1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/ceph/ceph_debug.h>
4
5#include <linux/module.h>
6#include <linux/slab.h>
7
8#include <linux/ceph/libceph.h>
9#include <linux/ceph/osdmap.h>
10#include <linux/ceph/decode.h>
11#include <linux/crush/hash.h>
12#include <linux/crush/mapper.h>
13
14static __printf(2, 3)
15void osdmap_info(const struct ceph_osdmap *map, const char *fmt, ...)
16{
17	struct va_format vaf;
18	va_list args;
19
20	va_start(args, fmt);
21	vaf.fmt = fmt;
22	vaf.va = &args;
23
24	printk(KERN_INFO "%s (%pU e%u): %pV", KBUILD_MODNAME, &map->fsid,
25	       map->epoch, &vaf);
26
27	va_end(args);
28}
29
30char *ceph_osdmap_state_str(char *str, int len, u32 state)
31{
32	if (!len)
33		return str;
34
35	if ((state & CEPH_OSD_EXISTS) && (state & CEPH_OSD_UP))
36		snprintf(str, len, "exists, up");
37	else if (state & CEPH_OSD_EXISTS)
38		snprintf(str, len, "exists");
39	else if (state & CEPH_OSD_UP)
40		snprintf(str, len, "up");
41	else
42		snprintf(str, len, "doesn't exist");
43
44	return str;
45}
46
47/* maps */
48
49static int calc_bits_of(unsigned int t)
50{
51	int b = 0;
52	while (t) {
53		t = t >> 1;
54		b++;
55	}
56	return b;
57}
58
59/*
60 * the foo_mask is the smallest value 2^n-1 that is >= foo.
61 */
62static void calc_pg_masks(struct ceph_pg_pool_info *pi)
63{
64	pi->pg_num_mask = (1 << calc_bits_of(pi->pg_num-1)) - 1;
65	pi->pgp_num_mask = (1 << calc_bits_of(pi->pgp_num-1)) - 1;
66}
67
68/*
69 * decode crush map
70 */
71static int crush_decode_uniform_bucket(void **p, void *end,
72				       struct crush_bucket_uniform *b)
73{
74	dout("crush_decode_uniform_bucket %p to %p\n", *p, end);
75	ceph_decode_need(p, end, (1+b->h.size) * sizeof(u32), bad);
76	b->item_weight = ceph_decode_32(p);
77	return 0;
78bad:
79	return -EINVAL;
80}
81
82static int crush_decode_list_bucket(void **p, void *end,
83				    struct crush_bucket_list *b)
84{
85	int j;
86	dout("crush_decode_list_bucket %p to %p\n", *p, end);
87	b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
88	if (b->item_weights == NULL)
89		return -ENOMEM;
90	b->sum_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
91	if (b->sum_weights == NULL)
92		return -ENOMEM;
93	ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad);
94	for (j = 0; j < b->h.size; j++) {
95		b->item_weights[j] = ceph_decode_32(p);
96		b->sum_weights[j] = ceph_decode_32(p);
97	}
98	return 0;
99bad:
100	return -EINVAL;
101}
102
103static int crush_decode_tree_bucket(void **p, void *end,
104				    struct crush_bucket_tree *b)
105{
106	int j;
107	dout("crush_decode_tree_bucket %p to %p\n", *p, end);
108	ceph_decode_8_safe(p, end, b->num_nodes, bad);
109	b->node_weights = kcalloc(b->num_nodes, sizeof(u32), GFP_NOFS);
110	if (b->node_weights == NULL)
111		return -ENOMEM;
112	ceph_decode_need(p, end, b->num_nodes * sizeof(u32), bad);
113	for (j = 0; j < b->num_nodes; j++)
114		b->node_weights[j] = ceph_decode_32(p);
115	return 0;
116bad:
117	return -EINVAL;
118}
119
120static int crush_decode_straw_bucket(void **p, void *end,
121				     struct crush_bucket_straw *b)
122{
123	int j;
124	dout("crush_decode_straw_bucket %p to %p\n", *p, end);
125	b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
126	if (b->item_weights == NULL)
127		return -ENOMEM;
128	b->straws = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
129	if (b->straws == NULL)
130		return -ENOMEM;
131	ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad);
132	for (j = 0; j < b->h.size; j++) {
133		b->item_weights[j] = ceph_decode_32(p);
134		b->straws[j] = ceph_decode_32(p);
135	}
136	return 0;
137bad:
138	return -EINVAL;
139}
140
141static int crush_decode_straw2_bucket(void **p, void *end,
142				      struct crush_bucket_straw2 *b)
143{
144	int j;
145	dout("crush_decode_straw2_bucket %p to %p\n", *p, end);
146	b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
147	if (b->item_weights == NULL)
148		return -ENOMEM;
149	ceph_decode_need(p, end, b->h.size * sizeof(u32), bad);
150	for (j = 0; j < b->h.size; j++)
151		b->item_weights[j] = ceph_decode_32(p);
152	return 0;
153bad:
154	return -EINVAL;
155}
156
157struct crush_name_node {
158	struct rb_node cn_node;
159	int cn_id;
160	char cn_name[];
161};
162
163static struct crush_name_node *alloc_crush_name(size_t name_len)
164{
165	struct crush_name_node *cn;
166
167	cn = kmalloc(sizeof(*cn) + name_len + 1, GFP_NOIO);
168	if (!cn)
169		return NULL;
170
171	RB_CLEAR_NODE(&cn->cn_node);
172	return cn;
173}
174
175static void free_crush_name(struct crush_name_node *cn)
176{
177	WARN_ON(!RB_EMPTY_NODE(&cn->cn_node));
178
179	kfree(cn);
180}
181
182DEFINE_RB_FUNCS(crush_name, struct crush_name_node, cn_id, cn_node)
183
184static int decode_crush_names(void **p, void *end, struct rb_root *root)
185{
186	u32 n;
187
188	ceph_decode_32_safe(p, end, n, e_inval);
189	while (n--) {
190		struct crush_name_node *cn;
191		int id;
192		u32 name_len;
193
194		ceph_decode_32_safe(p, end, id, e_inval);
195		ceph_decode_32_safe(p, end, name_len, e_inval);
196		ceph_decode_need(p, end, name_len, e_inval);
197
198		cn = alloc_crush_name(name_len);
199		if (!cn)
200			return -ENOMEM;
201
202		cn->cn_id = id;
203		memcpy(cn->cn_name, *p, name_len);
204		cn->cn_name[name_len] = '\0';
205		*p += name_len;
206
207		if (!__insert_crush_name(root, cn)) {
208			free_crush_name(cn);
209			return -EEXIST;
210		}
211	}
212
213	return 0;
214
215e_inval:
216	return -EINVAL;
217}
218
219void clear_crush_names(struct rb_root *root)
220{
221	while (!RB_EMPTY_ROOT(root)) {
222		struct crush_name_node *cn =
223		    rb_entry(rb_first(root), struct crush_name_node, cn_node);
224
225		erase_crush_name(root, cn);
226		free_crush_name(cn);
227	}
228}
229
230static struct crush_choose_arg_map *alloc_choose_arg_map(void)
231{
232	struct crush_choose_arg_map *arg_map;
233
234	arg_map = kzalloc(sizeof(*arg_map), GFP_NOIO);
235	if (!arg_map)
236		return NULL;
237
238	RB_CLEAR_NODE(&arg_map->node);
239	return arg_map;
240}
241
242static void free_choose_arg_map(struct crush_choose_arg_map *arg_map)
243{
244	if (arg_map) {
245		int i, j;
246
247		WARN_ON(!RB_EMPTY_NODE(&arg_map->node));
248
249		for (i = 0; i < arg_map->size; i++) {
250			struct crush_choose_arg *arg = &arg_map->args[i];
251
252			for (j = 0; j < arg->weight_set_size; j++)
253				kfree(arg->weight_set[j].weights);
254			kfree(arg->weight_set);
255			kfree(arg->ids);
256		}
257		kfree(arg_map->args);
258		kfree(arg_map);
259	}
260}
261
262DEFINE_RB_FUNCS(choose_arg_map, struct crush_choose_arg_map, choose_args_index,
263		node);
264
265void clear_choose_args(struct crush_map *c)
266{
267	while (!RB_EMPTY_ROOT(&c->choose_args)) {
268		struct crush_choose_arg_map *arg_map =
269		    rb_entry(rb_first(&c->choose_args),
270			     struct crush_choose_arg_map, node);
271
272		erase_choose_arg_map(&c->choose_args, arg_map);
273		free_choose_arg_map(arg_map);
274	}
275}
276
277static u32 *decode_array_32_alloc(void **p, void *end, u32 *plen)
278{
279	u32 *a = NULL;
280	u32 len;
281	int ret;
282
283	ceph_decode_32_safe(p, end, len, e_inval);
284	if (len) {
285		u32 i;
286
287		a = kmalloc_array(len, sizeof(u32), GFP_NOIO);
288		if (!a) {
289			ret = -ENOMEM;
290			goto fail;
291		}
292
293		ceph_decode_need(p, end, len * sizeof(u32), e_inval);
294		for (i = 0; i < len; i++)
295			a[i] = ceph_decode_32(p);
296	}
297
298	*plen = len;
299	return a;
300
301e_inval:
302	ret = -EINVAL;
303fail:
304	kfree(a);
305	return ERR_PTR(ret);
306}
307
308/*
309 * Assumes @arg is zero-initialized.
310 */
311static int decode_choose_arg(void **p, void *end, struct crush_choose_arg *arg)
312{
313	int ret;
314
315	ceph_decode_32_safe(p, end, arg->weight_set_size, e_inval);
316	if (arg->weight_set_size) {
317		u32 i;
318
319		arg->weight_set = kmalloc_array(arg->weight_set_size,
320						sizeof(*arg->weight_set),
321						GFP_NOIO);
322		if (!arg->weight_set)
323			return -ENOMEM;
324
325		for (i = 0; i < arg->weight_set_size; i++) {
326			struct crush_weight_set *w = &arg->weight_set[i];
327
328			w->weights = decode_array_32_alloc(p, end, &w->size);
329			if (IS_ERR(w->weights)) {
330				ret = PTR_ERR(w->weights);
331				w->weights = NULL;
332				return ret;
333			}
334		}
335	}
336
337	arg->ids = decode_array_32_alloc(p, end, &arg->ids_size);
338	if (IS_ERR(arg->ids)) {
339		ret = PTR_ERR(arg->ids);
340		arg->ids = NULL;
341		return ret;
342	}
343
344	return 0;
345
346e_inval:
347	return -EINVAL;
348}
349
350static int decode_choose_args(void **p, void *end, struct crush_map *c)
351{
352	struct crush_choose_arg_map *arg_map = NULL;
353	u32 num_choose_arg_maps, num_buckets;
354	int ret;
355
356	ceph_decode_32_safe(p, end, num_choose_arg_maps, e_inval);
357	while (num_choose_arg_maps--) {
358		arg_map = alloc_choose_arg_map();
359		if (!arg_map) {
360			ret = -ENOMEM;
361			goto fail;
362		}
363
364		ceph_decode_64_safe(p, end, arg_map->choose_args_index,
365				    e_inval);
366		arg_map->size = c->max_buckets;
367		arg_map->args = kcalloc(arg_map->size, sizeof(*arg_map->args),
368					GFP_NOIO);
369		if (!arg_map->args) {
370			ret = -ENOMEM;
371			goto fail;
372		}
373
374		ceph_decode_32_safe(p, end, num_buckets, e_inval);
375		while (num_buckets--) {
376			struct crush_choose_arg *arg;
377			u32 bucket_index;
378
379			ceph_decode_32_safe(p, end, bucket_index, e_inval);
380			if (bucket_index >= arg_map->size)
381				goto e_inval;
382
383			arg = &arg_map->args[bucket_index];
384			ret = decode_choose_arg(p, end, arg);
385			if (ret)
386				goto fail;
387
388			if (arg->ids_size &&
389			    arg->ids_size != c->buckets[bucket_index]->size)
390				goto e_inval;
391		}
392
393		insert_choose_arg_map(&c->choose_args, arg_map);
394	}
395
396	return 0;
397
398e_inval:
399	ret = -EINVAL;
400fail:
401	free_choose_arg_map(arg_map);
402	return ret;
403}
404
405static void crush_finalize(struct crush_map *c)
406{
407	__s32 b;
408
409	/* Space for the array of pointers to per-bucket workspace */
410	c->working_size = sizeof(struct crush_work) +
411	    c->max_buckets * sizeof(struct crush_work_bucket *);
412
413	for (b = 0; b < c->max_buckets; b++) {
414		if (!c->buckets[b])
415			continue;
416
417		switch (c->buckets[b]->alg) {
418		default:
419			/*
420			 * The base case, permutation variables and
421			 * the pointer to the permutation array.
422			 */
423			c->working_size += sizeof(struct crush_work_bucket);
424			break;
425		}
426		/* Every bucket has a permutation array. */
427		c->working_size += c->buckets[b]->size * sizeof(__u32);
428	}
429}
430
431static struct crush_map *crush_decode(void *pbyval, void *end)
432{
433	struct crush_map *c;
434	int err;
435	int i, j;
436	void **p = &pbyval;
437	void *start = pbyval;
438	u32 magic;
439
440	dout("crush_decode %p to %p len %d\n", *p, end, (int)(end - *p));
441
442	c = kzalloc(sizeof(*c), GFP_NOFS);
443	if (c == NULL)
444		return ERR_PTR(-ENOMEM);
445
446	c->type_names = RB_ROOT;
447	c->names = RB_ROOT;
448	c->choose_args = RB_ROOT;
449
450        /* set tunables to default values */
451        c->choose_local_tries = 2;
452        c->choose_local_fallback_tries = 5;
453        c->choose_total_tries = 19;
454	c->chooseleaf_descend_once = 0;
455
456	ceph_decode_need(p, end, 4*sizeof(u32), bad);
457	magic = ceph_decode_32(p);
458	if (magic != CRUSH_MAGIC) {
459		pr_err("crush_decode magic %x != current %x\n",
460		       (unsigned int)magic, (unsigned int)CRUSH_MAGIC);
461		goto bad;
462	}
463	c->max_buckets = ceph_decode_32(p);
464	c->max_rules = ceph_decode_32(p);
465	c->max_devices = ceph_decode_32(p);
466
467	c->buckets = kcalloc(c->max_buckets, sizeof(*c->buckets), GFP_NOFS);
468	if (c->buckets == NULL)
469		goto badmem;
470	c->rules = kcalloc(c->max_rules, sizeof(*c->rules), GFP_NOFS);
471	if (c->rules == NULL)
472		goto badmem;
473
474	/* buckets */
475	for (i = 0; i < c->max_buckets; i++) {
476		int size = 0;
477		u32 alg;
478		struct crush_bucket *b;
479
480		ceph_decode_32_safe(p, end, alg, bad);
481		if (alg == 0) {
482			c->buckets[i] = NULL;
483			continue;
484		}
485		dout("crush_decode bucket %d off %x %p to %p\n",
486		     i, (int)(*p-start), *p, end);
487
488		switch (alg) {
489		case CRUSH_BUCKET_UNIFORM:
490			size = sizeof(struct crush_bucket_uniform);
491			break;
492		case CRUSH_BUCKET_LIST:
493			size = sizeof(struct crush_bucket_list);
494			break;
495		case CRUSH_BUCKET_TREE:
496			size = sizeof(struct crush_bucket_tree);
497			break;
498		case CRUSH_BUCKET_STRAW:
499			size = sizeof(struct crush_bucket_straw);
500			break;
501		case CRUSH_BUCKET_STRAW2:
502			size = sizeof(struct crush_bucket_straw2);
503			break;
504		default:
505			goto bad;
506		}
507		BUG_ON(size == 0);
508		b = c->buckets[i] = kzalloc(size, GFP_NOFS);
509		if (b == NULL)
510			goto badmem;
511
512		ceph_decode_need(p, end, 4*sizeof(u32), bad);
513		b->id = ceph_decode_32(p);
514		b->type = ceph_decode_16(p);
515		b->alg = ceph_decode_8(p);
516		b->hash = ceph_decode_8(p);
517		b->weight = ceph_decode_32(p);
518		b->size = ceph_decode_32(p);
519
520		dout("crush_decode bucket size %d off %x %p to %p\n",
521		     b->size, (int)(*p-start), *p, end);
522
523		b->items = kcalloc(b->size, sizeof(__s32), GFP_NOFS);
524		if (b->items == NULL)
525			goto badmem;
526
527		ceph_decode_need(p, end, b->size*sizeof(u32), bad);
528		for (j = 0; j < b->size; j++)
529			b->items[j] = ceph_decode_32(p);
530
531		switch (b->alg) {
532		case CRUSH_BUCKET_UNIFORM:
533			err = crush_decode_uniform_bucket(p, end,
534				  (struct crush_bucket_uniform *)b);
535			if (err < 0)
536				goto fail;
537			break;
538		case CRUSH_BUCKET_LIST:
539			err = crush_decode_list_bucket(p, end,
540			       (struct crush_bucket_list *)b);
541			if (err < 0)
542				goto fail;
543			break;
544		case CRUSH_BUCKET_TREE:
545			err = crush_decode_tree_bucket(p, end,
546				(struct crush_bucket_tree *)b);
547			if (err < 0)
548				goto fail;
549			break;
550		case CRUSH_BUCKET_STRAW:
551			err = crush_decode_straw_bucket(p, end,
552				(struct crush_bucket_straw *)b);
553			if (err < 0)
554				goto fail;
555			break;
556		case CRUSH_BUCKET_STRAW2:
557			err = crush_decode_straw2_bucket(p, end,
558				(struct crush_bucket_straw2 *)b);
559			if (err < 0)
560				goto fail;
561			break;
562		}
563	}
564
565	/* rules */
566	dout("rule vec is %p\n", c->rules);
567	for (i = 0; i < c->max_rules; i++) {
568		u32 yes;
569		struct crush_rule *r;
570
571		ceph_decode_32_safe(p, end, yes, bad);
572		if (!yes) {
573			dout("crush_decode NO rule %d off %x %p to %p\n",
574			     i, (int)(*p-start), *p, end);
575			c->rules[i] = NULL;
576			continue;
577		}
578
579		dout("crush_decode rule %d off %x %p to %p\n",
580		     i, (int)(*p-start), *p, end);
581
582		/* len */
583		ceph_decode_32_safe(p, end, yes, bad);
584#if BITS_PER_LONG == 32
585		if (yes > (ULONG_MAX - sizeof(*r))
586			  / sizeof(struct crush_rule_step))
587			goto bad;
588#endif
589		r = kmalloc(struct_size(r, steps, yes), GFP_NOFS);
590		if (r == NULL)
591			goto badmem;
592		dout(" rule %d is at %p\n", i, r);
593		c->rules[i] = r;
594		r->len = yes;
595		ceph_decode_copy_safe(p, end, &r->mask, 4, bad); /* 4 u8's */
596		ceph_decode_need(p, end, r->len*3*sizeof(u32), bad);
597		for (j = 0; j < r->len; j++) {
598			r->steps[j].op = ceph_decode_32(p);
599			r->steps[j].arg1 = ceph_decode_32(p);
600			r->steps[j].arg2 = ceph_decode_32(p);
601		}
602	}
603
604	err = decode_crush_names(p, end, &c->type_names);
605	if (err)
606		goto fail;
607
608	err = decode_crush_names(p, end, &c->names);
609	if (err)
610		goto fail;
611
612	ceph_decode_skip_map(p, end, 32, string, bad); /* rule_name_map */
613
614        /* tunables */
615        ceph_decode_need(p, end, 3*sizeof(u32), done);
616        c->choose_local_tries = ceph_decode_32(p);
617        c->choose_local_fallback_tries =  ceph_decode_32(p);
618        c->choose_total_tries = ceph_decode_32(p);
619        dout("crush decode tunable choose_local_tries = %d\n",
620             c->choose_local_tries);
621        dout("crush decode tunable choose_local_fallback_tries = %d\n",
622             c->choose_local_fallback_tries);
623        dout("crush decode tunable choose_total_tries = %d\n",
624             c->choose_total_tries);
625
626	ceph_decode_need(p, end, sizeof(u32), done);
627	c->chooseleaf_descend_once = ceph_decode_32(p);
628	dout("crush decode tunable chooseleaf_descend_once = %d\n",
629	     c->chooseleaf_descend_once);
630
631	ceph_decode_need(p, end, sizeof(u8), done);
632	c->chooseleaf_vary_r = ceph_decode_8(p);
633	dout("crush decode tunable chooseleaf_vary_r = %d\n",
634	     c->chooseleaf_vary_r);
635
636	/* skip straw_calc_version, allowed_bucket_algs */
637	ceph_decode_need(p, end, sizeof(u8) + sizeof(u32), done);
638	*p += sizeof(u8) + sizeof(u32);
639
640	ceph_decode_need(p, end, sizeof(u8), done);
641	c->chooseleaf_stable = ceph_decode_8(p);
642	dout("crush decode tunable chooseleaf_stable = %d\n",
643	     c->chooseleaf_stable);
644
645	if (*p != end) {
646		/* class_map */
647		ceph_decode_skip_map(p, end, 32, 32, bad);
648		/* class_name */
649		ceph_decode_skip_map(p, end, 32, string, bad);
650		/* class_bucket */
651		ceph_decode_skip_map_of_map(p, end, 32, 32, 32, bad);
652	}
653
654	if (*p != end) {
655		err = decode_choose_args(p, end, c);
656		if (err)
657			goto fail;
658	}
659
660done:
661	crush_finalize(c);
662	dout("crush_decode success\n");
663	return c;
664
665badmem:
666	err = -ENOMEM;
667fail:
668	dout("crush_decode fail %d\n", err);
669	crush_destroy(c);
670	return ERR_PTR(err);
671
672bad:
673	err = -EINVAL;
674	goto fail;
675}
676
677int ceph_pg_compare(const struct ceph_pg *lhs, const struct ceph_pg *rhs)
678{
679	if (lhs->pool < rhs->pool)
680		return -1;
681	if (lhs->pool > rhs->pool)
682		return 1;
683	if (lhs->seed < rhs->seed)
684		return -1;
685	if (lhs->seed > rhs->seed)
686		return 1;
687
688	return 0;
689}
690
691int ceph_spg_compare(const struct ceph_spg *lhs, const struct ceph_spg *rhs)
692{
693	int ret;
694
695	ret = ceph_pg_compare(&lhs->pgid, &rhs->pgid);
696	if (ret)
697		return ret;
698
699	if (lhs->shard < rhs->shard)
700		return -1;
701	if (lhs->shard > rhs->shard)
702		return 1;
703
704	return 0;
705}
706
707static struct ceph_pg_mapping *alloc_pg_mapping(size_t payload_len)
708{
709	struct ceph_pg_mapping *pg;
710
711	pg = kmalloc(sizeof(*pg) + payload_len, GFP_NOIO);
712	if (!pg)
713		return NULL;
714
715	RB_CLEAR_NODE(&pg->node);
716	return pg;
717}
718
719static void free_pg_mapping(struct ceph_pg_mapping *pg)
720{
721	WARN_ON(!RB_EMPTY_NODE(&pg->node));
722
723	kfree(pg);
724}
725
726/*
727 * rbtree of pg_mapping for handling pg_temp (explicit mapping of pgid
728 * to a set of osds) and primary_temp (explicit primary setting)
729 */
730DEFINE_RB_FUNCS2(pg_mapping, struct ceph_pg_mapping, pgid, ceph_pg_compare,
731		 RB_BYPTR, const struct ceph_pg *, node)
732
733/*
734 * rbtree of pg pool info
735 */
736DEFINE_RB_FUNCS(pg_pool, struct ceph_pg_pool_info, id, node)
737
738struct ceph_pg_pool_info *ceph_pg_pool_by_id(struct ceph_osdmap *map, u64 id)
739{
740	return lookup_pg_pool(&map->pg_pools, id);
741}
742
743const char *ceph_pg_pool_name_by_id(struct ceph_osdmap *map, u64 id)
744{
745	struct ceph_pg_pool_info *pi;
746
747	if (id == CEPH_NOPOOL)
748		return NULL;
749
750	if (WARN_ON_ONCE(id > (u64) INT_MAX))
751		return NULL;
752
753	pi = lookup_pg_pool(&map->pg_pools, id);
754	return pi ? pi->name : NULL;
755}
756EXPORT_SYMBOL(ceph_pg_pool_name_by_id);
757
758int ceph_pg_poolid_by_name(struct ceph_osdmap *map, const char *name)
759{
760	struct rb_node *rbp;
761
762	for (rbp = rb_first(&map->pg_pools); rbp; rbp = rb_next(rbp)) {
763		struct ceph_pg_pool_info *pi =
764			rb_entry(rbp, struct ceph_pg_pool_info, node);
765		if (pi->name && strcmp(pi->name, name) == 0)
766			return pi->id;
767	}
768	return -ENOENT;
769}
770EXPORT_SYMBOL(ceph_pg_poolid_by_name);
771
772u64 ceph_pg_pool_flags(struct ceph_osdmap *map, u64 id)
773{
774	struct ceph_pg_pool_info *pi;
775
776	pi = lookup_pg_pool(&map->pg_pools, id);
777	return pi ? pi->flags : 0;
778}
779EXPORT_SYMBOL(ceph_pg_pool_flags);
780
781static void __remove_pg_pool(struct rb_root *root, struct ceph_pg_pool_info *pi)
782{
783	erase_pg_pool(root, pi);
784	kfree(pi->name);
785	kfree(pi);
786}
787
788static int decode_pool(void **p, void *end, struct ceph_pg_pool_info *pi)
789{
790	u8 ev, cv;
791	unsigned len, num;
792	void *pool_end;
793
794	ceph_decode_need(p, end, 2 + 4, bad);
795	ev = ceph_decode_8(p);  /* encoding version */
796	cv = ceph_decode_8(p); /* compat version */
797	if (ev < 5) {
798		pr_warn("got v %d < 5 cv %d of ceph_pg_pool\n", ev, cv);
799		return -EINVAL;
800	}
801	if (cv > 9) {
802		pr_warn("got v %d cv %d > 9 of ceph_pg_pool\n", ev, cv);
803		return -EINVAL;
804	}
805	len = ceph_decode_32(p);
806	ceph_decode_need(p, end, len, bad);
807	pool_end = *p + len;
808
809	pi->type = ceph_decode_8(p);
810	pi->size = ceph_decode_8(p);
811	pi->crush_ruleset = ceph_decode_8(p);
812	pi->object_hash = ceph_decode_8(p);
813
814	pi->pg_num = ceph_decode_32(p);
815	pi->pgp_num = ceph_decode_32(p);
816
817	*p += 4 + 4;  /* skip lpg* */
818	*p += 4;      /* skip last_change */
819	*p += 8 + 4;  /* skip snap_seq, snap_epoch */
820
821	/* skip snaps */
822	num = ceph_decode_32(p);
823	while (num--) {
824		*p += 8;  /* snapid key */
825		*p += 1 + 1; /* versions */
826		len = ceph_decode_32(p);
827		*p += len;
828	}
829
830	/* skip removed_snaps */
831	num = ceph_decode_32(p);
832	*p += num * (8 + 8);
833
834	*p += 8;  /* skip auid */
835	pi->flags = ceph_decode_64(p);
836	*p += 4;  /* skip crash_replay_interval */
837
838	if (ev >= 7)
839		pi->min_size = ceph_decode_8(p);
840	else
841		pi->min_size = pi->size - pi->size / 2;
842
843	if (ev >= 8)
844		*p += 8 + 8;  /* skip quota_max_* */
845
846	if (ev >= 9) {
847		/* skip tiers */
848		num = ceph_decode_32(p);
849		*p += num * 8;
850
851		*p += 8;  /* skip tier_of */
852		*p += 1;  /* skip cache_mode */
853
854		pi->read_tier = ceph_decode_64(p);
855		pi->write_tier = ceph_decode_64(p);
856	} else {
857		pi->read_tier = -1;
858		pi->write_tier = -1;
859	}
860
861	if (ev >= 10) {
862		/* skip properties */
863		num = ceph_decode_32(p);
864		while (num--) {
865			len = ceph_decode_32(p);
866			*p += len; /* key */
867			len = ceph_decode_32(p);
868			*p += len; /* val */
869		}
870	}
871
872	if (ev >= 11) {
873		/* skip hit_set_params */
874		*p += 1 + 1; /* versions */
875		len = ceph_decode_32(p);
876		*p += len;
877
878		*p += 4; /* skip hit_set_period */
879		*p += 4; /* skip hit_set_count */
880	}
881
882	if (ev >= 12)
883		*p += 4; /* skip stripe_width */
884
885	if (ev >= 13) {
886		*p += 8; /* skip target_max_bytes */
887		*p += 8; /* skip target_max_objects */
888		*p += 4; /* skip cache_target_dirty_ratio_micro */
889		*p += 4; /* skip cache_target_full_ratio_micro */
890		*p += 4; /* skip cache_min_flush_age */
891		*p += 4; /* skip cache_min_evict_age */
892	}
893
894	if (ev >=  14) {
895		/* skip erasure_code_profile */
896		len = ceph_decode_32(p);
897		*p += len;
898	}
899
900	/*
901	 * last_force_op_resend_preluminous, will be overridden if the
902	 * map was encoded with RESEND_ON_SPLIT
903	 */
904	if (ev >= 15)
905		pi->last_force_request_resend = ceph_decode_32(p);
906	else
907		pi->last_force_request_resend = 0;
908
909	if (ev >= 16)
910		*p += 4; /* skip min_read_recency_for_promote */
911
912	if (ev >= 17)
913		*p += 8; /* skip expected_num_objects */
914
915	if (ev >= 19)
916		*p += 4; /* skip cache_target_dirty_high_ratio_micro */
917
918	if (ev >= 20)
919		*p += 4; /* skip min_write_recency_for_promote */
920
921	if (ev >= 21)
922		*p += 1; /* skip use_gmt_hitset */
923
924	if (ev >= 22)
925		*p += 1; /* skip fast_read */
926
927	if (ev >= 23) {
928		*p += 4; /* skip hit_set_grade_decay_rate */
929		*p += 4; /* skip hit_set_search_last_n */
930	}
931
932	if (ev >= 24) {
933		/* skip opts */
934		*p += 1 + 1; /* versions */
935		len = ceph_decode_32(p);
936		*p += len;
937	}
938
939	if (ev >= 25)
940		pi->last_force_request_resend = ceph_decode_32(p);
941
942	/* ignore the rest */
943
944	*p = pool_end;
945	calc_pg_masks(pi);
946	return 0;
947
948bad:
949	return -EINVAL;
950}
951
952static int decode_pool_names(void **p, void *end, struct ceph_osdmap *map)
953{
954	struct ceph_pg_pool_info *pi;
955	u32 num, len;
956	u64 pool;
957
958	ceph_decode_32_safe(p, end, num, bad);
959	dout(" %d pool names\n", num);
960	while (num--) {
961		ceph_decode_64_safe(p, end, pool, bad);
962		ceph_decode_32_safe(p, end, len, bad);
963		dout("  pool %llu len %d\n", pool, len);
964		ceph_decode_need(p, end, len, bad);
965		pi = lookup_pg_pool(&map->pg_pools, pool);
966		if (pi) {
967			char *name = kstrndup(*p, len, GFP_NOFS);
968
969			if (!name)
970				return -ENOMEM;
971			kfree(pi->name);
972			pi->name = name;
973			dout("  name is %s\n", pi->name);
974		}
975		*p += len;
976	}
977	return 0;
978
979bad:
980	return -EINVAL;
981}
982
983/*
984 * CRUSH workspaces
985 *
986 * workspace_manager framework borrowed from fs/btrfs/compression.c.
987 * Two simplifications: there is only one type of workspace and there
988 * is always at least one workspace.
989 */
990static struct crush_work *alloc_workspace(const struct crush_map *c)
991{
992	struct crush_work *work;
993	size_t work_size;
994
995	WARN_ON(!c->working_size);
996	work_size = crush_work_size(c, CEPH_PG_MAX_SIZE);
997	dout("%s work_size %zu bytes\n", __func__, work_size);
998
999	work = kvmalloc(work_size, GFP_NOIO);
1000	if (!work)
1001		return NULL;
1002
1003	INIT_LIST_HEAD(&work->item);
1004	crush_init_workspace(c, work);
1005	return work;
1006}
1007
1008static void free_workspace(struct crush_work *work)
1009{
1010	WARN_ON(!list_empty(&work->item));
1011	kvfree(work);
1012}
1013
1014static void init_workspace_manager(struct workspace_manager *wsm)
1015{
1016	INIT_LIST_HEAD(&wsm->idle_ws);
1017	spin_lock_init(&wsm->ws_lock);
1018	atomic_set(&wsm->total_ws, 0);
1019	wsm->free_ws = 0;
1020	init_waitqueue_head(&wsm->ws_wait);
1021}
1022
1023static void add_initial_workspace(struct workspace_manager *wsm,
1024				  struct crush_work *work)
1025{
1026	WARN_ON(!list_empty(&wsm->idle_ws));
1027
1028	list_add(&work->item, &wsm->idle_ws);
1029	atomic_set(&wsm->total_ws, 1);
1030	wsm->free_ws = 1;
1031}
1032
1033static void cleanup_workspace_manager(struct workspace_manager *wsm)
1034{
1035	struct crush_work *work;
1036
1037	while (!list_empty(&wsm->idle_ws)) {
1038		work = list_first_entry(&wsm->idle_ws, struct crush_work,
1039					item);
1040		list_del_init(&work->item);
1041		free_workspace(work);
1042	}
1043	atomic_set(&wsm->total_ws, 0);
1044	wsm->free_ws = 0;
1045}
1046
1047/*
1048 * Finds an available workspace or allocates a new one.  If it's not
1049 * possible to allocate a new one, waits until there is one.
1050 */
1051static struct crush_work *get_workspace(struct workspace_manager *wsm,
1052					const struct crush_map *c)
1053{
1054	struct crush_work *work;
1055	int cpus = num_online_cpus();
1056
1057again:
1058	spin_lock(&wsm->ws_lock);
1059	if (!list_empty(&wsm->idle_ws)) {
1060		work = list_first_entry(&wsm->idle_ws, struct crush_work,
1061					item);
1062		list_del_init(&work->item);
1063		wsm->free_ws--;
1064		spin_unlock(&wsm->ws_lock);
1065		return work;
1066
1067	}
1068	if (atomic_read(&wsm->total_ws) > cpus) {
1069		DEFINE_WAIT(wait);
1070
1071		spin_unlock(&wsm->ws_lock);
1072		prepare_to_wait(&wsm->ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1073		if (atomic_read(&wsm->total_ws) > cpus && !wsm->free_ws)
1074			schedule();
1075		finish_wait(&wsm->ws_wait, &wait);
1076		goto again;
1077	}
1078	atomic_inc(&wsm->total_ws);
1079	spin_unlock(&wsm->ws_lock);
1080
1081	work = alloc_workspace(c);
1082	if (!work) {
1083		atomic_dec(&wsm->total_ws);
1084		wake_up(&wsm->ws_wait);
1085
1086		/*
1087		 * Do not return the error but go back to waiting.  We
1088		 * have the initial workspace and the CRUSH computation
1089		 * time is bounded so we will get it eventually.
1090		 */
1091		WARN_ON(atomic_read(&wsm->total_ws) < 1);
1092		goto again;
1093	}
1094	return work;
1095}
1096
1097/*
1098 * Puts a workspace back on the list or frees it if we have enough
1099 * idle ones sitting around.
1100 */
1101static void put_workspace(struct workspace_manager *wsm,
1102			  struct crush_work *work)
1103{
1104	spin_lock(&wsm->ws_lock);
1105	if (wsm->free_ws <= num_online_cpus()) {
1106		list_add(&work->item, &wsm->idle_ws);
1107		wsm->free_ws++;
1108		spin_unlock(&wsm->ws_lock);
1109		goto wake;
1110	}
1111	spin_unlock(&wsm->ws_lock);
1112
1113	free_workspace(work);
1114	atomic_dec(&wsm->total_ws);
1115wake:
1116	if (wq_has_sleeper(&wsm->ws_wait))
1117		wake_up(&wsm->ws_wait);
1118}
1119
1120/*
1121 * osd map
1122 */
1123struct ceph_osdmap *ceph_osdmap_alloc(void)
1124{
1125	struct ceph_osdmap *map;
1126
1127	map = kzalloc(sizeof(*map), GFP_NOIO);
1128	if (!map)
1129		return NULL;
1130
1131	map->pg_pools = RB_ROOT;
1132	map->pool_max = -1;
1133	map->pg_temp = RB_ROOT;
1134	map->primary_temp = RB_ROOT;
1135	map->pg_upmap = RB_ROOT;
1136	map->pg_upmap_items = RB_ROOT;
1137
1138	init_workspace_manager(&map->crush_wsm);
1139
1140	return map;
1141}
1142
1143void ceph_osdmap_destroy(struct ceph_osdmap *map)
1144{
1145	dout("osdmap_destroy %p\n", map);
1146
1147	if (map->crush)
1148		crush_destroy(map->crush);
1149	cleanup_workspace_manager(&map->crush_wsm);
1150
1151	while (!RB_EMPTY_ROOT(&map->pg_temp)) {
1152		struct ceph_pg_mapping *pg =
1153			rb_entry(rb_first(&map->pg_temp),
1154				 struct ceph_pg_mapping, node);
1155		erase_pg_mapping(&map->pg_temp, pg);
1156		free_pg_mapping(pg);
1157	}
1158	while (!RB_EMPTY_ROOT(&map->primary_temp)) {
1159		struct ceph_pg_mapping *pg =
1160			rb_entry(rb_first(&map->primary_temp),
1161				 struct ceph_pg_mapping, node);
1162		erase_pg_mapping(&map->primary_temp, pg);
1163		free_pg_mapping(pg);
1164	}
1165	while (!RB_EMPTY_ROOT(&map->pg_upmap)) {
1166		struct ceph_pg_mapping *pg =
1167			rb_entry(rb_first(&map->pg_upmap),
1168				 struct ceph_pg_mapping, node);
1169		rb_erase(&pg->node, &map->pg_upmap);
1170		kfree(pg);
1171	}
1172	while (!RB_EMPTY_ROOT(&map->pg_upmap_items)) {
1173		struct ceph_pg_mapping *pg =
1174			rb_entry(rb_first(&map->pg_upmap_items),
1175				 struct ceph_pg_mapping, node);
1176		rb_erase(&pg->node, &map->pg_upmap_items);
1177		kfree(pg);
1178	}
1179	while (!RB_EMPTY_ROOT(&map->pg_pools)) {
1180		struct ceph_pg_pool_info *pi =
1181			rb_entry(rb_first(&map->pg_pools),
1182				 struct ceph_pg_pool_info, node);
1183		__remove_pg_pool(&map->pg_pools, pi);
1184	}
1185	kvfree(map->osd_state);
1186	kvfree(map->osd_weight);
1187	kvfree(map->osd_addr);
1188	kvfree(map->osd_primary_affinity);
1189	kfree(map);
1190}
1191
1192/*
1193 * Adjust max_osd value, (re)allocate arrays.
1194 *
1195 * The new elements are properly initialized.
1196 */
1197static int osdmap_set_max_osd(struct ceph_osdmap *map, u32 max)
1198{
1199	u32 *state;
1200	u32 *weight;
1201	struct ceph_entity_addr *addr;
1202	u32 to_copy;
1203	int i;
1204
1205	dout("%s old %u new %u\n", __func__, map->max_osd, max);
1206	if (max == map->max_osd)
1207		return 0;
1208
1209	state = kvmalloc(array_size(max, sizeof(*state)), GFP_NOFS);
1210	weight = kvmalloc(array_size(max, sizeof(*weight)), GFP_NOFS);
1211	addr = kvmalloc(array_size(max, sizeof(*addr)), GFP_NOFS);
1212	if (!state || !weight || !addr) {
1213		kvfree(state);
1214		kvfree(weight);
1215		kvfree(addr);
1216		return -ENOMEM;
1217	}
1218
1219	to_copy = min(map->max_osd, max);
1220	if (map->osd_state) {
1221		memcpy(state, map->osd_state, to_copy * sizeof(*state));
1222		memcpy(weight, map->osd_weight, to_copy * sizeof(*weight));
1223		memcpy(addr, map->osd_addr, to_copy * sizeof(*addr));
1224		kvfree(map->osd_state);
1225		kvfree(map->osd_weight);
1226		kvfree(map->osd_addr);
1227	}
1228
1229	map->osd_state = state;
1230	map->osd_weight = weight;
1231	map->osd_addr = addr;
1232	for (i = map->max_osd; i < max; i++) {
1233		map->osd_state[i] = 0;
1234		map->osd_weight[i] = CEPH_OSD_OUT;
1235		memset(map->osd_addr + i, 0, sizeof(*map->osd_addr));
1236	}
1237
1238	if (map->osd_primary_affinity) {
1239		u32 *affinity;
1240
1241		affinity = kvmalloc(array_size(max, sizeof(*affinity)),
1242					 GFP_NOFS);
1243		if (!affinity)
1244			return -ENOMEM;
1245
1246		memcpy(affinity, map->osd_primary_affinity,
1247		       to_copy * sizeof(*affinity));
1248		kvfree(map->osd_primary_affinity);
1249
1250		map->osd_primary_affinity = affinity;
1251		for (i = map->max_osd; i < max; i++)
1252			map->osd_primary_affinity[i] =
1253			    CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1254	}
1255
1256	map->max_osd = max;
1257
1258	return 0;
1259}
1260
1261static int osdmap_set_crush(struct ceph_osdmap *map, struct crush_map *crush)
1262{
1263	struct crush_work *work;
1264
1265	if (IS_ERR(crush))
1266		return PTR_ERR(crush);
1267
1268	work = alloc_workspace(crush);
1269	if (!work) {
1270		crush_destroy(crush);
1271		return -ENOMEM;
1272	}
1273
1274	if (map->crush)
1275		crush_destroy(map->crush);
1276	cleanup_workspace_manager(&map->crush_wsm);
1277	map->crush = crush;
1278	add_initial_workspace(&map->crush_wsm, work);
1279	return 0;
1280}
1281
1282#define OSDMAP_WRAPPER_COMPAT_VER	7
1283#define OSDMAP_CLIENT_DATA_COMPAT_VER	1
1284
1285/*
1286 * Return 0 or error.  On success, *v is set to 0 for old (v6) osdmaps,
1287 * to struct_v of the client_data section for new (v7 and above)
1288 * osdmaps.
1289 */
1290static int get_osdmap_client_data_v(void **p, void *end,
1291				    const char *prefix, u8 *v)
1292{
1293	u8 struct_v;
1294
1295	ceph_decode_8_safe(p, end, struct_v, e_inval);
1296	if (struct_v >= 7) {
1297		u8 struct_compat;
1298
1299		ceph_decode_8_safe(p, end, struct_compat, e_inval);
1300		if (struct_compat > OSDMAP_WRAPPER_COMPAT_VER) {
1301			pr_warn("got v %d cv %d > %d of %s ceph_osdmap\n",
1302				struct_v, struct_compat,
1303				OSDMAP_WRAPPER_COMPAT_VER, prefix);
1304			return -EINVAL;
1305		}
1306		*p += 4; /* ignore wrapper struct_len */
1307
1308		ceph_decode_8_safe(p, end, struct_v, e_inval);
1309		ceph_decode_8_safe(p, end, struct_compat, e_inval);
1310		if (struct_compat > OSDMAP_CLIENT_DATA_COMPAT_VER) {
1311			pr_warn("got v %d cv %d > %d of %s ceph_osdmap client data\n",
1312				struct_v, struct_compat,
1313				OSDMAP_CLIENT_DATA_COMPAT_VER, prefix);
1314			return -EINVAL;
1315		}
1316		*p += 4; /* ignore client data struct_len */
1317	} else {
1318		u16 version;
1319
1320		*p -= 1;
1321		ceph_decode_16_safe(p, end, version, e_inval);
1322		if (version < 6) {
1323			pr_warn("got v %d < 6 of %s ceph_osdmap\n",
1324				version, prefix);
1325			return -EINVAL;
1326		}
1327
1328		/* old osdmap encoding */
1329		struct_v = 0;
1330	}
1331
1332	*v = struct_v;
1333	return 0;
1334
1335e_inval:
1336	return -EINVAL;
1337}
1338
1339static int __decode_pools(void **p, void *end, struct ceph_osdmap *map,
1340			  bool incremental)
1341{
1342	u32 n;
1343
1344	ceph_decode_32_safe(p, end, n, e_inval);
1345	while (n--) {
1346		struct ceph_pg_pool_info *pi;
1347		u64 pool;
1348		int ret;
1349
1350		ceph_decode_64_safe(p, end, pool, e_inval);
1351
1352		pi = lookup_pg_pool(&map->pg_pools, pool);
1353		if (!incremental || !pi) {
1354			pi = kzalloc(sizeof(*pi), GFP_NOFS);
1355			if (!pi)
1356				return -ENOMEM;
1357
1358			RB_CLEAR_NODE(&pi->node);
1359			pi->id = pool;
1360
1361			if (!__insert_pg_pool(&map->pg_pools, pi)) {
1362				kfree(pi);
1363				return -EEXIST;
1364			}
1365		}
1366
1367		ret = decode_pool(p, end, pi);
1368		if (ret)
1369			return ret;
1370	}
1371
1372	return 0;
1373
1374e_inval:
1375	return -EINVAL;
1376}
1377
1378static int decode_pools(void **p, void *end, struct ceph_osdmap *map)
1379{
1380	return __decode_pools(p, end, map, false);
1381}
1382
1383static int decode_new_pools(void **p, void *end, struct ceph_osdmap *map)
1384{
1385	return __decode_pools(p, end, map, true);
1386}
1387
1388typedef struct ceph_pg_mapping *(*decode_mapping_fn_t)(void **, void *, bool);
1389
1390static int decode_pg_mapping(void **p, void *end, struct rb_root *mapping_root,
1391			     decode_mapping_fn_t fn, bool incremental)
1392{
1393	u32 n;
1394
1395	WARN_ON(!incremental && !fn);
1396
1397	ceph_decode_32_safe(p, end, n, e_inval);
1398	while (n--) {
1399		struct ceph_pg_mapping *pg;
1400		struct ceph_pg pgid;
1401		int ret;
1402
1403		ret = ceph_decode_pgid(p, end, &pgid);
1404		if (ret)
1405			return ret;
1406
1407		pg = lookup_pg_mapping(mapping_root, &pgid);
1408		if (pg) {
1409			WARN_ON(!incremental);
1410			erase_pg_mapping(mapping_root, pg);
1411			free_pg_mapping(pg);
1412		}
1413
1414		if (fn) {
1415			pg = fn(p, end, incremental);
1416			if (IS_ERR(pg))
1417				return PTR_ERR(pg);
1418
1419			if (pg) {
1420				pg->pgid = pgid; /* struct */
1421				insert_pg_mapping(mapping_root, pg);
1422			}
1423		}
1424	}
1425
1426	return 0;
1427
1428e_inval:
1429	return -EINVAL;
1430}
1431
1432static struct ceph_pg_mapping *__decode_pg_temp(void **p, void *end,
1433						bool incremental)
1434{
1435	struct ceph_pg_mapping *pg;
1436	u32 len, i;
1437
1438	ceph_decode_32_safe(p, end, len, e_inval);
1439	if (len == 0 && incremental)
1440		return NULL;	/* new_pg_temp: [] to remove */
1441	if (len > (SIZE_MAX - sizeof(*pg)) / sizeof(u32))
1442		return ERR_PTR(-EINVAL);
1443
1444	ceph_decode_need(p, end, len * sizeof(u32), e_inval);
1445	pg = alloc_pg_mapping(len * sizeof(u32));
1446	if (!pg)
1447		return ERR_PTR(-ENOMEM);
1448
1449	pg->pg_temp.len = len;
1450	for (i = 0; i < len; i++)
1451		pg->pg_temp.osds[i] = ceph_decode_32(p);
1452
1453	return pg;
1454
1455e_inval:
1456	return ERR_PTR(-EINVAL);
1457}
1458
1459static int decode_pg_temp(void **p, void *end, struct ceph_osdmap *map)
1460{
1461	return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp,
1462				 false);
1463}
1464
1465static int decode_new_pg_temp(void **p, void *end, struct ceph_osdmap *map)
1466{
1467	return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp,
1468				 true);
1469}
1470
1471static struct ceph_pg_mapping *__decode_primary_temp(void **p, void *end,
1472						     bool incremental)
1473{
1474	struct ceph_pg_mapping *pg;
1475	u32 osd;
1476
1477	ceph_decode_32_safe(p, end, osd, e_inval);
1478	if (osd == (u32)-1 && incremental)
1479		return NULL;	/* new_primary_temp: -1 to remove */
1480
1481	pg = alloc_pg_mapping(0);
1482	if (!pg)
1483		return ERR_PTR(-ENOMEM);
1484
1485	pg->primary_temp.osd = osd;
1486	return pg;
1487
1488e_inval:
1489	return ERR_PTR(-EINVAL);
1490}
1491
1492static int decode_primary_temp(void **p, void *end, struct ceph_osdmap *map)
1493{
1494	return decode_pg_mapping(p, end, &map->primary_temp,
1495				 __decode_primary_temp, false);
1496}
1497
1498static int decode_new_primary_temp(void **p, void *end,
1499				   struct ceph_osdmap *map)
1500{
1501	return decode_pg_mapping(p, end, &map->primary_temp,
1502				 __decode_primary_temp, true);
1503}
1504
1505u32 ceph_get_primary_affinity(struct ceph_osdmap *map, int osd)
1506{
1507	BUG_ON(osd >= map->max_osd);
1508
1509	if (!map->osd_primary_affinity)
1510		return CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1511
1512	return map->osd_primary_affinity[osd];
1513}
1514
1515static int set_primary_affinity(struct ceph_osdmap *map, int osd, u32 aff)
1516{
1517	BUG_ON(osd >= map->max_osd);
1518
1519	if (!map->osd_primary_affinity) {
1520		int i;
1521
1522		map->osd_primary_affinity = kvmalloc(
1523		    array_size(map->max_osd, sizeof(*map->osd_primary_affinity)),
1524		    GFP_NOFS);
1525		if (!map->osd_primary_affinity)
1526			return -ENOMEM;
1527
1528		for (i = 0; i < map->max_osd; i++)
1529			map->osd_primary_affinity[i] =
1530			    CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1531	}
1532
1533	map->osd_primary_affinity[osd] = aff;
1534
1535	return 0;
1536}
1537
1538static int decode_primary_affinity(void **p, void *end,
1539				   struct ceph_osdmap *map)
1540{
1541	u32 len, i;
1542
1543	ceph_decode_32_safe(p, end, len, e_inval);
1544	if (len == 0) {
1545		kvfree(map->osd_primary_affinity);
1546		map->osd_primary_affinity = NULL;
1547		return 0;
1548	}
1549	if (len != map->max_osd)
1550		goto e_inval;
1551
1552	ceph_decode_need(p, end, map->max_osd*sizeof(u32), e_inval);
1553
1554	for (i = 0; i < map->max_osd; i++) {
1555		int ret;
1556
1557		ret = set_primary_affinity(map, i, ceph_decode_32(p));
1558		if (ret)
1559			return ret;
1560	}
1561
1562	return 0;
1563
1564e_inval:
1565	return -EINVAL;
1566}
1567
1568static int decode_new_primary_affinity(void **p, void *end,
1569				       struct ceph_osdmap *map)
1570{
1571	u32 n;
1572
1573	ceph_decode_32_safe(p, end, n, e_inval);
1574	while (n--) {
1575		u32 osd, aff;
1576		int ret;
1577
1578		ceph_decode_32_safe(p, end, osd, e_inval);
1579		ceph_decode_32_safe(p, end, aff, e_inval);
1580
1581		ret = set_primary_affinity(map, osd, aff);
1582		if (ret)
1583			return ret;
1584
1585		osdmap_info(map, "osd%d primary-affinity 0x%x\n", osd, aff);
1586	}
1587
1588	return 0;
1589
1590e_inval:
1591	return -EINVAL;
1592}
1593
1594static struct ceph_pg_mapping *__decode_pg_upmap(void **p, void *end,
1595						 bool __unused)
1596{
1597	return __decode_pg_temp(p, end, false);
1598}
1599
1600static int decode_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1601{
1602	return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap,
1603				 false);
1604}
1605
1606static int decode_new_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1607{
1608	return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap,
1609				 true);
1610}
1611
1612static int decode_old_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1613{
1614	return decode_pg_mapping(p, end, &map->pg_upmap, NULL, true);
1615}
1616
1617static struct ceph_pg_mapping *__decode_pg_upmap_items(void **p, void *end,
1618						       bool __unused)
1619{
1620	struct ceph_pg_mapping *pg;
1621	u32 len, i;
1622
1623	ceph_decode_32_safe(p, end, len, e_inval);
1624	if (len > (SIZE_MAX - sizeof(*pg)) / (2 * sizeof(u32)))
1625		return ERR_PTR(-EINVAL);
1626
1627	ceph_decode_need(p, end, 2 * len * sizeof(u32), e_inval);
1628	pg = alloc_pg_mapping(2 * len * sizeof(u32));
1629	if (!pg)
1630		return ERR_PTR(-ENOMEM);
1631
1632	pg->pg_upmap_items.len = len;
1633	for (i = 0; i < len; i++) {
1634		pg->pg_upmap_items.from_to[i][0] = ceph_decode_32(p);
1635		pg->pg_upmap_items.from_to[i][1] = ceph_decode_32(p);
1636	}
1637
1638	return pg;
1639
1640e_inval:
1641	return ERR_PTR(-EINVAL);
1642}
1643
1644static int decode_pg_upmap_items(void **p, void *end, struct ceph_osdmap *map)
1645{
1646	return decode_pg_mapping(p, end, &map->pg_upmap_items,
1647				 __decode_pg_upmap_items, false);
1648}
1649
1650static int decode_new_pg_upmap_items(void **p, void *end,
1651				     struct ceph_osdmap *map)
1652{
1653	return decode_pg_mapping(p, end, &map->pg_upmap_items,
1654				 __decode_pg_upmap_items, true);
1655}
1656
1657static int decode_old_pg_upmap_items(void **p, void *end,
1658				     struct ceph_osdmap *map)
1659{
1660	return decode_pg_mapping(p, end, &map->pg_upmap_items, NULL, true);
1661}
1662
1663/*
1664 * decode a full map.
1665 */
1666static int osdmap_decode(void **p, void *end, bool msgr2,
1667			 struct ceph_osdmap *map)
1668{
1669	u8 struct_v;
1670	u32 epoch = 0;
1671	void *start = *p;
1672	u32 max;
1673	u32 len, i;
1674	int err;
1675
1676	dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p));
1677
1678	err = get_osdmap_client_data_v(p, end, "full", &struct_v);
1679	if (err)
1680		goto bad;
1681
1682	/* fsid, epoch, created, modified */
1683	ceph_decode_need(p, end, sizeof(map->fsid) + sizeof(u32) +
1684			 sizeof(map->created) + sizeof(map->modified), e_inval);
1685	ceph_decode_copy(p, &map->fsid, sizeof(map->fsid));
1686	epoch = map->epoch = ceph_decode_32(p);
1687	ceph_decode_copy(p, &map->created, sizeof(map->created));
1688	ceph_decode_copy(p, &map->modified, sizeof(map->modified));
1689
1690	/* pools */
1691	err = decode_pools(p, end, map);
1692	if (err)
1693		goto bad;
1694
1695	/* pool_name */
1696	err = decode_pool_names(p, end, map);
1697	if (err)
1698		goto bad;
1699
1700	ceph_decode_32_safe(p, end, map->pool_max, e_inval);
1701
1702	ceph_decode_32_safe(p, end, map->flags, e_inval);
1703
1704	/* max_osd */
1705	ceph_decode_32_safe(p, end, max, e_inval);
1706
1707	/* (re)alloc osd arrays */
1708	err = osdmap_set_max_osd(map, max);
1709	if (err)
1710		goto bad;
1711
1712	/* osd_state, osd_weight, osd_addrs->client_addr */
1713	ceph_decode_need(p, end, 3*sizeof(u32) +
1714			 map->max_osd*(struct_v >= 5 ? sizeof(u32) :
1715						       sizeof(u8)) +
1716				       sizeof(*map->osd_weight), e_inval);
1717	if (ceph_decode_32(p) != map->max_osd)
1718		goto e_inval;
1719
1720	if (struct_v >= 5) {
1721		for (i = 0; i < map->max_osd; i++)
1722			map->osd_state[i] = ceph_decode_32(p);
1723	} else {
1724		for (i = 0; i < map->max_osd; i++)
1725			map->osd_state[i] = ceph_decode_8(p);
1726	}
1727
1728	if (ceph_decode_32(p) != map->max_osd)
1729		goto e_inval;
1730
1731	for (i = 0; i < map->max_osd; i++)
1732		map->osd_weight[i] = ceph_decode_32(p);
1733
1734	if (ceph_decode_32(p) != map->max_osd)
1735		goto e_inval;
1736
1737	for (i = 0; i < map->max_osd; i++) {
1738		struct ceph_entity_addr *addr = &map->osd_addr[i];
1739
1740		if (struct_v >= 8)
1741			err = ceph_decode_entity_addrvec(p, end, msgr2, addr);
1742		else
1743			err = ceph_decode_entity_addr(p, end, addr);
1744		if (err)
1745			goto bad;
1746
1747		dout("%s osd%d addr %s\n", __func__, i, ceph_pr_addr(addr));
1748	}
1749
1750	/* pg_temp */
1751	err = decode_pg_temp(p, end, map);
1752	if (err)
1753		goto bad;
1754
1755	/* primary_temp */
1756	if (struct_v >= 1) {
1757		err = decode_primary_temp(p, end, map);
1758		if (err)
1759			goto bad;
1760	}
1761
1762	/* primary_affinity */
1763	if (struct_v >= 2) {
1764		err = decode_primary_affinity(p, end, map);
1765		if (err)
1766			goto bad;
1767	} else {
1768		WARN_ON(map->osd_primary_affinity);
1769	}
1770
1771	/* crush */
1772	ceph_decode_32_safe(p, end, len, e_inval);
1773	err = osdmap_set_crush(map, crush_decode(*p, min(*p + len, end)));
1774	if (err)
1775		goto bad;
1776
1777	*p += len;
1778	if (struct_v >= 3) {
1779		/* erasure_code_profiles */
1780		ceph_decode_skip_map_of_map(p, end, string, string, string,
1781					    e_inval);
1782	}
1783
1784	if (struct_v >= 4) {
1785		err = decode_pg_upmap(p, end, map);
1786		if (err)
1787			goto bad;
1788
1789		err = decode_pg_upmap_items(p, end, map);
1790		if (err)
1791			goto bad;
1792	} else {
1793		WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap));
1794		WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap_items));
1795	}
1796
1797	/* ignore the rest */
1798	*p = end;
1799
1800	dout("full osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd);
1801	return 0;
1802
1803e_inval:
1804	err = -EINVAL;
1805bad:
1806	pr_err("corrupt full osdmap (%d) epoch %d off %d (%p of %p-%p)\n",
1807	       err, epoch, (int)(*p - start), *p, start, end);
1808	print_hex_dump(KERN_DEBUG, "osdmap: ",
1809		       DUMP_PREFIX_OFFSET, 16, 1,
1810		       start, end - start, true);
1811	return err;
1812}
1813
1814/*
1815 * Allocate and decode a full map.
1816 */
1817struct ceph_osdmap *ceph_osdmap_decode(void **p, void *end, bool msgr2)
1818{
1819	struct ceph_osdmap *map;
1820	int ret;
1821
1822	map = ceph_osdmap_alloc();
1823	if (!map)
1824		return ERR_PTR(-ENOMEM);
1825
1826	ret = osdmap_decode(p, end, msgr2, map);
1827	if (ret) {
1828		ceph_osdmap_destroy(map);
1829		return ERR_PTR(ret);
1830	}
1831
1832	return map;
1833}
1834
1835/*
1836 * Encoding order is (new_up_client, new_state, new_weight).  Need to
1837 * apply in the (new_weight, new_state, new_up_client) order, because
1838 * an incremental map may look like e.g.
1839 *
1840 *     new_up_client: { osd=6, addr=... } # set osd_state and addr
1841 *     new_state: { osd=6, xorstate=EXISTS } # clear osd_state
1842 */
1843static int decode_new_up_state_weight(void **p, void *end, u8 struct_v,
1844				      bool msgr2, struct ceph_osdmap *map)
1845{
1846	void *new_up_client;
1847	void *new_state;
1848	void *new_weight_end;
1849	u32 len;
1850	int ret;
1851	int i;
1852
1853	new_up_client = *p;
1854	ceph_decode_32_safe(p, end, len, e_inval);
1855	for (i = 0; i < len; ++i) {
1856		struct ceph_entity_addr addr;
1857
1858		ceph_decode_skip_32(p, end, e_inval);
1859		if (struct_v >= 7)
1860			ret = ceph_decode_entity_addrvec(p, end, msgr2, &addr);
1861		else
1862			ret = ceph_decode_entity_addr(p, end, &addr);
1863		if (ret)
1864			return ret;
1865	}
1866
1867	new_state = *p;
1868	ceph_decode_32_safe(p, end, len, e_inval);
1869	len *= sizeof(u32) + (struct_v >= 5 ? sizeof(u32) : sizeof(u8));
1870	ceph_decode_need(p, end, len, e_inval);
1871	*p += len;
1872
1873	/* new_weight */
1874	ceph_decode_32_safe(p, end, len, e_inval);
1875	while (len--) {
1876		s32 osd;
1877		u32 w;
1878
1879		ceph_decode_need(p, end, 2*sizeof(u32), e_inval);
1880		osd = ceph_decode_32(p);
1881		w = ceph_decode_32(p);
1882		BUG_ON(osd >= map->max_osd);
1883		osdmap_info(map, "osd%d weight 0x%x %s\n", osd, w,
1884			    w == CEPH_OSD_IN ? "(in)" :
1885			    (w == CEPH_OSD_OUT ? "(out)" : ""));
1886		map->osd_weight[osd] = w;
1887
1888		/*
1889		 * If we are marking in, set the EXISTS, and clear the
1890		 * AUTOOUT and NEW bits.
1891		 */
1892		if (w) {
1893			map->osd_state[osd] |= CEPH_OSD_EXISTS;
1894			map->osd_state[osd] &= ~(CEPH_OSD_AUTOOUT |
1895						 CEPH_OSD_NEW);
1896		}
1897	}
1898	new_weight_end = *p;
1899
1900	/* new_state (up/down) */
1901	*p = new_state;
1902	len = ceph_decode_32(p);
1903	while (len--) {
1904		s32 osd;
1905		u32 xorstate;
1906
1907		osd = ceph_decode_32(p);
1908		if (struct_v >= 5)
1909			xorstate = ceph_decode_32(p);
1910		else
1911			xorstate = ceph_decode_8(p);
1912		if (xorstate == 0)
1913			xorstate = CEPH_OSD_UP;
1914		BUG_ON(osd >= map->max_osd);
1915		if ((map->osd_state[osd] & CEPH_OSD_UP) &&
1916		    (xorstate & CEPH_OSD_UP))
1917			osdmap_info(map, "osd%d down\n", osd);
1918		if ((map->osd_state[osd] & CEPH_OSD_EXISTS) &&
1919		    (xorstate & CEPH_OSD_EXISTS)) {
1920			osdmap_info(map, "osd%d does not exist\n", osd);
1921			ret = set_primary_affinity(map, osd,
1922						   CEPH_OSD_DEFAULT_PRIMARY_AFFINITY);
1923			if (ret)
1924				return ret;
1925			memset(map->osd_addr + osd, 0, sizeof(*map->osd_addr));
1926			map->osd_state[osd] = 0;
1927		} else {
1928			map->osd_state[osd] ^= xorstate;
1929		}
1930	}
1931
1932	/* new_up_client */
1933	*p = new_up_client;
1934	len = ceph_decode_32(p);
1935	while (len--) {
1936		s32 osd;
1937		struct ceph_entity_addr addr;
1938
1939		osd = ceph_decode_32(p);
1940		BUG_ON(osd >= map->max_osd);
1941		if (struct_v >= 7)
1942			ret = ceph_decode_entity_addrvec(p, end, msgr2, &addr);
1943		else
1944			ret = ceph_decode_entity_addr(p, end, &addr);
1945		if (ret)
1946			return ret;
1947
1948		dout("%s osd%d addr %s\n", __func__, osd, ceph_pr_addr(&addr));
1949
1950		osdmap_info(map, "osd%d up\n", osd);
1951		map->osd_state[osd] |= CEPH_OSD_EXISTS | CEPH_OSD_UP;
1952		map->osd_addr[osd] = addr;
1953	}
1954
1955	*p = new_weight_end;
1956	return 0;
1957
1958e_inval:
1959	return -EINVAL;
1960}
1961
1962/*
1963 * decode and apply an incremental map update.
1964 */
1965struct ceph_osdmap *osdmap_apply_incremental(void **p, void *end, bool msgr2,
1966					     struct ceph_osdmap *map)
1967{
1968	struct ceph_fsid fsid;
1969	u32 epoch = 0;
1970	struct ceph_timespec modified;
1971	s32 len;
1972	u64 pool;
1973	__s64 new_pool_max;
1974	__s32 new_flags, max;
1975	void *start = *p;
1976	int err;
1977	u8 struct_v;
1978
1979	dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p));
1980
1981	err = get_osdmap_client_data_v(p, end, "inc", &struct_v);
1982	if (err)
1983		goto bad;
1984
1985	/* fsid, epoch, modified, new_pool_max, new_flags */
1986	ceph_decode_need(p, end, sizeof(fsid) + sizeof(u32) + sizeof(modified) +
1987			 sizeof(u64) + sizeof(u32), e_inval);
1988	ceph_decode_copy(p, &fsid, sizeof(fsid));
1989	epoch = ceph_decode_32(p);
1990	BUG_ON(epoch != map->epoch+1);
1991	ceph_decode_copy(p, &modified, sizeof(modified));
1992	new_pool_max = ceph_decode_64(p);
1993	new_flags = ceph_decode_32(p);
1994
1995	/* full map? */
1996	ceph_decode_32_safe(p, end, len, e_inval);
1997	if (len > 0) {
1998		dout("apply_incremental full map len %d, %p to %p\n",
1999		     len, *p, end);
2000		return ceph_osdmap_decode(p, min(*p+len, end), msgr2);
2001	}
2002
2003	/* new crush? */
2004	ceph_decode_32_safe(p, end, len, e_inval);
2005	if (len > 0) {
2006		err = osdmap_set_crush(map,
2007				       crush_decode(*p, min(*p + len, end)));
2008		if (err)
2009			goto bad;
2010		*p += len;
2011	}
2012
2013	/* new flags? */
2014	if (new_flags >= 0)
2015		map->flags = new_flags;
2016	if (new_pool_max >= 0)
2017		map->pool_max = new_pool_max;
2018
2019	/* new max? */
2020	ceph_decode_32_safe(p, end, max, e_inval);
2021	if (max >= 0) {
2022		err = osdmap_set_max_osd(map, max);
2023		if (err)
2024			goto bad;
2025	}
2026
2027	map->epoch++;
2028	map->modified = modified;
2029
2030	/* new_pools */
2031	err = decode_new_pools(p, end, map);
2032	if (err)
2033		goto bad;
2034
2035	/* new_pool_names */
2036	err = decode_pool_names(p, end, map);
2037	if (err)
2038		goto bad;
2039
2040	/* old_pool */
2041	ceph_decode_32_safe(p, end, len, e_inval);
2042	while (len--) {
2043		struct ceph_pg_pool_info *pi;
2044
2045		ceph_decode_64_safe(p, end, pool, e_inval);
2046		pi = lookup_pg_pool(&map->pg_pools, pool);
2047		if (pi)
2048			__remove_pg_pool(&map->pg_pools, pi);
2049	}
2050
2051	/* new_up_client, new_state, new_weight */
2052	err = decode_new_up_state_weight(p, end, struct_v, msgr2, map);
2053	if (err)
2054		goto bad;
2055
2056	/* new_pg_temp */
2057	err = decode_new_pg_temp(p, end, map);
2058	if (err)
2059		goto bad;
2060
2061	/* new_primary_temp */
2062	if (struct_v >= 1) {
2063		err = decode_new_primary_temp(p, end, map);
2064		if (err)
2065			goto bad;
2066	}
2067
2068	/* new_primary_affinity */
2069	if (struct_v >= 2) {
2070		err = decode_new_primary_affinity(p, end, map);
2071		if (err)
2072			goto bad;
2073	}
2074
2075	if (struct_v >= 3) {
2076		/* new_erasure_code_profiles */
2077		ceph_decode_skip_map_of_map(p, end, string, string, string,
2078					    e_inval);
2079		/* old_erasure_code_profiles */
2080		ceph_decode_skip_set(p, end, string, e_inval);
2081	}
2082
2083	if (struct_v >= 4) {
2084		err = decode_new_pg_upmap(p, end, map);
2085		if (err)
2086			goto bad;
2087
2088		err = decode_old_pg_upmap(p, end, map);
2089		if (err)
2090			goto bad;
2091
2092		err = decode_new_pg_upmap_items(p, end, map);
2093		if (err)
2094			goto bad;
2095
2096		err = decode_old_pg_upmap_items(p, end, map);
2097		if (err)
2098			goto bad;
2099	}
2100
2101	/* ignore the rest */
2102	*p = end;
2103
2104	dout("inc osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd);
2105	return map;
2106
2107e_inval:
2108	err = -EINVAL;
2109bad:
2110	pr_err("corrupt inc osdmap (%d) epoch %d off %d (%p of %p-%p)\n",
2111	       err, epoch, (int)(*p - start), *p, start, end);
2112	print_hex_dump(KERN_DEBUG, "osdmap: ",
2113		       DUMP_PREFIX_OFFSET, 16, 1,
2114		       start, end - start, true);
2115	return ERR_PTR(err);
2116}
2117
2118void ceph_oloc_copy(struct ceph_object_locator *dest,
2119		    const struct ceph_object_locator *src)
2120{
2121	ceph_oloc_destroy(dest);
2122
2123	dest->pool = src->pool;
2124	if (src->pool_ns)
2125		dest->pool_ns = ceph_get_string(src->pool_ns);
2126	else
2127		dest->pool_ns = NULL;
2128}
2129EXPORT_SYMBOL(ceph_oloc_copy);
2130
2131void ceph_oloc_destroy(struct ceph_object_locator *oloc)
2132{
2133	ceph_put_string(oloc->pool_ns);
2134}
2135EXPORT_SYMBOL(ceph_oloc_destroy);
2136
2137void ceph_oid_copy(struct ceph_object_id *dest,
2138		   const struct ceph_object_id *src)
2139{
2140	ceph_oid_destroy(dest);
2141
2142	if (src->name != src->inline_name) {
2143		/* very rare, see ceph_object_id definition */
2144		dest->name = kmalloc(src->name_len + 1,
2145				     GFP_NOIO | __GFP_NOFAIL);
2146	} else {
2147		dest->name = dest->inline_name;
2148	}
2149	memcpy(dest->name, src->name, src->name_len + 1);
2150	dest->name_len = src->name_len;
2151}
2152EXPORT_SYMBOL(ceph_oid_copy);
2153
2154static __printf(2, 0)
2155int oid_printf_vargs(struct ceph_object_id *oid, const char *fmt, va_list ap)
2156{
2157	int len;
2158
2159	WARN_ON(!ceph_oid_empty(oid));
2160
2161	len = vsnprintf(oid->inline_name, sizeof(oid->inline_name), fmt, ap);
2162	if (len >= sizeof(oid->inline_name))
2163		return len;
2164
2165	oid->name_len = len;
2166	return 0;
2167}
2168
2169/*
2170 * If oid doesn't fit into inline buffer, BUG.
2171 */
2172void ceph_oid_printf(struct ceph_object_id *oid, const char *fmt, ...)
2173{
2174	va_list ap;
2175
2176	va_start(ap, fmt);
2177	BUG_ON(oid_printf_vargs(oid, fmt, ap));
2178	va_end(ap);
2179}
2180EXPORT_SYMBOL(ceph_oid_printf);
2181
2182static __printf(3, 0)
2183int oid_aprintf_vargs(struct ceph_object_id *oid, gfp_t gfp,
2184		      const char *fmt, va_list ap)
2185{
2186	va_list aq;
2187	int len;
2188
2189	va_copy(aq, ap);
2190	len = oid_printf_vargs(oid, fmt, aq);
2191	va_end(aq);
2192
2193	if (len) {
2194		char *external_name;
2195
2196		external_name = kmalloc(len + 1, gfp);
2197		if (!external_name)
2198			return -ENOMEM;
2199
2200		oid->name = external_name;
2201		WARN_ON(vsnprintf(oid->name, len + 1, fmt, ap) != len);
2202		oid->name_len = len;
2203	}
2204
2205	return 0;
2206}
2207
2208/*
2209 * If oid doesn't fit into inline buffer, allocate.
2210 */
2211int ceph_oid_aprintf(struct ceph_object_id *oid, gfp_t gfp,
2212		     const char *fmt, ...)
2213{
2214	va_list ap;
2215	int ret;
2216
2217	va_start(ap, fmt);
2218	ret = oid_aprintf_vargs(oid, gfp, fmt, ap);
2219	va_end(ap);
2220
2221	return ret;
2222}
2223EXPORT_SYMBOL(ceph_oid_aprintf);
2224
2225void ceph_oid_destroy(struct ceph_object_id *oid)
2226{
2227	if (oid->name != oid->inline_name)
2228		kfree(oid->name);
2229}
2230EXPORT_SYMBOL(ceph_oid_destroy);
2231
2232/*
2233 * osds only
2234 */
2235static bool __osds_equal(const struct ceph_osds *lhs,
2236			 const struct ceph_osds *rhs)
2237{
2238	if (lhs->size == rhs->size &&
2239	    !memcmp(lhs->osds, rhs->osds, rhs->size * sizeof(rhs->osds[0])))
2240		return true;
2241
2242	return false;
2243}
2244
2245/*
2246 * osds + primary
2247 */
2248static bool osds_equal(const struct ceph_osds *lhs,
2249		       const struct ceph_osds *rhs)
2250{
2251	if (__osds_equal(lhs, rhs) &&
2252	    lhs->primary == rhs->primary)
2253		return true;
2254
2255	return false;
2256}
2257
2258static bool osds_valid(const struct ceph_osds *set)
2259{
2260	/* non-empty set */
2261	if (set->size > 0 && set->primary >= 0)
2262		return true;
2263
2264	/* empty can_shift_osds set */
2265	if (!set->size && set->primary == -1)
2266		return true;
2267
2268	/* empty !can_shift_osds set - all NONE */
2269	if (set->size > 0 && set->primary == -1) {
2270		int i;
2271
2272		for (i = 0; i < set->size; i++) {
2273			if (set->osds[i] != CRUSH_ITEM_NONE)
2274				break;
2275		}
2276		if (i == set->size)
2277			return true;
2278	}
2279
2280	return false;
2281}
2282
2283void ceph_osds_copy(struct ceph_osds *dest, const struct ceph_osds *src)
2284{
2285	memcpy(dest->osds, src->osds, src->size * sizeof(src->osds[0]));
2286	dest->size = src->size;
2287	dest->primary = src->primary;
2288}
2289
2290bool ceph_pg_is_split(const struct ceph_pg *pgid, u32 old_pg_num,
2291		      u32 new_pg_num)
2292{
2293	int old_bits = calc_bits_of(old_pg_num);
2294	int old_mask = (1 << old_bits) - 1;
2295	int n;
2296
2297	WARN_ON(pgid->seed >= old_pg_num);
2298	if (new_pg_num <= old_pg_num)
2299		return false;
2300
2301	for (n = 1; ; n++) {
2302		int next_bit = n << (old_bits - 1);
2303		u32 s = next_bit | pgid->seed;
2304
2305		if (s < old_pg_num || s == pgid->seed)
2306			continue;
2307		if (s >= new_pg_num)
2308			break;
2309
2310		s = ceph_stable_mod(s, old_pg_num, old_mask);
2311		if (s == pgid->seed)
2312			return true;
2313	}
2314
2315	return false;
2316}
2317
2318bool ceph_is_new_interval(const struct ceph_osds *old_acting,
2319			  const struct ceph_osds *new_acting,
2320			  const struct ceph_osds *old_up,
2321			  const struct ceph_osds *new_up,
2322			  int old_size,
2323			  int new_size,
2324			  int old_min_size,
2325			  int new_min_size,
2326			  u32 old_pg_num,
2327			  u32 new_pg_num,
2328			  bool old_sort_bitwise,
2329			  bool new_sort_bitwise,
2330			  bool old_recovery_deletes,
2331			  bool new_recovery_deletes,
2332			  const struct ceph_pg *pgid)
2333{
2334	return !osds_equal(old_acting, new_acting) ||
2335	       !osds_equal(old_up, new_up) ||
2336	       old_size != new_size ||
2337	       old_min_size != new_min_size ||
2338	       ceph_pg_is_split(pgid, old_pg_num, new_pg_num) ||
2339	       old_sort_bitwise != new_sort_bitwise ||
2340	       old_recovery_deletes != new_recovery_deletes;
2341}
2342
2343static int calc_pg_rank(int osd, const struct ceph_osds *acting)
2344{
2345	int i;
2346
2347	for (i = 0; i < acting->size; i++) {
2348		if (acting->osds[i] == osd)
2349			return i;
2350	}
2351
2352	return -1;
2353}
2354
2355static bool primary_changed(const struct ceph_osds *old_acting,
2356			    const struct ceph_osds *new_acting)
2357{
2358	if (!old_acting->size && !new_acting->size)
2359		return false; /* both still empty */
2360
2361	if (!old_acting->size ^ !new_acting->size)
2362		return true; /* was empty, now not, or vice versa */
2363
2364	if (old_acting->primary != new_acting->primary)
2365		return true; /* primary changed */
2366
2367	if (calc_pg_rank(old_acting->primary, old_acting) !=
2368	    calc_pg_rank(new_acting->primary, new_acting))
2369		return true;
2370
2371	return false; /* same primary (tho replicas may have changed) */
2372}
2373
2374bool ceph_osds_changed(const struct ceph_osds *old_acting,
2375		       const struct ceph_osds *new_acting,
2376		       bool any_change)
2377{
2378	if (primary_changed(old_acting, new_acting))
2379		return true;
2380
2381	if (any_change && !__osds_equal(old_acting, new_acting))
2382		return true;
2383
2384	return false;
2385}
2386
2387/*
2388 * Map an object into a PG.
2389 *
2390 * Should only be called with target_oid and target_oloc (as opposed to
2391 * base_oid and base_oloc), since tiering isn't taken into account.
2392 */
2393void __ceph_object_locator_to_pg(struct ceph_pg_pool_info *pi,
2394				 const struct ceph_object_id *oid,
2395				 const struct ceph_object_locator *oloc,
2396				 struct ceph_pg *raw_pgid)
2397{
2398	WARN_ON(pi->id != oloc->pool);
2399
2400	if (!oloc->pool_ns) {
2401		raw_pgid->pool = oloc->pool;
2402		raw_pgid->seed = ceph_str_hash(pi->object_hash, oid->name,
2403					     oid->name_len);
2404		dout("%s %s -> raw_pgid %llu.%x\n", __func__, oid->name,
2405		     raw_pgid->pool, raw_pgid->seed);
2406	} else {
2407		char stack_buf[256];
2408		char *buf = stack_buf;
2409		int nsl = oloc->pool_ns->len;
2410		size_t total = nsl + 1 + oid->name_len;
2411
2412		if (total > sizeof(stack_buf))
2413			buf = kmalloc(total, GFP_NOIO | __GFP_NOFAIL);
2414		memcpy(buf, oloc->pool_ns->str, nsl);
2415		buf[nsl] = '\037';
2416		memcpy(buf + nsl + 1, oid->name, oid->name_len);
2417		raw_pgid->pool = oloc->pool;
2418		raw_pgid->seed = ceph_str_hash(pi->object_hash, buf, total);
2419		if (buf != stack_buf)
2420			kfree(buf);
2421		dout("%s %s ns %.*s -> raw_pgid %llu.%x\n", __func__,
2422		     oid->name, nsl, oloc->pool_ns->str,
2423		     raw_pgid->pool, raw_pgid->seed);
2424	}
2425}
2426
2427int ceph_object_locator_to_pg(struct ceph_osdmap *osdmap,
2428			      const struct ceph_object_id *oid,
2429			      const struct ceph_object_locator *oloc,
2430			      struct ceph_pg *raw_pgid)
2431{
2432	struct ceph_pg_pool_info *pi;
2433
2434	pi = ceph_pg_pool_by_id(osdmap, oloc->pool);
2435	if (!pi)
2436		return -ENOENT;
2437
2438	__ceph_object_locator_to_pg(pi, oid, oloc, raw_pgid);
2439	return 0;
2440}
2441EXPORT_SYMBOL(ceph_object_locator_to_pg);
2442
2443/*
2444 * Map a raw PG (full precision ps) into an actual PG.
2445 */
2446static void raw_pg_to_pg(struct ceph_pg_pool_info *pi,
2447			 const struct ceph_pg *raw_pgid,
2448			 struct ceph_pg *pgid)
2449{
2450	pgid->pool = raw_pgid->pool;
2451	pgid->seed = ceph_stable_mod(raw_pgid->seed, pi->pg_num,
2452				     pi->pg_num_mask);
2453}
2454
2455/*
2456 * Map a raw PG (full precision ps) into a placement ps (placement
2457 * seed).  Include pool id in that value so that different pools don't
2458 * use the same seeds.
2459 */
2460static u32 raw_pg_to_pps(struct ceph_pg_pool_info *pi,
2461			 const struct ceph_pg *raw_pgid)
2462{
2463	if (pi->flags & CEPH_POOL_FLAG_HASHPSPOOL) {
2464		/* hash pool id and seed so that pool PGs do not overlap */
2465		return crush_hash32_2(CRUSH_HASH_RJENKINS1,
2466				      ceph_stable_mod(raw_pgid->seed,
2467						      pi->pgp_num,
2468						      pi->pgp_num_mask),
2469				      raw_pgid->pool);
2470	} else {
2471		/*
2472		 * legacy behavior: add ps and pool together.  this is
2473		 * not a great approach because the PGs from each pool
2474		 * will overlap on top of each other: 0.5 == 1.4 ==
2475		 * 2.3 == ...
2476		 */
2477		return ceph_stable_mod(raw_pgid->seed, pi->pgp_num,
2478				       pi->pgp_num_mask) +
2479		       (unsigned)raw_pgid->pool;
2480	}
2481}
2482
2483/*
2484 * Magic value used for a "default" fallback choose_args, used if the
2485 * crush_choose_arg_map passed to do_crush() does not exist.  If this
2486 * also doesn't exist, fall back to canonical weights.
2487 */
2488#define CEPH_DEFAULT_CHOOSE_ARGS	-1
2489
2490static int do_crush(struct ceph_osdmap *map, int ruleno, int x,
2491		    int *result, int result_max,
2492		    const __u32 *weight, int weight_max,
2493		    s64 choose_args_index)
2494{
2495	struct crush_choose_arg_map *arg_map;
2496	struct crush_work *work;
2497	int r;
2498
2499	BUG_ON(result_max > CEPH_PG_MAX_SIZE);
2500
2501	arg_map = lookup_choose_arg_map(&map->crush->choose_args,
2502					choose_args_index);
2503	if (!arg_map)
2504		arg_map = lookup_choose_arg_map(&map->crush->choose_args,
2505						CEPH_DEFAULT_CHOOSE_ARGS);
2506
2507	work = get_workspace(&map->crush_wsm, map->crush);
2508	r = crush_do_rule(map->crush, ruleno, x, result, result_max,
2509			  weight, weight_max, work,
2510			  arg_map ? arg_map->args : NULL);
2511	put_workspace(&map->crush_wsm, work);
2512	return r;
2513}
2514
2515static void remove_nonexistent_osds(struct ceph_osdmap *osdmap,
2516				    struct ceph_pg_pool_info *pi,
2517				    struct ceph_osds *set)
2518{
2519	int i;
2520
2521	if (ceph_can_shift_osds(pi)) {
2522		int removed = 0;
2523
2524		/* shift left */
2525		for (i = 0; i < set->size; i++) {
2526			if (!ceph_osd_exists(osdmap, set->osds[i])) {
2527				removed++;
2528				continue;
2529			}
2530			if (removed)
2531				set->osds[i - removed] = set->osds[i];
2532		}
2533		set->size -= removed;
2534	} else {
2535		/* set dne devices to NONE */
2536		for (i = 0; i < set->size; i++) {
2537			if (!ceph_osd_exists(osdmap, set->osds[i]))
2538				set->osds[i] = CRUSH_ITEM_NONE;
2539		}
2540	}
2541}
2542
2543/*
2544 * Calculate raw set (CRUSH output) for given PG and filter out
2545 * nonexistent OSDs.  ->primary is undefined for a raw set.
2546 *
2547 * Placement seed (CRUSH input) is returned through @ppps.
2548 */
2549static void pg_to_raw_osds(struct ceph_osdmap *osdmap,
2550			   struct ceph_pg_pool_info *pi,
2551			   const struct ceph_pg *raw_pgid,
2552			   struct ceph_osds *raw,
2553			   u32 *ppps)
2554{
2555	u32 pps = raw_pg_to_pps(pi, raw_pgid);
2556	int ruleno;
2557	int len;
2558
2559	ceph_osds_init(raw);
2560	if (ppps)
2561		*ppps = pps;
2562
2563	ruleno = crush_find_rule(osdmap->crush, pi->crush_ruleset, pi->type,
2564				 pi->size);
2565	if (ruleno < 0) {
2566		pr_err("no crush rule: pool %lld ruleset %d type %d size %d\n",
2567		       pi->id, pi->crush_ruleset, pi->type, pi->size);
2568		return;
2569	}
2570
2571	if (pi->size > ARRAY_SIZE(raw->osds)) {
2572		pr_err_ratelimited("pool %lld ruleset %d type %d too wide: size %d > %zu\n",
2573		       pi->id, pi->crush_ruleset, pi->type, pi->size,
2574		       ARRAY_SIZE(raw->osds));
2575		return;
2576	}
2577
2578	len = do_crush(osdmap, ruleno, pps, raw->osds, pi->size,
2579		       osdmap->osd_weight, osdmap->max_osd, pi->id);
2580	if (len < 0) {
2581		pr_err("error %d from crush rule %d: pool %lld ruleset %d type %d size %d\n",
2582		       len, ruleno, pi->id, pi->crush_ruleset, pi->type,
2583		       pi->size);
2584		return;
2585	}
2586
2587	raw->size = len;
2588	remove_nonexistent_osds(osdmap, pi, raw);
2589}
2590
2591/* apply pg_upmap[_items] mappings */
2592static void apply_upmap(struct ceph_osdmap *osdmap,
2593			const struct ceph_pg *pgid,
2594			struct ceph_osds *raw)
2595{
2596	struct ceph_pg_mapping *pg;
2597	int i, j;
2598
2599	pg = lookup_pg_mapping(&osdmap->pg_upmap, pgid);
2600	if (pg) {
2601		/* make sure targets aren't marked out */
2602		for (i = 0; i < pg->pg_upmap.len; i++) {
2603			int osd = pg->pg_upmap.osds[i];
2604
2605			if (osd != CRUSH_ITEM_NONE &&
2606			    osd < osdmap->max_osd &&
2607			    osdmap->osd_weight[osd] == 0) {
2608				/* reject/ignore explicit mapping */
2609				return;
2610			}
2611		}
2612		for (i = 0; i < pg->pg_upmap.len; i++)
2613			raw->osds[i] = pg->pg_upmap.osds[i];
2614		raw->size = pg->pg_upmap.len;
2615		/* check and apply pg_upmap_items, if any */
2616	}
2617
2618	pg = lookup_pg_mapping(&osdmap->pg_upmap_items, pgid);
2619	if (pg) {
2620		/*
2621		 * Note: this approach does not allow a bidirectional swap,
2622		 * e.g., [[1,2],[2,1]] applied to [0,1,2] -> [0,2,1].
2623		 */
2624		for (i = 0; i < pg->pg_upmap_items.len; i++) {
2625			int from = pg->pg_upmap_items.from_to[i][0];
2626			int to = pg->pg_upmap_items.from_to[i][1];
2627			int pos = -1;
2628			bool exists = false;
2629
2630			/* make sure replacement doesn't already appear */
2631			for (j = 0; j < raw->size; j++) {
2632				int osd = raw->osds[j];
2633
2634				if (osd == to) {
2635					exists = true;
2636					break;
2637				}
2638				/* ignore mapping if target is marked out */
2639				if (osd == from && pos < 0 &&
2640				    !(to != CRUSH_ITEM_NONE &&
2641				      to < osdmap->max_osd &&
2642				      osdmap->osd_weight[to] == 0)) {
2643					pos = j;
2644				}
2645			}
2646			if (!exists && pos >= 0)
2647				raw->osds[pos] = to;
2648		}
2649	}
2650}
2651
2652/*
2653 * Given raw set, calculate up set and up primary.  By definition of an
2654 * up set, the result won't contain nonexistent or down OSDs.
2655 *
2656 * This is done in-place - on return @set is the up set.  If it's
2657 * empty, ->primary will remain undefined.
2658 */
2659static void raw_to_up_osds(struct ceph_osdmap *osdmap,
2660			   struct ceph_pg_pool_info *pi,
2661			   struct ceph_osds *set)
2662{
2663	int i;
2664
2665	/* ->primary is undefined for a raw set */
2666	BUG_ON(set->primary != -1);
2667
2668	if (ceph_can_shift_osds(pi)) {
2669		int removed = 0;
2670
2671		/* shift left */
2672		for (i = 0; i < set->size; i++) {
2673			if (ceph_osd_is_down(osdmap, set->osds[i])) {
2674				removed++;
2675				continue;
2676			}
2677			if (removed)
2678				set->osds[i - removed] = set->osds[i];
2679		}
2680		set->size -= removed;
2681		if (set->size > 0)
2682			set->primary = set->osds[0];
2683	} else {
2684		/* set down/dne devices to NONE */
2685		for (i = set->size - 1; i >= 0; i--) {
2686			if (ceph_osd_is_down(osdmap, set->osds[i]))
2687				set->osds[i] = CRUSH_ITEM_NONE;
2688			else
2689				set->primary = set->osds[i];
2690		}
2691	}
2692}
2693
2694static void apply_primary_affinity(struct ceph_osdmap *osdmap,
2695				   struct ceph_pg_pool_info *pi,
2696				   u32 pps,
2697				   struct ceph_osds *up)
2698{
2699	int i;
2700	int pos = -1;
2701
2702	/*
2703	 * Do we have any non-default primary_affinity values for these
2704	 * osds?
2705	 */
2706	if (!osdmap->osd_primary_affinity)
2707		return;
2708
2709	for (i = 0; i < up->size; i++) {
2710		int osd = up->osds[i];
2711
2712		if (osd != CRUSH_ITEM_NONE &&
2713		    osdmap->osd_primary_affinity[osd] !=
2714					CEPH_OSD_DEFAULT_PRIMARY_AFFINITY) {
2715			break;
2716		}
2717	}
2718	if (i == up->size)
2719		return;
2720
2721	/*
2722	 * Pick the primary.  Feed both the seed (for the pg) and the
2723	 * osd into the hash/rng so that a proportional fraction of an
2724	 * osd's pgs get rejected as primary.
2725	 */
2726	for (i = 0; i < up->size; i++) {
2727		int osd = up->osds[i];
2728		u32 aff;
2729
2730		if (osd == CRUSH_ITEM_NONE)
2731			continue;
2732
2733		aff = osdmap->osd_primary_affinity[osd];
2734		if (aff < CEPH_OSD_MAX_PRIMARY_AFFINITY &&
2735		    (crush_hash32_2(CRUSH_HASH_RJENKINS1,
2736				    pps, osd) >> 16) >= aff) {
2737			/*
2738			 * We chose not to use this primary.  Note it
2739			 * anyway as a fallback in case we don't pick
2740			 * anyone else, but keep looking.
2741			 */
2742			if (pos < 0)
2743				pos = i;
2744		} else {
2745			pos = i;
2746			break;
2747		}
2748	}
2749	if (pos < 0)
2750		return;
2751
2752	up->primary = up->osds[pos];
2753
2754	if (ceph_can_shift_osds(pi) && pos > 0) {
2755		/* move the new primary to the front */
2756		for (i = pos; i > 0; i--)
2757			up->osds[i] = up->osds[i - 1];
2758		up->osds[0] = up->primary;
2759	}
2760}
2761
2762/*
2763 * Get pg_temp and primary_temp mappings for given PG.
2764 *
2765 * Note that a PG may have none, only pg_temp, only primary_temp or
2766 * both pg_temp and primary_temp mappings.  This means @temp isn't
2767 * always a valid OSD set on return: in the "only primary_temp" case,
2768 * @temp will have its ->primary >= 0 but ->size == 0.
2769 */
2770static void get_temp_osds(struct ceph_osdmap *osdmap,
2771			  struct ceph_pg_pool_info *pi,
2772			  const struct ceph_pg *pgid,
2773			  struct ceph_osds *temp)
2774{
2775	struct ceph_pg_mapping *pg;
2776	int i;
2777
2778	ceph_osds_init(temp);
2779
2780	/* pg_temp? */
2781	pg = lookup_pg_mapping(&osdmap->pg_temp, pgid);
2782	if (pg) {
2783		for (i = 0; i < pg->pg_temp.len; i++) {
2784			if (ceph_osd_is_down(osdmap, pg->pg_temp.osds[i])) {
2785				if (ceph_can_shift_osds(pi))
2786					continue;
2787
2788				temp->osds[temp->size++] = CRUSH_ITEM_NONE;
2789			} else {
2790				temp->osds[temp->size++] = pg->pg_temp.osds[i];
2791			}
2792		}
2793
2794		/* apply pg_temp's primary */
2795		for (i = 0; i < temp->size; i++) {
2796			if (temp->osds[i] != CRUSH_ITEM_NONE) {
2797				temp->primary = temp->osds[i];
2798				break;
2799			}
2800		}
2801	}
2802
2803	/* primary_temp? */
2804	pg = lookup_pg_mapping(&osdmap->primary_temp, pgid);
2805	if (pg)
2806		temp->primary = pg->primary_temp.osd;
2807}
2808
2809/*
2810 * Map a PG to its acting set as well as its up set.
2811 *
2812 * Acting set is used for data mapping purposes, while up set can be
2813 * recorded for detecting interval changes and deciding whether to
2814 * resend a request.
2815 */
2816void ceph_pg_to_up_acting_osds(struct ceph_osdmap *osdmap,
2817			       struct ceph_pg_pool_info *pi,
2818			       const struct ceph_pg *raw_pgid,
2819			       struct ceph_osds *up,
2820			       struct ceph_osds *acting)
2821{
2822	struct ceph_pg pgid;
2823	u32 pps;
2824
2825	WARN_ON(pi->id != raw_pgid->pool);
2826	raw_pg_to_pg(pi, raw_pgid, &pgid);
2827
2828	pg_to_raw_osds(osdmap, pi, raw_pgid, up, &pps);
2829	apply_upmap(osdmap, &pgid, up);
2830	raw_to_up_osds(osdmap, pi, up);
2831	apply_primary_affinity(osdmap, pi, pps, up);
2832	get_temp_osds(osdmap, pi, &pgid, acting);
2833	if (!acting->size) {
2834		memcpy(acting->osds, up->osds, up->size * sizeof(up->osds[0]));
2835		acting->size = up->size;
2836		if (acting->primary == -1)
2837			acting->primary = up->primary;
2838	}
2839	WARN_ON(!osds_valid(up) || !osds_valid(acting));
2840}
2841
2842bool ceph_pg_to_primary_shard(struct ceph_osdmap *osdmap,
2843			      struct ceph_pg_pool_info *pi,
2844			      const struct ceph_pg *raw_pgid,
2845			      struct ceph_spg *spgid)
2846{
2847	struct ceph_pg pgid;
2848	struct ceph_osds up, acting;
2849	int i;
2850
2851	WARN_ON(pi->id != raw_pgid->pool);
2852	raw_pg_to_pg(pi, raw_pgid, &pgid);
2853
2854	if (ceph_can_shift_osds(pi)) {
2855		spgid->pgid = pgid; /* struct */
2856		spgid->shard = CEPH_SPG_NOSHARD;
2857		return true;
2858	}
2859
2860	ceph_pg_to_up_acting_osds(osdmap, pi, &pgid, &up, &acting);
2861	for (i = 0; i < acting.size; i++) {
2862		if (acting.osds[i] == acting.primary) {
2863			spgid->pgid = pgid; /* struct */
2864			spgid->shard = i;
2865			return true;
2866		}
2867	}
2868
2869	return false;
2870}
2871
2872/*
2873 * Return acting primary for given PG, or -1 if none.
2874 */
2875int ceph_pg_to_acting_primary(struct ceph_osdmap *osdmap,
2876			      const struct ceph_pg *raw_pgid)
2877{
2878	struct ceph_pg_pool_info *pi;
2879	struct ceph_osds up, acting;
2880
2881	pi = ceph_pg_pool_by_id(osdmap, raw_pgid->pool);
2882	if (!pi)
2883		return -1;
2884
2885	ceph_pg_to_up_acting_osds(osdmap, pi, raw_pgid, &up, &acting);
2886	return acting.primary;
2887}
2888EXPORT_SYMBOL(ceph_pg_to_acting_primary);
2889
2890static struct crush_loc_node *alloc_crush_loc(size_t type_name_len,
2891					      size_t name_len)
2892{
2893	struct crush_loc_node *loc;
2894
2895	loc = kmalloc(sizeof(*loc) + type_name_len + name_len + 2, GFP_NOIO);
2896	if (!loc)
2897		return NULL;
2898
2899	RB_CLEAR_NODE(&loc->cl_node);
2900	return loc;
2901}
2902
2903static void free_crush_loc(struct crush_loc_node *loc)
2904{
2905	WARN_ON(!RB_EMPTY_NODE(&loc->cl_node));
2906
2907	kfree(loc);
2908}
2909
2910static int crush_loc_compare(const struct crush_loc *loc1,
2911			     const struct crush_loc *loc2)
2912{
2913	return strcmp(loc1->cl_type_name, loc2->cl_type_name) ?:
2914	       strcmp(loc1->cl_name, loc2->cl_name);
2915}
2916
2917DEFINE_RB_FUNCS2(crush_loc, struct crush_loc_node, cl_loc, crush_loc_compare,
2918		 RB_BYPTR, const struct crush_loc *, cl_node)
2919
2920/*
2921 * Parses a set of <bucket type name>':'<bucket name> pairs separated
2922 * by '|', e.g. "rack:foo1|rack:foo2|datacenter:bar".
2923 *
2924 * Note that @crush_location is modified by strsep().
2925 */
2926int ceph_parse_crush_location(char *crush_location, struct rb_root *locs)
2927{
2928	struct crush_loc_node *loc;
2929	const char *type_name, *name, *colon;
2930	size_t type_name_len, name_len;
2931
2932	dout("%s '%s'\n", __func__, crush_location);
2933	while ((type_name = strsep(&crush_location, "|"))) {
2934		colon = strchr(type_name, ':');
2935		if (!colon)
2936			return -EINVAL;
2937
2938		type_name_len = colon - type_name;
2939		if (type_name_len == 0)
2940			return -EINVAL;
2941
2942		name = colon + 1;
2943		name_len = strlen(name);
2944		if (name_len == 0)
2945			return -EINVAL;
2946
2947		loc = alloc_crush_loc(type_name_len, name_len);
2948		if (!loc)
2949			return -ENOMEM;
2950
2951		loc->cl_loc.cl_type_name = loc->cl_data;
2952		memcpy(loc->cl_loc.cl_type_name, type_name, type_name_len);
2953		loc->cl_loc.cl_type_name[type_name_len] = '\0';
2954
2955		loc->cl_loc.cl_name = loc->cl_data + type_name_len + 1;
2956		memcpy(loc->cl_loc.cl_name, name, name_len);
2957		loc->cl_loc.cl_name[name_len] = '\0';
2958
2959		if (!__insert_crush_loc(locs, loc)) {
2960			free_crush_loc(loc);
2961			return -EEXIST;
2962		}
2963
2964		dout("%s type_name '%s' name '%s'\n", __func__,
2965		     loc->cl_loc.cl_type_name, loc->cl_loc.cl_name);
2966	}
2967
2968	return 0;
2969}
2970
2971int ceph_compare_crush_locs(struct rb_root *locs1, struct rb_root *locs2)
2972{
2973	struct rb_node *n1 = rb_first(locs1);
2974	struct rb_node *n2 = rb_first(locs2);
2975	int ret;
2976
2977	for ( ; n1 && n2; n1 = rb_next(n1), n2 = rb_next(n2)) {
2978		struct crush_loc_node *loc1 =
2979		    rb_entry(n1, struct crush_loc_node, cl_node);
2980		struct crush_loc_node *loc2 =
2981		    rb_entry(n2, struct crush_loc_node, cl_node);
2982
2983		ret = crush_loc_compare(&loc1->cl_loc, &loc2->cl_loc);
2984		if (ret)
2985			return ret;
2986	}
2987
2988	if (!n1 && n2)
2989		return -1;
2990	if (n1 && !n2)
2991		return 1;
2992	return 0;
2993}
2994
2995void ceph_clear_crush_locs(struct rb_root *locs)
2996{
2997	while (!RB_EMPTY_ROOT(locs)) {
2998		struct crush_loc_node *loc =
2999		    rb_entry(rb_first(locs), struct crush_loc_node, cl_node);
3000
3001		erase_crush_loc(locs, loc);
3002		free_crush_loc(loc);
3003	}
3004}
3005
3006/*
3007 * [a-zA-Z0-9-_.]+
3008 */
3009static bool is_valid_crush_name(const char *name)
3010{
3011	do {
3012		if (!('a' <= *name && *name <= 'z') &&
3013		    !('A' <= *name && *name <= 'Z') &&
3014		    !('0' <= *name && *name <= '9') &&
3015		    *name != '-' && *name != '_' && *name != '.')
3016			return false;
3017	} while (*++name != '\0');
3018
3019	return true;
3020}
3021
3022/*
3023 * Gets the parent of an item.  Returns its id (<0 because the
3024 * parent is always a bucket), type id (>0 for the same reason,
3025 * via @parent_type_id) and location (via @parent_loc).  If no
3026 * parent, returns 0.
3027 *
3028 * Does a linear search, as there are no parent pointers of any
3029 * kind.  Note that the result is ambiguous for items that occur
3030 * multiple times in the map.
3031 */
3032static int get_immediate_parent(struct crush_map *c, int id,
3033				u16 *parent_type_id,
3034				struct crush_loc *parent_loc)
3035{
3036	struct crush_bucket *b;
3037	struct crush_name_node *type_cn, *cn;
3038	int i, j;
3039
3040	for (i = 0; i < c->max_buckets; i++) {
3041		b = c->buckets[i];
3042		if (!b)
3043			continue;
3044
3045		/* ignore per-class shadow hierarchy */
3046		cn = lookup_crush_name(&c->names, b->id);
3047		if (!cn || !is_valid_crush_name(cn->cn_name))
3048			continue;
3049
3050		for (j = 0; j < b->size; j++) {
3051			if (b->items[j] != id)
3052				continue;
3053
3054			*parent_type_id = b->type;
3055			type_cn = lookup_crush_name(&c->type_names, b->type);
3056			parent_loc->cl_type_name = type_cn->cn_name;
3057			parent_loc->cl_name = cn->cn_name;
3058			return b->id;
3059		}
3060	}
3061
3062	return 0;  /* no parent */
3063}
3064
3065/*
3066 * Calculates the locality/distance from an item to a client
3067 * location expressed in terms of CRUSH hierarchy as a set of
3068 * (bucket type name, bucket name) pairs.  Specifically, looks
3069 * for the lowest-valued bucket type for which the location of
3070 * @id matches one of the locations in @locs, so for standard
3071 * bucket types (host = 1, rack = 3, datacenter = 8, zone = 9)
3072 * a matching host is closer than a matching rack and a matching
3073 * data center is closer than a matching zone.
3074 *
3075 * Specifying multiple locations (a "multipath" location) such
3076 * as "rack=foo1 rack=foo2 datacenter=bar" is allowed -- @locs
3077 * is a multimap.  The locality will be:
3078 *
3079 * - 3 for OSDs in racks foo1 and foo2
3080 * - 8 for OSDs in data center bar
3081 * - -1 for all other OSDs
3082 *
3083 * The lowest possible bucket type is 1, so the best locality
3084 * for an OSD is 1 (i.e. a matching host).  Locality 0 would be
3085 * the OSD itself.
3086 */
3087int ceph_get_crush_locality(struct ceph_osdmap *osdmap, int id,
3088			    struct rb_root *locs)
3089{
3090	struct crush_loc loc;
3091	u16 type_id;
3092
3093	/*
3094	 * Instead of repeated get_immediate_parent() calls,
3095	 * the location of @id could be obtained with a single
3096	 * depth-first traversal.
3097	 */
3098	for (;;) {
3099		id = get_immediate_parent(osdmap->crush, id, &type_id, &loc);
3100		if (id >= 0)
3101			return -1;  /* not local */
3102
3103		if (lookup_crush_loc(locs, &loc))
3104			return type_id;
3105	}
3106}
3107