1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * zswap.c - zswap driver file
4 *
5 * zswap is a cache that takes pages that are in the process
6 * of being swapped out and attempts to compress and store them in a
7 * RAM-based memory pool.  This can result in a significant I/O reduction on
8 * the swap device and, in the case where decompressing from RAM is faster
9 * than reading from the swap device, can also improve workload performance.
10 *
11 * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
12*/
13
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16#include <linux/module.h>
17#include <linux/cpu.h>
18#include <linux/highmem.h>
19#include <linux/slab.h>
20#include <linux/spinlock.h>
21#include <linux/types.h>
22#include <linux/atomic.h>
23#include <linux/rbtree.h>
24#include <linux/swap.h>
25#include <linux/crypto.h>
26#include <linux/scatterlist.h>
27#include <linux/mempolicy.h>
28#include <linux/mempool.h>
29#include <linux/zpool.h>
30#include <crypto/acompress.h>
31#include <linux/zswap.h>
32#include <linux/mm_types.h>
33#include <linux/page-flags.h>
34#include <linux/swapops.h>
35#include <linux/writeback.h>
36#include <linux/pagemap.h>
37#include <linux/workqueue.h>
38#include <linux/list_lru.h>
39
40#include "swap.h"
41#include "internal.h"
42
43/*********************************
44* statistics
45**********************************/
46/* Total bytes used by the compressed storage */
47u64 zswap_pool_total_size;
48/* The number of compressed pages currently stored in zswap */
49atomic_t zswap_stored_pages = ATOMIC_INIT(0);
50/* The number of same-value filled pages currently stored in zswap */
51static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0);
52
53/*
54 * The statistics below are not protected from concurrent access for
55 * performance reasons so they may not be a 100% accurate.  However,
56 * they do provide useful information on roughly how many times a
57 * certain event is occurring.
58*/
59
60/* Pool limit was hit (see zswap_max_pool_percent) */
61static u64 zswap_pool_limit_hit;
62/* Pages written back when pool limit was reached */
63static u64 zswap_written_back_pages;
64/* Store failed due to a reclaim failure after pool limit was reached */
65static u64 zswap_reject_reclaim_fail;
66/* Store failed due to compression algorithm failure */
67static u64 zswap_reject_compress_fail;
68/* Compressed page was too big for the allocator to (optimally) store */
69static u64 zswap_reject_compress_poor;
70/* Store failed because underlying allocator could not get memory */
71static u64 zswap_reject_alloc_fail;
72/* Store failed because the entry metadata could not be allocated (rare) */
73static u64 zswap_reject_kmemcache_fail;
74
75/* Shrinker work queue */
76static struct workqueue_struct *shrink_wq;
77/* Pool limit was hit, we need to calm down */
78static bool zswap_pool_reached_full;
79
80/*********************************
81* tunables
82**********************************/
83
84#define ZSWAP_PARAM_UNSET ""
85
86static int zswap_setup(void);
87
88/* Enable/disable zswap */
89static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
90static int zswap_enabled_param_set(const char *,
91				   const struct kernel_param *);
92static const struct kernel_param_ops zswap_enabled_param_ops = {
93	.set =		zswap_enabled_param_set,
94	.get =		param_get_bool,
95};
96module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
97
98/* Crypto compressor to use */
99static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
100static int zswap_compressor_param_set(const char *,
101				      const struct kernel_param *);
102static const struct kernel_param_ops zswap_compressor_param_ops = {
103	.set =		zswap_compressor_param_set,
104	.get =		param_get_charp,
105	.free =		param_free_charp,
106};
107module_param_cb(compressor, &zswap_compressor_param_ops,
108		&zswap_compressor, 0644);
109
110/* Compressed storage zpool to use */
111static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
112static int zswap_zpool_param_set(const char *, const struct kernel_param *);
113static const struct kernel_param_ops zswap_zpool_param_ops = {
114	.set =		zswap_zpool_param_set,
115	.get =		param_get_charp,
116	.free =		param_free_charp,
117};
118module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
119
120/* The maximum percentage of memory that the compressed pool can occupy */
121static unsigned int zswap_max_pool_percent = 20;
122module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
123
124/* The threshold for accepting new pages after the max_pool_percent was hit */
125static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
126module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
127		   uint, 0644);
128
129/*
130 * Enable/disable handling same-value filled pages (enabled by default).
131 * If disabled every page is considered non-same-value filled.
132 */
133static bool zswap_same_filled_pages_enabled = true;
134module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled,
135		   bool, 0644);
136
137/* Enable/disable handling non-same-value filled pages (enabled by default) */
138static bool zswap_non_same_filled_pages_enabled = true;
139module_param_named(non_same_filled_pages_enabled, zswap_non_same_filled_pages_enabled,
140		   bool, 0644);
141
142/* Number of zpools in zswap_pool (empirically determined for scalability) */
143#define ZSWAP_NR_ZPOOLS 32
144
145/* Enable/disable memory pressure-based shrinker. */
146static bool zswap_shrinker_enabled = IS_ENABLED(
147		CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
148module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
149
150bool is_zswap_enabled(void)
151{
152	return zswap_enabled;
153}
154
155/*********************************
156* data structures
157**********************************/
158
159struct crypto_acomp_ctx {
160	struct crypto_acomp *acomp;
161	struct acomp_req *req;
162	struct crypto_wait wait;
163	u8 *buffer;
164	struct mutex mutex;
165	bool is_sleepable;
166};
167
168/*
169 * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
170 * The only case where lru_lock is not acquired while holding tree.lock is
171 * when a zswap_entry is taken off the lru for writeback, in that case it
172 * needs to be verified that it's still valid in the tree.
173 */
174struct zswap_pool {
175	struct zpool *zpools[ZSWAP_NR_ZPOOLS];
176	struct crypto_acomp_ctx __percpu *acomp_ctx;
177	struct percpu_ref ref;
178	struct list_head list;
179	struct work_struct release_work;
180	struct hlist_node node;
181	char tfm_name[CRYPTO_MAX_ALG_NAME];
182};
183
184/* Global LRU lists shared by all zswap pools. */
185static struct list_lru zswap_list_lru;
186/* counter of pages stored in all zswap pools. */
187static atomic_t zswap_nr_stored = ATOMIC_INIT(0);
188
189/* The lock protects zswap_next_shrink updates. */
190static DEFINE_SPINLOCK(zswap_shrink_lock);
191static struct mem_cgroup *zswap_next_shrink;
192static struct work_struct zswap_shrink_work;
193static struct shrinker *zswap_shrinker;
194
195/*
196 * struct zswap_entry
197 *
198 * This structure contains the metadata for tracking a single compressed
199 * page within zswap.
200 *
201 * rbnode - links the entry into red-black tree for the appropriate swap type
202 * swpentry - associated swap entry, the offset indexes into the red-black tree
203 * length - the length in bytes of the compressed page data.  Needed during
204 *          decompression. For a same value filled page length is 0, and both
205 *          pool and lru are invalid and must be ignored.
206 * pool - the zswap_pool the entry's data is in
207 * handle - zpool allocation handle that stores the compressed page data
208 * value - value of the same-value filled pages which have same content
209 * objcg - the obj_cgroup that the compressed memory is charged to
210 * lru - handle to the pool's lru used to evict pages.
211 */
212struct zswap_entry {
213	struct rb_node rbnode;
214	swp_entry_t swpentry;
215	unsigned int length;
216	struct zswap_pool *pool;
217	union {
218		unsigned long handle;
219		unsigned long value;
220	};
221	struct obj_cgroup *objcg;
222	struct list_head lru;
223};
224
225struct zswap_tree {
226	struct rb_root rbroot;
227	spinlock_t lock;
228};
229
230static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
231static unsigned int nr_zswap_trees[MAX_SWAPFILES];
232
233/* RCU-protected iteration */
234static LIST_HEAD(zswap_pools);
235/* protects zswap_pools list modification */
236static DEFINE_SPINLOCK(zswap_pools_lock);
237/* pool counter to provide unique names to zpool */
238static atomic_t zswap_pools_count = ATOMIC_INIT(0);
239
240enum zswap_init_type {
241	ZSWAP_UNINIT,
242	ZSWAP_INIT_SUCCEED,
243	ZSWAP_INIT_FAILED
244};
245
246static enum zswap_init_type zswap_init_state;
247
248/* used to ensure the integrity of initialization */
249static DEFINE_MUTEX(zswap_init_lock);
250
251/* init completed, but couldn't create the initial pool */
252static bool zswap_has_pool;
253
254/*********************************
255* helpers and fwd declarations
256**********************************/
257
258static inline struct zswap_tree *swap_zswap_tree(swp_entry_t swp)
259{
260	return &zswap_trees[swp_type(swp)][swp_offset(swp)
261		>> SWAP_ADDRESS_SPACE_SHIFT];
262}
263
264#define zswap_pool_debug(msg, p)				\
265	pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,		\
266		 zpool_get_type((p)->zpools[0]))
267
268static bool zswap_is_full(void)
269{
270	return totalram_pages() * zswap_max_pool_percent / 100 <
271			DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
272}
273
274static bool zswap_can_accept(void)
275{
276	return totalram_pages() * zswap_accept_thr_percent / 100 *
277				zswap_max_pool_percent / 100 >
278			DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
279}
280
281static u64 get_zswap_pool_size(struct zswap_pool *pool)
282{
283	u64 pool_size = 0;
284	int i;
285
286	for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
287		pool_size += zpool_get_total_size(pool->zpools[i]);
288
289	return pool_size;
290}
291
292static void zswap_update_total_size(void)
293{
294	struct zswap_pool *pool;
295	u64 total = 0;
296
297	rcu_read_lock();
298
299	list_for_each_entry_rcu(pool, &zswap_pools, list)
300		total += get_zswap_pool_size(pool);
301
302	rcu_read_unlock();
303
304	zswap_pool_total_size = total;
305}
306
307/*********************************
308* pool functions
309**********************************/
310static void __zswap_pool_empty(struct percpu_ref *ref);
311
312static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
313{
314	int i;
315	struct zswap_pool *pool;
316	char name[38]; /* 'zswap' + 32 char (max) num + \0 */
317	gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
318	int ret;
319
320	if (!zswap_has_pool) {
321		/* if either are unset, pool initialization failed, and we
322		 * need both params to be set correctly before trying to
323		 * create a pool.
324		 */
325		if (!strcmp(type, ZSWAP_PARAM_UNSET))
326			return NULL;
327		if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
328			return NULL;
329	}
330
331	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
332	if (!pool)
333		return NULL;
334
335	for (i = 0; i < ZSWAP_NR_ZPOOLS; i++) {
336		/* unique name for each pool specifically required by zsmalloc */
337		snprintf(name, 38, "zswap%x",
338			 atomic_inc_return(&zswap_pools_count));
339
340		pool->zpools[i] = zpool_create_pool(type, name, gfp);
341		if (!pool->zpools[i]) {
342			pr_err("%s zpool not available\n", type);
343			goto error;
344		}
345	}
346	pr_debug("using %s zpool\n", zpool_get_type(pool->zpools[0]));
347
348	strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
349
350	pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
351	if (!pool->acomp_ctx) {
352		pr_err("percpu alloc failed\n");
353		goto error;
354	}
355
356	ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
357				       &pool->node);
358	if (ret)
359		goto error;
360
361	/* being the current pool takes 1 ref; this func expects the
362	 * caller to always add the new pool as the current pool
363	 */
364	ret = percpu_ref_init(&pool->ref, __zswap_pool_empty,
365			      PERCPU_REF_ALLOW_REINIT, GFP_KERNEL);
366	if (ret)
367		goto ref_fail;
368	INIT_LIST_HEAD(&pool->list);
369
370	zswap_pool_debug("created", pool);
371
372	return pool;
373
374ref_fail:
375	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
376error:
377	if (pool->acomp_ctx)
378		free_percpu(pool->acomp_ctx);
379	while (i--)
380		zpool_destroy_pool(pool->zpools[i]);
381	kfree(pool);
382	return NULL;
383}
384
385static struct zswap_pool *__zswap_pool_create_fallback(void)
386{
387	bool has_comp, has_zpool;
388
389	has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
390	if (!has_comp && strcmp(zswap_compressor,
391				CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
392		pr_err("compressor %s not available, using default %s\n",
393		       zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
394		param_free_charp(&zswap_compressor);
395		zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
396		has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
397	}
398	if (!has_comp) {
399		pr_err("default compressor %s not available\n",
400		       zswap_compressor);
401		param_free_charp(&zswap_compressor);
402		zswap_compressor = ZSWAP_PARAM_UNSET;
403	}
404
405	has_zpool = zpool_has_pool(zswap_zpool_type);
406	if (!has_zpool && strcmp(zswap_zpool_type,
407				 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
408		pr_err("zpool %s not available, using default %s\n",
409		       zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
410		param_free_charp(&zswap_zpool_type);
411		zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
412		has_zpool = zpool_has_pool(zswap_zpool_type);
413	}
414	if (!has_zpool) {
415		pr_err("default zpool %s not available\n",
416		       zswap_zpool_type);
417		param_free_charp(&zswap_zpool_type);
418		zswap_zpool_type = ZSWAP_PARAM_UNSET;
419	}
420
421	if (!has_comp || !has_zpool)
422		return NULL;
423
424	return zswap_pool_create(zswap_zpool_type, zswap_compressor);
425}
426
427static void zswap_pool_destroy(struct zswap_pool *pool)
428{
429	int i;
430
431	zswap_pool_debug("destroying", pool);
432
433	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
434	free_percpu(pool->acomp_ctx);
435
436	for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
437		zpool_destroy_pool(pool->zpools[i]);
438	kfree(pool);
439}
440
441static void __zswap_pool_release(struct work_struct *work)
442{
443	struct zswap_pool *pool = container_of(work, typeof(*pool),
444						release_work);
445
446	synchronize_rcu();
447
448	/* nobody should have been able to get a ref... */
449	WARN_ON(!percpu_ref_is_zero(&pool->ref));
450	percpu_ref_exit(&pool->ref);
451
452	/* pool is now off zswap_pools list and has no references. */
453	zswap_pool_destroy(pool);
454}
455
456static struct zswap_pool *zswap_pool_current(void);
457
458static void __zswap_pool_empty(struct percpu_ref *ref)
459{
460	struct zswap_pool *pool;
461
462	pool = container_of(ref, typeof(*pool), ref);
463
464	spin_lock_bh(&zswap_pools_lock);
465
466	WARN_ON(pool == zswap_pool_current());
467
468	list_del_rcu(&pool->list);
469
470	INIT_WORK(&pool->release_work, __zswap_pool_release);
471	schedule_work(&pool->release_work);
472
473	spin_unlock_bh(&zswap_pools_lock);
474}
475
476static int __must_check zswap_pool_get(struct zswap_pool *pool)
477{
478	if (!pool)
479		return 0;
480
481	return percpu_ref_tryget(&pool->ref);
482}
483
484static void zswap_pool_put(struct zswap_pool *pool)
485{
486	percpu_ref_put(&pool->ref);
487}
488
489static struct zswap_pool *__zswap_pool_current(void)
490{
491	struct zswap_pool *pool;
492
493	pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
494	WARN_ONCE(!pool && zswap_has_pool,
495		  "%s: no page storage pool!\n", __func__);
496
497	return pool;
498}
499
500static struct zswap_pool *zswap_pool_current(void)
501{
502	assert_spin_locked(&zswap_pools_lock);
503
504	return __zswap_pool_current();
505}
506
507static struct zswap_pool *zswap_pool_current_get(void)
508{
509	struct zswap_pool *pool;
510
511	rcu_read_lock();
512
513	pool = __zswap_pool_current();
514	if (!zswap_pool_get(pool))
515		pool = NULL;
516
517	rcu_read_unlock();
518
519	return pool;
520}
521
522/* type and compressor must be null-terminated */
523static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
524{
525	struct zswap_pool *pool;
526
527	assert_spin_locked(&zswap_pools_lock);
528
529	list_for_each_entry_rcu(pool, &zswap_pools, list) {
530		if (strcmp(pool->tfm_name, compressor))
531			continue;
532		/* all zpools share the same type */
533		if (strcmp(zpool_get_type(pool->zpools[0]), type))
534			continue;
535		/* if we can't get it, it's about to be destroyed */
536		if (!zswap_pool_get(pool))
537			continue;
538		return pool;
539	}
540
541	return NULL;
542}
543
544/*********************************
545* param callbacks
546**********************************/
547
548static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
549{
550	/* no change required */
551	if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
552		return false;
553	return true;
554}
555
556/* val must be a null-terminated string */
557static int __zswap_param_set(const char *val, const struct kernel_param *kp,
558			     char *type, char *compressor)
559{
560	struct zswap_pool *pool, *put_pool = NULL;
561	char *s = strstrip((char *)val);
562	int ret = 0;
563	bool new_pool = false;
564
565	mutex_lock(&zswap_init_lock);
566	switch (zswap_init_state) {
567	case ZSWAP_UNINIT:
568		/* if this is load-time (pre-init) param setting,
569		 * don't create a pool; that's done during init.
570		 */
571		ret = param_set_charp(s, kp);
572		break;
573	case ZSWAP_INIT_SUCCEED:
574		new_pool = zswap_pool_changed(s, kp);
575		break;
576	case ZSWAP_INIT_FAILED:
577		pr_err("can't set param, initialization failed\n");
578		ret = -ENODEV;
579	}
580	mutex_unlock(&zswap_init_lock);
581
582	/* no need to create a new pool, return directly */
583	if (!new_pool)
584		return ret;
585
586	if (!type) {
587		if (!zpool_has_pool(s)) {
588			pr_err("zpool %s not available\n", s);
589			return -ENOENT;
590		}
591		type = s;
592	} else if (!compressor) {
593		if (!crypto_has_acomp(s, 0, 0)) {
594			pr_err("compressor %s not available\n", s);
595			return -ENOENT;
596		}
597		compressor = s;
598	} else {
599		WARN_ON(1);
600		return -EINVAL;
601	}
602
603	spin_lock_bh(&zswap_pools_lock);
604
605	pool = zswap_pool_find_get(type, compressor);
606	if (pool) {
607		zswap_pool_debug("using existing", pool);
608		WARN_ON(pool == zswap_pool_current());
609		list_del_rcu(&pool->list);
610	}
611
612	spin_unlock_bh(&zswap_pools_lock);
613
614	if (!pool)
615		pool = zswap_pool_create(type, compressor);
616	else {
617		/*
618		 * Restore the initial ref dropped by percpu_ref_kill()
619		 * when the pool was decommissioned and switch it again
620		 * to percpu mode.
621		 */
622		percpu_ref_resurrect(&pool->ref);
623
624		/* Drop the ref from zswap_pool_find_get(). */
625		zswap_pool_put(pool);
626	}
627
628	if (pool)
629		ret = param_set_charp(s, kp);
630	else
631		ret = -EINVAL;
632
633	spin_lock_bh(&zswap_pools_lock);
634
635	if (!ret) {
636		put_pool = zswap_pool_current();
637		list_add_rcu(&pool->list, &zswap_pools);
638		zswap_has_pool = true;
639	} else if (pool) {
640		/* add the possibly pre-existing pool to the end of the pools
641		 * list; if it's new (and empty) then it'll be removed and
642		 * destroyed by the put after we drop the lock
643		 */
644		list_add_tail_rcu(&pool->list, &zswap_pools);
645		put_pool = pool;
646	}
647
648	spin_unlock_bh(&zswap_pools_lock);
649
650	if (!zswap_has_pool && !pool) {
651		/* if initial pool creation failed, and this pool creation also
652		 * failed, maybe both compressor and zpool params were bad.
653		 * Allow changing this param, so pool creation will succeed
654		 * when the other param is changed. We already verified this
655		 * param is ok in the zpool_has_pool() or crypto_has_acomp()
656		 * checks above.
657		 */
658		ret = param_set_charp(s, kp);
659	}
660
661	/* drop the ref from either the old current pool,
662	 * or the new pool we failed to add
663	 */
664	if (put_pool)
665		percpu_ref_kill(&put_pool->ref);
666
667	return ret;
668}
669
670static int zswap_compressor_param_set(const char *val,
671				      const struct kernel_param *kp)
672{
673	return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
674}
675
676static int zswap_zpool_param_set(const char *val,
677				 const struct kernel_param *kp)
678{
679	return __zswap_param_set(val, kp, NULL, zswap_compressor);
680}
681
682static int zswap_enabled_param_set(const char *val,
683				   const struct kernel_param *kp)
684{
685	int ret = -ENODEV;
686
687	/* if this is load-time (pre-init) param setting, only set param. */
688	if (system_state != SYSTEM_RUNNING)
689		return param_set_bool(val, kp);
690
691	mutex_lock(&zswap_init_lock);
692	switch (zswap_init_state) {
693	case ZSWAP_UNINIT:
694		if (zswap_setup())
695			break;
696		fallthrough;
697	case ZSWAP_INIT_SUCCEED:
698		if (!zswap_has_pool)
699			pr_err("can't enable, no pool configured\n");
700		else
701			ret = param_set_bool(val, kp);
702		break;
703	case ZSWAP_INIT_FAILED:
704		pr_err("can't enable, initialization failed\n");
705	}
706	mutex_unlock(&zswap_init_lock);
707
708	return ret;
709}
710
711/*********************************
712* lru functions
713**********************************/
714
715/* should be called under RCU */
716#ifdef CONFIG_MEMCG
717static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
718{
719	return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
720}
721#else
722static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
723{
724	return NULL;
725}
726#endif
727
728static inline int entry_to_nid(struct zswap_entry *entry)
729{
730	return page_to_nid(virt_to_page(entry));
731}
732
733static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
734{
735	atomic_long_t *nr_zswap_protected;
736	unsigned long lru_size, old, new;
737	int nid = entry_to_nid(entry);
738	struct mem_cgroup *memcg;
739	struct lruvec *lruvec;
740
741	/*
742	 * Note that it is safe to use rcu_read_lock() here, even in the face of
743	 * concurrent memcg offlining. Thanks to the memcg->kmemcg_id indirection
744	 * used in list_lru lookup, only two scenarios are possible:
745	 *
746	 * 1. list_lru_add() is called before memcg->kmemcg_id is updated. The
747	 *    new entry will be reparented to memcg's parent's list_lru.
748	 * 2. list_lru_add() is called after memcg->kmemcg_id is updated. The
749	 *    new entry will be added directly to memcg's parent's list_lru.
750	 *
751	 * Similar reasoning holds for list_lru_del().
752	 */
753	rcu_read_lock();
754	memcg = mem_cgroup_from_entry(entry);
755	/* will always succeed */
756	list_lru_add(list_lru, &entry->lru, nid, memcg);
757
758	/* Update the protection area */
759	lru_size = list_lru_count_one(list_lru, nid, memcg);
760	lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
761	nr_zswap_protected = &lruvec->zswap_lruvec_state.nr_zswap_protected;
762	old = atomic_long_inc_return(nr_zswap_protected);
763	/*
764	 * Decay to avoid overflow and adapt to changing workloads.
765	 * This is based on LRU reclaim cost decaying heuristics.
766	 */
767	do {
768		new = old > lru_size / 4 ? old / 2 : old;
769	} while (!atomic_long_try_cmpxchg(nr_zswap_protected, &old, new));
770	rcu_read_unlock();
771}
772
773static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
774{
775	int nid = entry_to_nid(entry);
776	struct mem_cgroup *memcg;
777
778	rcu_read_lock();
779	memcg = mem_cgroup_from_entry(entry);
780	/* will always succeed */
781	list_lru_del(list_lru, &entry->lru, nid, memcg);
782	rcu_read_unlock();
783}
784
785void zswap_lruvec_state_init(struct lruvec *lruvec)
786{
787	atomic_long_set(&lruvec->zswap_lruvec_state.nr_zswap_protected, 0);
788}
789
790void zswap_folio_swapin(struct folio *folio)
791{
792	struct lruvec *lruvec;
793
794	if (folio) {
795		lruvec = folio_lruvec(folio);
796		atomic_long_inc(&lruvec->zswap_lruvec_state.nr_zswap_protected);
797	}
798}
799
800void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
801{
802	/* lock out zswap shrinker walking memcg tree */
803	spin_lock(&zswap_shrink_lock);
804	if (zswap_next_shrink == memcg)
805		zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
806	spin_unlock(&zswap_shrink_lock);
807}
808
809/*********************************
810* rbtree functions
811**********************************/
812static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
813{
814	struct rb_node *node = root->rb_node;
815	struct zswap_entry *entry;
816	pgoff_t entry_offset;
817
818	while (node) {
819		entry = rb_entry(node, struct zswap_entry, rbnode);
820		entry_offset = swp_offset(entry->swpentry);
821		if (entry_offset > offset)
822			node = node->rb_left;
823		else if (entry_offset < offset)
824			node = node->rb_right;
825		else
826			return entry;
827	}
828	return NULL;
829}
830
831/*
832 * In the case that a entry with the same offset is found, a pointer to
833 * the existing entry is stored in dupentry and the function returns -EEXIST
834 */
835static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
836			struct zswap_entry **dupentry)
837{
838	struct rb_node **link = &root->rb_node, *parent = NULL;
839	struct zswap_entry *myentry;
840	pgoff_t myentry_offset, entry_offset = swp_offset(entry->swpentry);
841
842	while (*link) {
843		parent = *link;
844		myentry = rb_entry(parent, struct zswap_entry, rbnode);
845		myentry_offset = swp_offset(myentry->swpentry);
846		if (myentry_offset > entry_offset)
847			link = &(*link)->rb_left;
848		else if (myentry_offset < entry_offset)
849			link = &(*link)->rb_right;
850		else {
851			*dupentry = myentry;
852			return -EEXIST;
853		}
854	}
855	rb_link_node(&entry->rbnode, parent, link);
856	rb_insert_color(&entry->rbnode, root);
857	return 0;
858}
859
860static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
861{
862	rb_erase(&entry->rbnode, root);
863	RB_CLEAR_NODE(&entry->rbnode);
864}
865
866/*********************************
867* zswap entry functions
868**********************************/
869static struct kmem_cache *zswap_entry_cache;
870
871static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
872{
873	struct zswap_entry *entry;
874	entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
875	if (!entry)
876		return NULL;
877	RB_CLEAR_NODE(&entry->rbnode);
878	return entry;
879}
880
881static void zswap_entry_cache_free(struct zswap_entry *entry)
882{
883	kmem_cache_free(zswap_entry_cache, entry);
884}
885
886static struct zpool *zswap_find_zpool(struct zswap_entry *entry)
887{
888	int i = 0;
889
890	if (ZSWAP_NR_ZPOOLS > 1)
891		i = hash_ptr(entry, ilog2(ZSWAP_NR_ZPOOLS));
892
893	return entry->pool->zpools[i];
894}
895
896/*
897 * Carries out the common pattern of freeing and entry's zpool allocation,
898 * freeing the entry itself, and decrementing the number of stored pages.
899 */
900static void zswap_entry_free(struct zswap_entry *entry)
901{
902	if (!entry->length)
903		atomic_dec(&zswap_same_filled_pages);
904	else {
905		zswap_lru_del(&zswap_list_lru, entry);
906		zpool_free(zswap_find_zpool(entry), entry->handle);
907		atomic_dec(&zswap_nr_stored);
908		zswap_pool_put(entry->pool);
909	}
910	if (entry->objcg) {
911		obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
912		obj_cgroup_put(entry->objcg);
913	}
914	zswap_entry_cache_free(entry);
915	atomic_dec(&zswap_stored_pages);
916	zswap_update_total_size();
917}
918
919/*
920 * The caller hold the tree lock and search the entry from the tree,
921 * so it must be on the tree, remove it from the tree and free it.
922 */
923static void zswap_invalidate_entry(struct zswap_tree *tree,
924				   struct zswap_entry *entry)
925{
926	zswap_rb_erase(&tree->rbroot, entry);
927	zswap_entry_free(entry);
928}
929
930/*********************************
931* compressed storage functions
932**********************************/
933static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
934{
935	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
936	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
937	struct crypto_acomp *acomp;
938	struct acomp_req *req;
939	int ret;
940
941	mutex_init(&acomp_ctx->mutex);
942
943	acomp_ctx->buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
944	if (!acomp_ctx->buffer)
945		return -ENOMEM;
946
947	acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
948	if (IS_ERR(acomp)) {
949		pr_err("could not alloc crypto acomp %s : %ld\n",
950				pool->tfm_name, PTR_ERR(acomp));
951		ret = PTR_ERR(acomp);
952		goto acomp_fail;
953	}
954	acomp_ctx->acomp = acomp;
955	acomp_ctx->is_sleepable = acomp_is_async(acomp);
956
957	req = acomp_request_alloc(acomp_ctx->acomp);
958	if (!req) {
959		pr_err("could not alloc crypto acomp_request %s\n",
960		       pool->tfm_name);
961		ret = -ENOMEM;
962		goto req_fail;
963	}
964	acomp_ctx->req = req;
965
966	crypto_init_wait(&acomp_ctx->wait);
967	/*
968	 * if the backend of acomp is async zip, crypto_req_done() will wakeup
969	 * crypto_wait_req(); if the backend of acomp is scomp, the callback
970	 * won't be called, crypto_wait_req() will return without blocking.
971	 */
972	acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
973				   crypto_req_done, &acomp_ctx->wait);
974
975	return 0;
976
977req_fail:
978	crypto_free_acomp(acomp_ctx->acomp);
979acomp_fail:
980	kfree(acomp_ctx->buffer);
981	return ret;
982}
983
984static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
985{
986	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
987	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
988
989	if (!IS_ERR_OR_NULL(acomp_ctx)) {
990		if (!IS_ERR_OR_NULL(acomp_ctx->req))
991			acomp_request_free(acomp_ctx->req);
992		if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
993			crypto_free_acomp(acomp_ctx->acomp);
994		kfree(acomp_ctx->buffer);
995	}
996
997	return 0;
998}
999
1000static bool zswap_compress(struct folio *folio, struct zswap_entry *entry)
1001{
1002	struct crypto_acomp_ctx *acomp_ctx;
1003	struct scatterlist input, output;
1004	int comp_ret = 0, alloc_ret = 0;
1005	unsigned int dlen = PAGE_SIZE;
1006	unsigned long handle;
1007	struct zpool *zpool;
1008	char *buf;
1009	gfp_t gfp;
1010	u8 *dst;
1011
1012	acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1013
1014	mutex_lock(&acomp_ctx->mutex);
1015
1016	dst = acomp_ctx->buffer;
1017	sg_init_table(&input, 1);
1018	sg_set_page(&input, &folio->page, PAGE_SIZE, 0);
1019
1020	/*
1021	 * We need PAGE_SIZE * 2 here since there maybe over-compression case,
1022	 * and hardware-accelerators may won't check the dst buffer size, so
1023	 * giving the dst buffer with enough length to avoid buffer overflow.
1024	 */
1025	sg_init_one(&output, dst, PAGE_SIZE * 2);
1026	acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
1027
1028	/*
1029	 * it maybe looks a little bit silly that we send an asynchronous request,
1030	 * then wait for its completion synchronously. This makes the process look
1031	 * synchronous in fact.
1032	 * Theoretically, acomp supports users send multiple acomp requests in one
1033	 * acomp instance, then get those requests done simultaneously. but in this
1034	 * case, zswap actually does store and load page by page, there is no
1035	 * existing method to send the second page before the first page is done
1036	 * in one thread doing zwap.
1037	 * but in different threads running on different cpu, we have different
1038	 * acomp instance, so multiple threads can do (de)compression in parallel.
1039	 */
1040	comp_ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
1041	dlen = acomp_ctx->req->dlen;
1042	if (comp_ret)
1043		goto unlock;
1044
1045	zpool = zswap_find_zpool(entry);
1046	gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1047	if (zpool_malloc_support_movable(zpool))
1048		gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
1049	alloc_ret = zpool_malloc(zpool, dlen, gfp, &handle);
1050	if (alloc_ret)
1051		goto unlock;
1052
1053	buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO);
1054	memcpy(buf, dst, dlen);
1055	zpool_unmap_handle(zpool, handle);
1056
1057	entry->handle = handle;
1058	entry->length = dlen;
1059
1060unlock:
1061	if (comp_ret == -ENOSPC || alloc_ret == -ENOSPC)
1062		zswap_reject_compress_poor++;
1063	else if (comp_ret)
1064		zswap_reject_compress_fail++;
1065	else if (alloc_ret)
1066		zswap_reject_alloc_fail++;
1067
1068	mutex_unlock(&acomp_ctx->mutex);
1069	return comp_ret == 0 && alloc_ret == 0;
1070}
1071
1072static void zswap_decompress(struct zswap_entry *entry, struct page *page)
1073{
1074	struct zpool *zpool = zswap_find_zpool(entry);
1075	struct scatterlist input, output;
1076	struct crypto_acomp_ctx *acomp_ctx;
1077	u8 *src;
1078
1079	acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1080	mutex_lock(&acomp_ctx->mutex);
1081
1082	src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO);
1083	/*
1084	 * If zpool_map_handle is atomic, we cannot reliably utilize its mapped buffer
1085	 * to do crypto_acomp_decompress() which might sleep. In such cases, we must
1086	 * resort to copying the buffer to a temporary one.
1087	 * Meanwhile, zpool_map_handle() might return a non-linearly mapped buffer,
1088	 * such as a kmap address of high memory or even ever a vmap address.
1089	 * However, sg_init_one is only equipped to handle linearly mapped low memory.
1090	 * In such cases, we also must copy the buffer to a temporary and lowmem one.
1091	 */
1092	if ((acomp_ctx->is_sleepable && !zpool_can_sleep_mapped(zpool)) ||
1093	    !virt_addr_valid(src)) {
1094		memcpy(acomp_ctx->buffer, src, entry->length);
1095		src = acomp_ctx->buffer;
1096		zpool_unmap_handle(zpool, entry->handle);
1097	}
1098
1099	sg_init_one(&input, src, entry->length);
1100	sg_init_table(&output, 1);
1101	sg_set_page(&output, page, PAGE_SIZE, 0);
1102	acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE);
1103	BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait));
1104	BUG_ON(acomp_ctx->req->dlen != PAGE_SIZE);
1105	mutex_unlock(&acomp_ctx->mutex);
1106
1107	if (src != acomp_ctx->buffer)
1108		zpool_unmap_handle(zpool, entry->handle);
1109}
1110
1111/*********************************
1112* writeback code
1113**********************************/
1114/*
1115 * Attempts to free an entry by adding a folio to the swap cache,
1116 * decompressing the entry data into the folio, and issuing a
1117 * bio write to write the folio back to the swap device.
1118 *
1119 * This can be thought of as a "resumed writeback" of the folio
1120 * to the swap device.  We are basically resuming the same swap
1121 * writeback path that was intercepted with the zswap_store()
1122 * in the first place.  After the folio has been decompressed into
1123 * the swap cache, the compressed version stored by zswap can be
1124 * freed.
1125 */
1126static int zswap_writeback_entry(struct zswap_entry *entry,
1127				 swp_entry_t swpentry)
1128{
1129	struct zswap_tree *tree;
1130	struct folio *folio;
1131	struct mempolicy *mpol;
1132	bool folio_was_allocated;
1133	struct writeback_control wbc = {
1134		.sync_mode = WB_SYNC_NONE,
1135	};
1136
1137	/* try to allocate swap cache folio */
1138	mpol = get_task_policy(current);
1139	folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
1140				NO_INTERLEAVE_INDEX, &folio_was_allocated, true);
1141	if (!folio)
1142		return -ENOMEM;
1143
1144	/*
1145	 * Found an existing folio, we raced with swapin or concurrent
1146	 * shrinker. We generally writeback cold folios from zswap, and
1147	 * swapin means the folio just became hot, so skip this folio.
1148	 * For unlikely concurrent shrinker case, it will be unlinked
1149	 * and freed when invalidated by the concurrent shrinker anyway.
1150	 */
1151	if (!folio_was_allocated) {
1152		folio_put(folio);
1153		return -EEXIST;
1154	}
1155
1156	/*
1157	 * folio is locked, and the swapcache is now secured against
1158	 * concurrent swapping to and from the slot, and concurrent
1159	 * swapoff so we can safely dereference the zswap tree here.
1160	 * Verify that the swap entry hasn't been invalidated and recycled
1161	 * behind our backs, to avoid overwriting a new swap folio with
1162	 * old compressed data. Only when this is successful can the entry
1163	 * be dereferenced.
1164	 */
1165	tree = swap_zswap_tree(swpentry);
1166	spin_lock(&tree->lock);
1167	if (zswap_rb_search(&tree->rbroot, swp_offset(swpentry)) != entry) {
1168		spin_unlock(&tree->lock);
1169		delete_from_swap_cache(folio);
1170		folio_unlock(folio);
1171		folio_put(folio);
1172		return -ENOMEM;
1173	}
1174
1175	/* Safe to deref entry after the entry is verified above. */
1176	zswap_rb_erase(&tree->rbroot, entry);
1177	spin_unlock(&tree->lock);
1178
1179	zswap_decompress(entry, &folio->page);
1180
1181	count_vm_event(ZSWPWB);
1182	if (entry->objcg)
1183		count_objcg_event(entry->objcg, ZSWPWB);
1184
1185	zswap_entry_free(entry);
1186
1187	/* folio is up to date */
1188	folio_mark_uptodate(folio);
1189
1190	/* move it to the tail of the inactive list after end_writeback */
1191	folio_set_reclaim(folio);
1192
1193	/* start writeback */
1194	__swap_writepage(folio, &wbc);
1195	folio_put(folio);
1196
1197	return 0;
1198}
1199
1200/*********************************
1201* shrinker functions
1202**********************************/
1203static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
1204				       spinlock_t *lock, void *arg)
1205{
1206	struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
1207	bool *encountered_page_in_swapcache = (bool *)arg;
1208	swp_entry_t swpentry;
1209	enum lru_status ret = LRU_REMOVED_RETRY;
1210	int writeback_result;
1211
1212	/*
1213	 * As soon as we drop the LRU lock, the entry can be freed by
1214	 * a concurrent invalidation. This means the following:
1215	 *
1216	 * 1. We extract the swp_entry_t to the stack, allowing
1217	 *    zswap_writeback_entry() to pin the swap entry and
1218	 *    then validate the zwap entry against that swap entry's
1219	 *    tree using pointer value comparison. Only when that
1220	 *    is successful can the entry be dereferenced.
1221	 *
1222	 * 2. Usually, objects are taken off the LRU for reclaim. In
1223	 *    this case this isn't possible, because if reclaim fails
1224	 *    for whatever reason, we have no means of knowing if the
1225	 *    entry is alive to put it back on the LRU.
1226	 *
1227	 *    So rotate it before dropping the lock. If the entry is
1228	 *    written back or invalidated, the free path will unlink
1229	 *    it. For failures, rotation is the right thing as well.
1230	 *
1231	 *    Temporary failures, where the same entry should be tried
1232	 *    again immediately, almost never happen for this shrinker.
1233	 *    We don't do any trylocking; -ENOMEM comes closest,
1234	 *    but that's extremely rare and doesn't happen spuriously
1235	 *    either. Don't bother distinguishing this case.
1236	 */
1237	list_move_tail(item, &l->list);
1238
1239	/*
1240	 * Once the lru lock is dropped, the entry might get freed. The
1241	 * swpentry is copied to the stack, and entry isn't deref'd again
1242	 * until the entry is verified to still be alive in the tree.
1243	 */
1244	swpentry = entry->swpentry;
1245
1246	/*
1247	 * It's safe to drop the lock here because we return either
1248	 * LRU_REMOVED_RETRY or LRU_RETRY.
1249	 */
1250	spin_unlock(lock);
1251
1252	writeback_result = zswap_writeback_entry(entry, swpentry);
1253
1254	if (writeback_result) {
1255		zswap_reject_reclaim_fail++;
1256		ret = LRU_RETRY;
1257
1258		/*
1259		 * Encountering a page already in swap cache is a sign that we are shrinking
1260		 * into the warmer region. We should terminate shrinking (if we're in the dynamic
1261		 * shrinker context).
1262		 */
1263		if (writeback_result == -EEXIST && encountered_page_in_swapcache) {
1264			ret = LRU_STOP;
1265			*encountered_page_in_swapcache = true;
1266		}
1267	} else {
1268		zswap_written_back_pages++;
1269	}
1270
1271	spin_lock(lock);
1272	return ret;
1273}
1274
1275static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
1276		struct shrink_control *sc)
1277{
1278	struct lruvec *lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
1279	unsigned long shrink_ret, nr_protected, lru_size;
1280	bool encountered_page_in_swapcache = false;
1281
1282	if (!zswap_shrinker_enabled ||
1283			!mem_cgroup_zswap_writeback_enabled(sc->memcg)) {
1284		sc->nr_scanned = 0;
1285		return SHRINK_STOP;
1286	}
1287
1288	nr_protected =
1289		atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
1290	lru_size = list_lru_shrink_count(&zswap_list_lru, sc);
1291
1292	/*
1293	 * Abort if we are shrinking into the protected region.
1294	 *
1295	 * This short-circuiting is necessary because if we have too many multiple
1296	 * concurrent reclaimers getting the freeable zswap object counts at the
1297	 * same time (before any of them made reasonable progress), the total
1298	 * number of reclaimed objects might be more than the number of unprotected
1299	 * objects (i.e the reclaimers will reclaim into the protected area of the
1300	 * zswap LRU).
1301	 */
1302	if (nr_protected >= lru_size - sc->nr_to_scan) {
1303		sc->nr_scanned = 0;
1304		return SHRINK_STOP;
1305	}
1306
1307	shrink_ret = list_lru_shrink_walk(&zswap_list_lru, sc, &shrink_memcg_cb,
1308		&encountered_page_in_swapcache);
1309
1310	if (encountered_page_in_swapcache)
1311		return SHRINK_STOP;
1312
1313	return shrink_ret ? shrink_ret : SHRINK_STOP;
1314}
1315
1316static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
1317		struct shrink_control *sc)
1318{
1319	struct mem_cgroup *memcg = sc->memcg;
1320	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
1321	unsigned long nr_backing, nr_stored, nr_freeable, nr_protected;
1322
1323	if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg))
1324		return 0;
1325
1326	/*
1327	 * The shrinker resumes swap writeback, which will enter block
1328	 * and may enter fs. XXX: Harmonize with vmscan.c __GFP_FS
1329	 * rules (may_enter_fs()), which apply on a per-folio basis.
1330	 */
1331	if (!gfp_has_io_fs(sc->gfp_mask))
1332		return 0;
1333
1334#ifdef CONFIG_MEMCG_KMEM
1335	mem_cgroup_flush_stats(memcg);
1336	nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
1337	nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
1338#else
1339	/* use pool stats instead of memcg stats */
1340	nr_backing = zswap_pool_total_size >> PAGE_SHIFT;
1341	nr_stored = atomic_read(&zswap_nr_stored);
1342#endif
1343
1344	if (!nr_stored)
1345		return 0;
1346
1347	nr_protected =
1348		atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
1349	nr_freeable = list_lru_shrink_count(&zswap_list_lru, sc);
1350	/*
1351	 * Subtract the lru size by an estimate of the number of pages
1352	 * that should be protected.
1353	 */
1354	nr_freeable = nr_freeable > nr_protected ? nr_freeable - nr_protected : 0;
1355
1356	/*
1357	 * Scale the number of freeable pages by the memory saving factor.
1358	 * This ensures that the better zswap compresses memory, the fewer
1359	 * pages we will evict to swap (as it will otherwise incur IO for
1360	 * relatively small memory saving).
1361	 */
1362	return mult_frac(nr_freeable, nr_backing, nr_stored);
1363}
1364
1365static struct shrinker *zswap_alloc_shrinker(void)
1366{
1367	struct shrinker *shrinker;
1368
1369	shrinker =
1370		shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
1371	if (!shrinker)
1372		return NULL;
1373
1374	shrinker->scan_objects = zswap_shrinker_scan;
1375	shrinker->count_objects = zswap_shrinker_count;
1376	shrinker->batch = 0;
1377	shrinker->seeks = DEFAULT_SEEKS;
1378	return shrinker;
1379}
1380
1381static int shrink_memcg(struct mem_cgroup *memcg)
1382{
1383	int nid, shrunk = 0;
1384
1385	if (!mem_cgroup_zswap_writeback_enabled(memcg))
1386		return -EINVAL;
1387
1388	/*
1389	 * Skip zombies because their LRUs are reparented and we would be
1390	 * reclaiming from the parent instead of the dead memcg.
1391	 */
1392	if (memcg && !mem_cgroup_online(memcg))
1393		return -ENOENT;
1394
1395	for_each_node_state(nid, N_NORMAL_MEMORY) {
1396		unsigned long nr_to_walk = 1;
1397
1398		shrunk += list_lru_walk_one(&zswap_list_lru, nid, memcg,
1399					    &shrink_memcg_cb, NULL, &nr_to_walk);
1400	}
1401	return shrunk ? 0 : -EAGAIN;
1402}
1403
1404static void shrink_worker(struct work_struct *w)
1405{
1406	struct mem_cgroup *memcg;
1407	int ret, failures = 0;
1408
1409	/* global reclaim will select cgroup in a round-robin fashion. */
1410	do {
1411		spin_lock(&zswap_shrink_lock);
1412		zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
1413		memcg = zswap_next_shrink;
1414
1415		/*
1416		 * We need to retry if we have gone through a full round trip, or if we
1417		 * got an offline memcg (or else we risk undoing the effect of the
1418		 * zswap memcg offlining cleanup callback). This is not catastrophic
1419		 * per se, but it will keep the now offlined memcg hostage for a while.
1420		 *
1421		 * Note that if we got an online memcg, we will keep the extra
1422		 * reference in case the original reference obtained by mem_cgroup_iter
1423		 * is dropped by the zswap memcg offlining callback, ensuring that the
1424		 * memcg is not killed when we are reclaiming.
1425		 */
1426		if (!memcg) {
1427			spin_unlock(&zswap_shrink_lock);
1428			if (++failures == MAX_RECLAIM_RETRIES)
1429				break;
1430
1431			goto resched;
1432		}
1433
1434		if (!mem_cgroup_tryget_online(memcg)) {
1435			/* drop the reference from mem_cgroup_iter() */
1436			mem_cgroup_iter_break(NULL, memcg);
1437			zswap_next_shrink = NULL;
1438			spin_unlock(&zswap_shrink_lock);
1439
1440			if (++failures == MAX_RECLAIM_RETRIES)
1441				break;
1442
1443			goto resched;
1444		}
1445		spin_unlock(&zswap_shrink_lock);
1446
1447		ret = shrink_memcg(memcg);
1448		/* drop the extra reference */
1449		mem_cgroup_put(memcg);
1450
1451		if (ret == -EINVAL)
1452			break;
1453		if (ret && ++failures == MAX_RECLAIM_RETRIES)
1454			break;
1455
1456resched:
1457		cond_resched();
1458	} while (!zswap_can_accept());
1459}
1460
1461static int zswap_is_page_same_filled(void *ptr, unsigned long *value)
1462{
1463	unsigned long *page;
1464	unsigned long val;
1465	unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
1466
1467	page = (unsigned long *)ptr;
1468	val = page[0];
1469
1470	if (val != page[last_pos])
1471		return 0;
1472
1473	for (pos = 1; pos < last_pos; pos++) {
1474		if (val != page[pos])
1475			return 0;
1476	}
1477
1478	*value = val;
1479
1480	return 1;
1481}
1482
1483static void zswap_fill_page(void *ptr, unsigned long value)
1484{
1485	unsigned long *page;
1486
1487	page = (unsigned long *)ptr;
1488	memset_l(page, value, PAGE_SIZE / sizeof(unsigned long));
1489}
1490
1491bool zswap_store(struct folio *folio)
1492{
1493	swp_entry_t swp = folio->swap;
1494	pgoff_t offset = swp_offset(swp);
1495	struct zswap_tree *tree = swap_zswap_tree(swp);
1496	struct zswap_entry *entry, *dupentry;
1497	struct obj_cgroup *objcg = NULL;
1498	struct mem_cgroup *memcg = NULL;
1499
1500	VM_WARN_ON_ONCE(!folio_test_locked(folio));
1501	VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
1502
1503	/* Large folios aren't supported */
1504	if (folio_test_large(folio))
1505		return false;
1506
1507	if (!zswap_enabled)
1508		goto check_old;
1509
1510	objcg = get_obj_cgroup_from_folio(folio);
1511	if (objcg && !obj_cgroup_may_zswap(objcg)) {
1512		memcg = get_mem_cgroup_from_objcg(objcg);
1513		if (shrink_memcg(memcg)) {
1514			mem_cgroup_put(memcg);
1515			goto reject;
1516		}
1517		mem_cgroup_put(memcg);
1518	}
1519
1520	/* reclaim space if needed */
1521	if (zswap_is_full()) {
1522		zswap_pool_limit_hit++;
1523		zswap_pool_reached_full = true;
1524		goto shrink;
1525	}
1526
1527	if (zswap_pool_reached_full) {
1528	       if (!zswap_can_accept())
1529			goto shrink;
1530		else
1531			zswap_pool_reached_full = false;
1532	}
1533
1534	/* allocate entry */
1535	entry = zswap_entry_cache_alloc(GFP_KERNEL, folio_nid(folio));
1536	if (!entry) {
1537		zswap_reject_kmemcache_fail++;
1538		goto reject;
1539	}
1540
1541	if (zswap_same_filled_pages_enabled) {
1542		unsigned long value;
1543		u8 *src;
1544
1545		src = kmap_local_folio(folio, 0);
1546		if (zswap_is_page_same_filled(src, &value)) {
1547			kunmap_local(src);
1548			entry->length = 0;
1549			entry->value = value;
1550			atomic_inc(&zswap_same_filled_pages);
1551			goto insert_entry;
1552		}
1553		kunmap_local(src);
1554	}
1555
1556	if (!zswap_non_same_filled_pages_enabled)
1557		goto freepage;
1558
1559	/* if entry is successfully added, it keeps the reference */
1560	entry->pool = zswap_pool_current_get();
1561	if (!entry->pool)
1562		goto freepage;
1563
1564	if (objcg) {
1565		memcg = get_mem_cgroup_from_objcg(objcg);
1566		if (memcg_list_lru_alloc(memcg, &zswap_list_lru, GFP_KERNEL)) {
1567			mem_cgroup_put(memcg);
1568			goto put_pool;
1569		}
1570		mem_cgroup_put(memcg);
1571	}
1572
1573	if (!zswap_compress(folio, entry))
1574		goto put_pool;
1575
1576insert_entry:
1577	entry->swpentry = swp;
1578	entry->objcg = objcg;
1579	if (objcg) {
1580		obj_cgroup_charge_zswap(objcg, entry->length);
1581		/* Account before objcg ref is moved to tree */
1582		count_objcg_event(objcg, ZSWPOUT);
1583	}
1584
1585	/* map */
1586	spin_lock(&tree->lock);
1587	/*
1588	 * The folio may have been dirtied again, invalidate the
1589	 * possibly stale entry before inserting the new entry.
1590	 */
1591	if (zswap_rb_insert(&tree->rbroot, entry, &dupentry) == -EEXIST) {
1592		zswap_invalidate_entry(tree, dupentry);
1593		WARN_ON(zswap_rb_insert(&tree->rbroot, entry, &dupentry));
1594	}
1595	if (entry->length) {
1596		INIT_LIST_HEAD(&entry->lru);
1597		zswap_lru_add(&zswap_list_lru, entry);
1598		atomic_inc(&zswap_nr_stored);
1599	}
1600	spin_unlock(&tree->lock);
1601
1602	/* update stats */
1603	atomic_inc(&zswap_stored_pages);
1604	zswap_update_total_size();
1605	count_vm_event(ZSWPOUT);
1606
1607	return true;
1608
1609put_pool:
1610	zswap_pool_put(entry->pool);
1611freepage:
1612	zswap_entry_cache_free(entry);
1613reject:
1614	if (objcg)
1615		obj_cgroup_put(objcg);
1616check_old:
1617	/*
1618	 * If the zswap store fails or zswap is disabled, we must invalidate the
1619	 * possibly stale entry which was previously stored at this offset.
1620	 * Otherwise, writeback could overwrite the new data in the swapfile.
1621	 */
1622	spin_lock(&tree->lock);
1623	entry = zswap_rb_search(&tree->rbroot, offset);
1624	if (entry)
1625		zswap_invalidate_entry(tree, entry);
1626	spin_unlock(&tree->lock);
1627	return false;
1628
1629shrink:
1630	queue_work(shrink_wq, &zswap_shrink_work);
1631	goto reject;
1632}
1633
1634bool zswap_load(struct folio *folio)
1635{
1636	swp_entry_t swp = folio->swap;
1637	pgoff_t offset = swp_offset(swp);
1638	struct page *page = &folio->page;
1639	bool swapcache = folio_test_swapcache(folio);
1640	struct zswap_tree *tree = swap_zswap_tree(swp);
1641	struct zswap_entry *entry;
1642	u8 *dst;
1643
1644	VM_WARN_ON_ONCE(!folio_test_locked(folio));
1645
1646	spin_lock(&tree->lock);
1647	entry = zswap_rb_search(&tree->rbroot, offset);
1648	if (!entry) {
1649		spin_unlock(&tree->lock);
1650		return false;
1651	}
1652	/*
1653	 * When reading into the swapcache, invalidate our entry. The
1654	 * swapcache can be the authoritative owner of the page and
1655	 * its mappings, and the pressure that results from having two
1656	 * in-memory copies outweighs any benefits of caching the
1657	 * compression work.
1658	 *
1659	 * (Most swapins go through the swapcache. The notable
1660	 * exception is the singleton fault on SWP_SYNCHRONOUS_IO
1661	 * files, which reads into a private page and may free it if
1662	 * the fault fails. We remain the primary owner of the entry.)
1663	 */
1664	if (swapcache)
1665		zswap_rb_erase(&tree->rbroot, entry);
1666	spin_unlock(&tree->lock);
1667
1668	if (entry->length)
1669		zswap_decompress(entry, page);
1670	else {
1671		dst = kmap_local_page(page);
1672		zswap_fill_page(dst, entry->value);
1673		kunmap_local(dst);
1674	}
1675
1676	count_vm_event(ZSWPIN);
1677	if (entry->objcg)
1678		count_objcg_event(entry->objcg, ZSWPIN);
1679
1680	if (swapcache) {
1681		zswap_entry_free(entry);
1682		folio_mark_dirty(folio);
1683	}
1684
1685	return true;
1686}
1687
1688void zswap_invalidate(swp_entry_t swp)
1689{
1690	pgoff_t offset = swp_offset(swp);
1691	struct zswap_tree *tree = swap_zswap_tree(swp);
1692	struct zswap_entry *entry;
1693
1694	spin_lock(&tree->lock);
1695	entry = zswap_rb_search(&tree->rbroot, offset);
1696	if (entry)
1697		zswap_invalidate_entry(tree, entry);
1698	spin_unlock(&tree->lock);
1699}
1700
1701int zswap_swapon(int type, unsigned long nr_pages)
1702{
1703	struct zswap_tree *trees, *tree;
1704	unsigned int nr, i;
1705
1706	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
1707	trees = kvcalloc(nr, sizeof(*tree), GFP_KERNEL);
1708	if (!trees) {
1709		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1710		return -ENOMEM;
1711	}
1712
1713	for (i = 0; i < nr; i++) {
1714		tree = trees + i;
1715		tree->rbroot = RB_ROOT;
1716		spin_lock_init(&tree->lock);
1717	}
1718
1719	nr_zswap_trees[type] = nr;
1720	zswap_trees[type] = trees;
1721	return 0;
1722}
1723
1724void zswap_swapoff(int type)
1725{
1726	struct zswap_tree *trees = zswap_trees[type];
1727	unsigned int i;
1728
1729	if (!trees)
1730		return;
1731
1732	/* try_to_unuse() invalidated all the entries already */
1733	for (i = 0; i < nr_zswap_trees[type]; i++)
1734		WARN_ON_ONCE(!RB_EMPTY_ROOT(&trees[i].rbroot));
1735
1736	kvfree(trees);
1737	nr_zswap_trees[type] = 0;
1738	zswap_trees[type] = NULL;
1739}
1740
1741/*********************************
1742* debugfs functions
1743**********************************/
1744#ifdef CONFIG_DEBUG_FS
1745#include <linux/debugfs.h>
1746
1747static struct dentry *zswap_debugfs_root;
1748
1749static int zswap_debugfs_init(void)
1750{
1751	if (!debugfs_initialized())
1752		return -ENODEV;
1753
1754	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1755
1756	debugfs_create_u64("pool_limit_hit", 0444,
1757			   zswap_debugfs_root, &zswap_pool_limit_hit);
1758	debugfs_create_u64("reject_reclaim_fail", 0444,
1759			   zswap_debugfs_root, &zswap_reject_reclaim_fail);
1760	debugfs_create_u64("reject_alloc_fail", 0444,
1761			   zswap_debugfs_root, &zswap_reject_alloc_fail);
1762	debugfs_create_u64("reject_kmemcache_fail", 0444,
1763			   zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1764	debugfs_create_u64("reject_compress_fail", 0444,
1765			   zswap_debugfs_root, &zswap_reject_compress_fail);
1766	debugfs_create_u64("reject_compress_poor", 0444,
1767			   zswap_debugfs_root, &zswap_reject_compress_poor);
1768	debugfs_create_u64("written_back_pages", 0444,
1769			   zswap_debugfs_root, &zswap_written_back_pages);
1770	debugfs_create_u64("pool_total_size", 0444,
1771			   zswap_debugfs_root, &zswap_pool_total_size);
1772	debugfs_create_atomic_t("stored_pages", 0444,
1773				zswap_debugfs_root, &zswap_stored_pages);
1774	debugfs_create_atomic_t("same_filled_pages", 0444,
1775				zswap_debugfs_root, &zswap_same_filled_pages);
1776
1777	return 0;
1778}
1779#else
1780static int zswap_debugfs_init(void)
1781{
1782	return 0;
1783}
1784#endif
1785
1786/*********************************
1787* module init and exit
1788**********************************/
1789static int zswap_setup(void)
1790{
1791	struct zswap_pool *pool;
1792	int ret;
1793
1794	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1795	if (!zswap_entry_cache) {
1796		pr_err("entry cache creation failed\n");
1797		goto cache_fail;
1798	}
1799
1800	ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1801				      "mm/zswap_pool:prepare",
1802				      zswap_cpu_comp_prepare,
1803				      zswap_cpu_comp_dead);
1804	if (ret)
1805		goto hp_fail;
1806
1807	shrink_wq = alloc_workqueue("zswap-shrink",
1808			WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
1809	if (!shrink_wq)
1810		goto shrink_wq_fail;
1811
1812	zswap_shrinker = zswap_alloc_shrinker();
1813	if (!zswap_shrinker)
1814		goto shrinker_fail;
1815	if (list_lru_init_memcg(&zswap_list_lru, zswap_shrinker))
1816		goto lru_fail;
1817	shrinker_register(zswap_shrinker);
1818
1819	INIT_WORK(&zswap_shrink_work, shrink_worker);
1820
1821	pool = __zswap_pool_create_fallback();
1822	if (pool) {
1823		pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1824			zpool_get_type(pool->zpools[0]));
1825		list_add(&pool->list, &zswap_pools);
1826		zswap_has_pool = true;
1827	} else {
1828		pr_err("pool creation failed\n");
1829		zswap_enabled = false;
1830	}
1831
1832	if (zswap_debugfs_init())
1833		pr_warn("debugfs initialization failed\n");
1834	zswap_init_state = ZSWAP_INIT_SUCCEED;
1835	return 0;
1836
1837lru_fail:
1838	shrinker_free(zswap_shrinker);
1839shrinker_fail:
1840	destroy_workqueue(shrink_wq);
1841shrink_wq_fail:
1842	cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE);
1843hp_fail:
1844	kmem_cache_destroy(zswap_entry_cache);
1845cache_fail:
1846	/* if built-in, we aren't unloaded on failure; don't allow use */
1847	zswap_init_state = ZSWAP_INIT_FAILED;
1848	zswap_enabled = false;
1849	return -ENOMEM;
1850}
1851
1852static int __init zswap_init(void)
1853{
1854	if (!zswap_enabled)
1855		return 0;
1856	return zswap_setup();
1857}
1858/* must be late so crypto has time to come up */
1859late_initcall(zswap_init);
1860
1861MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1862MODULE_DESCRIPTION("Compressed cache for swap pages");
1863