :
3523					sizeof(struct iphdr);
3524
3525			skb_set_transport_header(skb, mac_len + nh_len);
3526		}
3527
3528		/* Match skb->protocol to new outer l3 protocol */
3529		if (skb->protocol == htons(ETH_P_IP) &&
3530		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3531			skb->protocol = htons(ETH_P_IPV6);
3532		else if (skb->protocol == htons(ETH_P_IPV6) &&
3533			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3534			skb->protocol = htons(ETH_P_IP);
3535	}
3536
3537	if (skb_is_gso(skb)) {
3538		struct skb_shared_info *shinfo = skb_shinfo(skb);
3539
3540		/* Due to header grow, MSS needs to be downgraded. */
3541		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3542			skb_decrease_gso_size(shinfo, len_diff);
3543
3544		/* Header must be checked, and gso_segs recomputed. */
3545		shinfo->gso_type |= gso_type;
3546		shinfo->gso_segs = 0;
3547	}
3548
3549	return 0;
3550}
3551
3552static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3553			      u64 flags)
3554{
3555	int ret;
3556
3557	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3558			       BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3559			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3560		return -EINVAL;
3561
3562	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3563		/* udp gso_size delineates datagrams, only allow if fixed */
3564		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3565		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3566			return -ENOTSUPP;
3567	}
3568
3569	ret = skb_unclone(skb, GFP_ATOMIC);
3570	if (unlikely(ret < 0))
3571		return ret;
3572
3573	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3574	if (unlikely(ret < 0))
3575		return ret;
3576
3577	/* Match skb->protocol to new outer l3 protocol */
3578	if (skb->protocol == htons(ETH_P_IP) &&
3579	    flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3580		skb->protocol = htons(ETH_P_IPV6);
3581	else if (skb->protocol == htons(ETH_P_IPV6) &&
3582		 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3583		skb->protocol = htons(ETH_P_IP);
3584
3585	if (skb_is_gso(skb)) {
3586		struct skb_shared_info *shinfo = skb_shinfo(skb);
3587
3588		/* Due to header shrink, MSS can be upgraded. */
3589		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3590			skb_increase_gso_size(shinfo, len_diff);
3591
3592		/* Header must be checked, and gso_segs recomputed. */
3593		shinfo->gso_type |= SKB_GSO_DODGY;
3594		shinfo->gso_segs = 0;
3595	}
3596
3597	return 0;
3598}
3599
3600#define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3601
3602BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3603	   u32, mode, u64, flags)
3604{
3605	u32 len_diff_abs = abs(len_diff);
3606	bool shrink = len_diff < 0;
3607	int ret = 0;
3608
3609	if (unlikely(flags || mode))
3610		return -EINVAL;
3611	if (unlikely(len_diff_abs > 0xfffU))
3612		return -EFAULT;
3613
3614	if (!shrink) {
3615		ret = skb_cow(skb, len_diff);
3616		if (unlikely(ret < 0))
3617			return ret;
3618		__skb_push(skb, len_diff_abs);
3619		memset(skb->data, 0, len_diff_abs);
3620	} else {
3621		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3622			return -ENOMEM;
3623		__skb_pull(skb, len_diff_abs);
3624	}
3625	if (tls_sw_has_ctx_rx(skb->sk)) {
3626		struct strp_msg *rxm = strp_msg(skb);
3627
3628		rxm->full_len += len_diff;
3629	}
3630	return ret;
3631}
3632
3633static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3634	.func		= sk_skb_adjust_room,
3635	.gpl_only	= false,
3636	.ret_type	= RET_INTEGER,
3637	.arg1_type	= ARG_PTR_TO_CTX,
3638	.arg2_type	= ARG_ANYTHING,
3639	.arg3_type	= ARG_ANYTHING,
3640	.arg4_type	= ARG_ANYTHING,
3641};
3642
3643BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3644	   u32, mode, u64, flags)
3645{
3646	u32 len_cur, len_diff_abs = abs(len_diff);
3647	u32 len_min = bpf_skb_net_base_len(skb);
3648	u32 len_max = BPF_SKB_MAX_LEN;
3649	__be16 proto = skb->protocol;
3650	bool shrink = len_diff < 0;
3651	u32 off;
3652	int ret;
3653
3654	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3655			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3656		return -EINVAL;
3657	if (unlikely(len_diff_abs > 0xfffU))
3658		return -EFAULT;
3659	if (unlikely(proto != htons(ETH_P_IP) &&
3660		     proto != htons(ETH_P_IPV6)))
3661		return -ENOTSUPP;
3662
3663	off = skb_mac_header_len(skb);
3664	switch (mode) {
3665	case BPF_ADJ_ROOM_NET:
3666		off += bpf_skb_net_base_len(skb);
3667		break;
3668	case BPF_ADJ_ROOM_MAC:
3669		break;
3670	default:
3671		return -ENOTSUPP;
3672	}
3673
3674	if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3675		if (!shrink)
3676			return -EINVAL;
3677
3678		switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3679		case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3680			len_min = sizeof(struct iphdr);
3681			break;
3682		case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3683			len_min = sizeof(struct ipv6hdr);
3684			break;
3685		default:
3686			return -EINVAL;
3687		}
3688	}
3689
3690	len_cur = skb->len - skb_network_offset(skb);
3691	if ((shrink && (len_diff_abs >= len_cur ||
3692			len_cur - len_diff_abs < len_min)) ||
3693	    (!shrink && (skb->len + len_diff_abs > len_max &&
3694			 !skb_is_gso(skb))))
3695		return -ENOTSUPP;
3696
3697	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3698		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3699	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3700		__skb_reset_checksum_unnecessary(skb);
3701
3702	bpf_compute_data_pointers(skb);
3703	return ret;
3704}
3705
3706static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3707	.func		= bpf_skb_adjust_room,
3708	.gpl_only	= false,
3709	.ret_type	= RET_INTEGER,
3710	.arg1_type	= ARG_PTR_TO_CTX,
3711	.arg2_type	= ARG_ANYTHING,
3712	.arg3_type	= ARG_ANYTHING,
3713	.arg4_type	= ARG_ANYTHING,
3714};
3715
3716static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3717{
3718	u32 min_len = skb_network_offset(skb);
3719
3720	if (skb_transport_header_was_set(skb))
3721		min_len = skb_transport_offset(skb);
3722	if (skb->ip_summed == CHECKSUM_PARTIAL)
3723		min_len = skb_checksum_start_offset(skb) +
3724			  skb->csum_offset + sizeof(__sum16);
3725	return min_len;
3726}
3727
3728static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3729{
3730	unsigned int old_len = skb->len;
3731	int ret;
3732
3733	ret = __skb_grow_rcsum(skb, new_len);
3734	if (!ret)
3735		memset(skb->data + old_len, 0, new_len - old_len);
3736	return ret;
3737}
3738
3739static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3740{
3741	return __skb_trim_rcsum(skb, new_len);
3742}
3743
3744static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3745					u64 flags)
3746{
3747	u32 max_len = BPF_SKB_MAX_LEN;
3748	u32 min_len = __bpf_skb_min_len(skb);
3749	int ret;
3750
3751	if (unlikely(flags || new_len > max_len || new_len < min_len))
3752		return -EINVAL;
3753	if (skb->encapsulation)
3754		return -ENOTSUPP;
3755
3756	/* The basic idea of this helper is that it's performing the
3757	 * needed work to either grow or trim an skb, and eBPF program
3758	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3759	 * bpf_lX_csum_replace() and others rather than passing a raw
3760	 * buffer here. This one is a slow path helper and intended
3761	 * for replies with control messages.
3762	 *
3763	 * Like in bpf_skb_change_proto(), we want to keep this rather
3764	 * minimal and without protocol specifics so that we are able
3765	 * to separate concerns as in bpf_skb_store_bytes() should only
3766	 * be the one responsible for writing buffers.
3767	 *
3768	 * It's really expected to be a slow path operation here for
3769	 * control message replies, so we're implicitly linearizing,
3770	 * uncloning and drop offloads from the skb by this.
3771	 */
3772	ret = __bpf_try_make_writable(skb, skb->len);
3773	if (!ret) {
3774		if (new_len > skb->len)
3775			ret = bpf_skb_grow_rcsum(skb, new_len);
3776		else if (new_len < skb->len)
3777			ret = bpf_skb_trim_rcsum(skb, new_len);
3778		if (!ret && skb_is_gso(skb))
3779			skb_gso_reset(skb);
3780	}
3781	return ret;
3782}
3783
3784BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3785	   u64, flags)
3786{
3787	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3788
3789	bpf_compute_data_pointers(skb);
3790	return ret;
3791}
3792
3793static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3794	.func		= bpf_skb_change_tail,
3795	.gpl_only	= false,
3796	.ret_type	= RET_INTEGER,
3797	.arg1_type	= ARG_PTR_TO_CTX,
3798	.arg2_type	= ARG_ANYTHING,
3799	.arg3_type	= ARG_ANYTHING,
3800};
3801
3802BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3803	   u64, flags)
3804{
3805	return __bpf_skb_change_tail(skb, new_len, flags);
3806}
3807
3808static const struct bpf_func_proto sk_skb_change_tail_proto = {
3809	.func		= sk_skb_change_tail,
3810	.gpl_only	= false,
3811	.ret_type	= RET_INTEGER,
3812	.arg1_type	= ARG_PTR_TO_CTX,
3813	.arg2_type	= ARG_ANYTHING,
3814	.arg3_type	= ARG_ANYTHING,
3815};
3816
3817static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3818					u64 flags)
3819{
3820	u32 max_len = BPF_SKB_MAX_LEN;
3821	u32 new_len = skb->len + head_room;
3822	int ret;
3823
3824	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3825		     new_len < skb->len))
3826		return -EINVAL;
3827
3828	ret = skb_cow(skb, head_room);
3829	if (likely(!ret)) {
3830		/* Idea for this helper is that we currently only
3831		 * allow to expand on mac header. This means that
3832		 * skb->protocol network header, etc, stay as is.
3833		 * Compared to bpf_skb_change_tail(), we're more
3834		 * flexible due to not needing to linearize or
3835		 * reset GSO. Intention for this helper is to be
3836		 * used by an L3 skb that needs to push mac header
3837		 * for redirection into L2 device.
3838		 */
3839		__skb_push(skb, head_room);
3840		memset(skb->data, 0, head_room);
3841		skb_reset_mac_header(skb);
3842		skb_reset_mac_len(skb);
3843	}
3844
3845	return ret;
3846}
3847
3848BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3849	   u64, flags)
3850{
3851	int ret = __bpf_skb_change_head(skb, head_room, flags);
3852
3853	bpf_compute_data_pointers(skb);
3854	return ret;
3855}
3856
3857static const struct bpf_func_proto bpf_skb_change_head_proto = {
3858	.func		= bpf_skb_change_head,
3859	.gpl_only	= false,
3860	.ret_type	= RET_INTEGER,
3861	.arg1_type	= ARG_PTR_TO_CTX,
3862	.arg2_type	= ARG_ANYTHING,
3863	.arg3_type	= ARG_ANYTHING,
3864};
3865
3866BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3867	   u64, flags)
3868{
3869	return __bpf_skb_change_head(skb, head_room, flags);
3870}
3871
3872static const struct bpf_func_proto sk_skb_change_head_proto = {
3873	.func		= sk_skb_change_head,
3874	.gpl_only	= false,
3875	.ret_type	= RET_INTEGER,
3876	.arg1_type	= ARG_PTR_TO_CTX,
3877	.arg2_type	= ARG_ANYTHING,
3878	.arg3_type	= ARG_ANYTHING,
3879};
3880
3881BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3882{
3883	return xdp_get_buff_len(xdp);
3884}
3885
3886static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3887	.func		= bpf_xdp_get_buff_len,
3888	.gpl_only	= false,
3889	.ret_type	= RET_INTEGER,
3890	.arg1_type	= ARG_PTR_TO_CTX,
3891};
3892
3893BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3894
3895const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3896	.func		= bpf_xdp_get_buff_len,
3897	.gpl_only	= false,
3898	.arg1_type	= ARG_PTR_TO_BTF_ID,
3899	.arg1_btf_id	= &bpf_xdp_get_buff_len_bpf_ids[0],
3900};
3901
3902static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3903{
3904	return xdp_data_meta_unsupported(xdp) ? 0 :
3905	       xdp->data - xdp->data_meta;
3906}
3907
3908BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3909{
3910	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3911	unsigned long metalen = xdp_get_metalen(xdp);
3912	void *data_start = xdp_frame_end + metalen;
3913	void *data = xdp->data + offset;
3914
3915	if (unlikely(data < data_start ||
3916		     data > xdp->data_end - ETH_HLEN))
3917		return -EINVAL;
3918
3919	if (metalen)
3920		memmove(xdp->data_meta + offset,
3921			xdp->data_meta, metalen);
3922	xdp->data_meta += offset;
3923	xdp->data = data;
3924
3925	return 0;
3926}
3927
3928static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3929	.func		= bpf_xdp_adjust_head,
3930	.gpl_only	= false,
3931	.ret_type	= RET_INTEGER,
3932	.arg1_type	= ARG_PTR_TO_CTX,
3933	.arg2_type	= ARG_ANYTHING,
3934};
3935
3936void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3937		      void *buf, unsigned long len, bool flush)
3938{
3939	unsigned long ptr_len, ptr_off = 0;
3940	skb_frag_t *next_frag, *end_frag;
3941	struct skb_shared_info *sinfo;
3942	void *src, *dst;
3943	u8 *ptr_buf;
3944
3945	if (likely(xdp->data_end - xdp->data >= off + len)) {
3946		src = flush ? buf : xdp->data + off;
3947		dst = flush ? xdp->data + off : buf;
3948		memcpy(dst, src, len);
3949		return;
3950	}
3951
3952	sinfo = xdp_get_shared_info_from_buff(xdp);
3953	end_frag = &sinfo->frags[sinfo->nr_frags];
3954	next_frag = &sinfo->frags[0];
3955
3956	ptr_len = xdp->data_end - xdp->data;
3957	ptr_buf = xdp->data;
3958
3959	while (true) {
3960		if (off < ptr_off + ptr_len) {
3961			unsigned long copy_off = off - ptr_off;
3962			unsigned long copy_len = min(len, ptr_len - copy_off);
3963
3964			src = flush ? buf : ptr_buf + copy_off;
3965			dst = flush ? ptr_buf + copy_off : buf;
3966			memcpy(dst, src, copy_len);
3967
3968			off += copy_len;
3969			len -= copy_len;
3970			buf += copy_len;
3971		}
3972
3973		if (!len || next_frag == end_frag)
3974			break;
3975
3976		ptr_off += ptr_len;
3977		ptr_buf = skb_frag_address(next_frag);
3978		ptr_len = skb_frag_size(next_frag);
3979		next_frag++;
3980	}
3981}
3982
3983void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3984{
3985	u32 size = xdp->data_end - xdp->data;
3986	struct skb_shared_info *sinfo;
3987	void *addr = xdp->data;
3988	int i;
3989
3990	if (unlikely(offset > 0xffff || len > 0xffff))
3991		return ERR_PTR(-EFAULT);
3992
3993	if (unlikely(offset + len > xdp_get_buff_len(xdp)))
3994		return ERR_PTR(-EINVAL);
3995
3996	if (likely(offset < size)) /* linear area */
3997		goto out;
3998
3999	sinfo = xdp_get_shared_info_from_buff(xdp);
4000	offset -= size;
4001	for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
4002		u32 frag_size = skb_frag_size(&sinfo->frags[i]);
4003
4004		if  (offset < frag_size) {
4005			addr = skb_frag_address(&sinfo->frags[i]);
4006			size = frag_size;
4007			break;
4008		}
4009		offset -= frag_size;
4010	}
4011out:
4012	return offset + len <= size ? addr + offset : NULL;
4013}
4014
4015BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
4016	   void *, buf, u32, len)
4017{
4018	void *ptr;
4019
4020	ptr = bpf_xdp_pointer(xdp, offset, len);
4021	if (IS_ERR(ptr))
4022		return PTR_ERR(ptr);
4023
4024	if (!ptr)
4025		bpf_xdp_copy_buf(xdp, offset, buf, len, false);
4026	else
4027		memcpy(buf, ptr, len);
4028
4029	return 0;
4030}
4031
4032static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
4033	.func		= bpf_xdp_load_bytes,
4034	.gpl_only	= false,
4035	.ret_type	= RET_INTEGER,
4036	.arg1_type	= ARG_PTR_TO_CTX,
4037	.arg2_type	= ARG_ANYTHING,
4038	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4039	.arg4_type	= ARG_CONST_SIZE,
4040};
4041
4042int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4043{
4044	return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
4045}
4046
4047BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
4048	   void *, buf, u32, len)
4049{
4050	void *ptr;
4051
4052	ptr = bpf_xdp_pointer(xdp, offset, len);
4053	if (IS_ERR(ptr))
4054		return PTR_ERR(ptr);
4055
4056	if (!ptr)
4057		bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4058	else
4059		memcpy(ptr, buf, len);
4060
4061	return 0;
4062}
4063
4064static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4065	.func		= bpf_xdp_store_bytes,
4066	.gpl_only	= false,
4067	.ret_type	= RET_INTEGER,
4068	.arg1_type	= ARG_PTR_TO_CTX,
4069	.arg2_type	= ARG_ANYTHING,
4070	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4071	.arg4_type	= ARG_CONST_SIZE,
4072};
4073
4074int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4075{
4076	return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
4077}
4078
4079static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4080{
4081	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4082	skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4083	struct xdp_rxq_info *rxq = xdp->rxq;
4084	unsigned int tailroom;
4085
4086	if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4087		return -EOPNOTSUPP;
4088
4089	tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4090	if (unlikely(offset > tailroom))
4091		return -EINVAL;
4092
4093	memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4094	skb_frag_size_add(frag, offset);
4095	sinfo->xdp_frags_size += offset;
4096	if (rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL)
4097		xsk_buff_get_tail(xdp)->data_end += offset;
4098
4099	return 0;
4100}
4101
4102static void bpf_xdp_shrink_data_zc(struct xdp_buff *xdp, int shrink,
4103				   struct xdp_mem_info *mem_info, bool release)
4104{
4105	struct xdp_buff *zc_frag = xsk_buff_get_tail(xdp);
4106
4107	if (release) {
4108		xsk_buff_del_tail(zc_frag);
4109		__xdp_return(NULL, mem_info, false, zc_frag);
4110	} else {
4111		zc_frag->data_end -= shrink;
4112	}
4113}
4114
4115static bool bpf_xdp_shrink_data(struct xdp_buff *xdp, skb_frag_t *frag,
4116				int shrink)
4117{
4118	struct xdp_mem_info *mem_info = &xdp->rxq->mem;
4119	bool release = skb_frag_size(frag) == shrink;
4120
4121	if (mem_info->type == MEM_TYPE_XSK_BUFF_POOL) {
4122		bpf_xdp_shrink_data_zc(xdp, shrink, mem_info, release);
4123		goto out;
4124	}
4125
4126	if (release) {
4127		struct page *page = skb_frag_page(frag);
4128
4129		__xdp_return(page_address(page), mem_info, false, NULL);
4130	}
4131
4132out:
4133	return release;
4134}
4135
4136static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4137{
4138	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4139	int i, n_frags_free = 0, len_free = 0;
4140
4141	if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4142		return -EINVAL;
4143
4144	for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4145		skb_frag_t *frag = &sinfo->frags[i];
4146		int shrink = min_t(int, offset, skb_frag_size(frag));
4147
4148		len_free += shrink;
4149		offset -= shrink;
4150		if (bpf_xdp_shrink_data(xdp, frag, shrink)) {
4151			n_frags_free++;
4152		} else {
4153			skb_frag_size_sub(frag, shrink);
4154			break;
4155		}
4156	}
4157	sinfo->nr_frags -= n_frags_free;
4158	sinfo->xdp_frags_size -= len_free;
4159
4160	if (unlikely(!sinfo->nr_frags)) {
4161		xdp_buff_clear_frags_flag(xdp);
4162		xdp->data_end -= offset;
4163	}
4164
4165	return 0;
4166}
4167
4168BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4169{
4170	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4171	void *data_end = xdp->data_end + offset;
4172
4173	if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4174		if (offset < 0)
4175			return bpf_xdp_frags_shrink_tail(xdp, -offset);
4176
4177		return bpf_xdp_frags_increase_tail(xdp, offset);
4178	}
4179
4180	/* Notice that xdp_data_hard_end have reserved some tailroom */
4181	if (unlikely(data_end > data_hard_end))
4182		return -EINVAL;
4183
4184	if (unlikely(data_end < xdp->data + ETH_HLEN))
4185		return -EINVAL;
4186
4187	/* Clear memory area on grow, can contain uninit kernel memory */
4188	if (offset > 0)
4189		memset(xdp->data_end, 0, offset);
4190
4191	xdp->data_end = data_end;
4192
4193	return 0;
4194}
4195
4196static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4197	.func		= bpf_xdp_adjust_tail,
4198	.gpl_only	= false,
4199	.ret_type	= RET_INTEGER,
4200	.arg1_type	= ARG_PTR_TO_CTX,
4201	.arg2_type	= ARG_ANYTHING,
4202};
4203
4204BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4205{
4206	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4207	void *meta = xdp->data_meta + offset;
4208	unsigned long metalen = xdp->data - meta;
4209
4210	if (xdp_data_meta_unsupported(xdp))
4211		return -ENOTSUPP;
4212	if (unlikely(meta < xdp_frame_end ||
4213		     meta > xdp->data))
4214		return -EINVAL;
4215	if (unlikely(xdp_metalen_invalid(metalen)))
4216		return -EACCES;
4217
4218	xdp->data_meta = meta;
4219
4220	return 0;
4221}
4222
4223static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4224	.func		= bpf_xdp_adjust_meta,
4225	.gpl_only	= false,
4226	.ret_type	= RET_INTEGER,
4227	.arg1_type	= ARG_PTR_TO_CTX,
4228	.arg2_type	= ARG_ANYTHING,
4229};
4230
4231/**
4232 * DOC: xdp redirect
4233 *
4234 * XDP_REDIRECT works by a three-step process, implemented in the functions
4235 * below:
4236 *
4237 * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4238 *    of the redirect and store it (along with some other metadata) in a per-CPU
4239 *    struct bpf_redirect_info.
4240 *
4241 * 2. When the program returns the XDP_REDIRECT return code, the driver will
4242 *    call xdp_do_redirect() which will use the information in struct
4243 *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4244 *    bulk queue structure.
4245 *
4246 * 3. Before exiting its NAPI poll loop, the driver will call
4247 *    xdp_do_flush(), which will flush all the different bulk queues,
4248 *    thus completing the redirect. Note that xdp_do_flush() must be
4249 *    called before napi_complete_done() in the driver, as the
4250 *    XDP_REDIRECT logic relies on being inside a single NAPI instance
4251 *    through to the xdp_do_flush() call for RCU protection of all
4252 *    in-kernel data structures.
4253 */
4254/*
4255 * Pointers to the map entries will be kept around for this whole sequence of
4256 * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4257 * the core code; instead, the RCU protection relies on everything happening
4258 * inside a single NAPI poll sequence, which means it's between a pair of calls
4259 * to local_bh_disable()/local_bh_enable().
4260 *
4261 * The map entries are marked as __rcu and the map code makes sure to
4262 * dereference those pointers with rcu_dereference_check() in a way that works
4263 * for both sections that to hold an rcu_read_lock() and sections that are
4264 * called from NAPI without a separate rcu_read_lock(). The code below does not
4265 * use RCU annotations, but relies on those in the map code.
4266 */
4267void xdp_do_flush(void)
4268{
4269	__dev_flush();
4270	__cpu_map_flush();
4271	__xsk_map_flush();
4272}
4273EXPORT_SYMBOL_GPL(xdp_do_flush);
4274
4275#if defined(CONFIG_DEBUG_NET) && defined(CONFIG_BPF_SYSCALL)
4276void xdp_do_check_flushed(struct napi_struct *napi)
4277{
4278	bool ret;
4279
4280	ret = dev_check_flush();
4281	ret |= cpu_map_check_flush();
4282	ret |= xsk_map_check_flush();
4283
4284	WARN_ONCE(ret, "Missing xdp_do_flush() invocation after NAPI by %ps\n",
4285		  napi->poll);
4286}
4287#endif
4288
4289void bpf_clear_redirect_map(struct bpf_map *map)
4290{
4291	struct bpf_redirect_info *ri;
4292	int cpu;
4293
4294	for_each_possible_cpu(cpu) {
4295		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4296		/* Avoid polluting remote cacheline due to writes if
4297		 * not needed. Once we pass this test, we need the
4298		 * cmpxchg() to make sure it hasn't been changed in
4299		 * the meantime by remote CPU.
4300		 */
4301		if (unlikely(READ_ONCE(ri->map) == map))
4302			cmpxchg(&ri->map, map, NULL);
4303	}
4304}
4305
4306DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4307EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4308
4309u32 xdp_master_redirect(struct xdp_buff *xdp)
4310{
4311	struct net_device *master, *slave;
4312	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4313
4314	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4315	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4316	if (slave && slave != xdp->rxq->dev) {
4317		/* The target device is different from the receiving device, so
4318		 * redirect it to the new device.
4319		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4320		 * drivers to unmap the packet from their rx ring.
4321		 */
4322		ri->tgt_index = slave->ifindex;
4323		ri->map_id = INT_MAX;
4324		ri->map_type = BPF_MAP_TYPE_UNSPEC;
4325		return XDP_REDIRECT;
4326	}
4327	return XDP_TX;
4328}
4329EXPORT_SYMBOL_GPL(xdp_master_redirect);
4330
4331static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4332					struct net_device *dev,
4333					struct xdp_buff *xdp,
4334					struct bpf_prog *xdp_prog)
4335{
4336	enum bpf_map_type map_type = ri->map_type;
4337	void *fwd = ri->tgt_value;
4338	u32 map_id = ri->map_id;
4339	int err;
4340
4341	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4342	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4343
4344	err = __xsk_map_redirect(fwd, xdp);
4345	if (unlikely(err))
4346		goto err;
4347
4348	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4349	return 0;
4350err:
4351	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4352	return err;
4353}
4354
4355static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4356						   struct net_device *dev,
4357						   struct xdp_frame *xdpf,
4358						   struct bpf_prog *xdp_prog)
4359{
4360	enum bpf_map_type map_type = ri->map_type;
4361	void *fwd = ri->tgt_value;
4362	u32 map_id = ri->map_id;
4363	struct bpf_map *map;
4364	int err;
4365
4366	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4367	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4368
4369	if (unlikely(!xdpf)) {
4370		err = -EOVERFLOW;
4371		goto err;
4372	}
4373
4374	switch (map_type) {
4375	case BPF_MAP_TYPE_DEVMAP:
4376		fallthrough;
4377	case BPF_MAP_TYPE_DEVMAP_HASH:
4378		map = READ_ONCE(ri->map);
4379		if (unlikely(map)) {
4380			WRITE_ONCE(ri->map, NULL);
4381			err = dev_map_enqueue_multi(xdpf, dev, map,
4382						    ri->flags & BPF_F_EXCLUDE_INGRESS);
4383		} else {
4384			err = dev_map_enqueue(fwd, xdpf, dev);
4385		}
4386		break;
4387	case BPF_MAP_TYPE_CPUMAP:
4388		err = cpu_map_enqueue(fwd, xdpf, dev);
4389		break;
4390	case BPF_MAP_TYPE_UNSPEC:
4391		if (map_id == INT_MAX) {
4392			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4393			if (unlikely(!fwd)) {
4394				err = -EINVAL;
4395				break;
4396			}
4397			err = dev_xdp_enqueue(fwd, xdpf, dev);
4398			break;
4399		}
4400		fallthrough;
4401	default:
4402		err = -EBADRQC;
4403	}
4404
4405	if (unlikely(err))
4406		goto err;
4407
4408	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4409	return 0;
4410err:
4411	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4412	return err;
4413}
4414
4415int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4416		    struct bpf_prog *xdp_prog)
4417{
4418	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4419	enum bpf_map_type map_type = ri->map_type;
4420
4421	if (map_type == BPF_MAP_TYPE_XSKMAP)
4422		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4423
4424	return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4425				       xdp_prog);
4426}
4427EXPORT_SYMBOL_GPL(xdp_do_redirect);
4428
4429int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4430			  struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4431{
4432	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4433	enum bpf_map_type map_type = ri->map_type;
4434
4435	if (map_type == BPF_MAP_TYPE_XSKMAP)
4436		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4437
4438	return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4439}
4440EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4441
4442static int xdp_do_generic_redirect_map(struct net_device *dev,
4443				       struct sk_buff *skb,
4444				       struct xdp_buff *xdp,
4445				       struct bpf_prog *xdp_prog,
4446				       void *fwd,
4447				       enum bpf_map_type map_type, u32 map_id)
4448{
4449	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4450	struct bpf_map *map;
4451	int err;
4452
4453	switch (map_type) {
4454	case BPF_MAP_TYPE_DEVMAP:
4455		fallthrough;
4456	case BPF_MAP_TYPE_DEVMAP_HASH:
4457		map = READ_ONCE(ri->map);
4458		if (unlikely(map)) {
4459			WRITE_ONCE(ri->map, NULL);
4460			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4461						     ri->flags & BPF_F_EXCLUDE_INGRESS);
4462		} else {
4463			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4464		}
4465		if (unlikely(err))
4466			goto err;
4467		break;
4468	case BPF_MAP_TYPE_XSKMAP:
4469		err = xsk_generic_rcv(fwd, xdp);
4470		if (err)
4471			goto err;
4472		consume_skb(skb);
4473		break;
4474	case BPF_MAP_TYPE_CPUMAP:
4475		err = cpu_map_generic_redirect(fwd, skb);
4476		if (unlikely(err))
4477			goto err;
4478		break;
4479	default:
4480		err = -EBADRQC;
4481		goto err;
4482	}
4483
4484	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4485	return 0;
4486err:
4487	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4488	return err;
4489}
4490
4491int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4492			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4493{
4494	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4495	enum bpf_map_type map_type = ri->map_type;
4496	void *fwd = ri->tgt_value;
4497	u32 map_id = ri->map_id;
4498	int err;
4499
4500	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4501	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4502
4503	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4504		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4505		if (unlikely(!fwd)) {
4506			err = -EINVAL;
4507			goto err;
4508		}
4509
4510		err = xdp_ok_fwd_dev(fwd, skb->len);
4511		if (unlikely(err))
4512			goto err;
4513
4514		skb->dev = fwd;
4515		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4516		generic_xdp_tx(skb, xdp_prog);
4517		return 0;
4518	}
4519
4520	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4521err:
4522	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4523	return err;
4524}
4525
4526BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4527{
4528	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4529
4530	if (unlikely(flags))
4531		return XDP_ABORTED;
4532
4533	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4534	 * by map_idr) is used for ifindex based XDP redirect.
4535	 */
4536	ri->tgt_index = ifindex;
4537	ri->map_id = INT_MAX;
4538	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4539
4540	return XDP_REDIRECT;
4541}
4542
4543static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4544	.func           = bpf_xdp_redirect,
4545	.gpl_only       = false,
4546	.ret_type       = RET_INTEGER,
4547	.arg1_type      = ARG_ANYTHING,
4548	.arg2_type      = ARG_ANYTHING,
4549};
4550
4551BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4552	   u64, flags)
4553{
4554	return map->ops->map_redirect(map, key, flags);
4555}
4556
4557static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4558	.func           = bpf_xdp_redirect_map,
4559	.gpl_only       = false,
4560	.ret_type       = RET_INTEGER,
4561	.arg1_type      = ARG_CONST_MAP_PTR,
4562	.arg2_type      = ARG_ANYTHING,
4563	.arg3_type      = ARG_ANYTHING,
4564};
4565
4566static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4567				  unsigned long off, unsigned long len)
4568{
4569	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4570
4571	if (unlikely(!ptr))
4572		return len;
4573	if (ptr != dst_buff)
4574		memcpy(dst_buff, ptr, len);
4575
4576	return 0;
4577}
4578
4579BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4580	   u64, flags, void *, meta, u64, meta_size)
4581{
4582	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4583
4584	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4585		return -EINVAL;
4586	if (unlikely(!skb || skb_size > skb->len))
4587		return -EFAULT;
4588
4589	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4590				bpf_skb_copy);
4591}
4592
4593static const struct bpf_func_proto bpf_skb_event_output_proto = {
4594	.func		= bpf_skb_event_output,
4595	.gpl_only	= true,
4596	.ret_type	= RET_INTEGER,
4597	.arg1_type	= ARG_PTR_TO_CTX,
4598	.arg2_type	= ARG_CONST_MAP_PTR,
4599	.arg3_type	= ARG_ANYTHING,
4600	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4601	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4602};
4603
4604BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4605
4606const struct bpf_func_proto bpf_skb_output_proto = {
4607	.func		= bpf_skb_event_output,
4608	.gpl_only	= true,
4609	.ret_type	= RET_INTEGER,
4610	.arg1_type	= ARG_PTR_TO_BTF_ID,
4611	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4612	.arg2_type	= ARG_CONST_MAP_PTR,
4613	.arg3_type	= ARG_ANYTHING,
4614	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4615	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4616};
4617
4618static unsigned short bpf_tunnel_key_af(u64 flags)
4619{
4620	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4621}
4622
4623BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4624	   u32, size, u64, flags)
4625{
4626	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4627	u8 compat[sizeof(struct bpf_tunnel_key)];
4628	void *to_orig = to;
4629	int err;
4630
4631	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4632					 BPF_F_TUNINFO_FLAGS)))) {
4633		err = -EINVAL;
4634		goto err_clear;
4635	}
4636	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4637		err = -EPROTO;
4638		goto err_clear;
4639	}
4640	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4641		err = -EINVAL;
4642		switch (size) {
4643		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4644		case offsetof(struct bpf_tunnel_key, tunnel_label):
4645		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4646			goto set_compat;
4647		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4648			/* Fixup deprecated structure layouts here, so we have
4649			 * a common path later on.
4650			 */
4651			if (ip_tunnel_info_af(info) != AF_INET)
4652				goto err_clear;
4653set_compat:
4654			to = (struct bpf_tunnel_key *)compat;
4655			break;
4656		default:
4657			goto err_clear;
4658		}
4659	}
4660
4661	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4662	to->tunnel_tos = info->key.tos;
4663	to->tunnel_ttl = info->key.ttl;
4664	if (flags & BPF_F_TUNINFO_FLAGS)
4665		to->tunnel_flags = info->key.tun_flags;
4666	else
4667		to->tunnel_ext = 0;
4668
4669	if (flags & BPF_F_TUNINFO_IPV6) {
4670		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4671		       sizeof(to->remote_ipv6));
4672		memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4673		       sizeof(to->local_ipv6));
4674		to->tunnel_label = be32_to_cpu(info->key.label);
4675	} else {
4676		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4677		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4678		to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4679		memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4680		to->tunnel_label = 0;
4681	}
4682
4683	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4684		memcpy(to_orig, to, size);
4685
4686	return 0;
4687err_clear:
4688	memset(to_orig, 0, size);
4689	return err;
4690}
4691
4692static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4693	.func		= bpf_skb_get_tunnel_key,
4694	.gpl_only	= false,
4695	.ret_type	= RET_INTEGER,
4696	.arg1_type	= ARG_PTR_TO_CTX,
4697	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4698	.arg3_type	= ARG_CONST_SIZE,
4699	.arg4_type	= ARG_ANYTHING,
4700};
4701
4702BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4703{
4704	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4705	int err;
4706
4707	if (unlikely(!info ||
4708		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4709		err = -ENOENT;
4710		goto err_clear;
4711	}
4712	if (unlikely(size < info->options_len)) {
4713		err = -ENOMEM;
4714		goto err_clear;
4715	}
4716
4717	ip_tunnel_info_opts_get(to, info);
4718	if (size > info->options_len)
4719		memset(to + info->options_len, 0, size - info->options_len);
4720
4721	return info->options_len;
4722err_clear:
4723	memset(to, 0, size);
4724	return err;
4725}
4726
4727static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4728	.func		= bpf_skb_get_tunnel_opt,
4729	.gpl_only	= false,
4730	.ret_type	= RET_INTEGER,
4731	.arg1_type	= ARG_PTR_TO_CTX,
4732	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4733	.arg3_type	= ARG_CONST_SIZE,
4734};
4735
4736static struct metadata_dst __percpu *md_dst;
4737
4738BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4739	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4740{
4741	struct metadata_dst *md = this_cpu_ptr(md_dst);
4742	u8 compat[sizeof(struct bpf_tunnel_key)];
4743	struct ip_tunnel_info *info;
4744
4745	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4746			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4747			       BPF_F_NO_TUNNEL_KEY)))
4748		return -EINVAL;
4749	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4750		switch (size) {
4751		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4752		case offsetof(struct bpf_tunnel_key, tunnel_label):
4753		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4754		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4755			/* Fixup deprecated structure layouts here, so we have
4756			 * a common path later on.
4757			 */
4758			memcpy(compat, from, size);
4759			memset(compat + size, 0, sizeof(compat) - size);
4760			from = (const struct bpf_tunnel_key *) compat;
4761			break;
4762		default:
4763			return -EINVAL;
4764		}
4765	}
4766	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4767		     from->tunnel_ext))
4768		return -EINVAL;
4769
4770	skb_dst_drop(skb);
4771	dst_hold((struct dst_entry *) md);
4772	skb_dst_set(skb, (struct dst_entry *) md);
4773
4774	info = &md->u.tun_info;
4775	memset(info, 0, sizeof(*info));
4776	info->mode = IP_TUNNEL_INFO_TX;
4777
4778	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4779	if (flags & BPF_F_DONT_FRAGMENT)
4780		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4781	if (flags & BPF_F_ZERO_CSUM_TX)
4782		info->key.tun_flags &= ~TUNNEL_CSUM;
4783	if (flags & BPF_F_SEQ_NUMBER)
4784		info->key.tun_flags |= TUNNEL_SEQ;
4785	if (flags & BPF_F_NO_TUNNEL_KEY)
4786		info->key.tun_flags &= ~TUNNEL_KEY;
4787
4788	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4789	info->key.tos = from->tunnel_tos;
4790	info->key.ttl = from->tunnel_ttl;
4791
4792	if (flags & BPF_F_TUNINFO_IPV6) {
4793		info->mode |= IP_TUNNEL_INFO_IPV6;
4794		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4795		       sizeof(from->remote_ipv6));
4796		memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4797		       sizeof(from->local_ipv6));
4798		info->key.label = cpu_to_be32(from->tunnel_label) &
4799				  IPV6_FLOWLABEL_MASK;
4800	} else {
4801		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4802		info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4803		info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4804	}
4805
4806	return 0;
4807}
4808
4809static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4810	.func		= bpf_skb_set_tunnel_key,
4811	.gpl_only	= false,
4812	.ret_type	= RET_INTEGER,
4813	.arg1_type	= ARG_PTR_TO_CTX,
4814	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4815	.arg3_type	= ARG_CONST_SIZE,
4816	.arg4_type	= ARG_ANYTHING,
4817};
4818
4819BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4820	   const u8 *, from, u32, size)
4821{
4822	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4823	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4824
4825	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4826		return -EINVAL;
4827	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4828		return -ENOMEM;
4829
4830	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4831
4832	return 0;
4833}
4834
4835static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4836	.func		= bpf_skb_set_tunnel_opt,
4837	.gpl_only	= false,
4838	.ret_type	= RET_INTEGER,
4839	.arg1_type	= ARG_PTR_TO_CTX,
4840	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4841	.arg3_type	= ARG_CONST_SIZE,
4842};
4843
4844static const struct bpf_func_proto *
4845bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4846{
4847	if (!md_dst) {
4848		struct metadata_dst __percpu *tmp;
4849
4850		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4851						METADATA_IP_TUNNEL,
4852						GFP_KERNEL);
4853		if (!tmp)
4854			return NULL;
4855		if (cmpxchg(&md_dst, NULL, tmp))
4856			metadata_dst_free_percpu(tmp);
4857	}
4858
4859	switch (which) {
4860	case BPF_FUNC_skb_set_tunnel_key:
4861		return &bpf_skb_set_tunnel_key_proto;
4862	case BPF_FUNC_skb_set_tunnel_opt:
4863		return &bpf_skb_set_tunnel_opt_proto;
4864	default:
4865		return NULL;
4866	}
4867}
4868
4869BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4870	   u32, idx)
4871{
4872	struct bpf_array *array = container_of(map, struct bpf_array, map);
4873	struct cgroup *cgrp;
4874	struct sock *sk;
4875
4876	sk = skb_to_full_sk(skb);
4877	if (!sk || !sk_fullsock(sk))
4878		return -ENOENT;
4879	if (unlikely(idx >= array->map.max_entries))
4880		return -E2BIG;
4881
4882	cgrp = READ_ONCE(array->ptrs[idx]);
4883	if (unlikely(!cgrp))
4884		return -EAGAIN;
4885
4886	return sk_under_cgroup_hierarchy(sk, cgrp);
4887}
4888
4889static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4890	.func		= bpf_skb_under_cgroup,
4891	.gpl_only	= false,
4892	.ret_type	= RET_INTEGER,
4893	.arg1_type	= ARG_PTR_TO_CTX,
4894	.arg2_type	= ARG_CONST_MAP_PTR,
4895	.arg3_type	= ARG_ANYTHING,
4896};
4897
4898#ifdef CONFIG_SOCK_CGROUP_DATA
4899static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4900{
4901	struct cgroup *cgrp;
4902
4903	sk = sk_to_full_sk(sk);
4904	if (!sk || !sk_fullsock(sk))
4905		return 0;
4906
4907	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4908	return cgroup_id(cgrp);
4909}
4910
4911BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4912{
4913	return __bpf_sk_cgroup_id(skb->sk);
4914}
4915
4916static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4917	.func           = bpf_skb_cgroup_id,
4918	.gpl_only       = false,
4919	.ret_type       = RET_INTEGER,
4920	.arg1_type      = ARG_PTR_TO_CTX,
4921};
4922
4923static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4924					      int ancestor_level)
4925{
4926	struct cgroup *ancestor;
4927	struct cgroup *cgrp;
4928
4929	sk = sk_to_full_sk(sk);
4930	if (!sk || !sk_fullsock(sk))
4931		return 0;
4932
4933	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4934	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4935	if (!ancestor)
4936		return 0;
4937
4938	return cgroup_id(ancestor);
4939}
4940
4941BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4942	   ancestor_level)
4943{
4944	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4945}
4946
4947static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4948	.func           = bpf_skb_ancestor_cgroup_id,
4949	.gpl_only       = false,
4950	.ret_type       = RET_INTEGER,
4951	.arg1_type      = ARG_PTR_TO_CTX,
4952	.arg2_type      = ARG_ANYTHING,
4953};
4954
4955BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4956{
4957	return __bpf_sk_cgroup_id(sk);
4958}
4959
4960static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4961	.func           = bpf_sk_cgroup_id,
4962	.gpl_only       = false,
4963	.ret_type       = RET_INTEGER,
4964	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4965};
4966
4967BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4968{
4969	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4970}
4971
4972static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4973	.func           = bpf_sk_ancestor_cgroup_id,
4974	.gpl_only       = false,
4975	.ret_type       = RET_INTEGER,
4976	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4977	.arg2_type      = ARG_ANYTHING,
4978};
4979#endif
4980
4981static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4982				  unsigned long off, unsigned long len)
4983{
4984	struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4985
4986	bpf_xdp_copy_buf(xdp, off, dst, len, false);
4987	return 0;
4988}
4989
4990BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4991	   u64, flags, void *, meta, u64, meta_size)
4992{
4993	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4994
4995	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4996		return -EINVAL;
4997
4998	if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4999		return -EFAULT;
5000
5001	return bpf_event_output(map, flags, meta, meta_size, xdp,
5002				xdp_size, bpf_xdp_copy);
5003}
5004
5005static const struct bpf_func_proto bpf_xdp_event_output_proto = {
5006	.func		= bpf_xdp_event_output,
5007	.gpl_only	= true,
5008	.ret_type	= RET_INTEGER,
5009	.arg1_type	= ARG_PTR_TO_CTX,
5010	.arg2_type	= ARG_CONST_MAP_PTR,
5011	.arg3_type	= ARG_ANYTHING,
5012	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5013	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
5014};
5015
5016BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
5017
5018const struct bpf_func_proto bpf_xdp_output_proto = {
5019	.func		= bpf_xdp_event_output,
5020	.gpl_only	= true,
5021	.ret_type	= RET_INTEGER,
5022	.arg1_type	= ARG_PTR_TO_BTF_ID,
5023	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
5024	.arg2_type	= ARG_CONST_MAP_PTR,
5025	.arg3_type	= ARG_ANYTHING,
5026	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5027	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
5028};
5029
5030BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
5031{
5032	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
5033}
5034
5035static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
5036	.func           = bpf_get_socket_cookie,
5037	.gpl_only       = false,
5038	.ret_type       = RET_INTEGER,
5039	.arg1_type      = ARG_PTR_TO_CTX,
5040};
5041
5042BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5043{
5044	return __sock_gen_cookie(ctx->sk);
5045}
5046
5047static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
5048	.func		= bpf_get_socket_cookie_sock_addr,
5049	.gpl_only	= false,
5050	.ret_type	= RET_INTEGER,
5051	.arg1_type	= ARG_PTR_TO_CTX,
5052};
5053
5054BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
5055{
5056	return __sock_gen_cookie(ctx);
5057}
5058
5059static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
5060	.func		= bpf_get_socket_cookie_sock,
5061	.gpl_only	= false,
5062	.ret_type	= RET_INTEGER,
5063	.arg1_type	= ARG_PTR_TO_CTX,
5064};
5065
5066BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
5067{
5068	return sk ? sock_gen_cookie(sk) : 0;
5069}
5070
5071const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
5072	.func		= bpf_get_socket_ptr_cookie,
5073	.gpl_only	= false,
5074	.ret_type	= RET_INTEGER,
5075	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL,
5076};
5077
5078BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5079{
5080	return __sock_gen_cookie(ctx->sk);
5081}
5082
5083static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
5084	.func		= bpf_get_socket_cookie_sock_ops,
5085	.gpl_only	= false,
5086	.ret_type	= RET_INTEGER,
5087	.arg1_type	= ARG_PTR_TO_CTX,
5088};
5089
5090static u64 __bpf_get_netns_cookie(struct sock *sk)
5091{
5092	const struct net *net = sk ? sock_net(sk) : &init_net;
5093
5094	return net->net_cookie;
5095}
5096
5097BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5098{
5099	return __bpf_get_netns_cookie(ctx);
5100}
5101
5102static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5103	.func		= bpf_get_netns_cookie_sock,
5104	.gpl_only	= false,
5105	.ret_type	= RET_INTEGER,
5106	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5107};
5108
5109BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5110{
5111	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5112}
5113
5114static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5115	.func		= bpf_get_netns_cookie_sock_addr,
5116	.gpl_only	= false,
5117	.ret_type	= RET_INTEGER,
5118	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5119};
5120
5121BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5122{
5123	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5124}
5125
5126static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5127	.func		= bpf_get_netns_cookie_sock_ops,
5128	.gpl_only	= false,
5129	.ret_type	= RET_INTEGER,
5130	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5131};
5132
5133BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5134{
5135	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5136}
5137
5138static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5139	.func		= bpf_get_netns_cookie_sk_msg,
5140	.gpl_only	= false,
5141	.ret_type	= RET_INTEGER,
5142	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5143};
5144
5145BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5146{
5147	struct sock *sk = sk_to_full_sk(skb->sk);
5148	kuid_t kuid;
5149
5150	if (!sk || !sk_fullsock(sk))
5151		return overflowuid;
5152	kuid = sock_net_uid(sock_net(sk), sk);
5153	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5154}
5155
5156static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5157	.func           = bpf_get_socket_uid,
5158	.gpl_only       = false,
5159	.ret_type       = RET_INTEGER,
5160	.arg1_type      = ARG_PTR_TO_CTX,
5161};
5162
5163static int sol_socket_sockopt(struct sock *sk, int optname,
5164			      char *optval, int *optlen,
5165			      bool getopt)
5166{
5167	switch (optname) {
5168	case SO_REUSEADDR:
5169	case SO_SNDBUF:
5170	case SO_RCVBUF:
5171	case SO_KEEPALIVE:
5172	case SO_PRIORITY:
5173	case SO_REUSEPORT:
5174	case SO_RCVLOWAT:
5175	case SO_MARK:
5176	case SO_MAX_PACING_RATE:
5177	case SO_BINDTOIFINDEX:
5178	case SO_TXREHASH:
5179		if (*optlen != sizeof(int))
5180			return -EINVAL;
5181		break;
5182	case SO_BINDTODEVICE:
5183		break;
5184	default:
5185		return -EINVAL;
5186	}
5187
5188	if (getopt) {
5189		if (optname == SO_BINDTODEVICE)
5190			return -EINVAL;
5191		return sk_getsockopt(sk, SOL_SOCKET, optname,
5192				     KERNEL_SOCKPTR(optval),
5193				     KERNEL_SOCKPTR(optlen));
5194	}
5195
5196	return sk_setsockopt(sk, SOL_SOCKET, optname,
5197			     KERNEL_SOCKPTR(optval), *optlen);
5198}
5199
5200static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5201				  char *optval, int optlen)
5202{
5203	struct tcp_sock *tp = tcp_sk(sk);
5204	unsigned long timeout;
5205	int val;
5206
5207	if (optlen != sizeof(int))
5208		return -EINVAL;
5209
5210	val = *(int *)optval;
5211
5212	/* Only some options are supported */
5213	switch (optname) {
5214	case TCP_BPF_IW:
5215		if (val <= 0 || tp->data_segs_out > tp->syn_data)
5216			return -EINVAL;
5217		tcp_snd_cwnd_set(tp, val);
5218		break;
5219	case TCP_BPF_SNDCWND_CLAMP:
5220		if (val <= 0)
5221			return -EINVAL;
5222		tp->snd_cwnd_clamp = val;
5223		tp->snd_ssthresh = val;
5224		break;
5225	case TCP_BPF_DELACK_MAX:
5226		timeout = usecs_to_jiffies(val);
5227		if (timeout > TCP_DELACK_MAX ||
5228		    timeout < TCP_TIMEOUT_MIN)
5229			return -EINVAL;
5230		inet_csk(sk)->icsk_delack_max = timeout;
5231		break;
5232	case TCP_BPF_RTO_MIN:
5233		timeout = usecs_to_jiffies(val);
5234		if (timeout > TCP_RTO_MIN ||
5235		    timeout < TCP_TIMEOUT_MIN)
5236			return -EINVAL;
5237		inet_csk(sk)->icsk_rto_min = timeout;
5238		break;
5239	default:
5240		return -EINVAL;
5241	}
5242
5243	return 0;
5244}
5245
5246static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5247				      int *optlen, bool getopt)
5248{
5249	struct tcp_sock *tp;
5250	int ret;
5251
5252	if (*optlen < 2)
5253		return -EINVAL;
5254
5255	if (getopt) {
5256		if (!inet_csk(sk)->icsk_ca_ops)
5257			return -EINVAL;
5258		/* BPF expects NULL-terminated tcp-cc string */
5259		optval[--(*optlen)] = '\0';
5260		return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5261					 KERNEL_SOCKPTR(optval),
5262					 KERNEL_SOCKPTR(optlen));
5263	}
5264
5265	/* "cdg" is the only cc that alloc a ptr
5266	 * in inet_csk_ca area.  The bpf-tcp-cc may
5267	 * overwrite this ptr after switching to cdg.
5268	 */
5269	if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5270		return -ENOTSUPP;
5271
5272	/* It stops this looping
5273	 *
5274	 * .init => bpf_setsockopt(tcp_cc) => .init =>
5275	 * bpf_setsockopt(tcp_cc)" => .init => ....
5276	 *
5277	 * The second bpf_setsockopt(tcp_cc) is not allowed
5278	 * in order to break the loop when both .init
5279	 * are the same bpf prog.
5280	 *
5281	 * This applies even the second bpf_setsockopt(tcp_cc)
5282	 * does not cause a loop.  This limits only the first
5283	 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5284	 * pick a fallback cc (eg. peer does not support ECN)
5285	 * and the second '.init' cannot fallback to
5286	 * another.
5287	 */
5288	tp = tcp_sk(sk);
5289	if (tp->bpf_chg_cc_inprogress)
5290		return -EBUSY;
5291
5292	tp->bpf_chg_cc_inprogress = 1;
5293	ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5294				KERNEL_SOCKPTR(optval), *optlen);
5295	tp->bpf_chg_cc_inprogress = 0;
5296	return ret;
5297}
5298
5299static int sol_tcp_sockopt(struct sock *sk, int optname,
5300			   char *optval, int *optlen,
5301			   bool getopt)
5302{
5303	if (sk->sk_protocol != IPPROTO_TCP)
5304		return -EINVAL;
5305
5306	switch (optname) {
5307	case TCP_NODELAY:
5308	case TCP_MAXSEG:
5309	case TCP_KEEPIDLE:
5310	case TCP_KEEPINTVL:
5311	case TCP_KEEPCNT:
5312	case TCP_SYNCNT:
5313	case TCP_WINDOW_CLAMP:
5314	case TCP_THIN_LINEAR_TIMEOUTS:
5315	case TCP_USER_TIMEOUT:
5316	case TCP_NOTSENT_LOWAT:
5317	case TCP_SAVE_SYN:
5318		if (*optlen != sizeof(int))
5319			return -EINVAL;
5320		break;
5321	case TCP_CONGESTION:
5322		return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5323	case TCP_SAVED_SYN:
5324		if (*optlen < 1)
5325			return -EINVAL;
5326		break;
5327	default:
5328		if (getopt)
5329			return -EINVAL;
5330		return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5331	}
5332
5333	if (getopt) {
5334		if (optname == TCP_SAVED_SYN) {
5335			struct tcp_sock *tp = tcp_sk(sk);
5336
5337			if (!tp->saved_syn ||
5338			    *optlen > tcp_saved_syn_len(tp->saved_syn))
5339				return -EINVAL;
5340			memcpy(optval, tp->saved_syn->data, *optlen);
5341			/* It cannot free tp->saved_syn here because it
5342			 * does not know if the user space still needs it.
5343			 */
5344			return 0;
5345		}
5346
5347		return do_tcp_getsockopt(sk, SOL_TCP, optname,
5348					 KERNEL_SOCKPTR(optval),
5349					 KERNEL_SOCKPTR(optlen));
5350	}
5351
5352	return do_tcp_setsockopt(sk, SOL_TCP, optname,
5353				 KERNEL_SOCKPTR(optval), *optlen);
5354}
5355
5356static int sol_ip_sockopt(struct sock *sk, int optname,
5357			  char *optval, int *optlen,
5358			  bool getopt)
5359{
5360	if (sk->sk_family != AF_INET)
5361		return -EINVAL;
5362
5363	switch (optname) {
5364	case IP_TOS:
5365		if (*optlen != sizeof(int))
5366			return -EINVAL;
5367		break;
5368	default:
5369		return -EINVAL;
5370	}
5371
5372	if (getopt)
5373		return do_ip_getsockopt(sk, SOL_IP, optname,
5374					KERNEL_SOCKPTR(optval),
5375					KERNEL_SOCKPTR(optlen));
5376
5377	return do_ip_setsockopt(sk, SOL_IP, optname,
5378				KERNEL_SOCKPTR(optval), *optlen);
5379}
5380
5381static int sol_ipv6_sockopt(struct sock *sk, int optname,
5382			    char *optval, int *optlen,
5383			    bool getopt)
5384{
5385	if (sk->sk_family != AF_INET6)
5386		return -EINVAL;
5387
5388	switch (optname) {
5389	case IPV6_TCLASS:
5390	case IPV6_AUTOFLOWLABEL:
5391		if (*optlen != sizeof(int))
5392			return -EINVAL;
5393		break;
5394	default:
5395		return -EINVAL;
5396	}
5397
5398	if (getopt)
5399		return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5400						      KERNEL_SOCKPTR(optval),
5401						      KERNEL_SOCKPTR(optlen));
5402
5403	return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5404					      KERNEL_SOCKPTR(optval), *optlen);
5405}
5406
5407static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5408			    char *optval, int optlen)
5409{
5410	if (!sk_fullsock(sk))
5411		return -EINVAL;
5412
5413	if (level == SOL_SOCKET)
5414		return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5415	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5416		return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5417	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5418		return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5419	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5420		return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5421
5422	return -EINVAL;
5423}
5424
5425static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5426			   char *optval, int optlen)
5427{
5428	if (sk_fullsock(sk))
5429		sock_owned_by_me(sk);
5430	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5431}
5432
5433static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5434			    char *optval, int optlen)
5435{
5436	int err, saved_optlen = optlen;
5437
5438	if (!sk_fullsock(sk)) {
5439		err = -EINVAL;
5440		goto done;
5441	}
5442
5443	if (level == SOL_SOCKET)
5444		err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5445	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5446		err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5447	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5448		err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5449	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5450		err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5451	else
5452		err = -EINVAL;
5453
5454done:
5455	if (err)
5456		optlen = 0;
5457	if (optlen < saved_optlen)
5458		memset(optval + optlen, 0, saved_optlen - optlen);
5459	return err;
5460}
5461
5462static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5463			   char *optval, int optlen)
5464{
5465	if (sk_fullsock(sk))
5466		sock_owned_by_me(sk);
5467	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5468}
5469
5470BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5471	   int, optname, char *, optval, int, optlen)
5472{
5473	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5474}
5475
5476const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5477	.func		= bpf_sk_setsockopt,
5478	.gpl_only	= false,
5479	.ret_type	= RET_INTEGER,
5480	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5481	.arg2_type	= ARG_ANYTHING,
5482	.arg3_type	= ARG_ANYTHING,
5483	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5484	.arg5_type	= ARG_CONST_SIZE,
5485};
5486
5487BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5488	   int, optname, char *, optval, int, optlen)
5489{
5490	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5491}
5492
5493const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5494	.func		= bpf_sk_getsockopt,
5495	.gpl_only	= false,
5496	.ret_type	= RET_INTEGER,
5497	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5498	.arg2_type	= ARG_ANYTHING,
5499	.arg3_type	= ARG_ANYTHING,
5500	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5501	.arg5_type	= ARG_CONST_SIZE,
5502};
5503
5504BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5505	   int, optname, char *, optval, int, optlen)
5506{
5507	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5508}
5509
5510const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5511	.func		= bpf_unlocked_sk_setsockopt,
5512	.gpl_only	= false,
5513	.ret_type	= RET_INTEGER,
5514	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5515	.arg2_type	= ARG_ANYTHING,
5516	.arg3_type	= ARG_ANYTHING,
5517	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5518	.arg5_type	= ARG_CONST_SIZE,
5519};
5520
5521BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5522	   int, optname, char *, optval, int, optlen)
5523{
5524	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5525}
5526
5527const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5528	.func		= bpf_unlocked_sk_getsockopt,
5529	.gpl_only	= false,
5530	.ret_type	= RET_INTEGER,
5531	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5532	.arg2_type	= ARG_ANYTHING,
5533	.arg3_type	= ARG_ANYTHING,
5534	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5535	.arg5_type	= ARG_CONST_SIZE,
5536};
5537
5538BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5539	   int, level, int, optname, char *, optval, int, optlen)
5540{
5541	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5542}
5543
5544static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5545	.func		= bpf_sock_addr_setsockopt,
5546	.gpl_only	= false,
5547	.ret_type	= RET_INTEGER,
5548	.arg1_type	= ARG_PTR_TO_CTX,
5549	.arg2_type	= ARG_ANYTHING,
5550	.arg3_type	= ARG_ANYTHING,
5551	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5552	.arg5_type	= ARG_CONST_SIZE,
5553};
5554
5555BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5556	   int, level, int, optname, char *, optval, int, optlen)
5557{
5558	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5559}
5560
5561static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5562	.func		= bpf_sock_addr_getsockopt,
5563	.gpl_only	= false,
5564	.ret_type	= RET_INTEGER,
5565	.arg1_type	= ARG_PTR_TO_CTX,
5566	.arg2_type	= ARG_ANYTHING,
5567	.arg3_type	= ARG_ANYTHING,
5568	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5569	.arg5_type	= ARG_CONST_SIZE,
5570};
5571
5572BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5573	   int, level, int, optname, char *, optval, int, optlen)
5574{
5575	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5576}
5577
5578static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5579	.func		= bpf_sock_ops_setsockopt,
5580	.gpl_only	= false,
5581	.ret_type	= RET_INTEGER,
5582	.arg1_type	= ARG_PTR_TO_CTX,
5583	.arg2_type	= ARG_ANYTHING,
5584	.arg3_type	= ARG_ANYTHING,
5585	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5586	.arg5_type	= ARG_CONST_SIZE,
5587};
5588
5589static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5590				int optname, const u8 **start)
5591{
5592	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5593	const u8 *hdr_start;
5594	int ret;
5595
5596	if (syn_skb) {
5597		/* sk is a request_sock here */
5598
5599		if (optname == TCP_BPF_SYN) {
5600			hdr_start = syn_skb->data;
5601			ret = tcp_hdrlen(syn_skb);
5602		} else if (optname == TCP_BPF_SYN_IP) {
5603			hdr_start = skb_network_header(syn_skb);
5604			ret = skb_network_header_len(syn_skb) +
5605				tcp_hdrlen(syn_skb);
5606		} else {
5607			/* optname == TCP_BPF_SYN_MAC */
5608			hdr_start = skb_mac_header(syn_skb);
5609			ret = skb_mac_header_len(syn_skb) +
5610				skb_network_header_len(syn_skb) +
5611				tcp_hdrlen(syn_skb);
5612		}
5613	} else {
5614		struct sock *sk = bpf_sock->sk;
5615		struct saved_syn *saved_syn;
5616
5617		if (sk->sk_state == TCP_NEW_SYN_RECV)
5618			/* synack retransmit. bpf_sock->syn_skb will
5619			 * not be available.  It has to resort to
5620			 * saved_syn (if it is saved).
5621			 */
5622			saved_syn = inet_reqsk(sk)->saved_syn;
5623		else
5624			saved_syn = tcp_sk(sk)->saved_syn;
5625
5626		if (!saved_syn)
5627			return -ENOENT;
5628
5629		if (optname == TCP_BPF_SYN) {
5630			hdr_start = saved_syn->data +
5631				saved_syn->mac_hdrlen +
5632				saved_syn->network_hdrlen;
5633			ret = saved_syn->tcp_hdrlen;
5634		} else if (optname == TCP_BPF_SYN_IP) {
5635			hdr_start = saved_syn->data +
5636				saved_syn->mac_hdrlen;
5637			ret = saved_syn->network_hdrlen +
5638				saved_syn->tcp_hdrlen;
5639		} else {
5640			/* optname == TCP_BPF_SYN_MAC */
5641
5642			/* TCP_SAVE_SYN may not have saved the mac hdr */
5643			if (!saved_syn->mac_hdrlen)
5644				return -ENOENT;
5645
5646			hdr_start = saved_syn->data;
5647			ret = saved_syn->mac_hdrlen +
5648				saved_syn->network_hdrlen +
5649				saved_syn->tcp_hdrlen;
5650		}
5651	}
5652
5653	*start = hdr_start;
5654	return ret;
5655}
5656
5657BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5658	   int, level, int, optname, char *, optval, int, optlen)
5659{
5660	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5661	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5662		int ret, copy_len = 0;
5663		const u8 *start;
5664
5665		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5666		if (ret > 0) {
5667			copy_len = ret;
5668			if (optlen < copy_len) {
5669				copy_len = optlen;
5670				ret = -ENOSPC;
5671			}
5672
5673			memcpy(optval, start, copy_len);
5674		}
5675
5676		/* Zero out unused buffer at the end */
5677		memset(optval + copy_len, 0, optlen - copy_len);
5678
5679		return ret;
5680	}
5681
5682	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5683}
5684
5685static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5686	.func		= bpf_sock_ops_getsockopt,
5687	.gpl_only	= false,
5688	.ret_type	= RET_INTEGER,
5689	.arg1_type	= ARG_PTR_TO_CTX,
5690	.arg2_type	= ARG_ANYTHING,
5691	.arg3_type	= ARG_ANYTHING,
5692	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5693	.arg5_type	= ARG_CONST_SIZE,
5694};
5695
5696BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5697	   int, argval)
5698{
5699	struct sock *sk = bpf_sock->sk;
5700	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5701
5702	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5703		return -EINVAL;
5704
5705	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5706
5707	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5708}
5709
5710static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5711	.func		= bpf_sock_ops_cb_flags_set,
5712	.gpl_only	= false,
5713	.ret_type	= RET_INTEGER,
5714	.arg1_type	= ARG_PTR_TO_CTX,
5715	.arg2_type	= ARG_ANYTHING,
5716};
5717
5718const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5719EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5720
5721BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5722	   int, addr_len)
5723{
5724#ifdef CONFIG_INET
5725	struct sock *sk = ctx->sk;
5726	u32 flags = BIND_FROM_BPF;
5727	int err;
5728
5729	err = -EINVAL;
5730	if (addr_len < offsetofend(struct sockaddr, sa_family))
5731		return err;
5732	if (addr->sa_family == AF_INET) {
5733		if (addr_len < sizeof(struct sockaddr_in))
5734			return err;
5735		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5736			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5737		return __inet_bind(sk, addr, addr_len, flags);
5738#if IS_ENABLED(CONFIG_IPV6)
5739	} else if (addr->sa_family == AF_INET6) {
5740		if (addr_len < SIN6_LEN_RFC2133)
5741			return err;
5742		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5743			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5744		/* ipv6_bpf_stub cannot be NULL, since it's called from
5745		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5746		 */
5747		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5748#endif /* CONFIG_IPV6 */
5749	}
5750#endif /* CONFIG_INET */
5751
5752	return -EAFNOSUPPORT;
5753}
5754
5755static const struct bpf_func_proto bpf_bind_proto = {
5756	.func		= bpf_bind,
5757	.gpl_only	= false,
5758	.ret_type	= RET_INTEGER,
5759	.arg1_type	= ARG_PTR_TO_CTX,
5760	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5761	.arg3_type	= ARG_CONST_SIZE,
5762};
5763
5764#ifdef CONFIG_XFRM
5765
5766#if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
5767    (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
5768
5769struct metadata_dst __percpu *xfrm_bpf_md_dst;
5770EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
5771
5772#endif
5773
5774BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5775	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5776{
5777	const struct sec_path *sp = skb_sec_path(skb);
5778	const struct xfrm_state *x;
5779
5780	if (!sp || unlikely(index >= sp->len || flags))
5781		goto err_clear;
5782
5783	x = sp->xvec[index];
5784
5785	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5786		goto err_clear;
5787
5788	to->reqid = x->props.reqid;
5789	to->spi = x->id.spi;
5790	to->family = x->props.family;
5791	to->ext = 0;
5792
5793	if (to->family == AF_INET6) {
5794		memcpy(to->remote_ipv6, x->props.saddr.a6,
5795		       sizeof(to->remote_ipv6));
5796	} else {
5797		to->remote_ipv4 = x->props.saddr.a4;
5798		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5799	}
5800
5801	return 0;
5802err_clear:
5803	memset(to, 0, size);
5804	return -EINVAL;
5805}
5806
5807static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5808	.func		= bpf_skb_get_xfrm_state,
5809	.gpl_only	= false,
5810	.ret_type	= RET_INTEGER,
5811	.arg1_type	= ARG_PTR_TO_CTX,
5812	.arg2_type	= ARG_ANYTHING,
5813	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5814	.arg4_type	= ARG_CONST_SIZE,
5815	.arg5_type	= ARG_ANYTHING,
5816};
5817#endif
5818
5819#if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5820static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5821{
5822	params->h_vlan_TCI = 0;
5823	params->h_vlan_proto = 0;
5824	if (mtu)
5825		params->mtu_result = mtu; /* union with tot_len */
5826
5827	return 0;
5828}
5829#endif
5830
5831#if IS_ENABLED(CONFIG_INET)
5832static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5833			       u32 flags, bool check_mtu)
5834{
5835	struct fib_nh_common *nhc;
5836	struct in_device *in_dev;
5837	struct neighbour *neigh;
5838	struct net_device *dev;
5839	struct fib_result res;
5840	struct flowi4 fl4;
5841	u32 mtu = 0;
5842	int err;
5843
5844	dev = dev_get_by_index_rcu(net, params->ifindex);
5845	if (unlikely(!dev))
5846		return -ENODEV;
5847
5848	/* verify forwarding is enabled on this interface */
5849	in_dev = __in_dev_get_rcu(dev);
5850	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5851		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5852
5853	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5854		fl4.flowi4_iif = 1;
5855		fl4.flowi4_oif = params->ifindex;
5856	} else {
5857		fl4.flowi4_iif = params->ifindex;
5858		fl4.flowi4_oif = 0;
5859	}
5860	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5861	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5862	fl4.flowi4_flags = 0;
5863
5864	fl4.flowi4_proto = params->l4_protocol;
5865	fl4.daddr = params->ipv4_dst;
5866	fl4.saddr = params->ipv4_src;
5867	fl4.fl4_sport = params->sport;
5868	fl4.fl4_dport = params->dport;
5869	fl4.flowi4_multipath_hash = 0;
5870
5871	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5872		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5873		struct fib_table *tb;
5874
5875		if (flags & BPF_FIB_LOOKUP_TBID) {
5876			tbid = params->tbid;
5877			/* zero out for vlan output */
5878			params->tbid = 0;
5879		}
5880
5881		tb = fib_get_table(net, tbid);
5882		if (unlikely(!tb))
5883			return BPF_FIB_LKUP_RET_NOT_FWDED;
5884
5885		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5886	} else {
5887		fl4.flowi4_mark = 0;
5888		fl4.flowi4_secid = 0;
5889		fl4.flowi4_tun_key.tun_id = 0;
5890		fl4.flowi4_uid = sock_net_uid(net, NULL);
5891
5892		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5893	}
5894
5895	if (err) {
5896		/* map fib lookup errors to RTN_ type */
5897		if (err == -EINVAL)
5898			return BPF_FIB_LKUP_RET_BLACKHOLE;
5899		if (err == -EHOSTUNREACH)
5900			return BPF_FIB_LKUP_RET_UNREACHABLE;
5901		if (err == -EACCES)
5902			return BPF_FIB_LKUP_RET_PROHIBIT;
5903
5904		return BPF_FIB_LKUP_RET_NOT_FWDED;
5905	}
5906
5907	if (res.type != RTN_UNICAST)
5908		return BPF_FIB_LKUP_RET_NOT_FWDED;
5909
5910	if (fib_info_num_path(res.fi) > 1)
5911		fib_select_path(net, &res, &fl4, NULL);
5912
5913	if (check_mtu) {
5914		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5915		if (params->tot_len > mtu) {
5916			params->mtu_result = mtu; /* union with tot_len */
5917			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5918		}
5919	}
5920
5921	nhc = res.nhc;
5922
5923	/* do not handle lwt encaps right now */
5924	if (nhc->nhc_lwtstate)
5925		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5926
5927	dev = nhc->nhc_dev;
5928
5929	params->rt_metric = res.fi->fib_priority;
5930	params->ifindex = dev->ifindex;
5931
5932	if (flags & BPF_FIB_LOOKUP_SRC)
5933		params->ipv4_src = fib_result_prefsrc(net, &res);
5934
5935	/* xdp and cls_bpf programs are run in RCU-bh so
5936	 * rcu_read_lock_bh is not needed here
5937	 */
5938	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5939		if (nhc->nhc_gw_family)
5940			params->ipv4_dst = nhc->nhc_gw.ipv4;
5941	} else {
5942		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5943
5944		params->family = AF_INET6;
5945		*dst = nhc->nhc_gw.ipv6;
5946	}
5947
5948	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5949		goto set_fwd_params;
5950
5951	if (likely(nhc->nhc_gw_family != AF_INET6))
5952		neigh = __ipv4_neigh_lookup_noref(dev,
5953						  (__force u32)params->ipv4_dst);
5954	else
5955		neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
5956
5957	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
5958		return BPF_FIB_LKUP_RET_NO_NEIGH;
5959	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5960	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5961
5962set_fwd_params:
5963	return bpf_fib_set_fwd_params(params, mtu);
5964}
5965#endif
5966
5967#if IS_ENABLED(CONFIG_IPV6)
5968static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5969			       u32 flags, bool check_mtu)
5970{
5971	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5972	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5973	struct fib6_result res = {};
5974	struct neighbour *neigh;
5975	struct net_device *dev;
5976	struct inet6_dev *idev;
5977	struct flowi6 fl6;
5978	int strict = 0;
5979	int oif, err;
5980	u32 mtu = 0;
5981
5982	/* link local addresses are never forwarded */
5983	if (rt6_need_strict(dst) || rt6_need_strict(src))
5984		return BPF_FIB_LKUP_RET_NOT_FWDED;
5985
5986	dev = dev_get_by_index_rcu(net, params->ifindex);
5987	if (unlikely(!dev))
5988		return -ENODEV;
5989
5990	idev = __in6_dev_get_safely(dev);
5991	if (unlikely(!idev || !READ_ONCE(idev->cnf.forwarding)))
5992		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5993
5994	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5995		fl6.flowi6_iif = 1;
5996		oif = fl6.flowi6_oif = params->ifindex;
5997	} else {
5998		oif = fl6.flowi6_iif = params->ifindex;
5999		fl6.flowi6_oif = 0;
6000		strict = RT6_LOOKUP_F_HAS_SADDR;
6001	}
6002	fl6.flowlabel = params->flowinfo;
6003	fl6.flowi6_scope = 0;
6004	fl6.flowi6_flags = 0;
6005	fl6.mp_hash = 0;
6006
6007	fl6.flowi6_proto = params->l4_protocol;
6008	fl6.daddr = *dst;
6009	fl6.saddr = *src;
6010	fl6.fl6_sport = params->sport;
6011	fl6.fl6_dport = params->dport;
6012
6013	if (flags & BPF_FIB_LOOKUP_DIRECT) {
6014		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6015		struct fib6_table *tb;
6016
6017		if (flags & BPF_FIB_LOOKUP_TBID) {
6018			tbid = params->tbid;
6019			/* zero out for vlan output */
6020			params->tbid = 0;
6021		}
6022
6023		tb = ipv6_stub->fib6_get_table(net, tbid);
6024		if (unlikely(!tb))
6025			return BPF_FIB_LKUP_RET_NOT_FWDED;
6026
6027		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
6028						   strict);
6029	} else {
6030		fl6.flowi6_mark = 0;
6031		fl6.flowi6_secid = 0;
6032		fl6.flowi6_tun_key.tun_id = 0;
6033		fl6.flowi6_uid = sock_net_uid(net, NULL);
6034
6035		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
6036	}
6037
6038	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
6039		     res.f6i == net->ipv6.fib6_null_entry))
6040		return BPF_FIB_LKUP_RET_NOT_FWDED;
6041
6042	switch (res.fib6_type) {
6043	/* only unicast is forwarded */
6044	case RTN_UNICAST:
6045		break;
6046	case RTN_BLACKHOLE:
6047		return BPF_FIB_LKUP_RET_BLACKHOLE;
6048	case RTN_UNREACHABLE:
6049		return BPF_FIB_LKUP_RET_UNREACHABLE;
6050	case RTN_PROHIBIT:
6051		return BPF_FIB_LKUP_RET_PROHIBIT;
6052	default:
6053		return BPF_FIB_LKUP_RET_NOT_FWDED;
6054	}
6055
6056	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
6057				    fl6.flowi6_oif != 0, NULL, strict);
6058
6059	if (check_mtu) {
6060		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
6061		if (params->tot_len > mtu) {
6062			params->mtu_result = mtu; /* union with tot_len */
6063			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6064		}
6065	}
6066
6067	if (res.nh->fib_nh_lws)
6068		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6069
6070	if (res.nh->fib_nh_gw_family)
6071		*dst = res.nh->fib_nh_gw6;
6072
6073	dev = res.nh->fib_nh_dev;
6074	params->rt_metric = res.f6i->fib6_metric;
6075	params->ifindex = dev->ifindex;
6076
6077	if (flags & BPF_FIB_LOOKUP_SRC) {
6078		if (res.f6i->fib6_prefsrc.plen) {
6079			*src = res.f6i->fib6_prefsrc.addr;
6080		} else {
6081			err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev,
6082								&fl6.daddr, 0,
6083								src);
6084			if (err)
6085				return BPF_FIB_LKUP_RET_NO_SRC_ADDR;
6086		}
6087	}
6088
6089	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6090		goto set_fwd_params;
6091
6092	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
6093	 * not needed here.
6094	 */
6095	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
6096	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6097		return BPF_FIB_LKUP_RET_NO_NEIGH;
6098	memcpy(params->dmac, neigh->ha, ETH_ALEN);
6099	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6100
6101set_fwd_params:
6102	return bpf_fib_set_fwd_params(params, mtu);
6103}
6104#endif
6105
6106#define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6107			     BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \
6108			     BPF_FIB_LOOKUP_SRC)
6109
6110BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6111	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6112{
6113	if (plen < sizeof(*params))
6114		return -EINVAL;
6115
6116	if (flags & ~BPF_FIB_LOOKUP_MASK)
6117		return -EINVAL;
6118
6119	switch (params->family) {
6120#if IS_ENABLED(CONFIG_INET)
6121	case AF_INET:
6122		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6123					   flags, true);
6124#endif
6125#if IS_ENABLED(CONFIG_IPV6)
6126	case AF_INET6:
6127		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6128					   flags, true);
6129#endif
6130	}
6131	return -EAFNOSUPPORT;
6132}
6133
6134static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6135	.func		= bpf_xdp_fib_lookup,
6136	.gpl_only	= true,
6137	.ret_type	= RET_INTEGER,
6138	.arg1_type      = ARG_PTR_TO_CTX,
6139	.arg2_type      = ARG_PTR_TO_MEM,
6140	.arg3_type      = ARG_CONST_SIZE,
6141	.arg4_type	= ARG_ANYTHING,
6142};
6143
6144BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6145	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6146{
6147	struct net *net = dev_net(skb->dev);
6148	int rc = -EAFNOSUPPORT;
6149	bool check_mtu = false;
6150
6151	if (plen < sizeof(*params))
6152		return -EINVAL;
6153
6154	if (flags & ~BPF_FIB_LOOKUP_MASK)
6155		return -EINVAL;
6156
6157	if (params->tot_len)
6158		check_mtu = true;
6159
6160	switch (params->family) {
6161#if IS_ENABLED(CONFIG_INET)
6162	case AF_INET:
6163		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6164		break;
6165#endif
6166#if IS_ENABLED(CONFIG_IPV6)
6167	case AF_INET6:
6168		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6169		break;
6170#endif
6171	}
6172
6173	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6174		struct net_device *dev;
6175
6176		/* When tot_len isn't provided by user, check skb
6177		 * against MTU of FIB lookup resulting net_device
6178		 */
6179		dev = dev_get_by_index_rcu(net, params->ifindex);
6180		if (!is_skb_forwardable(dev, skb))
6181			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6182
6183		params->mtu_result = dev->mtu; /* union with tot_len */
6184	}
6185
6186	return rc;
6187}
6188
6189static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6190	.func		= bpf_skb_fib_lookup,
6191	.gpl_only	= true,
6192	.ret_type	= RET_INTEGER,
6193	.arg1_type      = ARG_PTR_TO_CTX,
6194	.arg2_type      = ARG_PTR_TO_MEM,
6195	.arg3_type      = ARG_CONST_SIZE,
6196	.arg4_type	= ARG_ANYTHING,
6197};
6198
6199static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6200					    u32 ifindex)
6201{
6202	struct net *netns = dev_net(dev_curr);
6203
6204	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6205	if (ifindex == 0)
6206		return dev_curr;
6207
6208	return dev_get_by_index_rcu(netns, ifindex);
6209}
6210
6211BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6212	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6213{
6214	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6215	struct net_device *dev = skb->dev;
6216	int skb_len, dev_len;
6217	int mtu;
6218
6219	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6220		return -EINVAL;
6221
6222	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6223		return -EINVAL;
6224
6225	dev = __dev_via_ifindex(dev, ifindex);
6226	if (unlikely(!dev))
6227		return -ENODEV;
6228
6229	mtu = READ_ONCE(dev->mtu);
6230
6231	dev_len = mtu + dev->hard_header_len;
6232
6233	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6234	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6235
6236	skb_len += len_diff; /* minus result pass check */
6237	if (skb_len <= dev_len) {
6238		ret = BPF_MTU_CHK_RET_SUCCESS;
6239		goto out;
6240	}
6241	/* At this point, skb->len exceed MTU, but as it include length of all
6242	 * segments, it can still be below MTU.  The SKB can possibly get
6243	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6244	 * must choose if segs are to be MTU checked.
6245	 */
6246	if (skb_is_gso(skb)) {
6247		ret = BPF_MTU_CHK_RET_SUCCESS;
6248
6249		if (flags & BPF_MTU_CHK_SEGS &&
6250		    !skb_gso_validate_network_len(skb, mtu))
6251			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6252	}
6253out:
6254	/* BPF verifier guarantees valid pointer */
6255	*mtu_len = mtu;
6256
6257	return ret;
6258}
6259
6260BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6261	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6262{
6263	struct net_device *dev = xdp->rxq->dev;
6264	int xdp_len = xdp->data_end - xdp->data;
6265	int ret = BPF_MTU_CHK_RET_SUCCESS;
6266	int mtu, dev_len;
6267
6268	/* XDP variant doesn't support multi-buffer segment check (yet) */
6269	if (unlikely(flags))
6270		return -EINVAL;
6271
6272	dev = __dev_via_ifindex(dev, ifindex);
6273	if (unlikely(!dev))
6274		return -ENODEV;
6275
6276	mtu = READ_ONCE(dev->mtu);
6277
6278	/* Add L2-header as dev MTU is L3 size */
6279	dev_len = mtu + dev->hard_header_len;
6280
6281	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6282	if (*mtu_len)
6283		xdp_len = *mtu_len + dev->hard_header_len;
6284
6285	xdp_len += len_diff; /* minus result pass check */
6286	if (xdp_len > dev_len)
6287		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6288
6289	/* BPF verifier guarantees valid pointer */
6290	*mtu_len = mtu;
6291
6292	return ret;
6293}
6294
6295static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6296	.func		= bpf_skb_check_mtu,
6297	.gpl_only	= true,
6298	.ret_type	= RET_INTEGER,
6299	.arg1_type      = ARG_PTR_TO_CTX,
6300	.arg2_type      = ARG_ANYTHING,
6301	.arg3_type      = ARG_PTR_TO_INT,
6302	.arg4_type      = ARG_ANYTHING,
6303	.arg5_type      = ARG_ANYTHING,
6304};
6305
6306static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6307	.func		= bpf_xdp_check_mtu,
6308	.gpl_only	= true,
6309	.ret_type	= RET_INTEGER,
6310	.arg1_type      = ARG_PTR_TO_CTX,
6311	.arg2_type      = ARG_ANYTHING,
6312	.arg3_type      = ARG_PTR_TO_INT,
6313	.arg4_type      = ARG_ANYTHING,
6314	.arg5_type      = ARG_ANYTHING,
6315};
6316
6317#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6318static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6319{
6320	int err;
6321	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6322
6323	if (!seg6_validate_srh(srh, len, false))
6324		return -EINVAL;
6325
6326	switch (type) {
6327	case BPF_LWT_ENCAP_SEG6_INLINE:
6328		if (skb->protocol != htons(ETH_P_IPV6))
6329			return -EBADMSG;
6330
6331		err = seg6_do_srh_inline(skb, srh);
6332		break;
6333	case BPF_LWT_ENCAP_SEG6:
6334		skb_reset_inner_headers(skb);
6335		skb->encapsulation = 1;
6336		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6337		break;
6338	default:
6339		return -EINVAL;
6340	}
6341
6342	bpf_compute_data_pointers(skb);
6343	if (err)
6344		return err;
6345
6346	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6347
6348	return seg6_lookup_nexthop(skb, NULL, 0);
6349}
6350#endif /* CONFIG_IPV6_SEG6_BPF */
6351
6352#if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6353static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6354			     bool ingress)
6355{
6356	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6357}
6358#endif
6359
6360BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6361	   u32, len)
6362{
6363	switch (type) {
6364#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6365	case BPF_LWT_ENCAP_SEG6:
6366	case BPF_LWT_ENCAP_SEG6_INLINE:
6367		return bpf_push_seg6_encap(skb, type, hdr, len);
6368#endif
6369#if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6370	case BPF_LWT_ENCAP_IP:
6371		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6372#endif
6373	default:
6374		return -EINVAL;
6375	}
6376}
6377
6378BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6379	   void *, hdr, u32, len)
6380{
6381	switch (type) {
6382#if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6383	case BPF_LWT_ENCAP_IP:
6384		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6385#endif
6386	default:
6387		return -EINVAL;
6388	}
6389}
6390
6391static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6392	.func		= bpf_lwt_in_push_encap,
6393	.gpl_only	= false,
6394	.ret_type	= RET_INTEGER,
6395	.arg1_type	= ARG_PTR_TO_CTX,
6396	.arg2_type	= ARG_ANYTHING,
6397	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6398	.arg4_type	= ARG_CONST_SIZE
6399};
6400
6401static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6402	.func		= bpf_lwt_xmit_push_encap,
6403	.gpl_only	= false,
6404	.ret_type	= RET_INTEGER,
6405	.arg1_type	= ARG_PTR_TO_CTX,
6406	.arg2_type	= ARG_ANYTHING,
6407	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6408	.arg4_type	= ARG_CONST_SIZE
6409};
6410
6411#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6412BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6413	   const void *, from, u32, len)
6414{
6415	struct seg6_bpf_srh_state *srh_state =
6416		this_cpu_ptr(&seg6_bpf_srh_states);
6417	struct ipv6_sr_hdr *srh = srh_state->srh;
6418	void *srh_tlvs, *srh_end, *ptr;
6419	int srhoff = 0;
6420
6421	if (srh == NULL)
6422		return -EINVAL;
6423
6424	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6425	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6426
6427	ptr = skb->data + offset;
6428	if (ptr >= srh_tlvs && ptr + len <= srh_end)
6429		srh_state->valid = false;
6430	else if (ptr < (void *)&srh->flags ||
6431		 ptr + len > (void *)&srh->segments)
6432		return -EFAULT;
6433
6434	if (unlikely(bpf_try_make_writable(skb, offset + len)))
6435		return -EFAULT;
6436	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6437		return -EINVAL;
6438	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6439
6440	memcpy(skb->data + offset, from, len);
6441	return 0;
6442}
6443
6444static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6445	.func		= bpf_lwt_seg6_store_bytes,
6446	.gpl_only	= false,
6447	.ret_type	= RET_INTEGER,
6448	.arg1_type	= ARG_PTR_TO_CTX,
6449	.arg2_type	= ARG_ANYTHING,
6450	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6451	.arg4_type	= ARG_CONST_SIZE
6452};
6453
6454static void bpf_update_srh_state(struct sk_buff *skb)
6455{
6456	struct seg6_bpf_srh_state *srh_state =
6457		this_cpu_ptr(&seg6_bpf_srh_states);
6458	int srhoff = 0;
6459
6460	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6461		srh_state->srh = NULL;
6462	} else {
6463		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6464		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6465		srh_state->valid = true;
6466	}
6467}
6468
6469BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6470	   u32, action, void *, param, u32, param_len)
6471{
6472	struct seg6_bpf_srh_state *srh_state =
6473		this_cpu_ptr(&seg6_bpf_srh_states);
6474	int hdroff = 0;
6475	int err;
6476
6477	switch (action) {
6478	case SEG6_LOCAL_ACTION_END_X:
6479		if (!seg6_bpf_has_valid_srh(skb))
6480			return -EBADMSG;
6481		if (param_len != sizeof(struct in6_addr))
6482			return -EINVAL;
6483		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6484	case SEG6_LOCAL_ACTION_END_T:
6485		if (!seg6_bpf_has_valid_srh(skb))
6486			return -EBADMSG;
6487		if (param_len != sizeof(int))
6488			return -EINVAL;
6489		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6490	case SEG6_LOCAL_ACTION_END_DT6:
6491		if (!seg6_bpf_has_valid_srh(skb))
6492			return -EBADMSG;
6493		if (param_len != sizeof(int))
6494			return -EINVAL;
6495
6496		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6497			return -EBADMSG;
6498		if (!pskb_pull(skb, hdroff))
6499			return -EBADMSG;
6500
6501		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6502		skb_reset_network_header(skb);
6503		skb_reset_transport_header(skb);
6504		skb->encapsulation = 0;
6505
6506		bpf_compute_data_pointers(skb);
6507		bpf_update_srh_state(skb);
6508		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6509	case SEG6_LOCAL_ACTION_END_B6:
6510		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6511			return -EBADMSG;
6512		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6513					  param, param_len);
6514		if (!err)
6515			bpf_update_srh_state(skb);
6516
6517		return err;
6518	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6519		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6520			return -EBADMSG;
6521		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6522					  param, param_len);
6523		if (!err)
6524			bpf_update_srh_state(skb);
6525
6526		return err;
6527	default:
6528		return -EINVAL;
6529	}
6530}
6531
6532static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6533	.func		= bpf_lwt_seg6_action,
6534	.gpl_only	= false,
6535	.ret_type	= RET_INTEGER,
6536	.arg1_type	= ARG_PTR_TO_CTX,
6537	.arg2_type	= ARG_ANYTHING,
6538	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6539	.arg4_type	= ARG_CONST_SIZE
6540};
6541
6542BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6543	   s32, len)
6544{
6545	struct seg6_bpf_srh_state *srh_state =
6546		this_cpu_ptr(&seg6_bpf_srh_states);
6547	struct ipv6_sr_hdr *srh = srh_state->srh;
6548	void *srh_end, *srh_tlvs, *ptr;
6549	struct ipv6hdr *hdr;
6550	int srhoff = 0;
6551	int ret;
6552
6553	if (unlikely(srh == NULL))
6554		return -EINVAL;
6555
6556	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6557			((srh->first_segment + 1) << 4));
6558	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6559			srh_state->hdrlen);
6560	ptr = skb->data + offset;
6561
6562	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6563		return -EFAULT;
6564	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6565		return -EFAULT;
6566
6567	if (len > 0) {
6568		ret = skb_cow_head(skb, len);
6569		if (unlikely(ret < 0))
6570			return ret;
6571
6572		ret = bpf_skb_net_hdr_push(skb, offset, len);
6573	} else {
6574		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6575	}
6576
6577	bpf_compute_data_pointers(skb);
6578	if (unlikely(ret < 0))
6579		return ret;
6580
6581	hdr = (struct ipv6hdr *)skb->data;
6582	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6583
6584	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6585		return -EINVAL;
6586	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6587	srh_state->hdrlen += len;
6588	srh_state->valid = false;
6589	return 0;
6590}
6591
6592static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6593	.func		= bpf_lwt_seg6_adjust_srh,
6594	.gpl_only	= false,
6595	.ret_type	= RET_INTEGER,
6596	.arg1_type	= ARG_PTR_TO_CTX,
6597	.arg2_type	= ARG_ANYTHING,
6598	.arg3_type	= ARG_ANYTHING,
6599};
6600#endif /* CONFIG_IPV6_SEG6_BPF */
6601
6602#ifdef CONFIG_INET
6603static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6604			      int dif, int sdif, u8 family, u8 proto)
6605{
6606	struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6607	bool refcounted = false;
6608	struct sock *sk = NULL;
6609
6610	if (family == AF_INET) {
6611		__be32 src4 = tuple->ipv4.saddr;
6612		__be32 dst4 = tuple->ipv4.daddr;
6613
6614		if (proto == IPPROTO_TCP)
6615			sk = __inet_lookup(net, hinfo, NULL, 0,
6616					   src4, tuple->ipv4.sport,
6617					   dst4, tuple->ipv4.dport,
6618					   dif, sdif, &refcounted);
6619		else
6620			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6621					       dst4, tuple->ipv4.dport,
6622					       dif, sdif, net->ipv4.udp_table, NULL);
6623#if IS_ENABLED(CONFIG_IPV6)
6624	} else {
6625		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6626		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6627
6628		if (proto == IPPROTO_TCP)
6629			sk = __inet6_lookup(net, hinfo, NULL, 0,
6630					    src6, tuple->ipv6.sport,
6631					    dst6, ntohs(tuple->ipv6.dport),
6632					    dif, sdif, &refcounted);
6633		else if (likely(ipv6_bpf_stub))
6634			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6635							    src6, tuple->ipv6.sport,
6636							    dst6, tuple->ipv6.dport,
6637							    dif, sdif,
6638							    net->ipv4.udp_table, NULL);
6639#endif
6640	}
6641
6642	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6643		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6644		sk = NULL;
6645	}
6646	return sk;
6647}
6648
6649/* bpf_skc_lookup performs the core lookup for different types of sockets,
6650 * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6651 */
6652static struct sock *
6653__bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6654		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6655		 u64 flags, int sdif)
6656{
6657	struct sock *sk = NULL;
6658	struct net *net;
6659	u8 family;
6660
6661	if (len == sizeof(tuple->ipv4))
6662		family = AF_INET;
6663	else if (len == sizeof(tuple->ipv6))
6664		family = AF_INET6;
6665	else
6666		return NULL;
6667
6668	if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6669		goto out;
6670
6671	if (sdif < 0) {
6672		if (family == AF_INET)
6673			sdif = inet_sdif(skb);
6674		else
6675			sdif = inet6_sdif(skb);
6676	}
6677
6678	if ((s32)netns_id < 0) {
6679		net = caller_net;
6680		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6681	} else {
6682		net = get_net_ns_by_id(caller_net, netns_id);
6683		if (unlikely(!net))
6684			goto out;
6685		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6686		put_net(net);
6687	}
6688
6689out:
6690	return sk;
6691}
6692
6693static struct sock *
6694__bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6695		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6696		u64 flags, int sdif)
6697{
6698	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6699					   ifindex, proto, netns_id, flags,
6700					   sdif);
6701
6702	if (sk) {
6703		struct sock *sk2 = sk_to_full_sk(sk);
6704
6705		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6706		 * sock refcnt is decremented to prevent a request_sock leak.
6707		 */
6708		if (!sk_fullsock(sk2))
6709			sk2 = NULL;
6710		if (sk2 != sk) {
6711			sock_gen_put(sk);
6712			/* Ensure there is no need to bump sk2 refcnt */
6713			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6714				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6715				return NULL;
6716			}
6717			sk = sk2;
6718		}
6719	}
6720
6721	return sk;
6722}
6723
6724static struct sock *
6725bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6726	       u8 proto, u64 netns_id, u64 flags)
6727{
6728	struct net *caller_net;
6729	int ifindex;
6730
6731	if (skb->dev) {
6732		caller_net = dev_net(skb->dev);
6733		ifindex = skb->dev->ifindex;
6734	} else {
6735		caller_net = sock_net(skb->sk);
6736		ifindex = 0;
6737	}
6738
6739	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6740				netns_id, flags, -1);
6741}
6742
6743static struct sock *
6744bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6745	      u8 proto, u64 netns_id, u64 flags)
6746{
6747	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6748					 flags);
6749
6750	if (sk) {
6751		struct sock *sk2 = sk_to_full_sk(sk);
6752
6753		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6754		 * sock refcnt is decremented to prevent a request_sock leak.
6755		 */
6756		if (!sk_fullsock(sk2))
6757			sk2 = NULL;
6758		if (sk2 != sk) {
6759			sock_gen_put(sk);
6760			/* Ensure there is no need to bump sk2 refcnt */
6761			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6762				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6763				return NULL;
6764			}
6765			sk = sk2;
6766		}
6767	}
6768
6769	return sk;
6770}
6771
6772BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6773	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6774{
6775	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6776					     netns_id, flags);
6777}
6778
6779static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6780	.func		= bpf_skc_lookup_tcp,
6781	.gpl_only	= false,
6782	.pkt_access	= true,
6783	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6784	.arg1_type	= ARG_PTR_TO_CTX,
6785	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6786	.arg3_type	= ARG_CONST_SIZE,
6787	.arg4_type	= ARG_ANYTHING,
6788	.arg5_type	= ARG_ANYTHING,
6789};
6790
6791BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6792	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6793{
6794	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6795					    netns_id, flags);
6796}
6797
6798static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6799	.func		= bpf_sk_lookup_tcp,
6800	.gpl_only	= false,
6801	.pkt_access	= true,
6802	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6803	.arg1_type	= ARG_PTR_TO_CTX,
6804	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6805	.arg3_type	= ARG_CONST_SIZE,
6806	.arg4_type	= ARG_ANYTHING,
6807	.arg5_type	= ARG_ANYTHING,
6808};
6809
6810BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6811	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6812{
6813	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6814					    netns_id, flags);
6815}
6816
6817static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6818	.func		= bpf_sk_lookup_udp,
6819	.gpl_only	= false,
6820	.pkt_access	= true,
6821	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6822	.arg1_type	= ARG_PTR_TO_CTX,
6823	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6824	.arg3_type	= ARG_CONST_SIZE,
6825	.arg4_type	= ARG_ANYTHING,
6826	.arg5_type	= ARG_ANYTHING,
6827};
6828
6829BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6830	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6831{
6832	struct net_device *dev = skb->dev;
6833	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6834	struct net *caller_net = dev_net(dev);
6835
6836	return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
6837					       ifindex, IPPROTO_TCP, netns_id,
6838					       flags, sdif);
6839}
6840
6841static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
6842	.func		= bpf_tc_skc_lookup_tcp,
6843	.gpl_only	= false,
6844	.pkt_access	= true,
6845	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6846	.arg1_type	= ARG_PTR_TO_CTX,
6847	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6848	.arg3_type	= ARG_CONST_SIZE,
6849	.arg4_type	= ARG_ANYTHING,
6850	.arg5_type	= ARG_ANYTHING,
6851};
6852
6853BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
6854	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6855{
6856	struct net_device *dev = skb->dev;
6857	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6858	struct net *caller_net = dev_net(dev);
6859
6860	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6861					      ifindex, IPPROTO_TCP, netns_id,
6862					      flags, sdif);
6863}
6864
6865static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
6866	.func		= bpf_tc_sk_lookup_tcp,
6867	.gpl_only	= false,
6868	.pkt_access	= true,
6869	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6870	.arg1_type	= ARG_PTR_TO_CTX,
6871	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6872	.arg3_type	= ARG_CONST_SIZE,
6873	.arg4_type	= ARG_ANYTHING,
6874	.arg5_type	= ARG_ANYTHING,
6875};
6876
6877BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
6878	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6879{
6880	struct net_device *dev = skb->dev;
6881	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6882	struct net *caller_net = dev_net(dev);
6883
6884	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6885					      ifindex, IPPROTO_UDP, netns_id,
6886					      flags, sdif);
6887}
6888
6889static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
6890	.func		= bpf_tc_sk_lookup_udp,
6891	.gpl_only	= false,
6892	.pkt_access	= true,
6893	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6894	.arg1_type	= ARG_PTR_TO_CTX,
6895	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6896	.arg3_type	= ARG_CONST_SIZE,
6897	.arg4_type	= ARG_ANYTHING,
6898	.arg5_type	= ARG_ANYTHING,
6899};
6900
6901BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6902{
6903	if (sk && sk_is_refcounted(sk))
6904		sock_gen_put(sk);
6905	return 0;
6906}
6907
6908static const struct bpf_func_proto bpf_sk_release_proto = {
6909	.func		= bpf_sk_release,
6910	.gpl_only	= false,
6911	.ret_type	= RET_INTEGER,
6912	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6913};
6914
6915BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6916	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6917{
6918	struct net_device *dev = ctx->rxq->dev;
6919	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6920	struct net *caller_net = dev_net(dev);
6921
6922	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6923					      ifindex, IPPROTO_UDP, netns_id,
6924					      flags, sdif);
6925}
6926
6927static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6928	.func           = bpf_xdp_sk_lookup_udp,
6929	.gpl_only       = false,
6930	.pkt_access     = true,
6931	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6932	.arg1_type      = ARG_PTR_TO_CTX,
6933	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6934	.arg3_type      = ARG_CONST_SIZE,
6935	.arg4_type      = ARG_ANYTHING,
6936	.arg5_type      = ARG_ANYTHING,
6937};
6938
6939BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6940	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6941{
6942	struct net_device *dev = ctx->rxq->dev;
6943	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6944	struct net *caller_net = dev_net(dev);
6945
6946	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6947					       ifindex, IPPROTO_TCP, netns_id,
6948					       flags, sdif);
6949}
6950
6951static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6952	.func           = bpf_xdp_skc_lookup_tcp,
6953	.gpl_only       = false,
6954	.pkt_access     = true,
6955	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6956	.arg1_type      = ARG_PTR_TO_CTX,
6957	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6958	.arg3_type      = ARG_CONST_SIZE,
6959	.arg4_type      = ARG_ANYTHING,
6960	.arg5_type      = ARG_ANYTHING,
6961};
6962
6963BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6964	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6965{
6966	struct net_device *dev = ctx->rxq->dev;
6967	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6968	struct net *caller_net = dev_net(dev);
6969
6970	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6971					      ifindex, IPPROTO_TCP, netns_id,
6972					      flags, sdif);
6973}
6974
6975static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6976	.func           = bpf_xdp_sk_lookup_tcp,
6977	.gpl_only       = false,
6978	.pkt_access     = true,
6979	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6980	.arg1_type      = ARG_PTR_TO_CTX,
6981	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6982	.arg3_type      = ARG_CONST_SIZE,
6983	.arg4_type      = ARG_ANYTHING,
6984	.arg5_type      = ARG_ANYTHING,
6985};
6986
6987BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6988	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6989{
6990	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6991					       sock_net(ctx->sk), 0,
6992					       IPPROTO_TCP, netns_id, flags,
6993					       -1);
6994}
6995
6996static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6997	.func		= bpf_sock_addr_skc_lookup_tcp,
6998	.gpl_only	= false,
6999	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
7000	.arg1_type	= ARG_PTR_TO_CTX,
7001	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7002	.arg3_type	= ARG_CONST_SIZE,
7003	.arg4_type	= ARG_ANYTHING,
7004	.arg5_type	= ARG_ANYTHING,
7005};
7006
7007BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7008	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7009{
7010	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7011					      sock_net(ctx->sk), 0, IPPROTO_TCP,
7012					      netns_id, flags, -1);
7013}
7014
7015static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
7016	.func		= bpf_sock_addr_sk_lookup_tcp,
7017	.gpl_only	= false,
7018	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7019	.arg1_type	= ARG_PTR_TO_CTX,
7020	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7021	.arg3_type	= ARG_CONST_SIZE,
7022	.arg4_type	= ARG_ANYTHING,
7023	.arg5_type	= ARG_ANYTHING,
7024};
7025
7026BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
7027	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7028{
7029	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7030					      sock_net(ctx->sk), 0, IPPROTO_UDP,
7031					      netns_id, flags, -1);
7032}
7033
7034static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
7035	.func		= bpf_sock_addr_sk_lookup_udp,
7036	.gpl_only	= false,
7037	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7038	.arg1_type	= ARG_PTR_TO_CTX,
7039	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7040	.arg3_type	= ARG_CONST_SIZE,
7041	.arg4_type	= ARG_ANYTHING,
7042	.arg5_type	= ARG_ANYTHING,
7043};
7044
7045bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7046				  struct bpf_insn_access_aux *info)
7047{
7048	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
7049					  icsk_retransmits))
7050		return false;
7051
7052	if (off % size != 0)
7053		return false;
7054
7055	switch (off) {
7056	case offsetof(struct bpf_tcp_sock, bytes_received):
7057	case offsetof(struct bpf_tcp_sock, bytes_acked):
7058		return size == sizeof(__u64);
7059	default:
7060		return size == sizeof(__u32);
7061	}
7062}
7063
7064u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
7065				    const struct bpf_insn *si,
7066				    struct bpf_insn *insn_buf,
7067				    struct bpf_prog *prog, u32 *target_size)
7068{
7069	struct bpf_insn *insn = insn_buf;
7070
7071#define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
7072	do {								\
7073		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
7074			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7075		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
7076				      si->dst_reg, si->src_reg,		\
7077				      offsetof(struct tcp_sock, FIELD)); \
7078	} while (0)
7079
7080#define BPF_INET_SOCK_GET_COMMON(FIELD)					\
7081	do {								\
7082		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
7083					  FIELD) >			\
7084			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7085		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
7086					struct inet_connection_sock,	\
7087					FIELD),				\
7088				      si->dst_reg, si->src_reg,		\
7089				      offsetof(				\
7090					struct inet_connection_sock,	\
7091					FIELD));			\
7092	} while (0)
7093
7094	BTF_TYPE_EMIT(struct bpf_tcp_sock);
7095
7096	switch (si->off) {
7097	case offsetof(struct bpf_tcp_sock, rtt_min):
7098		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
7099			     sizeof(struct minmax));
7100		BUILD_BUG_ON(sizeof(struct minmax) <
7101			     sizeof(struct minmax_sample));
7102
7103		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7104				      offsetof(struct tcp_sock, rtt_min) +
7105				      offsetof(struct minmax_sample, v));
7106		break;
7107	case offsetof(struct bpf_tcp_sock, snd_cwnd):
7108		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
7109		break;
7110	case offsetof(struct bpf_tcp_sock, srtt_us):
7111		BPF_TCP_SOCK_GET_COMMON(srtt_us);
7112		break;
7113	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
7114		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
7115		break;
7116	case offsetof(struct bpf_tcp_sock, rcv_nxt):
7117		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
7118		break;
7119	case offsetof(struct bpf_tcp_sock, snd_nxt):
7120		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7121		break;
7122	case offsetof(struct bpf_tcp_sock, snd_una):
7123		BPF_TCP_SOCK_GET_COMMON(snd_una);
7124		break;
7125	case offsetof(struct bpf_tcp_sock, mss_cache):
7126		BPF_TCP_SOCK_GET_COMMON(mss_cache);
7127		break;
7128	case offsetof(struct bpf_tcp_sock, ecn_flags):
7129		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7130		break;
7131	case offsetof(struct bpf_tcp_sock, rate_delivered):
7132		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7133		break;
7134	case offsetof(struct bpf_tcp_sock, rate_interval_us):
7135		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7136		break;
7137	case offsetof(struct bpf_tcp_sock, packets_out):
7138		BPF_TCP_SOCK_GET_COMMON(packets_out);
7139		break;
7140	case offsetof(struct bpf_tcp_sock, retrans_out):
7141		BPF_TCP_SOCK_GET_COMMON(retrans_out);
7142		break;
7143	case offsetof(struct bpf_tcp_sock, total_retrans):
7144		BPF_TCP_SOCK_GET_COMMON(total_retrans);
7145		break;
7146	case offsetof(struct bpf_tcp_sock, segs_in):
7147		BPF_TCP_SOCK_GET_COMMON(segs_in);
7148		break;
7149	case offsetof(struct bpf_tcp_sock, data_segs_in):
7150		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7151		break;
7152	case offsetof(struct bpf_tcp_sock, segs_out):
7153		BPF_TCP_SOCK_GET_COMMON(segs_out);
7154		break;
7155	case offsetof(struct bpf_tcp_sock, data_segs_out):
7156		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7157		break;
7158	case offsetof(struct bpf_tcp_sock, lost_out):
7159		BPF_TCP_SOCK_GET_COMMON(lost_out);
7160		break;
7161	case offsetof(struct bpf_tcp_sock, sacked_out):
7162		BPF_TCP_SOCK_GET_COMMON(sacked_out);
7163		break;
7164	case offsetof(struct bpf_tcp_sock, bytes_received):
7165		BPF_TCP_SOCK_GET_COMMON(bytes_received);
7166		break;
7167	case offsetof(struct bpf_tcp_sock, bytes_acked):
7168		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7169		break;
7170	case offsetof(struct bpf_tcp_sock, dsack_dups):
7171		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7172		break;
7173	case offsetof(struct bpf_tcp_sock, delivered):
7174		BPF_TCP_SOCK_GET_COMMON(delivered);
7175		break;
7176	case offsetof(struct bpf_tcp_sock, delivered_ce):
7177		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7178		break;
7179	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7180		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7181		break;
7182	}
7183
7184	return insn - insn_buf;
7185}
7186
7187BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7188{
7189	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7190		return (unsigned long)sk;
7191
7192	return (unsigned long)NULL;
7193}
7194
7195const struct bpf_func_proto bpf_tcp_sock_proto = {
7196	.func		= bpf_tcp_sock,
7197	.gpl_only	= false,
7198	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
7199	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7200};
7201
7202BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7203{
7204	sk = sk_to_full_sk(sk);
7205
7206	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7207		return (unsigned long)sk;
7208
7209	return (unsigned long)NULL;
7210}
7211
7212static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7213	.func		= bpf_get_listener_sock,
7214	.gpl_only	= false,
7215	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7216	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7217};
7218
7219BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7220{
7221	unsigned int iphdr_len;
7222
7223	switch (skb_protocol(skb, true)) {
7224	case cpu_to_be16(ETH_P_IP):
7225		iphdr_len = sizeof(struct iphdr);
7226		break;
7227	case cpu_to_be16(ETH_P_IPV6):
7228		iphdr_len = sizeof(struct ipv6hdr);
7229		break;
7230	default:
7231		return 0;
7232	}
7233
7234	if (skb_headlen(skb) < iphdr_len)
7235		return 0;
7236
7237	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7238		return 0;
7239
7240	return INET_ECN_set_ce(skb);
7241}
7242
7243bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7244				  struct bpf_insn_access_aux *info)
7245{
7246	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7247		return false;
7248
7249	if (off % size != 0)
7250		return false;
7251
7252	switch (off) {
7253	default:
7254		return size == sizeof(__u32);
7255	}
7256}
7257
7258u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7259				    const struct bpf_insn *si,
7260				    struct bpf_insn *insn_buf,
7261				    struct bpf_prog *prog, u32 *target_size)
7262{
7263	struct bpf_insn *insn = insn_buf;
7264
7265#define BPF_XDP_SOCK_GET(FIELD)						\
7266	do {								\
7267		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
7268			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
7269		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7270				      si->dst_reg, si->src_reg,		\
7271				      offsetof(struct xdp_sock, FIELD)); \
7272	} while (0)
7273
7274	switch (si->off) {
7275	case offsetof(struct bpf_xdp_sock, queue_id):
7276		BPF_XDP_SOCK_GET(queue_id);
7277		break;
7278	}
7279
7280	return insn - insn_buf;
7281}
7282
7283static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7284	.func           = bpf_skb_ecn_set_ce,
7285	.gpl_only       = false,
7286	.ret_type       = RET_INTEGER,
7287	.arg1_type      = ARG_PTR_TO_CTX,
7288};
7289
7290BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7291	   struct tcphdr *, th, u32, th_len)
7292{
7293#ifdef CONFIG_SYN_COOKIES
7294	int ret;
7295
7296	if (unlikely(!sk || th_len < sizeof(*th)))
7297		return -EINVAL;
7298
7299	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7300	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7301		return -EINVAL;
7302
7303	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7304		return -EINVAL;
7305
7306	if (!th->ack || th->rst || th->syn)
7307		return -ENOENT;
7308
7309	if (unlikely(iph_len < sizeof(struct iphdr)))
7310		return -EINVAL;
7311
7312	if (tcp_synq_no_recent_overflow(sk))
7313		return -ENOENT;
7314
7315	/* Both struct iphdr and struct ipv6hdr have the version field at the
7316	 * same offset so we can cast to the shorter header (struct iphdr).
7317	 */
7318	switch (((struct iphdr *)iph)->version) {
7319	case 4:
7320		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7321			return -EINVAL;
7322
7323		ret = __cookie_v4_check((struct iphdr *)iph, th);
7324		break;
7325
7326#if IS_BUILTIN(CONFIG_IPV6)
7327	case 6:
7328		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7329			return -EINVAL;
7330
7331		if (sk->sk_family != AF_INET6)
7332			return -EINVAL;
7333
7334		ret = __cookie_v6_check((struct ipv6hdr *)iph, th);
7335		break;
7336#endif /* CONFIG_IPV6 */
7337
7338	default:
7339		return -EPROTONOSUPPORT;
7340	}
7341
7342	if (ret > 0)
7343		return 0;
7344
7345	return -ENOENT;
7346#else
7347	return -ENOTSUPP;
7348#endif
7349}
7350
7351static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7352	.func		= bpf_tcp_check_syncookie,
7353	.gpl_only	= true,
7354	.pkt_access	= true,
7355	.ret_type	= RET_INTEGER,
7356	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7357	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7358	.arg3_type	= ARG_CONST_SIZE,
7359	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7360	.arg5_type	= ARG_CONST_SIZE,
7361};
7362
7363BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7364	   struct tcphdr *, th, u32, th_len)
7365{
7366#ifdef CONFIG_SYN_COOKIES
7367	u32 cookie;
7368	u16 mss;
7369
7370	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7371		return -EINVAL;
7372
7373	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7374		return -EINVAL;
7375
7376	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7377		return -ENOENT;
7378
7379	if (!th->syn || th->ack || th->fin || th->rst)
7380		return -EINVAL;
7381
7382	if (unlikely(iph_len < sizeof(struct iphdr)))
7383		return -EINVAL;
7384
7385	/* Both struct iphdr and struct ipv6hdr have the version field at the
7386	 * same offset so we can cast to the shorter header (struct iphdr).
7387	 */
7388	switch (((struct iphdr *)iph)->version) {
7389	case 4:
7390		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7391			return -EINVAL;
7392
7393		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7394		break;
7395
7396#if IS_BUILTIN(CONFIG_IPV6)
7397	case 6:
7398		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7399			return -EINVAL;
7400
7401		if (sk->sk_family != AF_INET6)
7402			return -EINVAL;
7403
7404		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7405		break;
7406#endif /* CONFIG_IPV6 */
7407
7408	default:
7409		return -EPROTONOSUPPORT;
7410	}
7411	if (mss == 0)
7412		return -ENOENT;
7413
7414	return cookie | ((u64)mss << 32);
7415#else
7416	return -EOPNOTSUPP;
7417#endif /* CONFIG_SYN_COOKIES */
7418}
7419
7420static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7421	.func		= bpf_tcp_gen_syncookie,
7422	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
7423	.pkt_access	= true,
7424	.ret_type	= RET_INTEGER,
7425	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7426	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7427	.arg3_type	= ARG_CONST_SIZE,
7428	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7429	.arg5_type	= ARG_CONST_SIZE,
7430};
7431
7432BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7433{
7434	if (!sk || flags != 0)
7435		return -EINVAL;
7436	if (!skb_at_tc_ingress(skb))
7437		return -EOPNOTSUPP;
7438	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7439		return -ENETUNREACH;
7440	if (sk_unhashed(sk))
7441		return -EOPNOTSUPP;
7442	if (sk_is_refcounted(sk) &&
7443	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7444		return -ENOENT;
7445
7446	skb_orphan(skb);
7447	skb->sk = sk;
7448	skb->destructor = sock_pfree;
7449
7450	return 0;
7451}
7452
7453static const struct bpf_func_proto bpf_sk_assign_proto = {
7454	.func		= bpf_sk_assign,
7455	.gpl_only	= false,
7456	.ret_type	= RET_INTEGER,
7457	.arg1_type      = ARG_PTR_TO_CTX,
7458	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7459	.arg3_type	= ARG_ANYTHING,
7460};
7461
7462static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7463				    u8 search_kind, const u8 *magic,
7464				    u8 magic_len, bool *eol)
7465{
7466	u8 kind, kind_len;
7467
7468	*eol = false;
7469
7470	while (op < opend) {
7471		kind = op[0];
7472
7473		if (kind == TCPOPT_EOL) {
7474			*eol = true;
7475			return ERR_PTR(-ENOMSG);
7476		} else if (kind == TCPOPT_NOP) {
7477			op++;
7478			continue;
7479		}
7480
7481		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7482			/* Something is wrong in the received header.
7483			 * Follow the TCP stack's tcp_parse_options()
7484			 * and just bail here.
7485			 */
7486			return ERR_PTR(-EFAULT);
7487
7488		kind_len = op[1];
7489		if (search_kind == kind) {
7490			if (!magic_len)
7491				return op;
7492
7493			if (magic_len > kind_len - 2)
7494				return ERR_PTR(-ENOMSG);
7495
7496			if (!memcmp(&op[2], magic, magic_len))
7497				return op;
7498		}
7499
7500		op += kind_len;
7501	}
7502
7503	return ERR_PTR(-ENOMSG);
7504}
7505
7506BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7507	   void *, search_res, u32, len, u64, flags)
7508{
7509	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7510	const u8 *op, *opend, *magic, *search = search_res;
7511	u8 search_kind, search_len, copy_len, magic_len;
7512	int ret;
7513
7514	/* 2 byte is the minimal option len except TCPOPT_NOP and
7515	 * TCPOPT_EOL which are useless for the bpf prog to learn
7516	 * and this helper disallow loading them also.
7517	 */
7518	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7519		return -EINVAL;
7520
7521	search_kind = search[0];
7522	search_len = search[1];
7523
7524	if (search_len > len || search_kind == TCPOPT_NOP ||
7525	    search_kind == TCPOPT_EOL)
7526		return -EINVAL;
7527
7528	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7529		/* 16 or 32 bit magic.  +2 for kind and kind length */
7530		if (search_len != 4 && search_len != 6)
7531			return -EINVAL;
7532		magic = &search[2];
7533		magic_len = search_len - 2;
7534	} else {
7535		if (search_len)
7536			return -EINVAL;
7537		magic = NULL;
7538		magic_len = 0;
7539	}
7540
7541	if (load_syn) {
7542		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7543		if (ret < 0)
7544			return ret;
7545
7546		opend = op + ret;
7547		op += sizeof(struct tcphdr);
7548	} else {
7549		if (!bpf_sock->skb ||
7550		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7551			/* This bpf_sock->op cannot call this helper */
7552			return -EPERM;
7553
7554		opend = bpf_sock->skb_data_end;
7555		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7556	}
7557
7558	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7559				&eol);
7560	if (IS_ERR(op))
7561		return PTR_ERR(op);
7562
7563	copy_len = op[1];
7564	ret = copy_len;
7565	if (copy_len > len) {
7566		ret = -ENOSPC;
7567		copy_len = len;
7568	}
7569
7570	memcpy(search_res, op, copy_len);
7571	return ret;
7572}
7573
7574static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7575	.func		= bpf_sock_ops_load_hdr_opt,
7576	.gpl_only	= false,
7577	.ret_type	= RET_INTEGER,
7578	.arg1_type	= ARG_PTR_TO_CTX,
7579	.arg2_type	= ARG_PTR_TO_MEM,
7580	.arg3_type	= ARG_CONST_SIZE,
7581	.arg4_type	= ARG_ANYTHING,
7582};
7583
7584BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7585	   const void *, from, u32, len, u64, flags)
7586{
7587	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7588	const u8 *op, *new_op, *magic = NULL;
7589	struct sk_buff *skb;
7590	bool eol;
7591
7592	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7593		return -EPERM;
7594
7595	if (len < 2 || flags)
7596		return -EINVAL;
7597
7598	new_op = from;
7599	new_kind = new_op[0];
7600	new_kind_len = new_op[1];
7601
7602	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7603	    new_kind == TCPOPT_EOL)
7604		return -EINVAL;
7605
7606	if (new_kind_len > bpf_sock->remaining_opt_len)
7607		return -ENOSPC;
7608
7609	/* 253 is another experimental kind */
7610	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7611		if (new_kind_len < 4)
7612			return -EINVAL;
7613		/* Match for the 2 byte magic also.
7614		 * RFC 6994: the magic could be 2 or 4 bytes.
7615		 * Hence, matching by 2 byte only is on the
7616		 * conservative side but it is the right
7617		 * thing to do for the 'search-for-duplication'
7618		 * purpose.
7619		 */
7620		magic = &new_op[2];
7621		magic_len = 2;
7622	}
7623
7624	/* Check for duplication */
7625	skb = bpf_sock->skb;
7626	op = skb->data + sizeof(struct tcphdr);
7627	opend = bpf_sock->skb_data_end;
7628
7629	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7630				&eol);
7631	if (!IS_ERR(op))
7632		return -EEXIST;
7633
7634	if (PTR_ERR(op) != -ENOMSG)
7635		return PTR_ERR(op);
7636
7637	if (eol)
7638		/* The option has been ended.  Treat it as no more
7639		 * header option can be written.
7640		 */
7641		return -ENOSPC;
7642
7643	/* No duplication found.  Store the header option. */
7644	memcpy(opend, from, new_kind_len);
7645
7646	bpf_sock->remaining_opt_len -= new_kind_len;
7647	bpf_sock->skb_data_end += new_kind_len;
7648
7649	return 0;
7650}
7651
7652static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7653	.func		= bpf_sock_ops_store_hdr_opt,
7654	.gpl_only	= false,
7655	.ret_type	= RET_INTEGER,
7656	.arg1_type	= ARG_PTR_TO_CTX,
7657	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7658	.arg3_type	= ARG_CONST_SIZE,
7659	.arg4_type	= ARG_ANYTHING,
7660};
7661
7662BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7663	   u32, len, u64, flags)
7664{
7665	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7666		return -EPERM;
7667
7668	if (flags || len < 2)
7669		return -EINVAL;
7670
7671	if (len > bpf_sock->remaining_opt_len)
7672		return -ENOSPC;
7673
7674	bpf_sock->remaining_opt_len -= len;
7675
7676	return 0;
7677}
7678
7679static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7680	.func		= bpf_sock_ops_reserve_hdr_opt,
7681	.gpl_only	= false,
7682	.ret_type	= RET_INTEGER,
7683	.arg1_type	= ARG_PTR_TO_CTX,
7684	.arg2_type	= ARG_ANYTHING,
7685	.arg3_type	= ARG_ANYTHING,
7686};
7687
7688BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7689	   u64, tstamp, u32, tstamp_type)
7690{
7691	/* skb_clear_delivery_time() is done for inet protocol */
7692	if (skb->protocol != htons(ETH_P_IP) &&
7693	    skb->protocol != htons(ETH_P_IPV6))
7694		return -EOPNOTSUPP;
7695
7696	switch (tstamp_type) {
7697	case BPF_SKB_TSTAMP_DELIVERY_MONO:
7698		if (!tstamp)
7699			return -EINVAL;
7700		skb->tstamp = tstamp;
7701		skb->mono_delivery_time = 1;
7702		break;
7703	case BPF_SKB_TSTAMP_UNSPEC:
7704		if (tstamp)
7705			return -EINVAL;
7706		skb->tstamp = 0;
7707		skb->mono_delivery_time = 0;
7708		break;
7709	default:
7710		return -EINVAL;
7711	}
7712
7713	return 0;
7714}
7715
7716static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7717	.func           = bpf_skb_set_tstamp,
7718	.gpl_only       = false,
7719	.ret_type       = RET_INTEGER,
7720	.arg1_type      = ARG_PTR_TO_CTX,
7721	.arg2_type      = ARG_ANYTHING,
7722	.arg3_type      = ARG_ANYTHING,
7723};
7724
7725#ifdef CONFIG_SYN_COOKIES
7726BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7727	   struct tcphdr *, th, u32, th_len)
7728{
7729	u32 cookie;
7730	u16 mss;
7731
7732	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7733		return -EINVAL;
7734
7735	mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7736	cookie = __cookie_v4_init_sequence(iph, th, &mss);
7737
7738	return cookie | ((u64)mss << 32);
7739}
7740
7741static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7742	.func		= bpf_tcp_raw_gen_syncookie_ipv4,
7743	.gpl_only	= true, /* __cookie_v4_init_sequence() is GPL */
7744	.pkt_access	= true,
7745	.ret_type	= RET_INTEGER,
7746	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7747	.arg1_size	= sizeof(struct iphdr),
7748	.arg2_type	= ARG_PTR_TO_MEM,
7749	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7750};
7751
7752BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7753	   struct tcphdr *, th, u32, th_len)
7754{
7755#if IS_BUILTIN(CONFIG_IPV6)
7756	const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7757		sizeof(struct ipv6hdr);
7758	u32 cookie;
7759	u16 mss;
7760
7761	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7762		return -EINVAL;
7763
7764	mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7765	cookie = __cookie_v6_init_sequence(iph, th, &mss);
7766
7767	return cookie | ((u64)mss << 32);
7768#else
7769	return -EPROTONOSUPPORT;
7770#endif
7771}
7772
7773static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7774	.func		= bpf_tcp_raw_gen_syncookie_ipv6,
7775	.gpl_only	= true, /* __cookie_v6_init_sequence() is GPL */
7776	.pkt_access	= true,
7777	.ret_type	= RET_INTEGER,
7778	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7779	.arg1_size	= sizeof(struct ipv6hdr),
7780	.arg2_type	= ARG_PTR_TO_MEM,
7781	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7782};
7783
7784BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7785	   struct tcphdr *, th)
7786{
7787	if (__cookie_v4_check(iph, th) > 0)
7788		return 0;
7789
7790	return -EACCES;
7791}
7792
7793static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7794	.func		= bpf_tcp_raw_check_syncookie_ipv4,
7795	.gpl_only	= true, /* __cookie_v4_check is GPL */
7796	.pkt_access	= true,
7797	.ret_type	= RET_INTEGER,
7798	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7799	.arg1_size	= sizeof(struct iphdr),
7800	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7801	.arg2_size	= sizeof(struct tcphdr),
7802};
7803
7804BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7805	   struct tcphdr *, th)
7806{
7807#if IS_BUILTIN(CONFIG_IPV6)
7808	if (__cookie_v6_check(iph, th) > 0)
7809		return 0;
7810
7811	return -EACCES;
7812#else
7813	return -EPROTONOSUPPORT;
7814#endif
7815}
7816
7817static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7818	.func		= bpf_tcp_raw_check_syncookie_ipv6,
7819	.gpl_only	= true, /* __cookie_v6_check is GPL */
7820	.pkt_access	= true,
7821	.ret_type	= RET_INTEGER,
7822	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7823	.arg1_size	= sizeof(struct ipv6hdr),
7824	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7825	.arg2_size	= sizeof(struct tcphdr),
7826};
7827#endif /* CONFIG_SYN_COOKIES */
7828
7829#endif /* CONFIG_INET */
7830
7831bool bpf_helper_changes_pkt_data(void *func)
7832{
7833	if (func == bpf_skb_vlan_push ||
7834	    func == bpf_skb_vlan_pop ||
7835	    func == bpf_skb_store_bytes ||
7836	    func == bpf_skb_change_proto ||
7837	    func == bpf_skb_change_head ||
7838	    func == sk_skb_change_head ||
7839	    func == bpf_skb_change_tail ||
7840	    func == sk_skb_change_tail ||
7841	    func == bpf_skb_adjust_room ||
7842	    func == sk_skb_adjust_room ||
7843	    func == bpf_skb_pull_data ||
7844	    func == sk_skb_pull_data ||
7845	    func == bpf_clone_redirect ||
7846	    func == bpf_l3_csum_replace ||
7847	    func == bpf_l4_csum_replace ||
7848	    func == bpf_xdp_adjust_head ||
7849	    func == bpf_xdp_adjust_meta ||
7850	    func == bpf_msg_pull_data ||
7851	    func == bpf_msg_push_data ||
7852	    func == bpf_msg_pop_data ||
7853	    func == bpf_xdp_adjust_tail ||
7854#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7855	    func == bpf_lwt_seg6_store_bytes ||
7856	    func == bpf_lwt_seg6_adjust_srh ||
7857	    func == bpf_lwt_seg6_action ||
7858#endif
7859#ifdef CONFIG_INET
7860	    func == bpf_sock_ops_store_hdr_opt ||
7861#endif
7862	    func == bpf_lwt_in_push_encap ||
7863	    func == bpf_lwt_xmit_push_encap)
7864		return true;
7865
7866	return false;
7867}
7868
7869const struct bpf_func_proto bpf_event_output_data_proto __weak;
7870const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7871
7872static const struct bpf_func_proto *
7873sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7874{
7875	const struct bpf_func_proto *func_proto;
7876
7877	func_proto = cgroup_common_func_proto(func_id, prog);
7878	if (func_proto)
7879		return func_proto;
7880
7881	func_proto = cgroup_current_func_proto(func_id, prog);
7882	if (func_proto)
7883		return func_proto;
7884
7885	switch (func_id) {
7886	case BPF_FUNC_get_socket_cookie:
7887		return &bpf_get_socket_cookie_sock_proto;
7888	case BPF_FUNC_get_netns_cookie:
7889		return &bpf_get_netns_cookie_sock_proto;
7890	case BPF_FUNC_perf_event_output:
7891		return &bpf_event_output_data_proto;
7892	case BPF_FUNC_sk_storage_get:
7893		return &bpf_sk_storage_get_cg_sock_proto;
7894	case BPF_FUNC_ktime_get_coarse_ns:
7895		return &bpf_ktime_get_coarse_ns_proto;
7896	default:
7897		return bpf_base_func_proto(func_id, prog);
7898	}
7899}
7900
7901static const struct bpf_func_proto *
7902sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7903{
7904	const struct bpf_func_proto *func_proto;
7905
7906	func_proto = cgroup_common_func_proto(func_id, prog);
7907	if (func_proto)
7908		return func_proto;
7909
7910	func_proto = cgroup_current_func_proto(func_id, prog);
7911	if (func_proto)
7912		return func_proto;
7913
7914	switch (func_id) {
7915	case BPF_FUNC_bind:
7916		switch (prog->expected_attach_type) {
7917		case BPF_CGROUP_INET4_CONNECT:
7918		case BPF_CGROUP_INET6_CONNECT:
7919			return &bpf_bind_proto;
7920		default:
7921			return NULL;
7922		}
7923	case BPF_FUNC_get_socket_cookie:
7924		return &bpf_get_socket_cookie_sock_addr_proto;
7925	case BPF_FUNC_get_netns_cookie:
7926		return &bpf_get_netns_cookie_sock_addr_proto;
7927	case BPF_FUNC_perf_event_output:
7928		return &bpf_event_output_data_proto;
7929#ifdef CONFIG_INET
7930	case BPF_FUNC_sk_lookup_tcp:
7931		return &bpf_sock_addr_sk_lookup_tcp_proto;
7932	case BPF_FUNC_sk_lookup_udp:
7933		return &bpf_sock_addr_sk_lookup_udp_proto;
7934	case BPF_FUNC_sk_release:
7935		return &bpf_sk_release_proto;
7936	case BPF_FUNC_skc_lookup_tcp:
7937		return &bpf_sock_addr_skc_lookup_tcp_proto;
7938#endif /* CONFIG_INET */
7939	case BPF_FUNC_sk_storage_get:
7940		return &bpf_sk_storage_get_proto;
7941	case BPF_FUNC_sk_storage_delete:
7942		return &bpf_sk_storage_delete_proto;
7943	case BPF_FUNC_setsockopt:
7944		switch (prog->expected_attach_type) {
7945		case BPF_CGROUP_INET4_BIND:
7946		case BPF_CGROUP_INET6_BIND:
7947		case BPF_CGROUP_INET4_CONNECT:
7948		case BPF_CGROUP_INET6_CONNECT:
7949		case BPF_CGROUP_UNIX_CONNECT:
7950		case BPF_CGROUP_UDP4_RECVMSG:
7951		case BPF_CGROUP_UDP6_RECVMSG:
7952		case BPF_CGROUP_UNIX_RECVMSG:
7953		case BPF_CGROUP_UDP4_SENDMSG:
7954		case BPF_CGROUP_UDP6_SENDMSG:
7955		case BPF_CGROUP_UNIX_SENDMSG:
7956		case BPF_CGROUP_INET4_GETPEERNAME:
7957		case BPF_CGROUP_INET6_GETPEERNAME:
7958		case BPF_CGROUP_UNIX_GETPEERNAME:
7959		case BPF_CGROUP_INET4_GETSOCKNAME:
7960		case BPF_CGROUP_INET6_GETSOCKNAME:
7961		case BPF_CGROUP_UNIX_GETSOCKNAME:
7962			return &bpf_sock_addr_setsockopt_proto;
7963		default:
7964			return NULL;
7965		}
7966	case BPF_FUNC_getsockopt:
7967		switch (prog->expected_attach_type) {
7968		case BPF_CGROUP_INET4_BIND:
7969		case BPF_CGROUP_INET6_BIND:
7970		case BPF_CGROUP_INET4_CONNECT:
7971		case BPF_CGROUP_INET6_CONNECT:
7972		case BPF_CGROUP_UNIX_CONNECT:
7973		case BPF_CGROUP_UDP4_RECVMSG:
7974		case BPF_CGROUP_UDP6_RECVMSG:
7975		case BPF_CGROUP_UNIX_RECVMSG:
7976		case BPF_CGROUP_UDP4_SENDMSG:
7977		case BPF_CGROUP_UDP6_SENDMSG:
7978		case BPF_CGROUP_UNIX_SENDMSG:
7979		case BPF_CGROUP_INET4_GETPEERNAME:
7980		case BPF_CGROUP_INET6_GETPEERNAME:
7981		case BPF_CGROUP_UNIX_GETPEERNAME:
7982		case BPF_CGROUP_INET4_GETSOCKNAME:
7983		case BPF_CGROUP_INET6_GETSOCKNAME:
7984		case BPF_CGROUP_UNIX_GETSOCKNAME:
7985			return &bpf_sock_addr_getsockopt_proto;
7986		default:
7987			return NULL;
7988		}
7989	default:
7990		return bpf_sk_base_func_proto(func_id, prog);
7991	}
7992}
7993
7994static const struct bpf_func_proto *
7995sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7996{
7997	switch (func_id) {
7998	case BPF_FUNC_skb_load_bytes:
7999		return &bpf_skb_load_bytes_proto;
8000	case BPF_FUNC_skb_load_bytes_relative:
8001		return &bpf_skb_load_bytes_relative_proto;
8002	case BPF_FUNC_get_socket_cookie:
8003		return &bpf_get_socket_cookie_proto;
8004	case BPF_FUNC_get_socket_uid:
8005		return &bpf_get_socket_uid_proto;
8006	case BPF_FUNC_perf_event_output:
8007		return &bpf_skb_event_output_proto;
8008	default:
8009		return bpf_sk_base_func_proto(func_id, prog);
8010	}
8011}
8012
8013const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
8014const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
8015
8016static const struct bpf_func_proto *
8017cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8018{
8019	const struct bpf_func_proto *func_proto;
8020
8021	func_proto = cgroup_common_func_proto(func_id, prog);
8022	if (func_proto)
8023		return func_proto;
8024
8025	switch (func_id) {
8026	case BPF_FUNC_sk_fullsock:
8027		return &bpf_sk_fullsock_proto;
8028	case BPF_FUNC_sk_storage_get:
8029		return &bpf_sk_storage_get_proto;
8030	case BPF_FUNC_sk_storage_delete:
8031		return &bpf_sk_storage_delete_proto;
8032	case BPF_FUNC_perf_event_output:
8033		return &bpf_skb_event_output_proto;
8034#ifdef CONFIG_SOCK_CGROUP_DATA
8035	case BPF_FUNC_skb_cgroup_id:
8036		return &bpf_skb_cgroup_id_proto;
8037	case BPF_FUNC_skb_ancestor_cgroup_id:
8038		return &bpf_skb_ancestor_cgroup_id_proto;
8039	case BPF_FUNC_sk_cgroup_id:
8040		return &bpf_sk_cgroup_id_proto;
8041	case BPF_FUNC_sk_ancestor_cgroup_id:
8042		return &bpf_sk_ancestor_cgroup_id_proto;
8043#endif
8044#ifdef CONFIG_INET
8045	case BPF_FUNC_sk_lookup_tcp:
8046		return &bpf_sk_lookup_tcp_proto;
8047	case BPF_FUNC_sk_lookup_udp:
8048		return &bpf_sk_lookup_udp_proto;
8049	case BPF_FUNC_sk_release:
8050		return &bpf_sk_release_proto;
8051	case BPF_FUNC_skc_lookup_tcp:
8052		return &bpf_skc_lookup_tcp_proto;
8053	case BPF_FUNC_tcp_sock:
8054		return &bpf_tcp_sock_proto;
8055	case BPF_FUNC_get_listener_sock:
8056		return &bpf_get_listener_sock_proto;
8057	case BPF_FUNC_skb_ecn_set_ce:
8058		return &bpf_skb_ecn_set_ce_proto;
8059#endif
8060	default:
8061		return sk_filter_func_proto(func_id, prog);
8062	}
8063}
8064
8065static const struct bpf_func_proto *
8066tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8067{
8068	switch (func_id) {
8069	case BPF_FUNC_skb_store_bytes:
8070		return &bpf_skb_store_bytes_proto;
8071	case BPF_FUNC_skb_load_bytes:
8072		return &bpf_skb_load_bytes_proto;
8073	case BPF_FUNC_skb_load_bytes_relative:
8074		return &bpf_skb_load_bytes_relative_proto;
8075	case BPF_FUNC_skb_pull_data:
8076		return &bpf_skb_pull_data_proto;
8077	case BPF_FUNC_csum_diff:
8078		return &bpf_csum_diff_proto;
8079	case BPF_FUNC_csum_update:
8080		return &bpf_csum_update_proto;
8081	case BPF_FUNC_csum_level:
8082		return &bpf_csum_level_proto;
8083	case BPF_FUNC_l3_csum_replace:
8084		return &bpf_l3_csum_replace_proto;
8085	case BPF_FUNC_l4_csum_replace:
8086		return &bpf_l4_csum_replace_proto;
8087	case BPF_FUNC_clone_redirect:
8088		return &bpf_clone_redirect_proto;
8089	case BPF_FUNC_get_cgroup_classid:
8090		return &bpf_get_cgroup_classid_proto;
8091	case BPF_FUNC_skb_vlan_push:
8092		return &bpf_skb_vlan_push_proto;
8093	case BPF_FUNC_skb_vlan_pop:
8094		return &bpf_skb_vlan_pop_proto;
8095	case BPF_FUNC_skb_change_proto:
8096		return &bpf_skb_change_proto_proto;
8097	case BPF_FUNC_skb_change_type:
8098		return &bpf_skb_change_type_proto;
8099	case BPF_FUNC_skb_adjust_room:
8100		return &bpf_skb_adjust_room_proto;
8101	case BPF_FUNC_skb_change_tail:
8102		return &bpf_skb_change_tail_proto;
8103	case BPF_FUNC_skb_change_head:
8104		return &bpf_skb_change_head_proto;
8105	case BPF_FUNC_skb_get_tunnel_key:
8106		return &bpf_skb_get_tunnel_key_proto;
8107	case BPF_FUNC_skb_set_tunnel_key:
8108		return bpf_get_skb_set_tunnel_proto(func_id);
8109	case BPF_FUNC_skb_get_tunnel_opt:
8110		return &bpf_skb_get_tunnel_opt_proto;
8111	case BPF_FUNC_skb_set_tunnel_opt:
8112		return bpf_get_skb_set_tunnel_proto(func_id);
8113	case BPF_FUNC_redirect:
8114		return &bpf_redirect_proto;
8115	case BPF_FUNC_redirect_neigh:
8116		return &bpf_redirect_neigh_proto;
8117	case BPF_FUNC_redirect_peer:
8118		return &bpf_redirect_peer_proto;
8119	case BPF_FUNC_get_route_realm:
8120		return &bpf_get_route_realm_proto;
8121	case BPF_FUNC_get_hash_recalc:
8122		return &bpf_get_hash_recalc_proto;
8123	case BPF_FUNC_set_hash_invalid:
8124		return &bpf_set_hash_invalid_proto;
8125	case BPF_FUNC_set_hash:
8126		return &bpf_set_hash_proto;
8127	case BPF_FUNC_perf_event_output:
8128		return &bpf_skb_event_output_proto;
8129	case BPF_FUNC_get_smp_processor_id:
8130		return &bpf_get_smp_processor_id_proto;
8131	case BPF_FUNC_skb_under_cgroup:
8132		return &bpf_skb_under_cgroup_proto;
8133	case BPF_FUNC_get_socket_cookie:
8134		return &bpf_get_socket_cookie_proto;
8135	case BPF_FUNC_get_socket_uid:
8136		return &bpf_get_socket_uid_proto;
8137	case BPF_FUNC_fib_lookup:
8138		return &bpf_skb_fib_lookup_proto;
8139	case BPF_FUNC_check_mtu:
8140		return &bpf_skb_check_mtu_proto;
8141	case BPF_FUNC_sk_fullsock:
8142		return &bpf_sk_fullsock_proto;
8143	case BPF_FUNC_sk_storage_get:
8144		return &bpf_sk_storage_get_proto;
8145	case BPF_FUNC_sk_storage_delete:
8146		return &bpf_sk_storage_delete_proto;
8147#ifdef CONFIG_XFRM
8148	case BPF_FUNC_skb_get_xfrm_state:
8149		return &bpf_skb_get_xfrm_state_proto;
8150#endif
8151#ifdef CONFIG_CGROUP_NET_CLASSID
8152	case BPF_FUNC_skb_cgroup_classid:
8153		return &bpf_skb_cgroup_classid_proto;
8154#endif
8155#ifdef CONFIG_SOCK_CGROUP_DATA
8156	case BPF_FUNC_skb_cgroup_id:
8157		return &bpf_skb_cgroup_id_proto;
8158	case BPF_FUNC_skb_ancestor_cgroup_id:
8159		return &bpf_skb_ancestor_cgroup_id_proto;
8160#endif
8161#ifdef CONFIG_INET
8162	case BPF_FUNC_sk_lookup_tcp:
8163		return &bpf_tc_sk_lookup_tcp_proto;
8164	case BPF_FUNC_sk_lookup_udp:
8165		return &bpf_tc_sk_lookup_udp_proto;
8166	case BPF_FUNC_sk_release:
8167		return &bpf_sk_release_proto;
8168	case BPF_FUNC_tcp_sock:
8169		return &bpf_tcp_sock_proto;
8170	case BPF_FUNC_get_listener_sock:
8171		return &bpf_get_listener_sock_proto;
8172	case BPF_FUNC_skc_lookup_tcp:
8173		return &bpf_tc_skc_lookup_tcp_proto;
8174	case BPF_FUNC_tcp_check_syncookie:
8175		return &bpf_tcp_check_syncookie_proto;
8176	case BPF_FUNC_skb_ecn_set_ce:
8177		return &bpf_skb_ecn_set_ce_proto;
8178	case BPF_FUNC_tcp_gen_syncookie:
8179		return &bpf_tcp_gen_syncookie_proto;
8180	case BPF_FUNC_sk_assign:
8181		return &bpf_sk_assign_proto;
8182	case BPF_FUNC_skb_set_tstamp:
8183		return &bpf_skb_set_tstamp_proto;
8184#ifdef CONFIG_SYN_COOKIES
8185	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8186		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8187	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8188		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8189	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8190		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8191	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8192		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8193#endif
8194#endif
8195	default:
8196		return bpf_sk_base_func_proto(func_id, prog);
8197	}
8198}
8199
8200static const struct bpf_func_proto *
8201xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8202{
8203	switch (func_id) {
8204	case BPF_FUNC_perf_event_output:
8205		return &bpf_xdp_event_output_proto;
8206	case BPF_FUNC_get_smp_processor_id:
8207		return &bpf_get_smp_processor_id_proto;
8208	case BPF_FUNC_csum_diff:
8209		return &bpf_csum_diff_proto;
8210	case BPF_FUNC_xdp_adjust_head:
8211		return &bpf_xdp_adjust_head_proto;
8212	case BPF_FUNC_xdp_adjust_meta:
8213		return &bpf_xdp_adjust_meta_proto;
8214	case BPF_FUNC_redirect:
8215		return &bpf_xdp_redirect_proto;
8216	case BPF_FUNC_redirect_map:
8217		return &bpf_xdp_redirect_map_proto;
8218	case BPF_FUNC_xdp_adjust_tail:
8219		return &bpf_xdp_adjust_tail_proto;
8220	case BPF_FUNC_xdp_get_buff_len:
8221		return &bpf_xdp_get_buff_len_proto;
8222	case BPF_FUNC_xdp_load_bytes:
8223		return &bpf_xdp_load_bytes_proto;
8224	case BPF_FUNC_xdp_store_bytes:
8225		return &bpf_xdp_store_bytes_proto;
8226	case BPF_FUNC_fib_lookup:
8227		return &bpf_xdp_fib_lookup_proto;
8228	case BPF_FUNC_check_mtu:
8229		return &bpf_xdp_check_mtu_proto;
8230#ifdef CONFIG_INET
8231	case BPF_FUNC_sk_lookup_udp:
8232		return &bpf_xdp_sk_lookup_udp_proto;
8233	case BPF_FUNC_sk_lookup_tcp:
8234		return &bpf_xdp_sk_lookup_tcp_proto;
8235	case BPF_FUNC_sk_release:
8236		return &bpf_sk_release_proto;
8237	case BPF_FUNC_skc_lookup_tcp:
8238		return &bpf_xdp_skc_lookup_tcp_proto;
8239	case BPF_FUNC_tcp_check_syncookie:
8240		return &bpf_tcp_check_syncookie_proto;
8241	case BPF_FUNC_tcp_gen_syncookie:
8242		return &bpf_tcp_gen_syncookie_proto;
8243#ifdef CONFIG_SYN_COOKIES
8244	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8245		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8246	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8247		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8248	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8249		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8250	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8251		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8252#endif
8253#endif
8254	default:
8255		return bpf_sk_base_func_proto(func_id, prog);
8256	}
8257
8258#if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8259	/* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8260	 * kfuncs are defined in two different modules, and we want to be able
8261	 * to use them interchangeably with the same BTF type ID. Because modules
8262	 * can't de-duplicate BTF IDs between each other, we need the type to be
8263	 * referenced in the vmlinux BTF or the verifier will get confused about
8264	 * the different types. So we add this dummy type reference which will
8265	 * be included in vmlinux BTF, allowing both modules to refer to the
8266	 * same type ID.
8267	 */
8268	BTF_TYPE_EMIT(struct nf_conn___init);
8269#endif
8270}
8271
8272const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8273const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8274
8275static const struct bpf_func_proto *
8276sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8277{
8278	const struct bpf_func_proto *func_proto;
8279
8280	func_proto = cgroup_common_func_proto(func_id, prog);
8281	if (func_proto)
8282		return func_proto;
8283
8284	switch (func_id) {
8285	case BPF_FUNC_setsockopt:
8286		return &bpf_sock_ops_setsockopt_proto;
8287	case BPF_FUNC_getsockopt:
8288		return &bpf_sock_ops_getsockopt_proto;
8289	case BPF_FUNC_sock_ops_cb_flags_set:
8290		return &bpf_sock_ops_cb_flags_set_proto;
8291	case BPF_FUNC_sock_map_update:
8292		return &bpf_sock_map_update_proto;
8293	case BPF_FUNC_sock_hash_update:
8294		return &bpf_sock_hash_update_proto;
8295	case BPF_FUNC_get_socket_cookie:
8296		return &bpf_get_socket_cookie_sock_ops_proto;
8297	case BPF_FUNC_perf_event_output:
8298		return &bpf_event_output_data_proto;
8299	case BPF_FUNC_sk_storage_get:
8300		return &bpf_sk_storage_get_proto;
8301	case BPF_FUNC_sk_storage_delete:
8302		return &bpf_sk_storage_delete_proto;
8303	case BPF_FUNC_get_netns_cookie:
8304		return &bpf_get_netns_cookie_sock_ops_proto;
8305#ifdef CONFIG_INET
8306	case BPF_FUNC_load_hdr_opt:
8307		return &bpf_sock_ops_load_hdr_opt_proto;
8308	case BPF_FUNC_store_hdr_opt:
8309		return &bpf_sock_ops_store_hdr_opt_proto;
8310	case BPF_FUNC_reserve_hdr_opt:
8311		return &bpf_sock_ops_reserve_hdr_opt_proto;
8312	case BPF_FUNC_tcp_sock:
8313		return &bpf_tcp_sock_proto;
8314#endif /* CONFIG_INET */
8315	default:
8316		return bpf_sk_base_func_proto(func_id, prog);
8317	}
8318}
8319
8320const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8321const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8322
8323static const struct bpf_func_proto *
8324sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8325{
8326	switch (func_id) {
8327	case BPF_FUNC_msg_redirect_map:
8328		return &bpf_msg_redirect_map_proto;
8329	case BPF_FUNC_msg_redirect_hash:
8330		return &bpf_msg_redirect_hash_proto;
8331	case BPF_FUNC_msg_apply_bytes:
8332		return &bpf_msg_apply_bytes_proto;
8333	case BPF_FUNC_msg_cork_bytes:
8334		return &bpf_msg_cork_bytes_proto;
8335	case BPF_FUNC_msg_pull_data:
8336		return &bpf_msg_pull_data_proto;
8337	case BPF_FUNC_msg_push_data:
8338		return &bpf_msg_push_data_proto;
8339	case BPF_FUNC_msg_pop_data:
8340		return &bpf_msg_pop_data_proto;
8341	case BPF_FUNC_perf_event_output:
8342		return &bpf_event_output_data_proto;
8343	case BPF_FUNC_get_current_uid_gid:
8344		return &bpf_get_current_uid_gid_proto;
8345	case BPF_FUNC_get_current_pid_tgid:
8346		return &bpf_get_current_pid_tgid_proto;
8347	case BPF_FUNC_sk_storage_get:
8348		return &bpf_sk_storage_get_proto;
8349	case BPF_FUNC_sk_storage_delete:
8350		return &bpf_sk_storage_delete_proto;
8351	case BPF_FUNC_get_netns_cookie:
8352		return &bpf_get_netns_cookie_sk_msg_proto;
8353#ifdef CONFIG_CGROUP_NET_CLASSID
8354	case BPF_FUNC_get_cgroup_classid:
8355		return &bpf_get_cgroup_classid_curr_proto;
8356#endif
8357	default:
8358		return bpf_sk_base_func_proto(func_id, prog);
8359	}
8360}
8361
8362const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8363const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8364
8365static const struct bpf_func_proto *
8366sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8367{
8368	switch (func_id) {
8369	case BPF_FUNC_skb_store_bytes:
8370		return &bpf_skb_store_bytes_proto;
8371	case BPF_FUNC_skb_load_bytes:
8372		return &bpf_skb_load_bytes_proto;
8373	case BPF_FUNC_skb_pull_data:
8374		return &sk_skb_pull_data_proto;
8375	case BPF_FUNC_skb_change_tail:
8376		return &sk_skb_change_tail_proto;
8377	case BPF_FUNC_skb_change_head:
8378		return &sk_skb_change_head_proto;
8379	case BPF_FUNC_skb_adjust_room:
8380		return &sk_skb_adjust_room_proto;
8381	case BPF_FUNC_get_socket_cookie:
8382		return &bpf_get_socket_cookie_proto;
8383	case BPF_FUNC_get_socket_uid:
8384		return &bpf_get_socket_uid_proto;
8385	case BPF_FUNC_sk_redirect_map:
8386		return &bpf_sk_redirect_map_proto;
8387	case BPF_FUNC_sk_redirect_hash:
8388		return &bpf_sk_redirect_hash_proto;
8389	case BPF_FUNC_perf_event_output:
8390		return &bpf_skb_event_output_proto;
8391#ifdef CONFIG_INET
8392	case BPF_FUNC_sk_lookup_tcp:
8393		return &bpf_sk_lookup_tcp_proto;
8394	case BPF_FUNC_sk_lookup_udp:
8395		return &bpf_sk_lookup_udp_proto;
8396	case BPF_FUNC_sk_release:
8397		return &bpf_sk_release_proto;
8398	case BPF_FUNC_skc_lookup_tcp:
8399		return &bpf_skc_lookup_tcp_proto;
8400#endif
8401	default:
8402		return bpf_sk_base_func_proto(func_id, prog);
8403	}
8404}
8405
8406static const struct bpf_func_proto *
8407flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8408{
8409	switch (func_id) {
8410	case BPF_FUNC_skb_load_bytes:
8411		return &bpf_flow_dissector_load_bytes_proto;
8412	default:
8413		return bpf_sk_base_func_proto(func_id, prog);
8414	}
8415}
8416
8417static const struct bpf_func_proto *
8418lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8419{
8420	switch (func_id) {
8421	case BPF_FUNC_skb_load_bytes:
8422		return &bpf_skb_load_bytes_proto;
8423	case BPF_FUNC_skb_pull_data:
8424		return &bpf_skb_pull_data_proto;
8425	case BPF_FUNC_csum_diff:
8426		return &bpf_csum_diff_proto;
8427	case BPF_FUNC_get_cgroup_classid:
8428		return &bpf_get_cgroup_classid_proto;
8429	case BPF_FUNC_get_route_realm:
8430		return &bpf_get_route_realm_proto;
8431	case BPF_FUNC_get_hash_recalc:
8432		return &bpf_get_hash_recalc_proto;
8433	case BPF_FUNC_perf_event_output:
8434		return &bpf_skb_event_output_proto;
8435	case BPF_FUNC_get_smp_processor_id:
8436		return &bpf_get_smp_processor_id_proto;
8437	case BPF_FUNC_skb_under_cgroup:
8438		return &bpf_skb_under_cgroup_proto;
8439	default:
8440		return bpf_sk_base_func_proto(func_id, prog);
8441	}
8442}
8443
8444static const struct bpf_func_proto *
8445lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8446{
8447	switch (func_id) {
8448	case BPF_FUNC_lwt_push_encap:
8449		return &bpf_lwt_in_push_encap_proto;
8450	default:
8451		return lwt_out_func_proto(func_id, prog);
8452	}
8453}
8454
8455static const struct bpf_func_proto *
8456lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8457{
8458	switch (func_id) {
8459	case BPF_FUNC_skb_get_tunnel_key:
8460		return &bpf_skb_get_tunnel_key_proto;
8461	case BPF_FUNC_skb_set_tunnel_key:
8462		return bpf_get_skb_set_tunnel_proto(func_id);
8463	case BPF_FUNC_skb_get_tunnel_opt:
8464		return &bpf_skb_get_tunnel_opt_proto;
8465	case BPF_FUNC_skb_set_tunnel_opt:
8466		return bpf_get_skb_set_tunnel_proto(func_id);
8467	case BPF_FUNC_redirect:
8468		return &bpf_redirect_proto;
8469	case BPF_FUNC_clone_redirect:
8470		return &bpf_clone_redirect_proto;
8471	case BPF_FUNC_skb_change_tail:
8472		return &bpf_skb_change_tail_proto;
8473	case BPF_FUNC_skb_change_head:
8474		return &bpf_skb_change_head_proto;
8475	case BPF_FUNC_skb_store_bytes:
8476		return &bpf_skb_store_bytes_proto;
8477	case BPF_FUNC_csum_update:
8478		return &bpf_csum_update_proto;
8479	case BPF_FUNC_csum_level:
8480		return &bpf_csum_level_proto;
8481	case BPF_FUNC_l3_csum_replace:
8482		return &bpf_l3_csum_replace_proto;
8483	case BPF_FUNC_l4_csum_replace:
8484		return &bpf_l4_csum_replace_proto;
8485	case BPF_FUNC_set_hash_invalid:
8486		return &bpf_set_hash_invalid_proto;
8487	case BPF_FUNC_lwt_push_encap:
8488		return &bpf_lwt_xmit_push_encap_proto;
8489	default:
8490		return lwt_out_func_proto(func_id, prog);
8491	}
8492}
8493
8494static const struct bpf_func_proto *
8495lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8496{
8497	switch (func_id) {
8498#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8499	case BPF_FUNC_lwt_seg6_store_bytes:
8500		return &bpf_lwt_seg6_store_bytes_proto;
8501	case BPF_FUNC_lwt_seg6_action:
8502		return &bpf_lwt_seg6_action_proto;
8503	case BPF_FUNC_lwt_seg6_adjust_srh:
8504		return &bpf_lwt_seg6_adjust_srh_proto;
8505#endif
8506	default:
8507		return lwt_out_func_proto(func_id, prog);
8508	}
8509}
8510
8511static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8512				    const struct bpf_prog *prog,
8513				    struct bpf_insn_access_aux *info)
8514{
8515	const int size_default = sizeof(__u32);
8516
8517	if (off < 0 || off >= sizeof(struct __sk_buff))
8518		return false;
8519
8520	/* The verifier guarantees that size > 0. */
8521	if (off % size != 0)
8522		return false;
8523
8524	switch (off) {
8525	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8526		if (off + size > offsetofend(struct __sk_buff, cb[4]))
8527			return false;
8528		break;
8529	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8530	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8531	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8532	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8533	case bpf_ctx_range(struct __sk_buff, data):
8534	case bpf_ctx_range(struct __sk_buff, data_meta):
8535	case bpf_ctx_range(struct __sk_buff, data_end):
8536		if (size != size_default)
8537			return false;
8538		break;
8539	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8540		return false;
8541	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8542		if (type == BPF_WRITE || size != sizeof(__u64))
8543			return false;
8544		break;
8545	case bpf_ctx_range(struct __sk_buff, tstamp):
8546		if (size != sizeof(__u64))
8547			return false;
8548		break;
8549	case offsetof(struct __sk_buff, sk):
8550		if (type == BPF_WRITE || size != sizeof(__u64))
8551			return false;
8552		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8553		break;
8554	case offsetof(struct __sk_buff, tstamp_type):
8555		return false;
8556	case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8557		/* Explicitly prohibit access to padding in __sk_buff. */
8558		return false;
8559	default:
8560		/* Only narrow read access allowed for now. */
8561		if (type == BPF_WRITE) {
8562			if (size != size_default)
8563				return false;
8564		} else {
8565			bpf_ctx_record_field_size(info, size_default);
8566			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8567				return false;
8568		}
8569	}
8570
8571	return true;
8572}
8573
8574static bool sk_filter_is_valid_access(int off, int size,
8575				      enum bpf_access_type type,
8576				      const struct bpf_prog *prog,
8577				      struct bpf_insn_access_aux *info)
8578{
8579	switch (off) {
8580	case bpf_ctx_range(struct __sk_buff, tc_classid):
8581	case bpf_ctx_range(struct __sk_buff, data):
8582	case bpf_ctx_range(struct __sk_buff, data_meta):
8583	case bpf_ctx_range(struct __sk_buff, data_end):
8584	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8585	case bpf_ctx_range(struct __sk_buff, tstamp):
8586	case bpf_ctx_range(struct __sk_buff, wire_len):
8587	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8588		return false;
8589	}
8590
8591	if (type == BPF_WRITE) {
8592		switch (off) {
8593		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8594			break;
8595		default:
8596			return false;
8597		}
8598	}
8599
8600	return bpf_skb_is_valid_access(off, size, type, prog, info);
8601}
8602
8603static bool cg_skb_is_valid_access(int off, int size,
8604				   enum bpf_access_type type,
8605				   const struct bpf_prog *prog,
8606				   struct bpf_insn_access_aux *info)
8607{
8608	switch (off) {
8609	case bpf_ctx_range(struct __sk_buff, tc_classid):
8610	case bpf_ctx_range(struct __sk_buff, data_meta):
8611	case bpf_ctx_range(struct __sk_buff, wire_len):
8612		return false;
8613	case bpf_ctx_range(struct __sk_buff, data):
8614	case bpf_ctx_range(struct __sk_buff, data_end):
8615		if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8616			return false;
8617		break;
8618	}
8619
8620	if (type == BPF_WRITE) {
8621		switch (off) {
8622		case bpf_ctx_range(struct __sk_buff, mark):
8623		case bpf_ctx_range(struct __sk_buff, priority):
8624		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8625			break;
8626		case bpf_ctx_range(struct __sk_buff, tstamp):
8627			if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8628				return false;
8629			break;
8630		default:
8631			return false;
8632		}
8633	}
8634
8635	switch (off) {
8636	case bpf_ctx_range(struct __sk_buff, data):
8637		info->reg_type = PTR_TO_PACKET;
8638		break;
8639	case bpf_ctx_range(struct __sk_buff, data_end):
8640		info->reg_type = PTR_TO_PACKET_END;
8641		break;
8642	}
8643
8644	return bpf_skb_is_valid_access(off, size, type, prog, info);
8645}
8646
8647static bool lwt_is_valid_access(int off, int size,
8648				enum bpf_access_type type,
8649				const struct bpf_prog *prog,
8650				struct bpf_insn_access_aux *info)
8651{
8652	switch (off) {
8653	case bpf_ctx_range(struct __sk_buff, tc_classid):
8654	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8655	case bpf_ctx_range(struct __sk_buff, data_meta):
8656	case bpf_ctx_range(struct __sk_buff, tstamp):
8657	case bpf_ctx_range(struct __sk_buff, wire_len):
8658	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8659		return false;
8660	}
8661
8662	if (type == BPF_WRITE) {
8663		switch (off) {
8664		case bpf_ctx_range(struct __sk_buff, mark):
8665		case bpf_ctx_range(struct __sk_buff, priority):
8666		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8667			break;
8668		default:
8669			return false;
8670		}
8671	}
8672
8673	switch (off) {
8674	case bpf_ctx_range(struct __sk_buff, data):
8675		info->reg_type = PTR_TO_PACKET;
8676		break;
8677	case bpf_ctx_range(struct __sk_buff, data_end):
8678		info->reg_type = PTR_TO_PACKET_END;
8679		break;
8680	}
8681
8682	return bpf_skb_is_valid_access(off, size, type, prog, info);
8683}
8684
8685/* Attach type specific accesses */
8686static bool __sock_filter_check_attach_type(int off,
8687					    enum bpf_access_type access_type,
8688					    enum bpf_attach_type attach_type)
8689{
8690	switch (off) {
8691	case offsetof(struct bpf_sock, bound_dev_if):
8692	case offsetof(struct bpf_sock, mark):
8693	case offsetof(struct bpf_sock, priority):
8694		switch (attach_type) {
8695		case BPF_CGROUP_INET_SOCK_CREATE:
8696		case BPF_CGROUP_INET_SOCK_RELEASE:
8697			goto full_access;
8698		default:
8699			return false;
8700		}
8701	case bpf_ctx_range(struct bpf_sock, src_ip4):
8702		switch (attach_type) {
8703		case BPF_CGROUP_INET4_POST_BIND:
8704			goto read_only;
8705		default:
8706			return false;
8707		}
8708	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8709		switch (attach_type) {
8710		case BPF_CGROUP_INET6_POST_BIND:
8711			goto read_only;
8712		default:
8713			return false;
8714		}
8715	case bpf_ctx_range(struct bpf_sock, src_port):
8716		switch (attach_type) {
8717		case BPF_CGROUP_INET4_POST_BIND:
8718		case BPF_CGROUP_INET6_POST_BIND:
8719			goto read_only;
8720		default:
8721			return false;
8722		}
8723	}
8724read_only:
8725	return access_type == BPF_READ;
8726full_access:
8727	return true;
8728}
8729
8730bool bpf_sock_common_is_valid_access(int off, int size,
8731				     enum bpf_access_type type,
8732				     struct bpf_insn_access_aux *info)
8733{
8734	switch (off) {
8735	case bpf_ctx_range_till(struct bpf_sock, type, priority):
8736		return false;
8737	default:
8738		return bpf_sock_is_valid_access(off, size, type, info);
8739	}
8740}
8741
8742bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8743			      struct bpf_insn_access_aux *info)
8744{
8745	const int size_default = sizeof(__u32);
8746	int field_size;
8747
8748	if (off < 0 || off >= sizeof(struct bpf_sock))
8749		return false;
8750	if (off % size != 0)
8751		return false;
8752
8753	switch (off) {
8754	case offsetof(struct bpf_sock, state):
8755	case offsetof(struct bpf_sock, family):
8756	case offsetof(struct bpf_sock, type):
8757	case offsetof(struct bpf_sock, protocol):
8758	case offsetof(struct bpf_sock, src_port):
8759	case offsetof(struct bpf_sock, rx_queue_mapping):
8760	case bpf_ctx_range(struct bpf_sock, src_ip4):
8761	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8762	case bpf_ctx_range(struct bpf_sock, dst_ip4):
8763	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8764		bpf_ctx_record_field_size(info, size_default);
8765		return bpf_ctx_narrow_access_ok(off, size, size_default);
8766	case bpf_ctx_range(struct bpf_sock, dst_port):
8767		field_size = size == size_default ?
8768			size_default : sizeof_field(struct bpf_sock, dst_port);
8769		bpf_ctx_record_field_size(info, field_size);
8770		return bpf_ctx_narrow_access_ok(off, size, field_size);
8771	case offsetofend(struct bpf_sock, dst_port) ...
8772	     offsetof(struct bpf_sock, dst_ip4) - 1:
8773		return false;
8774	}
8775
8776	return size == size_default;
8777}
8778
8779static bool sock_filter_is_valid_access(int off, int size,
8780					enum bpf_access_type type,
8781					const struct bpf_prog *prog,
8782					struct bpf_insn_access_aux *info)
8783{
8784	if (!bpf_sock_is_valid_access(off, size, type, info))
8785		return false;
8786	return __sock_filter_check_attach_type(off, type,
8787					       prog->expected_attach_type);
8788}
8789
8790static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8791			     const struct bpf_prog *prog)
8792{
8793	/* Neither direct read nor direct write requires any preliminary
8794	 * action.
8795	 */
8796	return 0;
8797}
8798
8799static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8800				const struct bpf_prog *prog, int drop_verdict)
8801{
8802	struct bpf_insn *insn = insn_buf;
8803
8804	if (!direct_write)
8805		return 0;
8806
8807	/* if (!skb->cloned)
8808	 *       goto start;
8809	 *
8810	 * (Fast-path, otherwise approximation that we might be
8811	 *  a clone, do the rest in helper.)
8812	 */
8813	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8814	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8815	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8816
8817	/* ret = bpf_skb_pull_data(skb, 0); */
8818	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8819	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8820	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8821			       BPF_FUNC_skb_pull_data);
8822	/* if (!ret)
8823	 *      goto restore;
8824	 * return TC_ACT_SHOT;
8825	 */
8826	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8827	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8828	*insn++ = BPF_EXIT_INSN();
8829
8830	/* restore: */
8831	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8832	/* start: */
8833	*insn++ = prog->insnsi[0];
8834
8835	return insn - insn_buf;
8836}
8837
8838static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8839			  struct bpf_insn *insn_buf)
8840{
8841	bool indirect = BPF_MODE(orig->code) == BPF_IND;
8842	struct bpf_insn *insn = insn_buf;
8843
8844	if (!indirect) {
8845		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8846	} else {
8847		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8848		if (orig->imm)
8849			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8850	}
8851	/* We're guaranteed here that CTX is in R6. */
8852	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8853
8854	switch (BPF_SIZE(orig->code)) {
8855	case BPF_B:
8856		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8857		break;
8858	case BPF_H:
8859		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8860		break;
8861	case BPF_W:
8862		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8863		break;
8864	}
8865
8866	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8867	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8868	*insn++ = BPF_EXIT_INSN();
8869
8870	return insn - insn_buf;
8871}
8872
8873static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8874			       const struct bpf_prog *prog)
8875{
8876	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8877}
8878
8879static bool tc_cls_act_is_valid_access(int off, int size,
8880				       enum bpf_access_type type,
8881				       const struct bpf_prog *prog,
8882				       struct bpf_insn_access_aux *info)
8883{
8884	if (type == BPF_WRITE) {
8885		switch (off) {
8886		case bpf_ctx_range(struct __sk_buff, mark):
8887		case bpf_ctx_range(struct __sk_buff, tc_index):
8888		case bpf_ctx_range(struct __sk_buff, priority):
8889		case bpf_ctx_range(struct __sk_buff, tc_classid):
8890		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8891		case bpf_ctx_range(struct __sk_buff, tstamp):
8892		case bpf_ctx_range(struct __sk_buff, queue_mapping):
8893			break;
8894		default:
8895			return false;
8896		}
8897	}
8898
8899	switch (off) {
8900	case bpf_ctx_range(struct __sk_buff, data):
8901		info->reg_type = PTR_TO_PACKET;
8902		break;
8903	case bpf_ctx_range(struct __sk_buff, data_meta):
8904		info->reg_type = PTR_TO_PACKET_META;
8905		break;
8906	case bpf_ctx_range(struct __sk_buff, data_end):
8907		info->reg_type = PTR_TO_PACKET_END;
8908		break;
8909	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8910		return false;
8911	case offsetof(struct __sk_buff, tstamp_type):
8912		/* The convert_ctx_access() on reading and writing
8913		 * __sk_buff->tstamp depends on whether the bpf prog
8914		 * has used __sk_buff->tstamp_type or not.
8915		 * Thus, we need to set prog->tstamp_type_access
8916		 * earlier during is_valid_access() here.
8917		 */
8918		((struct bpf_prog *)prog)->tstamp_type_access = 1;
8919		return size == sizeof(__u8);
8920	}
8921
8922	return bpf_skb_is_valid_access(off, size, type, prog, info);
8923}
8924
8925DEFINE_MUTEX(nf_conn_btf_access_lock);
8926EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
8927
8928int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
8929			      const struct bpf_reg_state *reg,
8930			      int off, int size);
8931EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
8932
8933static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
8934					const struct bpf_reg_state *reg,
8935					int off, int size)
8936{
8937	int ret = -EACCES;
8938
8939	mutex_lock(&nf_conn_btf_access_lock);
8940	if (nfct_btf_struct_access)
8941		ret = nfct_btf_struct_access(log, reg, off, size);
8942	mutex_unlock(&nf_conn_btf_access_lock);
8943
8944	return ret;
8945}
8946
8947static bool __is_valid_xdp_access(int off, int size)
8948{
8949	if (off < 0 || off >= sizeof(struct xdp_md))
8950		return false;
8951	if (off % size != 0)
8952		return false;
8953	if (size != sizeof(__u32))
8954		return false;
8955
8956	return true;
8957}
8958
8959static bool xdp_is_valid_access(int off, int size,
8960				enum bpf_access_type type,
8961				const struct bpf_prog *prog,
8962				struct bpf_insn_access_aux *info)
8963{
8964	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8965		switch (off) {
8966		case offsetof(struct xdp_md, egress_ifindex):
8967			return false;
8968		}
8969	}
8970
8971	if (type == BPF_WRITE) {
8972		if (bpf_prog_is_offloaded(prog->aux)) {
8973			switch (off) {
8974			case offsetof(struct xdp_md, rx_queue_index):
8975				return __is_valid_xdp_access(off, size);
8976			}
8977		}
8978		return false;
8979	}
8980
8981	switch (off) {
8982	case offsetof(struct xdp_md, data):
8983		info->reg_type = PTR_TO_PACKET;
8984		break;
8985	case offsetof(struct xdp_md, data_meta):
8986		info->reg_type = PTR_TO_PACKET_META;
8987		break;
8988	case offsetof(struct xdp_md, data_end):
8989		info->reg_type = PTR_TO_PACKET_END;
8990		break;
8991	}
8992
8993	return __is_valid_xdp_access(off, size);
8994}
8995
8996void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8997{
8998	const u32 act_max = XDP_REDIRECT;
8999
9000	pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
9001		     act > act_max ? "Illegal" : "Driver unsupported",
9002		     act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
9003}
9004EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
9005
9006static int xdp_btf_struct_access(struct bpf_verifier_log *log,
9007				 const struct bpf_reg_state *reg,
9008				 int off, int size)
9009{
9010	int ret = -EACCES;
9011
9012	mutex_lock(&nf_conn_btf_access_lock);
9013	if (nfct_btf_struct_access)
9014		ret = nfct_btf_struct_access(log, reg, off, size);
9015	mutex_unlock(&nf_conn_btf_access_lock);
9016
9017	return ret;
9018}
9019
9020static bool sock_addr_is_valid_access(int off, int size,
9021				      enum bpf_access_type type,
9022				      const struct bpf_prog *prog,
9023				      struct bpf_insn_access_aux *info)
9024{
9025	const int size_default = sizeof(__u32);
9026
9027	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
9028		return false;
9029	if (off % size != 0)
9030		return false;
9031
9032	/* Disallow access to fields not belonging to the attach type's address
9033	 * family.
9034	 */
9035	switch (off) {
9036	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9037		switch (prog->expected_attach_type) {
9038		case BPF_CGROUP_INET4_BIND:
9039		case BPF_CGROUP_INET4_CONNECT:
9040		case BPF_CGROUP_INET4_GETPEERNAME:
9041		case BPF_CGROUP_INET4_GETSOCKNAME:
9042		case BPF_CGROUP_UDP4_SENDMSG:
9043		case BPF_CGROUP_UDP4_RECVMSG:
9044			break;
9045		default:
9046			return false;
9047		}
9048		break;
9049	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9050		switch (prog->expected_attach_type) {
9051		case BPF_CGROUP_INET6_BIND:
9052		case BPF_CGROUP_INET6_CONNECT:
9053		case BPF_CGROUP_INET6_GETPEERNAME:
9054		case BPF_CGROUP_INET6_GETSOCKNAME:
9055		case BPF_CGROUP_UDP6_SENDMSG:
9056		case BPF_CGROUP_UDP6_RECVMSG:
9057			break;
9058		default:
9059			return false;
9060		}
9061		break;
9062	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9063		switch (prog->expected_attach_type) {
9064		case BPF_CGROUP_UDP4_SENDMSG:
9065			break;
9066		default:
9067			return false;
9068		}
9069		break;
9070	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9071				msg_src_ip6[3]):
9072		switch (prog->expected_attach_type) {
9073		case BPF_CGROUP_UDP6_SENDMSG:
9074			break;
9075		default:
9076			return false;
9077		}
9078		break;
9079	}
9080
9081	switch (off) {
9082	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9083	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9084	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9085	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9086				msg_src_ip6[3]):
9087	case bpf_ctx_range(struct bpf_sock_addr, user_port):
9088		if (type == BPF_READ) {
9089			bpf_ctx_record_field_size(info, size_default);
9090
9091			if (bpf_ctx_wide_access_ok(off, size,
9092						   struct bpf_sock_addr,
9093						   user_ip6))
9094				return true;
9095
9096			if (bpf_ctx_wide_access_ok(off, size,
9097						   struct bpf_sock_addr,
9098						   msg_src_ip6))
9099				return true;
9100
9101			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9102				return false;
9103		} else {
9104			if (bpf_ctx_wide_access_ok(off, size,
9105						   struct bpf_sock_addr,
9106						   user_ip6))
9107				return true;
9108
9109			if (bpf_ctx_wide_access_ok(off, size,
9110						   struct bpf_sock_addr,
9111						   msg_src_ip6))
9112				return true;
9113
9114			if (size != size_default)
9115				return false;
9116		}
9117		break;
9118	case offsetof(struct bpf_sock_addr, sk):
9119		if (type != BPF_READ)
9120			return false;
9121		if (size != sizeof(__u64))
9122			return false;
9123		info->reg_type = PTR_TO_SOCKET;
9124		break;
9125	default:
9126		if (type == BPF_READ) {
9127			if (size != size_default)
9128				return false;
9129		} else {
9130			return false;
9131		}
9132	}
9133
9134	return true;
9135}
9136
9137static bool sock_ops_is_valid_access(int off, int size,
9138				     enum bpf_access_type type,
9139				     const struct bpf_prog *prog,
9140				     struct bpf_insn_access_aux *info)
9141{
9142	const int size_default = sizeof(__u32);
9143
9144	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9145		return false;
9146
9147	/* The verifier guarantees that size > 0. */
9148	if (off % size != 0)
9149		return false;
9150
9151	if (type == BPF_WRITE) {
9152		switch (off) {
9153		case offsetof(struct bpf_sock_ops, reply):
9154		case offsetof(struct bpf_sock_ops, sk_txhash):
9155			if (size != size_default)
9156				return false;
9157			break;
9158		default:
9159			return false;
9160		}
9161	} else {
9162		switch (off) {
9163		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9164					bytes_acked):
9165			if (size != sizeof(__u64))
9166				return false;
9167			break;
9168		case offsetof(struct bpf_sock_ops, sk):
9169			if (size != sizeof(__u64))
9170				return false;
9171			info->reg_type = PTR_TO_SOCKET_OR_NULL;
9172			break;
9173		case offsetof(struct bpf_sock_ops, skb_data):
9174			if (size != sizeof(__u64))
9175				return false;
9176			info->reg_type = PTR_TO_PACKET;
9177			break;
9178		case offsetof(struct bpf_sock_ops, skb_data_end):
9179			if (size != sizeof(__u64))
9180				return false;
9181			info->reg_type = PTR_TO_PACKET_END;
9182			break;
9183		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9184			bpf_ctx_record_field_size(info, size_default);
9185			return bpf_ctx_narrow_access_ok(off, size,
9186							size_default);
9187		case offsetof(struct bpf_sock_ops, skb_hwtstamp):
9188			if (size != sizeof(__u64))
9189				return false;
9190			break;
9191		default:
9192			if (size != size_default)
9193				return false;
9194			break;
9195		}
9196	}
9197
9198	return true;
9199}
9200
9201static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9202			   const struct bpf_prog *prog)
9203{
9204	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9205}
9206
9207static bool sk_skb_is_valid_access(int off, int size,
9208				   enum bpf_access_type type,
9209				   const struct bpf_prog *prog,
9210				   struct bpf_insn_access_aux *info)
9211{
9212	switch (off) {
9213	case bpf_ctx_range(struct __sk_buff, tc_classid):
9214	case bpf_ctx_range(struct __sk_buff, data_meta):
9215	case bpf_ctx_range(struct __sk_buff, tstamp):
9216	case bpf_ctx_range(struct __sk_buff, wire_len):
9217	case bpf_ctx_range(struct __sk_buff, hwtstamp):
9218		return false;
9219	}
9220
9221	if (type == BPF_WRITE) {
9222		switch (off) {
9223		case bpf_ctx_range(struct __sk_buff, tc_index):
9224		case bpf_ctx_range(struct __sk_buff, priority):
9225			break;
9226		default:
9227			return false;
9228		}
9229	}
9230
9231	switch (off) {
9232	case bpf_ctx_range(struct __sk_buff, mark):
9233		return false;
9234	case bpf_ctx_range(struct __sk_buff, data):
9235		info->reg_type = PTR_TO_PACKET;
9236		break;
9237	case bpf_ctx_range(struct __sk_buff, data_end):
9238		info->reg_type = PTR_TO_PACKET_END;
9239		break;
9240	}
9241
9242	return bpf_skb_is_valid_access(off, size, type, prog, info);
9243}
9244
9245static bool sk_msg_is_valid_access(int off, int size,
9246				   enum bpf_access_type type,
9247				   const struct bpf_prog *prog,
9248				   struct bpf_insn_access_aux *info)
9249{
9250	if (type == BPF_WRITE)
9251		return false;
9252
9253	if (off % size != 0)
9254		return false;
9255
9256	switch (off) {
9257	case offsetof(struct sk_msg_md, data):
9258		info->reg_type = PTR_TO_PACKET;
9259		if (size != sizeof(__u64))
9260			return false;
9261		break;
9262	case offsetof(struct sk_msg_md, data_end):
9263		info->reg_type = PTR_TO_PACKET_END;
9264		if (size != sizeof(__u64))
9265			return false;
9266		break;
9267	case offsetof(struct sk_msg_md, sk):
9268		if (size != sizeof(__u64))
9269			return false;
9270		info->reg_type = PTR_TO_SOCKET;
9271		break;
9272	case bpf_ctx_range(struct sk_msg_md, family):
9273	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9274	case bpf_ctx_range(struct sk_msg_md, local_ip4):
9275	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9276	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9277	case bpf_ctx_range(struct sk_msg_md, remote_port):
9278	case bpf_ctx_range(struct sk_msg_md, local_port):
9279	case bpf_ctx_range(struct sk_msg_md, size):
9280		if (size != sizeof(__u32))
9281			return false;
9282		break;
9283	default:
9284		return false;
9285	}
9286	return true;
9287}
9288
9289static bool flow_dissector_is_valid_access(int off, int size,
9290					   enum bpf_access_type type,
9291					   const struct bpf_prog *prog,
9292					   struct bpf_insn_access_aux *info)
9293{
9294	const int size_default = sizeof(__u32);
9295
9296	if (off < 0 || off >= sizeof(struct __sk_buff))
9297		return false;
9298
9299	if (type == BPF_WRITE)
9300		return false;
9301
9302	switch (off) {
9303	case bpf_ctx_range(struct __sk_buff, data):
9304		if (size != size_default)
9305			return false;
9306		info->reg_type = PTR_TO_PACKET;
9307		return true;
9308	case bpf_ctx_range(struct __sk_buff, data_end):
9309		if (size != size_default)
9310			return false;
9311		info->reg_type = PTR_TO_PACKET_END;
9312		return true;
9313	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9314		if (size != sizeof(__u64))
9315			return false;
9316		info->reg_type = PTR_TO_FLOW_KEYS;
9317		return true;
9318	default:
9319		return false;
9320	}
9321}
9322
9323static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9324					     const struct bpf_insn *si,
9325					     struct bpf_insn *insn_buf,
9326					     struct bpf_prog *prog,
9327					     u32 *target_size)
9328
9329{
9330	struct bpf_insn *insn = insn_buf;
9331
9332	switch (si->off) {
9333	case offsetof(struct __sk_buff, data):
9334		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9335				      si->dst_reg, si->src_reg,
9336				      offsetof(struct bpf_flow_dissector, data));
9337		break;
9338
9339	case offsetof(struct __sk_buff, data_end):
9340		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9341				      si->dst_reg, si->src_reg,
9342				      offsetof(struct bpf_flow_dissector, data_end));
9343		break;
9344
9345	case offsetof(struct __sk_buff, flow_keys):
9346		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9347				      si->dst_reg, si->src_reg,
9348				      offsetof(struct bpf_flow_dissector, flow_keys));
9349		break;
9350	}
9351
9352	return insn - insn_buf;
9353}
9354
9355static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9356						     struct bpf_insn *insn)
9357{
9358	__u8 value_reg = si->dst_reg;
9359	__u8 skb_reg = si->src_reg;
9360	/* AX is needed because src_reg and dst_reg could be the same */
9361	__u8 tmp_reg = BPF_REG_AX;
9362
9363	*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9364			      SKB_BF_MONO_TC_OFFSET);
9365	*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9366				SKB_MONO_DELIVERY_TIME_MASK, 2);
9367	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9368	*insn++ = BPF_JMP_A(1);
9369	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9370
9371	return insn;
9372}
9373
9374static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9375						  struct bpf_insn *insn)
9376{
9377	/* si->dst_reg = skb_shinfo(SKB); */
9378#ifdef NET_SKBUFF_DATA_USES_OFFSET
9379	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9380			      BPF_REG_AX, skb_reg,
9381			      offsetof(struct sk_buff, end));
9382	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9383			      dst_reg, skb_reg,
9384			      offsetof(struct sk_buff, head));
9385	*insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9386#else
9387	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9388			      dst_reg, skb_reg,
9389			      offsetof(struct sk_buff, end));
9390#endif
9391
9392	return insn;
9393}
9394
9395static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9396						const struct bpf_insn *si,
9397						struct bpf_insn *insn)
9398{
9399	__u8 value_reg = si->dst_reg;
9400	__u8 skb_reg = si->src_reg;
9401
9402#ifdef CONFIG_NET_XGRESS
9403	/* If the tstamp_type is read,
9404	 * the bpf prog is aware the tstamp could have delivery time.
9405	 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9406	 */
9407	if (!prog->tstamp_type_access) {
9408		/* AX is needed because src_reg and dst_reg could be the same */
9409		__u8 tmp_reg = BPF_REG_AX;
9410
9411		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9412		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9413					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9414		*insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9415					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9416		/* skb->tc_at_ingress && skb->mono_delivery_time,
9417		 * read 0 as the (rcv) timestamp.
9418		 */
9419		*insn++ = BPF_MOV64_IMM(value_reg, 0);
9420		*insn++ = BPF_JMP_A(1);
9421	}
9422#endif
9423
9424	*insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9425			      offsetof(struct sk_buff, tstamp));
9426	return insn;
9427}
9428
9429static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9430						 const struct bpf_insn *si,
9431						 struct bpf_insn *insn)
9432{
9433	__u8 value_reg = si->src_reg;
9434	__u8 skb_reg = si->dst_reg;
9435
9436#ifdef CONFIG_NET_XGRESS
9437	/* If the tstamp_type is read,
9438	 * the bpf prog is aware the tstamp could have delivery time.
9439	 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9440	 * Otherwise, writing at ingress will have to clear the
9441	 * mono_delivery_time bit also.
9442	 */
9443	if (!prog->tstamp_type_access) {
9444		__u8 tmp_reg = BPF_REG_AX;
9445
9446		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9447		/* Writing __sk_buff->tstamp as ingress, goto <clear> */
9448		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9449		/* goto <store> */
9450		*insn++ = BPF_JMP_A(2);
9451		/* <clear>: mono_delivery_time */
9452		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9453		*insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET);
9454	}
9455#endif
9456
9457	/* <store>: skb->tstamp = tstamp */
9458	*insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM,
9459			       skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm);
9460	return insn;
9461}
9462
9463#define BPF_EMIT_STORE(size, si, off)					\
9464	BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM,		\
9465		     (si)->dst_reg, (si)->src_reg, (off), (si)->imm)
9466
9467static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9468				  const struct bpf_insn *si,
9469				  struct bpf_insn *insn_buf,
9470				  struct bpf_prog *prog, u32 *target_size)
9471{
9472	struct bpf_insn *insn = insn_buf;
9473	int off;
9474
9475	switch (si->off) {
9476	case offsetof(struct __sk_buff, len):
9477		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9478				      bpf_target_off(struct sk_buff, len, 4,
9479						     target_size));
9480		break;
9481
9482	case offsetof(struct __sk_buff, protocol):
9483		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9484				      bpf_target_off(struct sk_buff, protocol, 2,
9485						     target_size));
9486		break;
9487
9488	case offsetof(struct __sk_buff, vlan_proto):
9489		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9490				      bpf_target_off(struct sk_buff, vlan_proto, 2,
9491						     target_size));
9492		break;
9493
9494	case offsetof(struct __sk_buff, priority):
9495		if (type == BPF_WRITE)
9496			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9497						 bpf_target_off(struct sk_buff, priority, 4,
9498								target_size));
9499		else
9500			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9501					      bpf_target_off(struct sk_buff, priority, 4,
9502							     target_size));
9503		break;
9504
9505	case offsetof(struct __sk_buff, ingress_ifindex):
9506		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9507				      bpf_target_off(struct sk_buff, skb_iif, 4,
9508						     target_size));
9509		break;
9510
9511	case offsetof(struct __sk_buff, ifindex):
9512		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9513				      si->dst_reg, si->src_reg,
9514				      offsetof(struct sk_buff, dev));
9515		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9516		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9517				      bpf_target_off(struct net_device, ifindex, 4,
9518						     target_size));
9519		break;
9520
9521	case offsetof(struct __sk_buff, hash):
9522		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9523				      bpf_target_off(struct sk_buff, hash, 4,
9524						     target_size));
9525		break;
9526
9527	case offsetof(struct __sk_buff, mark):
9528		if (type == BPF_WRITE)
9529			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9530						 bpf_target_off(struct sk_buff, mark, 4,
9531								target_size));
9532		else
9533			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9534					      bpf_target_off(struct sk_buff, mark, 4,
9535							     target_size));
9536		break;
9537
9538	case offsetof(struct __sk_buff, pkt_type):
9539		*target_size = 1;
9540		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9541				      PKT_TYPE_OFFSET);
9542		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9543#ifdef __BIG_ENDIAN_BITFIELD
9544		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9545#endif
9546		break;
9547
9548	case offsetof(struct __sk_buff, queue_mapping):
9549		if (type == BPF_WRITE) {
9550			u32 off = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size);
9551
9552			if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) {
9553				*insn++ = BPF_JMP_A(0); /* noop */
9554				break;
9555			}
9556
9557			if (BPF_CLASS(si->code) == BPF_STX)
9558				*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9559			*insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9560		} else {
9561			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9562					      bpf_target_off(struct sk_buff,
9563							     queue_mapping,
9564							     2, target_size));
9565		}
9566		break;
9567
9568	case offsetof(struct __sk_buff, vlan_present):
9569		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9570				      bpf_target_off(struct sk_buff,
9571						     vlan_all, 4, target_size));
9572		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9573		*insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9574		break;
9575
9576	case offsetof(struct __sk_buff, vlan_tci):
9577		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9578				      bpf_target_off(struct sk_buff, vlan_tci, 2,
9579						     target_size));
9580		break;
9581
9582	case offsetof(struct __sk_buff, cb[0]) ...
9583	     offsetofend(struct __sk_buff, cb[4]) - 1:
9584		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9585		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9586			      offsetof(struct qdisc_skb_cb, data)) %
9587			     sizeof(__u64));
9588
9589		prog->cb_access = 1;
9590		off  = si->off;
9591		off -= offsetof(struct __sk_buff, cb[0]);
9592		off += offsetof(struct sk_buff, cb);
9593		off += offsetof(struct qdisc_skb_cb, data);
9594		if (type == BPF_WRITE)
9595			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
9596		else
9597			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9598					      si->src_reg, off);
9599		break;
9600
9601	case offsetof(struct __sk_buff, tc_classid):
9602		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9603
9604		off  = si->off;
9605		off -= offsetof(struct __sk_buff, tc_classid);
9606		off += offsetof(struct sk_buff, cb);
9607		off += offsetof(struct qdisc_skb_cb, tc_classid);
9608		*target_size = 2;
9609		if (type == BPF_WRITE)
9610			*insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9611		else
9612			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9613					      si->src_reg, off);
9614		break;
9615
9616	case offsetof(struct __sk_buff, data):
9617		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9618				      si->dst_reg, si->src_reg,
9619				      offsetof(struct sk_buff, data));
9620		break;
9621
9622	case offsetof(struct __sk_buff, data_meta):
9623		off  = si->off;
9624		off -= offsetof(struct __sk_buff, data_meta);
9625		off += offsetof(struct sk_buff, cb);
9626		off += offsetof(struct bpf_skb_data_end, data_meta);
9627		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9628				      si->src_reg, off);
9629		break;
9630
9631	case offsetof(struct __sk_buff, data_end):
9632		off  = si->off;
9633		off -= offsetof(struct __sk_buff, data_end);
9634		off += offsetof(struct sk_buff, cb);
9635		off += offsetof(struct bpf_skb_data_end, data_end);
9636		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9637				      si->src_reg, off);
9638		break;
9639
9640	case offsetof(struct __sk_buff, tc_index):
9641#ifdef CONFIG_NET_SCHED
9642		if (type == BPF_WRITE)
9643			*insn++ = BPF_EMIT_STORE(BPF_H, si,
9644						 bpf_target_off(struct sk_buff, tc_index, 2,
9645								target_size));
9646		else
9647			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9648					      bpf_target_off(struct sk_buff, tc_index, 2,
9649							     target_size));
9650#else
9651		*target_size = 2;
9652		if (type == BPF_WRITE)
9653			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9654		else
9655			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9656#endif
9657		break;
9658
9659	case offsetof(struct __sk_buff, napi_id):
9660#if defined(CONFIG_NET_RX_BUSY_POLL)
9661		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9662				      bpf_target_off(struct sk_buff, napi_id, 4,
9663						     target_size));
9664		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9665		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9666#else
9667		*target_size = 4;
9668		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9669#endif
9670		break;
9671	case offsetof(struct __sk_buff, family):
9672		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9673
9674		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9675				      si->dst_reg, si->src_reg,
9676				      offsetof(struct sk_buff, sk));
9677		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9678				      bpf_target_off(struct sock_common,
9679						     skc_family,
9680						     2, target_size));
9681		break;
9682	case offsetof(struct __sk_buff, remote_ip4):
9683		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9684
9685		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9686				      si->dst_reg, si->src_reg,
9687				      offsetof(struct sk_buff, sk));
9688		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9689				      bpf_target_off(struct sock_common,
9690						     skc_daddr,
9691						     4, target_size));
9692		break;
9693	case offsetof(struct __sk_buff, local_ip4):
9694		BUILD_BUG_ON(sizeof_field(struct sock_common,
9695					  skc_rcv_saddr) != 4);
9696
9697		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9698				      si->dst_reg, si->src_reg,
9699				      offsetof(struct sk_buff, sk));
9700		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9701				      bpf_target_off(struct sock_common,
9702						     skc_rcv_saddr,
9703						     4, target_size));
9704		break;
9705	case offsetof(struct __sk_buff, remote_ip6[0]) ...
9706	     offsetof(struct __sk_buff, remote_ip6[3]):
9707#if IS_ENABLED(CONFIG_IPV6)
9708		BUILD_BUG_ON(sizeof_field(struct sock_common,
9709					  skc_v6_daddr.s6_addr32[0]) != 4);
9710
9711		off = si->off;
9712		off -= offsetof(struct __sk_buff, remote_ip6[0]);
9713
9714		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9715				      si->dst_reg, si->src_reg,
9716				      offsetof(struct sk_buff, sk));
9717		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9718				      offsetof(struct sock_common,
9719					       skc_v6_daddr.s6_addr32[0]) +
9720				      off);
9721#else
9722		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9723#endif
9724		break;
9725	case offsetof(struct __sk_buff, local_ip6[0]) ...
9726	     offsetof(struct __sk_buff, local_ip6[3]):
9727#if IS_ENABLED(CONFIG_IPV6)
9728		BUILD_BUG_ON(sizeof_field(struct sock_common,
9729					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9730
9731		off = si->off;
9732		off -= offsetof(struct __sk_buff, local_ip6[0]);
9733
9734		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9735				      si->dst_reg, si->src_reg,
9736				      offsetof(struct sk_buff, sk));
9737		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9738				      offsetof(struct sock_common,
9739					       skc_v6_rcv_saddr.s6_addr32[0]) +
9740				      off);
9741#else
9742		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9743#endif
9744		break;
9745
9746	case offsetof(struct __sk_buff, remote_port):
9747		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9748
9749		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9750				      si->dst_reg, si->src_reg,
9751				      offsetof(struct sk_buff, sk));
9752		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9753				      bpf_target_off(struct sock_common,
9754						     skc_dport,
9755						     2, target_size));
9756#ifndef __BIG_ENDIAN_BITFIELD
9757		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9758#endif
9759		break;
9760
9761	case offsetof(struct __sk_buff, local_port):
9762		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9763
9764		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9765				      si->dst_reg, si->src_reg,
9766				      offsetof(struct sk_buff, sk));
9767		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9768				      bpf_target_off(struct sock_common,
9769						     skc_num, 2, target_size));
9770		break;
9771
9772	case offsetof(struct __sk_buff, tstamp):
9773		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9774
9775		if (type == BPF_WRITE)
9776			insn = bpf_convert_tstamp_write(prog, si, insn);
9777		else
9778			insn = bpf_convert_tstamp_read(prog, si, insn);
9779		break;
9780
9781	case offsetof(struct __sk_buff, tstamp_type):
9782		insn = bpf_convert_tstamp_type_read(si, insn);
9783		break;
9784
9785	case offsetof(struct __sk_buff, gso_segs):
9786		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9787		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9788				      si->dst_reg, si->dst_reg,
9789				      bpf_target_off(struct skb_shared_info,
9790						     gso_segs, 2,
9791						     target_size));
9792		break;
9793	case offsetof(struct __sk_buff, gso_size):
9794		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9795		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9796				      si->dst_reg, si->dst_reg,
9797				      bpf_target_off(struct skb_shared_info,
9798						     gso_size, 2,
9799						     target_size));
9800		break;
9801	case offsetof(struct __sk_buff, wire_len):
9802		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9803
9804		off = si->off;
9805		off -= offsetof(struct __sk_buff, wire_len);
9806		off += offsetof(struct sk_buff, cb);
9807		off += offsetof(struct qdisc_skb_cb, pkt_len);
9808		*target_size = 4;
9809		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9810		break;
9811
9812	case offsetof(struct __sk_buff, sk):
9813		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9814				      si->dst_reg, si->src_reg,
9815				      offsetof(struct sk_buff, sk));
9816		break;
9817	case offsetof(struct __sk_buff, hwtstamp):
9818		BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9819		BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9820
9821		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9822		*insn++ = BPF_LDX_MEM(BPF_DW,
9823				      si->dst_reg, si->dst_reg,
9824				      bpf_target_off(struct skb_shared_info,
9825						     hwtstamps, 8,
9826						     target_size));
9827		break;
9828	}
9829
9830	return insn - insn_buf;
9831}
9832
9833u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9834				const struct bpf_insn *si,
9835				struct bpf_insn *insn_buf,
9836				struct bpf_prog *prog, u32 *target_size)
9837{
9838	struct bpf_insn *insn = insn_buf;
9839	int off;
9840
9841	switch (si->off) {
9842	case offsetof(struct bpf_sock, bound_dev_if):
9843		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9844
9845		if (type == BPF_WRITE)
9846			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9847						 offsetof(struct sock, sk_bound_dev_if));
9848		else
9849			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9850				      offsetof(struct sock, sk_bound_dev_if));
9851		break;
9852
9853	case offsetof(struct bpf_sock, mark):
9854		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9855
9856		if (type == BPF_WRITE)
9857			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9858						 offsetof(struct sock, sk_mark));
9859		else
9860			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9861				      offsetof(struct sock, sk_mark));
9862		break;
9863
9864	case offsetof(struct bpf_sock, priority):
9865		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9866
9867		if (type == BPF_WRITE)
9868			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9869						 offsetof(struct sock, sk_priority));
9870		else
9871			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9872				      offsetof(struct sock, sk_priority));
9873		break;
9874
9875	case offsetof(struct bpf_sock, family):
9876		*insn++ = BPF_LDX_MEM(
9877			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9878			si->dst_reg, si->src_reg,
9879			bpf_target_off(struct sock_common,
9880				       skc_family,
9881				       sizeof_field(struct sock_common,
9882						    skc_family),
9883				       target_size));
9884		break;
9885
9886	case offsetof(struct bpf_sock, type):
9887		*insn++ = BPF_LDX_MEM(
9888			BPF_FIELD_SIZEOF(struct sock, sk_type),
9889			si->dst_reg, si->src_reg,
9890			bpf_target_off(struct sock, sk_type,
9891				       sizeof_field(struct sock, sk_type),
9892				       target_size));
9893		break;
9894
9895	case offsetof(struct bpf_sock, protocol):
9896		*insn++ = BPF_LDX_MEM(
9897			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9898			si->dst_reg, si->src_reg,
9899			bpf_target_off(struct sock, sk_protocol,
9900				       sizeof_field(struct sock, sk_protocol),
9901				       target_size));
9902		break;
9903
9904	case offsetof(struct bpf_sock, src_ip4):
9905		*insn++ = BPF_LDX_MEM(
9906			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9907			bpf_target_off(struct sock_common, skc_rcv_saddr,
9908				       sizeof_field(struct sock_common,
9909						    skc_rcv_saddr),
9910				       target_size));
9911		break;
9912
9913	case offsetof(struct bpf_sock, dst_ip4):
9914		*insn++ = BPF_LDX_MEM(
9915			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9916			bpf_target_off(struct sock_common, skc_daddr,
9917				       sizeof_field(struct sock_common,
9918						    skc_daddr),
9919				       target_size));
9920		break;
9921
9922	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9923#if IS_ENABLED(CONFIG_IPV6)
9924		off = si->off;
9925		off -= offsetof(struct bpf_sock, src_ip6[0]);
9926		*insn++ = BPF_LDX_MEM(
9927			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9928			bpf_target_off(
9929				struct sock_common,
9930				skc_v6_rcv_saddr.s6_addr32[0],
9931				sizeof_field(struct sock_common,
9932					     skc_v6_rcv_saddr.s6_addr32[0]),
9933				target_size) + off);
9934#else
9935		(void)off;
9936		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9937#endif
9938		break;
9939
9940	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9941#if IS_ENABLED(CONFIG_IPV6)
9942		off = si->off;
9943		off -= offsetof(struct bpf_sock, dst_ip6[0]);
9944		*insn++ = BPF_LDX_MEM(
9945			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9946			bpf_target_off(struct sock_common,
9947				       skc_v6_daddr.s6_addr32[0],
9948				       sizeof_field(struct sock_common,
9949						    skc_v6_daddr.s6_addr32[0]),
9950				       target_size) + off);
9951#else
9952		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9953		*target_size = 4;
9954#endif
9955		break;
9956
9957	case offsetof(struct bpf_sock, src_port):
9958		*insn++ = BPF_LDX_MEM(
9959			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9960			si->dst_reg, si->src_reg,
9961			bpf_target_off(struct sock_common, skc_num,
9962				       sizeof_field(struct sock_common,
9963						    skc_num),
9964				       target_size));
9965		break;
9966
9967	case offsetof(struct bpf_sock, dst_port):
9968		*insn++ = BPF_LDX_MEM(
9969			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9970			si->dst_reg, si->src_reg,
9971			bpf_target_off(struct sock_common, skc_dport,
9972				       sizeof_field(struct sock_common,
9973						    skc_dport),
9974				       target_size));
9975		break;
9976
9977	case offsetof(struct bpf_sock, state):
9978		*insn++ = BPF_LDX_MEM(
9979			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9980			si->dst_reg, si->src_reg,
9981			bpf_target_off(struct sock_common, skc_state,
9982				       sizeof_field(struct sock_common,
9983						    skc_state),
9984				       target_size));
9985		break;
9986	case offsetof(struct bpf_sock, rx_queue_mapping):
9987#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9988		*insn++ = BPF_LDX_MEM(
9989			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9990			si->dst_reg, si->src_reg,
9991			bpf_target_off(struct sock, sk_rx_queue_mapping,
9992				       sizeof_field(struct sock,
9993						    sk_rx_queue_mapping),
9994				       target_size));
9995		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9996				      1);
9997		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9998#else
9999		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10000		*target_size = 2;
10001#endif
10002		break;
10003	}
10004
10005	return insn - insn_buf;
10006}
10007
10008static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
10009					 const struct bpf_insn *si,
10010					 struct bpf_insn *insn_buf,
10011					 struct bpf_prog *prog, u32 *target_size)
10012{
10013	struct bpf_insn *insn = insn_buf;
10014
10015	switch (si->off) {
10016	case offsetof(struct __sk_buff, ifindex):
10017		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
10018				      si->dst_reg, si->src_reg,
10019				      offsetof(struct sk_buff, dev));
10020		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10021				      bpf_target_off(struct net_device, ifindex, 4,
10022						     target_size));
10023		break;
10024	default:
10025		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10026					      target_size);
10027	}
10028
10029	return insn - insn_buf;
10030}
10031
10032static u32 xdp_convert_ctx_access(enum bpf_access_type type,
10033				  const struct bpf_insn *si,
10034				  struct bpf_insn *insn_buf,
10035				  struct bpf_prog *prog, u32 *target_size)
10036{
10037	struct bpf_insn *insn = insn_buf;
10038
10039	switch (si->off) {
10040	case offsetof(struct xdp_md, data):
10041		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
10042				      si->dst_reg, si->src_reg,
10043				      offsetof(struct xdp_buff, data));
10044		break;
10045	case offsetof(struct xdp_md, data_meta):
10046		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
10047				      si->dst_reg, si->src_reg,
10048				      offsetof(struct xdp_buff, data_meta));
10049		break;
10050	case offsetof(struct xdp_md, data_end):
10051		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
10052				      si->dst_reg, si->src_reg,
10053				      offsetof(struct xdp_buff, data_end));
10054		break;
10055	case offsetof(struct xdp_md, ingress_ifindex):
10056		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10057				      si->dst_reg, si->src_reg,
10058				      offsetof(struct xdp_buff, rxq));
10059		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
10060				      si->dst_reg, si->dst_reg,
10061				      offsetof(struct xdp_rxq_info, dev));
10062		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10063				      offsetof(struct net_device, ifindex));
10064		break;
10065	case offsetof(struct xdp_md, rx_queue_index):
10066		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10067				      si->dst_reg, si->src_reg,
10068				      offsetof(struct xdp_buff, rxq));
10069		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10070				      offsetof(struct xdp_rxq_info,
10071					       queue_index));
10072		break;
10073	case offsetof(struct xdp_md, egress_ifindex):
10074		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
10075				      si->dst_reg, si->src_reg,
10076				      offsetof(struct xdp_buff, txq));
10077		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
10078				      si->dst_reg, si->dst_reg,
10079				      offsetof(struct xdp_txq_info, dev));
10080		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10081				      offsetof(struct net_device, ifindex));
10082		break;
10083	}
10084
10085	return insn - insn_buf;
10086}
10087
10088/* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
10089 * context Structure, F is Field in context structure that contains a pointer
10090 * to Nested Structure of type NS that has the field NF.
10091 *
10092 * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
10093 * sure that SIZE is not greater than actual size of S.F.NF.
10094 *
10095 * If offset OFF is provided, the load happens from that offset relative to
10096 * offset of NF.
10097 */
10098#define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
10099	do {								       \
10100		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
10101				      si->src_reg, offsetof(S, F));	       \
10102		*insn++ = BPF_LDX_MEM(					       \
10103			SIZE, si->dst_reg, si->dst_reg,			       \
10104			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10105				       target_size)			       \
10106				+ OFF);					       \
10107	} while (0)
10108
10109#define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
10110	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
10111					     BPF_FIELD_SIZEOF(NS, NF), 0)
10112
10113/* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10114 * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10115 *
10116 * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10117 * "register" since two registers available in convert_ctx_access are not
10118 * enough: we can't override neither SRC, since it contains value to store, nor
10119 * DST since it contains pointer to context that may be used by later
10120 * instructions. But we need a temporary place to save pointer to nested
10121 * structure whose field we want to store to.
10122 */
10123#define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
10124	do {								       \
10125		int tmp_reg = BPF_REG_9;				       \
10126		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10127			--tmp_reg;					       \
10128		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10129			--tmp_reg;					       \
10130		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
10131				      offsetof(S, TF));			       \
10132		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
10133				      si->dst_reg, offsetof(S, F));	       \
10134		*insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code),   \
10135				       tmp_reg, si->src_reg,		       \
10136			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10137				       target_size)			       \
10138				       + OFF,				       \
10139				       si->imm);			       \
10140		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
10141				      offsetof(S, TF));			       \
10142	} while (0)
10143
10144#define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10145						      TF)		       \
10146	do {								       \
10147		if (type == BPF_WRITE) {				       \
10148			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
10149							 OFF, TF);	       \
10150		} else {						       \
10151			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
10152				S, NS, F, NF, SIZE, OFF);  \
10153		}							       \
10154	} while (0)
10155
10156#define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
10157	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
10158		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
10159
10160static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10161					const struct bpf_insn *si,
10162					struct bpf_insn *insn_buf,
10163					struct bpf_prog *prog, u32 *target_size)
10164{
10165	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10166	struct bpf_insn *insn = insn_buf;
10167
10168	switch (si->off) {
10169	case offsetof(struct bpf_sock_addr, user_family):
10170		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10171					    struct sockaddr, uaddr, sa_family);
10172		break;
10173
10174	case offsetof(struct bpf_sock_addr, user_ip4):
10175		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10176			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10177			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10178		break;
10179
10180	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10181		off = si->off;
10182		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10183		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10184			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10185			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10186			tmp_reg);
10187		break;
10188
10189	case offsetof(struct bpf_sock_addr, user_port):
10190		/* To get port we need to know sa_family first and then treat
10191		 * sockaddr as either sockaddr_in or sockaddr_in6.
10192		 * Though we can simplify since port field has same offset and
10193		 * size in both structures.
10194		 * Here we check this invariant and use just one of the
10195		 * structures if it's true.
10196		 */
10197		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10198			     offsetof(struct sockaddr_in6, sin6_port));
10199		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10200			     sizeof_field(struct sockaddr_in6, sin6_port));
10201		/* Account for sin6_port being smaller than user_port. */
10202		port_size = min(port_size, BPF_LDST_BYTES(si));
10203		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10204			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10205			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10206		break;
10207
10208	case offsetof(struct bpf_sock_addr, family):
10209		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10210					    struct sock, sk, sk_family);
10211		break;
10212
10213	case offsetof(struct bpf_sock_addr, type):
10214		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10215					    struct sock, sk, sk_type);
10216		break;
10217
10218	case offsetof(struct bpf_sock_addr, protocol):
10219		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10220					    struct sock, sk, sk_protocol);
10221		break;
10222
10223	case offsetof(struct bpf_sock_addr, msg_src_ip4):
10224		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
10225		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10226			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10227			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10228		break;
10229
10230	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10231				msg_src_ip6[3]):
10232		off = si->off;
10233		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10234		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10235		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10236			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10237			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10238		break;
10239	case offsetof(struct bpf_sock_addr, sk):
10240		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10241				      si->dst_reg, si->src_reg,
10242				      offsetof(struct bpf_sock_addr_kern, sk));
10243		break;
10244	}
10245
10246	return insn - insn_buf;
10247}
10248
10249static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10250				       const struct bpf_insn *si,
10251				       struct bpf_insn *insn_buf,
10252				       struct bpf_prog *prog,
10253				       u32 *target_size)
10254{
10255	struct bpf_insn *insn = insn_buf;
10256	int off;
10257
10258/* Helper macro for adding read access to tcp_sock or sock fields. */
10259#define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10260	do {								      \
10261		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
10262		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10263			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10264		if (si->dst_reg == reg || si->src_reg == reg)		      \
10265			reg--;						      \
10266		if (si->dst_reg == reg || si->src_reg == reg)		      \
10267			reg--;						      \
10268		if (si->dst_reg == si->src_reg) {			      \
10269			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10270					  offsetof(struct bpf_sock_ops_kern,  \
10271					  temp));			      \
10272			fullsock_reg = reg;				      \
10273			jmp += 2;					      \
10274		}							      \
10275		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10276						struct bpf_sock_ops_kern,     \
10277						is_fullsock),		      \
10278				      fullsock_reg, si->src_reg,	      \
10279				      offsetof(struct bpf_sock_ops_kern,      \
10280					       is_fullsock));		      \
10281		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10282		if (si->dst_reg == si->src_reg)				      \
10283			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10284				      offsetof(struct bpf_sock_ops_kern,      \
10285				      temp));				      \
10286		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10287						struct bpf_sock_ops_kern, sk),\
10288				      si->dst_reg, si->src_reg,		      \
10289				      offsetof(struct bpf_sock_ops_kern, sk));\
10290		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
10291						       OBJ_FIELD),	      \
10292				      si->dst_reg, si->dst_reg,		      \
10293				      offsetof(OBJ, OBJ_FIELD));	      \
10294		if (si->dst_reg == si->src_reg)	{			      \
10295			*insn++ = BPF_JMP_A(1);				      \
10296			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10297				      offsetof(struct bpf_sock_ops_kern,      \
10298				      temp));				      \
10299		}							      \
10300	} while (0)
10301
10302#define SOCK_OPS_GET_SK()							      \
10303	do {								      \
10304		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10305		if (si->dst_reg == reg || si->src_reg == reg)		      \
10306			reg--;						      \
10307		if (si->dst_reg == reg || si->src_reg == reg)		      \
10308			reg--;						      \
10309		if (si->dst_reg == si->src_reg) {			      \
10310			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10311					  offsetof(struct bpf_sock_ops_kern,  \
10312					  temp));			      \
10313			fullsock_reg = reg;				      \
10314			jmp += 2;					      \
10315		}							      \
10316		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10317						struct bpf_sock_ops_kern,     \
10318						is_fullsock),		      \
10319				      fullsock_reg, si->src_reg,	      \
10320				      offsetof(struct bpf_sock_ops_kern,      \
10321					       is_fullsock));		      \
10322		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10323		if (si->dst_reg == si->src_reg)				      \
10324			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10325				      offsetof(struct bpf_sock_ops_kern,      \
10326				      temp));				      \
10327		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10328						struct bpf_sock_ops_kern, sk),\
10329				      si->dst_reg, si->src_reg,		      \
10330				      offsetof(struct bpf_sock_ops_kern, sk));\
10331		if (si->dst_reg == si->src_reg)	{			      \
10332			*insn++ = BPF_JMP_A(1);				      \
10333			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10334				      offsetof(struct bpf_sock_ops_kern,      \
10335				      temp));				      \
10336		}							      \
10337	} while (0)
10338
10339#define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10340		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10341
10342/* Helper macro for adding write access to tcp_sock or sock fields.
10343 * The macro is called with two registers, dst_reg which contains a pointer
10344 * to ctx (context) and src_reg which contains the value that should be
10345 * stored. However, we need an additional register since we cannot overwrite
10346 * dst_reg because it may be used later in the program.
10347 * Instead we "borrow" one of the other register. We first save its value
10348 * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10349 * it at the end of the macro.
10350 */
10351#define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10352	do {								      \
10353		int reg = BPF_REG_9;					      \
10354		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10355			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10356		if (si->dst_reg == reg || si->src_reg == reg)		      \
10357			reg--;						      \
10358		if (si->dst_reg == reg || si->src_reg == reg)		      \
10359			reg--;						      \
10360		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
10361				      offsetof(struct bpf_sock_ops_kern,      \
10362					       temp));			      \
10363		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10364						struct bpf_sock_ops_kern,     \
10365						is_fullsock),		      \
10366				      reg, si->dst_reg,			      \
10367				      offsetof(struct bpf_sock_ops_kern,      \
10368					       is_fullsock));		      \
10369		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
10370		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10371						struct bpf_sock_ops_kern, sk),\
10372				      reg, si->dst_reg,			      \
10373				      offsetof(struct bpf_sock_ops_kern, sk));\
10374		*insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) |     \
10375				       BPF_MEM | BPF_CLASS(si->code),	      \
10376				       reg, si->src_reg,		      \
10377				       offsetof(OBJ, OBJ_FIELD),	      \
10378				       si->imm);			      \
10379		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
10380				      offsetof(struct bpf_sock_ops_kern,      \
10381					       temp));			      \
10382	} while (0)
10383
10384#define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
10385	do {								      \
10386		if (TYPE == BPF_WRITE)					      \
10387			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10388		else							      \
10389			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10390	} while (0)
10391
10392	switch (si->off) {
10393	case offsetof(struct bpf_sock_ops, op):
10394		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10395						       op),
10396				      si->dst_reg, si->src_reg,
10397				      offsetof(struct bpf_sock_ops_kern, op));
10398		break;
10399
10400	case offsetof(struct bpf_sock_ops, replylong[0]) ...
10401	     offsetof(struct bpf_sock_ops, replylong[3]):
10402		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10403			     sizeof_field(struct bpf_sock_ops_kern, reply));
10404		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10405			     sizeof_field(struct bpf_sock_ops_kern, replylong));
10406		off = si->off;
10407		off -= offsetof(struct bpf_sock_ops, replylong[0]);
10408		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10409		if (type == BPF_WRITE)
10410			*insn++ = BPF_EMIT_STORE(BPF_W, si, off);
10411		else
10412			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10413					      off);
10414		break;
10415
10416	case offsetof(struct bpf_sock_ops, family):
10417		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10418
10419		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10420					      struct bpf_sock_ops_kern, sk),
10421				      si->dst_reg, si->src_reg,
10422				      offsetof(struct bpf_sock_ops_kern, sk));
10423		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10424				      offsetof(struct sock_common, skc_family));
10425		break;
10426
10427	case offsetof(struct bpf_sock_ops, remote_ip4):
10428		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10429
10430		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10431						struct bpf_sock_ops_kern, sk),
10432				      si->dst_reg, si->src_reg,
10433				      offsetof(struct bpf_sock_ops_kern, sk));
10434		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10435				      offsetof(struct sock_common, skc_daddr));
10436		break;
10437
10438	case offsetof(struct bpf_sock_ops, local_ip4):
10439		BUILD_BUG_ON(sizeof_field(struct sock_common,
10440					  skc_rcv_saddr) != 4);
10441
10442		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10443					      struct bpf_sock_ops_kern, sk),
10444				      si->dst_reg, si->src_reg,
10445				      offsetof(struct bpf_sock_ops_kern, sk));
10446		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10447				      offsetof(struct sock_common,
10448					       skc_rcv_saddr));
10449		break;
10450
10451	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10452	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
10453#if IS_ENABLED(CONFIG_IPV6)
10454		BUILD_BUG_ON(sizeof_field(struct sock_common,
10455					  skc_v6_daddr.s6_addr32[0]) != 4);
10456
10457		off = si->off;
10458		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10459		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10460						struct bpf_sock_ops_kern, sk),
10461				      si->dst_reg, si->src_reg,
10462				      offsetof(struct bpf_sock_ops_kern, sk));
10463		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10464				      offsetof(struct sock_common,
10465					       skc_v6_daddr.s6_addr32[0]) +
10466				      off);
10467#else
10468		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10469#endif
10470		break;
10471
10472	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10473	     offsetof(struct bpf_sock_ops, local_ip6[3]):
10474#if IS_ENABLED(CONFIG_IPV6)
10475		BUILD_BUG_ON(sizeof_field(struct sock_common,
10476					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10477
10478		off = si->off;
10479		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10480		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10481						struct bpf_sock_ops_kern, sk),
10482				      si->dst_reg, si->src_reg,
10483				      offsetof(struct bpf_sock_ops_kern, sk));
10484		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10485				      offsetof(struct sock_common,
10486					       skc_v6_rcv_saddr.s6_addr32[0]) +
10487				      off);
10488#else
10489		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10490#endif
10491		break;
10492
10493	case offsetof(struct bpf_sock_ops, remote_port):
10494		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10495
10496		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10497						struct bpf_sock_ops_kern, sk),
10498				      si->dst_reg, si->src_reg,
10499				      offsetof(struct bpf_sock_ops_kern, sk));
10500		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10501				      offsetof(struct sock_common, skc_dport));
10502#ifndef __BIG_ENDIAN_BITFIELD
10503		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10504#endif
10505		break;
10506
10507	case offsetof(struct bpf_sock_ops, local_port):
10508		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10509
10510		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10511						struct bpf_sock_ops_kern, sk),
10512				      si->dst_reg, si->src_reg,
10513				      offsetof(struct bpf_sock_ops_kern, sk));
10514		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10515				      offsetof(struct sock_common, skc_num));
10516		break;
10517
10518	case offsetof(struct bpf_sock_ops, is_fullsock):
10519		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10520						struct bpf_sock_ops_kern,
10521						is_fullsock),
10522				      si->dst_reg, si->src_reg,
10523				      offsetof(struct bpf_sock_ops_kern,
10524					       is_fullsock));
10525		break;
10526
10527	case offsetof(struct bpf_sock_ops, state):
10528		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10529
10530		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10531						struct bpf_sock_ops_kern, sk),
10532				      si->dst_reg, si->src_reg,
10533				      offsetof(struct bpf_sock_ops_kern, sk));
10534		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10535				      offsetof(struct sock_common, skc_state));
10536		break;
10537
10538	case offsetof(struct bpf_sock_ops, rtt_min):
10539		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10540			     sizeof(struct minmax));
10541		BUILD_BUG_ON(sizeof(struct minmax) <
10542			     sizeof(struct minmax_sample));
10543
10544		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10545						struct bpf_sock_ops_kern, sk),
10546				      si->dst_reg, si->src_reg,
10547				      offsetof(struct bpf_sock_ops_kern, sk));
10548		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10549				      offsetof(struct tcp_sock, rtt_min) +
10550				      sizeof_field(struct minmax_sample, t));
10551		break;
10552
10553	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10554		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10555				   struct tcp_sock);
10556		break;
10557
10558	case offsetof(struct bpf_sock_ops, sk_txhash):
10559		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10560					  struct sock, type);
10561		break;
10562	case offsetof(struct bpf_sock_ops, snd_cwnd):
10563		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10564		break;
10565	case offsetof(struct bpf_sock_ops, srtt_us):
10566		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10567		break;
10568	case offsetof(struct bpf_sock_ops, snd_ssthresh):
10569		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10570		break;
10571	case offsetof(struct bpf_sock_ops, rcv_nxt):
10572		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10573		break;
10574	case offsetof(struct bpf_sock_ops, snd_nxt):
10575		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10576		break;
10577	case offsetof(struct bpf_sock_ops, snd_una):
10578		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10579		break;
10580	case offsetof(struct bpf_sock_ops, mss_cache):
10581		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10582		break;
10583	case offsetof(struct bpf_sock_ops, ecn_flags):
10584		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10585		break;
10586	case offsetof(struct bpf_sock_ops, rate_delivered):
10587		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10588		break;
10589	case offsetof(struct bpf_sock_ops, rate_interval_us):
10590		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10591		break;
10592	case offsetof(struct bpf_sock_ops, packets_out):
10593		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10594		break;
10595	case offsetof(struct bpf_sock_ops, retrans_out):
10596		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10597		break;
10598	case offsetof(struct bpf_sock_ops, total_retrans):
10599		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10600		break;
10601	case offsetof(struct bpf_sock_ops, segs_in):
10602		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10603		break;
10604	case offsetof(struct bpf_sock_ops, data_segs_in):
10605		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10606		break;
10607	case offsetof(struct bpf_sock_ops, segs_out):
10608		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10609		break;
10610	case offsetof(struct bpf_sock_ops, data_segs_out):
10611		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10612		break;
10613	case offsetof(struct bpf_sock_ops, lost_out):
10614		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10615		break;
10616	case offsetof(struct bpf_sock_ops, sacked_out):
10617		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10618		break;
10619	case offsetof(struct bpf_sock_ops, bytes_received):
10620		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10621		break;
10622	case offsetof(struct bpf_sock_ops, bytes_acked):
10623		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10624		break;
10625	case offsetof(struct bpf_sock_ops, sk):
10626		SOCK_OPS_GET_SK();
10627		break;
10628	case offsetof(struct bpf_sock_ops, skb_data_end):
10629		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10630						       skb_data_end),
10631				      si->dst_reg, si->src_reg,
10632				      offsetof(struct bpf_sock_ops_kern,
10633					       skb_data_end));
10634		break;
10635	case offsetof(struct bpf_sock_ops, skb_data):
10636		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10637						       skb),
10638				      si->dst_reg, si->src_reg,
10639				      offsetof(struct bpf_sock_ops_kern,
10640					       skb));
10641		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10642		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10643				      si->dst_reg, si->dst_reg,
10644				      offsetof(struct sk_buff, data));
10645		break;
10646	case offsetof(struct bpf_sock_ops, skb_len):
10647		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10648						       skb),
10649				      si->dst_reg, si->src_reg,
10650				      offsetof(struct bpf_sock_ops_kern,
10651					       skb));
10652		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10653		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10654				      si->dst_reg, si->dst_reg,
10655				      offsetof(struct sk_buff, len));
10656		break;
10657	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10658		off = offsetof(struct sk_buff, cb);
10659		off += offsetof(struct tcp_skb_cb, tcp_flags);
10660		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10661		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10662						       skb),
10663				      si->dst_reg, si->src_reg,
10664				      offsetof(struct bpf_sock_ops_kern,
10665					       skb));
10666		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10667		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10668						       tcp_flags),
10669				      si->dst_reg, si->dst_reg, off);
10670		break;
10671	case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10672		struct bpf_insn *jmp_on_null_skb;
10673
10674		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10675						       skb),
10676				      si->dst_reg, si->src_reg,
10677				      offsetof(struct bpf_sock_ops_kern,
10678					       skb));
10679		/* Reserve one insn to test skb == NULL */
10680		jmp_on_null_skb = insn++;
10681		insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10682		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10683				      bpf_target_off(struct skb_shared_info,
10684						     hwtstamps, 8,
10685						     target_size));
10686		*jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10687					       insn - jmp_on_null_skb - 1);
10688		break;
10689	}
10690	}
10691	return insn - insn_buf;
10692}
10693
10694/* data_end = skb->data + skb_headlen() */
10695static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10696						    struct bpf_insn *insn)
10697{
10698	int reg;
10699	int temp_reg_off = offsetof(struct sk_buff, cb) +
10700			   offsetof(struct sk_skb_cb, temp_reg);
10701
10702	if (si->src_reg == si->dst_reg) {
10703		/* We need an extra register, choose and save a register. */
10704		reg = BPF_REG_9;
10705		if (si->src_reg == reg || si->dst_reg == reg)
10706			reg--;
10707		if (si->src_reg == reg || si->dst_reg == reg)
10708			reg--;
10709		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10710	} else {
10711		reg = si->dst_reg;
10712	}
10713
10714	/* reg = skb->data */
10715	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10716			      reg, si->src_reg,
10717			      offsetof(struct sk_buff, data));
10718	/* AX = skb->len */
10719	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10720			      BPF_REG_AX, si->src_reg,
10721			      offsetof(struct sk_buff, len));
10722	/* reg = skb->data + skb->len */
10723	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10724	/* AX = skb->data_len */
10725	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10726			      BPF_REG_AX, si->src_reg,
10727			      offsetof(struct sk_buff, data_len));
10728
10729	/* reg = skb->data + skb->len - skb->data_len */
10730	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10731
10732	if (si->src_reg == si->dst_reg) {
10733		/* Restore the saved register */
10734		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10735		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10736		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10737	}
10738
10739	return insn;
10740}
10741
10742static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10743				     const struct bpf_insn *si,
10744				     struct bpf_insn *insn_buf,
10745				     struct bpf_prog *prog, u32 *target_size)
10746{
10747	struct bpf_insn *insn = insn_buf;
10748	int off;
10749
10750	switch (si->off) {
10751	case offsetof(struct __sk_buff, data_end):
10752		insn = bpf_convert_data_end_access(si, insn);
10753		break;
10754	case offsetof(struct __sk_buff, cb[0]) ...
10755	     offsetofend(struct __sk_buff, cb[4]) - 1:
10756		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10757		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10758			      offsetof(struct sk_skb_cb, data)) %
10759			     sizeof(__u64));
10760
10761		prog->cb_access = 1;
10762		off  = si->off;
10763		off -= offsetof(struct __sk_buff, cb[0]);
10764		off += offsetof(struct sk_buff, cb);
10765		off += offsetof(struct sk_skb_cb, data);
10766		if (type == BPF_WRITE)
10767			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
10768		else
10769			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10770					      si->src_reg, off);
10771		break;
10772
10773
10774	default:
10775		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10776					      target_size);
10777	}
10778
10779	return insn - insn_buf;
10780}
10781
10782static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10783				     const struct bpf_insn *si,
10784				     struct bpf_insn *insn_buf,
10785				     struct bpf_prog *prog, u32 *target_size)
10786{
10787	struct bpf_insn *insn = insn_buf;
10788#if IS_ENABLED(CONFIG_IPV6)
10789	int off;
10790#endif
10791
10792	/* convert ctx uses the fact sg element is first in struct */
10793	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10794
10795	switch (si->off) {
10796	case offsetof(struct sk_msg_md, data):
10797		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10798				      si->dst_reg, si->src_reg,
10799				      offsetof(struct sk_msg, data));
10800		break;
10801	case offsetof(struct sk_msg_md, data_end):
10802		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10803				      si->dst_reg, si->src_reg,
10804				      offsetof(struct sk_msg, data_end));
10805		break;
10806	case offsetof(struct sk_msg_md, family):
10807		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10808
10809		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10810					      struct sk_msg, sk),
10811				      si->dst_reg, si->src_reg,
10812				      offsetof(struct sk_msg, sk));
10813		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10814				      offsetof(struct sock_common, skc_family));
10815		break;
10816
10817	case offsetof(struct sk_msg_md, remote_ip4):
10818		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10819
10820		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10821						struct sk_msg, sk),
10822				      si->dst_reg, si->src_reg,
10823				      offsetof(struct sk_msg, sk));
10824		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10825				      offsetof(struct sock_common, skc_daddr));
10826		break;
10827
10828	case offsetof(struct sk_msg_md, local_ip4):
10829		BUILD_BUG_ON(sizeof_field(struct sock_common,
10830					  skc_rcv_saddr) != 4);
10831
10832		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10833					      struct sk_msg, sk),
10834				      si->dst_reg, si->src_reg,
10835				      offsetof(struct sk_msg, sk));
10836		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10837				      offsetof(struct sock_common,
10838					       skc_rcv_saddr));
10839		break;
10840
10841	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10842	     offsetof(struct sk_msg_md, remote_ip6[3]):
10843#if IS_ENABLED(CONFIG_IPV6)
10844		BUILD_BUG_ON(sizeof_field(struct sock_common,
10845					  skc_v6_daddr.s6_addr32[0]) != 4);
10846
10847		off = si->off;
10848		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10849		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10850						struct sk_msg, sk),
10851				      si->dst_reg, si->src_reg,
10852				      offsetof(struct sk_msg, sk));
10853		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10854				      offsetof(struct sock_common,
10855					       skc_v6_daddr.s6_addr32[0]) +
10856				      off);
10857#else
10858		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10859#endif
10860		break;
10861
10862	case offsetof(struct sk_msg_md, local_ip6[0]) ...
10863	     offsetof(struct sk_msg_md, local_ip6[3]):
10864#if IS_ENABLED(CONFIG_IPV6)
10865		BUILD_BUG_ON(sizeof_field(struct sock_common,
10866					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10867
10868		off = si->off;
10869		off -= offsetof(struct sk_msg_md, local_ip6[0]);
10870		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10871						struct sk_msg, sk),
10872				      si->dst_reg, si->src_reg,
10873				      offsetof(struct sk_msg, sk));
10874		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10875				      offsetof(struct sock_common,
10876					       skc_v6_rcv_saddr.s6_addr32[0]) +
10877				      off);
10878#else
10879		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10880#endif
10881		break;
10882
10883	case offsetof(struct sk_msg_md, remote_port):
10884		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10885
10886		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10887						struct sk_msg, sk),
10888				      si->dst_reg, si->src_reg,
10889				      offsetof(struct sk_msg, sk));
10890		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10891				      offsetof(struct sock_common, skc_dport));
10892#ifndef __BIG_ENDIAN_BITFIELD
10893		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10894#endif
10895		break;
10896
10897	case offsetof(struct sk_msg_md, local_port):
10898		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10899
10900		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10901						struct sk_msg, sk),
10902				      si->dst_reg, si->src_reg,
10903				      offsetof(struct sk_msg, sk));
10904		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10905				      offsetof(struct sock_common, skc_num));
10906		break;
10907
10908	case offsetof(struct sk_msg_md, size):
10909		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10910				      si->dst_reg, si->src_reg,
10911				      offsetof(struct sk_msg_sg, size));
10912		break;
10913
10914	case offsetof(struct sk_msg_md, sk):
10915		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10916				      si->dst_reg, si->src_reg,
10917				      offsetof(struct sk_msg, sk));
10918		break;
10919	}
10920
10921	return insn - insn_buf;
10922}
10923
10924const struct bpf_verifier_ops sk_filter_verifier_ops = {
10925	.get_func_proto		= sk_filter_func_proto,
10926	.is_valid_access	= sk_filter_is_valid_access,
10927	.convert_ctx_access	= bpf_convert_ctx_access,
10928	.gen_ld_abs		= bpf_gen_ld_abs,
10929};
10930
10931const struct bpf_prog_ops sk_filter_prog_ops = {
10932	.test_run		= bpf_prog_test_run_skb,
10933};
10934
10935const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10936	.get_func_proto		= tc_cls_act_func_proto,
10937	.is_valid_access	= tc_cls_act_is_valid_access,
10938	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
10939	.gen_prologue		= tc_cls_act_prologue,
10940	.gen_ld_abs		= bpf_gen_ld_abs,
10941	.btf_struct_access	= tc_cls_act_btf_struct_access,
10942};
10943
10944const struct bpf_prog_ops tc_cls_act_prog_ops = {
10945	.test_run		= bpf_prog_test_run_skb,
10946};
10947
10948const struct bpf_verifier_ops xdp_verifier_ops = {
10949	.get_func_proto		= xdp_func_proto,
10950	.is_valid_access	= xdp_is_valid_access,
10951	.convert_ctx_access	= xdp_convert_ctx_access,
10952	.gen_prologue		= bpf_noop_prologue,
10953	.btf_struct_access	= xdp_btf_struct_access,
10954};
10955
10956const struct bpf_prog_ops xdp_prog_ops = {
10957	.test_run		= bpf_prog_test_run_xdp,
10958};
10959
10960const struct bpf_verifier_ops cg_skb_verifier_ops = {
10961	.get_func_proto		= cg_skb_func_proto,
10962	.is_valid_access	= cg_skb_is_valid_access,
10963	.convert_ctx_access	= bpf_convert_ctx_access,
10964};
10965
10966const struct bpf_prog_ops cg_skb_prog_ops = {
10967	.test_run		= bpf_prog_test_run_skb,
10968};
10969
10970const struct bpf_verifier_ops lwt_in_verifier_ops = {
10971	.get_func_proto		= lwt_in_func_proto,
10972	.is_valid_access	= lwt_is_valid_access,
10973	.convert_ctx_access	= bpf_convert_ctx_access,
10974};
10975
10976const struct bpf_prog_ops lwt_in_prog_ops = {
10977	.test_run		= bpf_prog_test_run_skb,
10978};
10979
10980const struct bpf_verifier_ops lwt_out_verifier_ops = {
10981	.get_func_proto		= lwt_out_func_proto,
10982	.is_valid_access	= lwt_is_valid_access,
10983	.convert_ctx_access	= bpf_convert_ctx_access,
10984};
10985
10986const struct bpf_prog_ops lwt_out_prog_ops = {
10987	.test_run		= bpf_prog_test_run_skb,
10988};
10989
10990const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10991	.get_func_proto		= lwt_xmit_func_proto,
10992	.is_valid_access	= lwt_is_valid_access,
10993	.convert_ctx_access	= bpf_convert_ctx_access,
10994	.gen_prologue		= tc_cls_act_prologue,
10995};
10996
10997const struct bpf_prog_ops lwt_xmit_prog_ops = {
10998	.test_run		= bpf_prog_test_run_skb,
10999};
11000
11001const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
11002	.get_func_proto		= lwt_seg6local_func_proto,
11003	.is_valid_access	= lwt_is_valid_access,
11004	.convert_ctx_access	= bpf_convert_ctx_access,
11005};
11006
11007const struct bpf_prog_ops lwt_seg6local_prog_ops = {
11008	.test_run		= bpf_prog_test_run_skb,
11009};
11010
11011const struct bpf_verifier_ops cg_sock_verifier_ops = {
11012	.get_func_proto		= sock_filter_func_proto,
11013	.is_valid_access	= sock_filter_is_valid_access,
11014	.convert_ctx_access	= bpf_sock_convert_ctx_access,
11015};
11016
11017const struct bpf_prog_ops cg_sock_prog_ops = {
11018};
11019
11020const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
11021	.get_func_proto		= sock_addr_func_proto,
11022	.is_valid_access	= sock_addr_is_valid_access,
11023	.convert_ctx_access	= sock_addr_convert_ctx_access,
11024};
11025
11026const struct bpf_prog_ops cg_sock_addr_prog_ops = {
11027};
11028
11029const struct bpf_verifier_ops sock_ops_verifier_ops = {
11030	.get_func_proto		= sock_ops_func_proto,
11031	.is_valid_access	= sock_ops_is_valid_access,
11032	.convert_ctx_access	= sock_ops_convert_ctx_access,
11033};
11034
11035const struct bpf_prog_ops sock_ops_prog_ops = {
11036};
11037
11038const struct bpf_verifier_ops sk_skb_verifier_ops = {
11039	.get_func_proto		= sk_skb_func_proto,
11040	.is_valid_access	= sk_skb_is_valid_access,
11041	.convert_ctx_access	= sk_skb_convert_ctx_access,
11042	.gen_prologue		= sk_skb_prologue,
11043};
11044
11045const struct bpf_prog_ops sk_skb_prog_ops = {
11046};
11047
11048const struct bpf_verifier_ops sk_msg_verifier_ops = {
11049	.get_func_proto		= sk_msg_func_proto,
11050	.is_valid_access	= sk_msg_is_valid_access,
11051	.convert_ctx_access	= sk_msg_convert_ctx_access,
11052	.gen_prologue		= bpf_noop_prologue,
11053};
11054
11055const struct bpf_prog_ops sk_msg_prog_ops = {
11056};
11057
11058const struct bpf_verifier_ops flow_dissector_verifier_ops = {
11059	.get_func_proto		= flow_dissector_func_proto,
11060	.is_valid_access	= flow_dissector_is_valid_access,
11061	.convert_ctx_access	= flow_dissector_convert_ctx_access,
11062};
11063
11064const struct bpf_prog_ops flow_dissector_prog_ops = {
11065	.test_run		= bpf_prog_test_run_flow_dissector,
11066};
11067
11068int sk_detach_filter(struct sock *sk)
11069{
11070	int ret = -ENOENT;
11071	struct sk_filter *filter;
11072
11073	if (sock_flag(sk, SOCK_FILTER_LOCKED))
11074		return -EPERM;
11075
11076	filter = rcu_dereference_protected(sk->sk_filter,
11077					   lockdep_sock_is_held(sk));
11078	if (filter) {
11079		RCU_INIT_POINTER(sk->sk_filter, NULL);
11080		sk_filter_uncharge(sk, filter);
11081		ret = 0;
11082	}
11083
11084	return ret;
11085}
11086EXPORT_SYMBOL_GPL(sk_detach_filter);
11087
11088int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
11089{
11090	struct sock_fprog_kern *fprog;
11091	struct sk_filter *filter;
11092	int ret = 0;
11093
11094	sockopt_lock_sock(sk);
11095	filter = rcu_dereference_protected(sk->sk_filter,
11096					   lockdep_sock_is_held(sk));
11097	if (!filter)
11098		goto out;
11099
11100	/* We're copying the filter that has been originally attached,
11101	 * so no conversion/decode needed anymore. eBPF programs that
11102	 * have no original program cannot be dumped through this.
11103	 */
11104	ret = -EACCES;
11105	fprog = filter->prog->orig_prog;
11106	if (!fprog)
11107		goto out;
11108
11109	ret = fprog->len;
11110	if (!len)
11111		/* User space only enquires number of filter blocks. */
11112		goto out;
11113
11114	ret = -EINVAL;
11115	if (len < fprog->len)
11116		goto out;
11117
11118	ret = -EFAULT;
11119	if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
11120		goto out;
11121
11122	/* Instead of bytes, the API requests to return the number
11123	 * of filter blocks.
11124	 */
11125	ret = fprog->len;
11126out:
11127	sockopt_release_sock(sk);
11128	return ret;
11129}
11130
11131#ifdef CONFIG_INET
11132static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11133				    struct sock_reuseport *reuse,
11134				    struct sock *sk, struct sk_buff *skb,
11135				    struct sock *migrating_sk,
11136				    u32 hash)
11137{
11138	reuse_kern->skb = skb;
11139	reuse_kern->sk = sk;
11140	reuse_kern->selected_sk = NULL;
11141	reuse_kern->migrating_sk = migrating_sk;
11142	reuse_kern->data_end = skb->data + skb_headlen(skb);
11143	reuse_kern->hash = hash;
11144	reuse_kern->reuseport_id = reuse->reuseport_id;
11145	reuse_kern->bind_inany = reuse->bind_inany;
11146}
11147
11148struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11149				  struct bpf_prog *prog, struct sk_buff *skb,
11150				  struct sock *migrating_sk,
11151				  u32 hash)
11152{
11153	struct sk_reuseport_kern reuse_kern;
11154	enum sk_action action;
11155
11156	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11157	action = bpf_prog_run(prog, &reuse_kern);
11158
11159	if (action == SK_PASS)
11160		return reuse_kern.selected_sk;
11161	else
11162		return ERR_PTR(-ECONNREFUSED);
11163}
11164
11165BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11166	   struct bpf_map *, map, void *, key, u32, flags)
11167{
11168	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11169	struct sock_reuseport *reuse;
11170	struct sock *selected_sk;
11171
11172	selected_sk = map->ops->map_lookup_elem(map, key);
11173	if (!selected_sk)
11174		return -ENOENT;
11175
11176	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11177	if (!reuse) {
11178		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11179		if (sk_is_refcounted(selected_sk))
11180			sock_put(selected_sk);
11181
11182		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
11183		 * The only (!reuse) case here is - the sk has already been
11184		 * unhashed (e.g. by close()), so treat it as -ENOENT.
11185		 *
11186		 * Other maps (e.g. sock_map) do not provide this guarantee and
11187		 * the sk may never be in the reuseport group to begin with.
11188		 */
11189		return is_sockarray ? -ENOENT : -EINVAL;
11190	}
11191
11192	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11193		struct sock *sk = reuse_kern->sk;
11194
11195		if (sk->sk_protocol != selected_sk->sk_protocol)
11196			return -EPROTOTYPE;
11197		else if (sk->sk_family != selected_sk->sk_family)
11198			return -EAFNOSUPPORT;
11199
11200		/* Catch all. Likely bound to a different sockaddr. */
11201		return -EBADFD;
11202	}
11203
11204	reuse_kern->selected_sk = selected_sk;
11205
11206	return 0;
11207}
11208
11209static const struct bpf_func_proto sk_select_reuseport_proto = {
11210	.func           = sk_select_reuseport,
11211	.gpl_only       = false,
11212	.ret_type       = RET_INTEGER,
11213	.arg1_type	= ARG_PTR_TO_CTX,
11214	.arg2_type      = ARG_CONST_MAP_PTR,
11215	.arg3_type      = ARG_PTR_TO_MAP_KEY,
11216	.arg4_type	= ARG_ANYTHING,
11217};
11218
11219BPF_CALL_4(sk_reuseport_load_bytes,
11220	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11221	   void *, to, u32, len)
11222{
11223	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11224}
11225
11226static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11227	.func		= sk_reuseport_load_bytes,
11228	.gpl_only	= false,
11229	.ret_type	= RET_INTEGER,
11230	.arg1_type	= ARG_PTR_TO_CTX,
11231	.arg2_type	= ARG_ANYTHING,
11232	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11233	.arg4_type	= ARG_CONST_SIZE,
11234};
11235
11236BPF_CALL_5(sk_reuseport_load_bytes_relative,
11237	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11238	   void *, to, u32, len, u32, start_header)
11239{
11240	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11241					       len, start_header);
11242}
11243
11244static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11245	.func		= sk_reuseport_load_bytes_relative,
11246	.gpl_only	= false,
11247	.ret_type	= RET_INTEGER,
11248	.arg1_type	= ARG_PTR_TO_CTX,
11249	.arg2_type	= ARG_ANYTHING,
11250	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11251	.arg4_type	= ARG_CONST_SIZE,
11252	.arg5_type	= ARG_ANYTHING,
11253};
11254
11255static const struct bpf_func_proto *
11256sk_reuseport_func_proto(enum bpf_func_id func_id,
11257			const struct bpf_prog *prog)
11258{
11259	switch (func_id) {
11260	case BPF_FUNC_sk_select_reuseport:
11261		return &sk_select_reuseport_proto;
11262	case BPF_FUNC_skb_load_bytes:
11263		return &sk_reuseport_load_bytes_proto;
11264	case BPF_FUNC_skb_load_bytes_relative:
11265		return &sk_reuseport_load_bytes_relative_proto;
11266	case BPF_FUNC_get_socket_cookie:
11267		return &bpf_get_socket_ptr_cookie_proto;
11268	case BPF_FUNC_ktime_get_coarse_ns:
11269		return &bpf_ktime_get_coarse_ns_proto;
11270	default:
11271		return bpf_base_func_proto(func_id, prog);
11272	}
11273}
11274
11275static bool
11276sk_reuseport_is_valid_access(int off, int size,
11277			     enum bpf_access_type type,
11278			     const struct bpf_prog *prog,
11279			     struct bpf_insn_access_aux *info)
11280{
11281	const u32 size_default = sizeof(__u32);
11282
11283	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11284	    off % size || type != BPF_READ)
11285		return false;
11286
11287	switch (off) {
11288	case offsetof(struct sk_reuseport_md, data):
11289		info->reg_type = PTR_TO_PACKET;
11290		return size == sizeof(__u64);
11291
11292	case offsetof(struct sk_reuseport_md, data_end):
11293		info->reg_type = PTR_TO_PACKET_END;
11294		return size == sizeof(__u64);
11295
11296	case offsetof(struct sk_reuseport_md, hash):
11297		return size == size_default;
11298
11299	case offsetof(struct sk_reuseport_md, sk):
11300		info->reg_type = PTR_TO_SOCKET;
11301		return size == sizeof(__u64);
11302
11303	case offsetof(struct sk_reuseport_md, migrating_sk):
11304		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11305		return size == sizeof(__u64);
11306
11307	/* Fields that allow narrowing */
11308	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11309		if (size < sizeof_field(struct sk_buff, protocol))
11310			return false;
11311		fallthrough;
11312	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11313	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11314	case bpf_ctx_range(struct sk_reuseport_md, len):
11315		bpf_ctx_record_field_size(info, size_default);
11316		return bpf_ctx_narrow_access_ok(off, size, size_default);
11317
11318	default:
11319		return false;
11320	}
11321}
11322
11323#define SK_REUSEPORT_LOAD_FIELD(F) ({					\
11324	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11325			      si->dst_reg, si->src_reg,			\
11326			      bpf_target_off(struct sk_reuseport_kern, F, \
11327					     sizeof_field(struct sk_reuseport_kern, F), \
11328					     target_size));		\
11329	})
11330
11331#define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
11332	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11333				    struct sk_buff,			\
11334				    skb,				\
11335				    SKB_FIELD)
11336
11337#define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
11338	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11339				    struct sock,			\
11340				    sk,					\
11341				    SK_FIELD)
11342
11343static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11344					   const struct bpf_insn *si,
11345					   struct bpf_insn *insn_buf,
11346					   struct bpf_prog *prog,
11347					   u32 *target_size)
11348{
11349	struct bpf_insn *insn = insn_buf;
11350
11351	switch (si->off) {
11352	case offsetof(struct sk_reuseport_md, data):
11353		SK_REUSEPORT_LOAD_SKB_FIELD(data);
11354		break;
11355
11356	case offsetof(struct sk_reuseport_md, len):
11357		SK_REUSEPORT_LOAD_SKB_FIELD(len);
11358		break;
11359
11360	case offsetof(struct sk_reuseport_md, eth_protocol):
11361		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11362		break;
11363
11364	case offsetof(struct sk_reuseport_md, ip_protocol):
11365		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11366		break;
11367
11368	case offsetof(struct sk_reuseport_md, data_end):
11369		SK_REUSEPORT_LOAD_FIELD(data_end);
11370		break;
11371
11372	case offsetof(struct sk_reuseport_md, hash):
11373		SK_REUSEPORT_LOAD_FIELD(hash);
11374		break;
11375
11376	case offsetof(struct sk_reuseport_md, bind_inany):
11377		SK_REUSEPORT_LOAD_FIELD(bind_inany);
11378		break;
11379
11380	case offsetof(struct sk_reuseport_md, sk):
11381		SK_REUSEPORT_LOAD_FIELD(sk);
11382		break;
11383
11384	case offsetof(struct sk_reuseport_md, migrating_sk):
11385		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11386		break;
11387	}
11388
11389	return insn - insn_buf;
11390}
11391
11392const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11393	.get_func_proto		= sk_reuseport_func_proto,
11394	.is_valid_access	= sk_reuseport_is_valid_access,
11395	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
11396};
11397
11398const struct bpf_prog_ops sk_reuseport_prog_ops = {
11399};
11400
11401DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11402EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11403
11404BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11405	   struct sock *, sk, u64, flags)
11406{
11407	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11408			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11409		return -EINVAL;
11410	if (unlikely(sk && sk_is_refcounted(sk)))
11411		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11412	if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11413		return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11414	if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11415		return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11416
11417	/* Check if socket is suitable for packet L3/L4 protocol */
11418	if (sk && sk->sk_protocol != ctx->protocol)
11419		return -EPROTOTYPE;
11420	if (sk && sk->sk_family != ctx->family &&
11421	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11422		return -EAFNOSUPPORT;
11423
11424	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11425		return -EEXIST;
11426
11427	/* Select socket as lookup result */
11428	ctx->selected_sk = sk;
11429	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11430	return 0;
11431}
11432
11433static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11434	.func		= bpf_sk_lookup_assign,
11435	.gpl_only	= false,
11436	.ret_type	= RET_INTEGER,
11437	.arg1_type	= ARG_PTR_TO_CTX,
11438	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
11439	.arg3_type	= ARG_ANYTHING,
11440};
11441
11442static const struct bpf_func_proto *
11443sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11444{
11445	switch (func_id) {
11446	case BPF_FUNC_perf_event_output:
11447		return &bpf_event_output_data_proto;
11448	case BPF_FUNC_sk_assign:
11449		return &bpf_sk_lookup_assign_proto;
11450	case BPF_FUNC_sk_release:
11451		return &bpf_sk_release_proto;
11452	default:
11453		return bpf_sk_base_func_proto(func_id, prog);
11454	}
11455}
11456
11457static bool sk_lookup_is_valid_access(int off, int size,
11458				      enum bpf_access_type type,
11459				      const struct bpf_prog *prog,
11460				      struct bpf_insn_access_aux *info)
11461{
11462	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11463		return false;
11464	if (off % size != 0)
11465		return false;
11466	if (type != BPF_READ)
11467		return false;
11468
11469	switch (off) {
11470	case offsetof(struct bpf_sk_lookup, sk):
11471		info->reg_type = PTR_TO_SOCKET_OR_NULL;
11472		return size == sizeof(__u64);
11473
11474	case bpf_ctx_range(struct bpf_sk_lookup, family):
11475	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11476	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11477	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11478	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11479	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11480	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11481	case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11482		bpf_ctx_record_field_size(info, sizeof(__u32));
11483		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11484
11485	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11486		/* Allow 4-byte access to 2-byte field for backward compatibility */
11487		if (size == sizeof(__u32))
11488			return true;
11489		bpf_ctx_record_field_size(info, sizeof(__be16));
11490		return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11491
11492	case offsetofend(struct bpf_sk_lookup, remote_port) ...
11493	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11494		/* Allow access to zero padding for backward compatibility */
11495		bpf_ctx_record_field_size(info, sizeof(__u16));
11496		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11497
11498	default:
11499		return false;
11500	}
11501}
11502
11503static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11504					const struct bpf_insn *si,
11505					struct bpf_insn *insn_buf,
11506					struct bpf_prog *prog,
11507					u32 *target_size)
11508{
11509	struct bpf_insn *insn = insn_buf;
11510
11511	switch (si->off) {
11512	case offsetof(struct bpf_sk_lookup, sk):
11513		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11514				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
11515		break;
11516
11517	case offsetof(struct bpf_sk_lookup, family):
11518		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11519				      bpf_target_off(struct bpf_sk_lookup_kern,
11520						     family, 2, target_size));
11521		break;
11522
11523	case offsetof(struct bpf_sk_lookup, protocol):
11524		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11525				      bpf_target_off(struct bpf_sk_lookup_kern,
11526						     protocol, 2, target_size));
11527		break;
11528
11529	case offsetof(struct bpf_sk_lookup, remote_ip4):
11530		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11531				      bpf_target_off(struct bpf_sk_lookup_kern,
11532						     v4.saddr, 4, target_size));
11533		break;
11534
11535	case offsetof(struct bpf_sk_lookup, local_ip4):
11536		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11537				      bpf_target_off(struct bpf_sk_lookup_kern,
11538						     v4.daddr, 4, target_size));
11539		break;
11540
11541	case bpf_ctx_range_till(struct bpf_sk_lookup,
11542				remote_ip6[0], remote_ip6[3]): {
11543#if IS_ENABLED(CONFIG_IPV6)
11544		int off = si->off;
11545
11546		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11547		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11548		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11549				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11550		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11551		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11552#else
11553		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11554#endif
11555		break;
11556	}
11557	case bpf_ctx_range_till(struct bpf_sk_lookup,
11558				local_ip6[0], local_ip6[3]): {
11559#if IS_ENABLED(CONFIG_IPV6)
11560		int off = si->off;
11561
11562		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11563		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11564		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11565				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11566		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11567		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11568#else
11569		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11570#endif
11571		break;
11572	}
11573	case offsetof(struct bpf_sk_lookup, remote_port):
11574		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11575				      bpf_target_off(struct bpf_sk_lookup_kern,
11576						     sport, 2, target_size));
11577		break;
11578
11579	case offsetofend(struct bpf_sk_lookup, remote_port):
11580		*target_size = 2;
11581		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11582		break;
11583
11584	case offsetof(struct bpf_sk_lookup, local_port):
11585		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11586				      bpf_target_off(struct bpf_sk_lookup_kern,
11587						     dport, 2, target_size));
11588		break;
11589
11590	case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11591		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11592				      bpf_target_off(struct bpf_sk_lookup_kern,
11593						     ingress_ifindex, 4, target_size));
11594		break;
11595	}
11596
11597	return insn - insn_buf;
11598}
11599
11600const struct bpf_prog_ops sk_lookup_prog_ops = {
11601	.test_run = bpf_prog_test_run_sk_lookup,
11602};
11603
11604const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11605	.get_func_proto		= sk_lookup_func_proto,
11606	.is_valid_access	= sk_lookup_is_valid_access,
11607	.convert_ctx_access	= sk_lookup_convert_ctx_access,
11608};
11609
11610#endif /* CONFIG_INET */
11611
11612DEFINE_BPF_DISPATCHER(xdp)
11613
11614void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11615{
11616	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11617}
11618
11619BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11620#define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11621BTF_SOCK_TYPE_xxx
11622#undef BTF_SOCK_TYPE
11623
11624BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11625{
11626	/* tcp6_sock type is not generated in dwarf and hence btf,
11627	 * trigger an explicit type generation here.
11628	 */
11629	BTF_TYPE_EMIT(struct tcp6_sock);
11630	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11631	    sk->sk_family == AF_INET6)
11632		return (unsigned long)sk;
11633
11634	return (unsigned long)NULL;
11635}
11636
11637const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11638	.func			= bpf_skc_to_tcp6_sock,
11639	.gpl_only		= false,
11640	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11641	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11642	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11643};
11644
11645BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11646{
11647	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11648		return (unsigned long)sk;
11649
11650	return (unsigned long)NULL;
11651}
11652
11653const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11654	.func			= bpf_skc_to_tcp_sock,
11655	.gpl_only		= false,
11656	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11657	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11658	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11659};
11660
11661BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11662{
11663	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11664	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11665	 */
11666	BTF_TYPE_EMIT(struct inet_timewait_sock);
11667	BTF_TYPE_EMIT(struct tcp_timewait_sock);
11668
11669#ifdef CONFIG_INET
11670	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11671		return (unsigned long)sk;
11672#endif
11673
11674#if IS_BUILTIN(CONFIG_IPV6)
11675	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11676		return (unsigned long)sk;
11677#endif
11678
11679	return (unsigned long)NULL;
11680}
11681
11682const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11683	.func			= bpf_skc_to_tcp_timewait_sock,
11684	.gpl_only		= false,
11685	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11686	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11687	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11688};
11689
11690BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11691{
11692#ifdef CONFIG_INET
11693	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11694		return (unsigned long)sk;
11695#endif
11696
11697#if IS_BUILTIN(CONFIG_IPV6)
11698	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11699		return (unsigned long)sk;
11700#endif
11701
11702	return (unsigned long)NULL;
11703}
11704
11705const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11706	.func			= bpf_skc_to_tcp_request_sock,
11707	.gpl_only		= false,
11708	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11709	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11710	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11711};
11712
11713BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11714{
11715	/* udp6_sock type is not generated in dwarf and hence btf,
11716	 * trigger an explicit type generation here.
11717	 */
11718	BTF_TYPE_EMIT(struct udp6_sock);
11719	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11720	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11721		return (unsigned long)sk;
11722
11723	return (unsigned long)NULL;
11724}
11725
11726const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11727	.func			= bpf_skc_to_udp6_sock,
11728	.gpl_only		= false,
11729	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11730	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11731	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11732};
11733
11734BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11735{
11736	/* unix_sock type is not generated in dwarf and hence btf,
11737	 * trigger an explicit type generation here.
11738	 */
11739	BTF_TYPE_EMIT(struct unix_sock);
11740	if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11741		return (unsigned long)sk;
11742
11743	return (unsigned long)NULL;
11744}
11745
11746const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11747	.func			= bpf_skc_to_unix_sock,
11748	.gpl_only		= false,
11749	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11750	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11751	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11752};
11753
11754BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11755{
11756	BTF_TYPE_EMIT(struct mptcp_sock);
11757	return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11758}
11759
11760const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11761	.func		= bpf_skc_to_mptcp_sock,
11762	.gpl_only	= false,
11763	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11764	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
11765	.ret_btf_id	= &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11766};
11767
11768BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11769{
11770	return (unsigned long)sock_from_file(file);
11771}
11772
11773BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11774BTF_ID(struct, socket)
11775BTF_ID(struct, file)
11776
11777const struct bpf_func_proto bpf_sock_from_file_proto = {
11778	.func		= bpf_sock_from_file,
11779	.gpl_only	= false,
11780	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11781	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
11782	.arg1_type	= ARG_PTR_TO_BTF_ID,
11783	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
11784};
11785
11786static const struct bpf_func_proto *
11787bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11788{
11789	const struct bpf_func_proto *func;
11790
11791	switch (func_id) {
11792	case BPF_FUNC_skc_to_tcp6_sock:
11793		func = &bpf_skc_to_tcp6_sock_proto;
11794		break;
11795	case BPF_FUNC_skc_to_tcp_sock:
11796		func = &bpf_skc_to_tcp_sock_proto;
11797		break;
11798	case BPF_FUNC_skc_to_tcp_timewait_sock:
11799		func = &bpf_skc_to_tcp_timewait_sock_proto;
11800		break;
11801	case BPF_FUNC_skc_to_tcp_request_sock:
11802		func = &bpf_skc_to_tcp_request_sock_proto;
11803		break;
11804	case BPF_FUNC_skc_to_udp6_sock:
11805		func = &bpf_skc_to_udp6_sock_proto;
11806		break;
11807	case BPF_FUNC_skc_to_unix_sock:
11808		func = &bpf_skc_to_unix_sock_proto;
11809		break;
11810	case BPF_FUNC_skc_to_mptcp_sock:
11811		func = &bpf_skc_to_mptcp_sock_proto;
11812		break;
11813	case BPF_FUNC_ktime_get_coarse_ns:
11814		return &bpf_ktime_get_coarse_ns_proto;
11815	default:
11816		return bpf_base_func_proto(func_id, prog);
11817	}
11818
11819	if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
11820		return NULL;
11821
11822	return func;
11823}
11824
11825__bpf_kfunc_start_defs();
11826__bpf_kfunc int bpf_dynptr_from_skb(struct sk_buff *skb, u64 flags,
11827				    struct bpf_dynptr_kern *ptr__uninit)
11828{
11829	if (flags) {
11830		bpf_dynptr_set_null(ptr__uninit);
11831		return -EINVAL;
11832	}
11833
11834	bpf_dynptr_init(ptr__uninit, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len);
11835
11836	return 0;
11837}
11838
11839__bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_buff *xdp, u64 flags,
11840				    struct bpf_dynptr_kern *ptr__uninit)
11841{
11842	if (flags) {
11843		bpf_dynptr_set_null(ptr__uninit);
11844		return -EINVAL;
11845	}
11846
11847	bpf_dynptr_init(ptr__uninit, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp));
11848
11849	return 0;
11850}
11851
11852__bpf_kfunc int bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern *sa_kern,
11853					   const u8 *sun_path, u32 sun_path__sz)
11854{
11855	struct sockaddr_un *un;
11856
11857	if (sa_kern->sk->sk_family != AF_UNIX)
11858		return -EINVAL;
11859
11860	/* We do not allow changing the address to unnamed or larger than the
11861	 * maximum allowed address size for a unix sockaddr.
11862	 */
11863	if (sun_path__sz == 0 || sun_path__sz > UNIX_PATH_MAX)
11864		return -EINVAL;
11865
11866	un = (struct sockaddr_un *)sa_kern->uaddr;
11867	memcpy(un->sun_path, sun_path, sun_path__sz);
11868	sa_kern->uaddrlen = offsetof(struct sockaddr_un, sun_path) + sun_path__sz;
11869
11870	return 0;
11871}
11872
11873__bpf_kfunc int bpf_sk_assign_tcp_reqsk(struct sk_buff *skb, struct sock *sk,
11874					struct bpf_tcp_req_attrs *attrs, int attrs__sz)
11875{
11876#if IS_ENABLED(CONFIG_SYN_COOKIES)
11877	const struct request_sock_ops *ops;
11878	struct inet_request_sock *ireq;
11879	struct tcp_request_sock *treq;
11880	struct request_sock *req;
11881	struct net *net;
11882	__u16 min_mss;
11883	u32 tsoff = 0;
11884
11885	if (attrs__sz != sizeof(*attrs) ||
11886	    attrs->reserved[0] || attrs->reserved[1] || attrs->reserved[2])
11887		return -EINVAL;
11888
11889	if (!skb_at_tc_ingress(skb))
11890		return -EINVAL;
11891
11892	net = dev_net(skb->dev);
11893	if (net != sock_net(sk))
11894		return -ENETUNREACH;
11895
11896	switch (skb->protocol) {
11897	case htons(ETH_P_IP):
11898		ops = &tcp_request_sock_ops;
11899		min_mss = 536;
11900		break;
11901#if IS_BUILTIN(CONFIG_IPV6)
11902	case htons(ETH_P_IPV6):
11903		ops = &tcp6_request_sock_ops;
11904		min_mss = IPV6_MIN_MTU - 60;
11905		break;
11906#endif
11907	default:
11908		return -EINVAL;
11909	}
11910
11911	if (sk->sk_type != SOCK_STREAM || sk->sk_state != TCP_LISTEN ||
11912	    sk_is_mptcp(sk))
11913		return -EINVAL;
11914
11915	if (attrs->mss < min_mss)
11916		return -EINVAL;
11917
11918	if (attrs->wscale_ok) {
11919		if (!READ_ONCE(net->ipv4.sysctl_tcp_window_scaling))
11920			return -EINVAL;
11921
11922		if (attrs->snd_wscale > TCP_MAX_WSCALE ||
11923		    attrs->rcv_wscale > TCP_MAX_WSCALE)
11924			return -EINVAL;
11925	}
11926
11927	if (attrs->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack))
11928		return -EINVAL;
11929
11930	if (attrs->tstamp_ok) {
11931		if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps))
11932			return -EINVAL;
11933
11934		tsoff = attrs->rcv_tsecr - tcp_ns_to_ts(attrs->usec_ts_ok, tcp_clock_ns());
11935	}
11936
11937	req = inet_reqsk_alloc(ops, sk, false);
11938	if (!req)
11939		return -ENOMEM;
11940
11941	ireq = inet_rsk(req);
11942	treq = tcp_rsk(req);
11943
11944	req->rsk_listener = sk;
11945	req->syncookie = 1;
11946	req->mss = attrs->mss;
11947	req->ts_recent = attrs->rcv_tsval;
11948
11949	ireq->snd_wscale = attrs->snd_wscale;
11950	ireq->rcv_wscale = attrs->rcv_wscale;
11951	ireq->tstamp_ok	= !!attrs->tstamp_ok;
11952	ireq->sack_ok = !!attrs->sack_ok;
11953	ireq->wscale_ok = !!attrs->wscale_ok;
11954	ireq->ecn_ok = !!attrs->ecn_ok;
11955
11956	treq->req_usec_ts = !!attrs->usec_ts_ok;
11957	treq->ts_off = tsoff;
11958
11959	skb_orphan(skb);
11960	skb->sk = req_to_sk(req);
11961	skb->destructor = sock_pfree;
11962
11963	return 0;
11964#else
11965	return -EOPNOTSUPP;
11966#endif
11967}
11968
11969__bpf_kfunc_end_defs();
11970
11971int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
11972			       struct bpf_dynptr_kern *ptr__uninit)
11973{
11974	int err;
11975
11976	err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
11977	if (err)
11978		return err;
11979
11980	bpf_dynptr_set_rdonly(ptr__uninit);
11981
11982	return 0;
11983}
11984
11985BTF_KFUNCS_START(bpf_kfunc_check_set_skb)
11986BTF_ID_FLAGS(func, bpf_dynptr_from_skb)
11987BTF_KFUNCS_END(bpf_kfunc_check_set_skb)
11988
11989BTF_KFUNCS_START(bpf_kfunc_check_set_xdp)
11990BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
11991BTF_KFUNCS_END(bpf_kfunc_check_set_xdp)
11992
11993BTF_KFUNCS_START(bpf_kfunc_check_set_sock_addr)
11994BTF_ID_FLAGS(func, bpf_sock_addr_set_sun_path)
11995BTF_KFUNCS_END(bpf_kfunc_check_set_sock_addr)
11996
11997BTF_KFUNCS_START(bpf_kfunc_check_set_tcp_reqsk)
11998BTF_ID_FLAGS(func, bpf_sk_assign_tcp_reqsk, KF_TRUSTED_ARGS)
11999BTF_KFUNCS_END(bpf_kfunc_check_set_tcp_reqsk)
12000
12001static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
12002	.owner = THIS_MODULE,
12003	.set = &bpf_kfunc_check_set_skb,
12004};
12005
12006static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
12007	.owner = THIS_MODULE,
12008	.set = &bpf_kfunc_check_set_xdp,
12009};
12010
12011static const struct btf_kfunc_id_set bpf_kfunc_set_sock_addr = {
12012	.owner = THIS_MODULE,
12013	.set = &bpf_kfunc_check_set_sock_addr,
12014};
12015
12016static const struct btf_kfunc_id_set bpf_kfunc_set_tcp_reqsk = {
12017	.owner = THIS_MODULE,
12018	.set = &bpf_kfunc_check_set_tcp_reqsk,
12019};
12020
12021static int __init bpf_kfunc_init(void)
12022{
12023	int ret;
12024
12025	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb);
12026	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb);
12027	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb);
12028	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb);
12029	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb);
12030	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb);
12031	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb);
12032	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb);
12033	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb);
12034	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb);
12035	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp);
12036	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
12037					       &bpf_kfunc_set_sock_addr);
12038	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_tcp_reqsk);
12039}
12040late_initcall(bpf_kfunc_init);
12041
12042__bpf_kfunc_start_defs();
12043
12044/* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code.
12045 *
12046 * The function expects a non-NULL pointer to a socket, and invokes the
12047 * protocol specific socket destroy handlers.
12048 *
12049 * The helper can only be called from BPF contexts that have acquired the socket
12050 * locks.
12051 *
12052 * Parameters:
12053 * @sock: Pointer to socket to be destroyed
12054 *
12055 * Return:
12056 * On error, may return EPROTONOSUPPORT, EINVAL.
12057 * EPROTONOSUPPORT if protocol specific destroy handler is not supported.
12058 * 0 otherwise
12059 */
12060__bpf_kfunc int bpf_sock_destroy(struct sock_common *sock)
12061{
12062	struct sock *sk = (struct sock *)sock;
12063
12064	/* The locking semantics that allow for synchronous execution of the
12065	 * destroy handlers are only supported for TCP and UDP.
12066	 * Supporting protocols will need to acquire sock lock in the BPF context
12067	 * prior to invoking this kfunc.
12068	 */
12069	if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP &&
12070					   sk->sk_protocol != IPPROTO_UDP))
12071		return -EOPNOTSUPP;
12072
12073	return sk->sk_prot->diag_destroy(sk, ECONNABORTED);
12074}
12075
12076__bpf_kfunc_end_defs();
12077
12078BTF_KFUNCS_START(bpf_sk_iter_kfunc_ids)
12079BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS)
12080BTF_KFUNCS_END(bpf_sk_iter_kfunc_ids)
12081
12082static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id)
12083{
12084	if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) &&
12085	    prog->expected_attach_type != BPF_TRACE_ITER)
12086		return -EACCES;
12087	return 0;
12088}
12089
12090static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = {
12091	.owner = THIS_MODULE,
12092	.set   = &bpf_sk_iter_kfunc_ids,
12093	.filter = tracing_iter_filter,
12094};
12095
12096static int init_subsystem(void)
12097{
12098	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set);
12099}
12100late_initcall(init_subsystem);
12101