1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/mm.h>
3#include <linux/slab.h>
4#include <linux/string.h>
5#include <linux/compiler.h>
6#include <linux/export.h>
7#include <linux/err.h>
8#include <linux/sched.h>
9#include <linux/sched/mm.h>
10#include <linux/sched/signal.h>
11#include <linux/sched/task_stack.h>
12#include <linux/security.h>
13#include <linux/swap.h>
14#include <linux/swapops.h>
15#include <linux/mman.h>
16#include <linux/hugetlb.h>
17#include <linux/vmalloc.h>
18#include <linux/userfaultfd_k.h>
19#include <linux/elf.h>
20#include <linux/elf-randomize.h>
21#include <linux/personality.h>
22#include <linux/random.h>
23#include <linux/processor.h>
24#include <linux/sizes.h>
25#include <linux/compat.h>
26
27#include <linux/uaccess.h>
28
29#include "internal.h"
30#include "swap.h"
31
32/**
33 * kfree_const - conditionally free memory
34 * @x: pointer to the memory
35 *
36 * Function calls kfree only if @x is not in .rodata section.
37 */
38void kfree_const(const void *x)
39{
40	if (!is_kernel_rodata((unsigned long)x))
41		kfree(x);
42}
43EXPORT_SYMBOL(kfree_const);
44
45/**
46 * kstrdup - allocate space for and copy an existing string
47 * @s: the string to duplicate
48 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
49 *
50 * Return: newly allocated copy of @s or %NULL in case of error
51 */
52noinline
53char *kstrdup(const char *s, gfp_t gfp)
54{
55	size_t len;
56	char *buf;
57
58	if (!s)
59		return NULL;
60
61	len = strlen(s) + 1;
62	buf = kmalloc_track_caller(len, gfp);
63	if (buf)
64		memcpy(buf, s, len);
65	return buf;
66}
67EXPORT_SYMBOL(kstrdup);
68
69/**
70 * kstrdup_const - conditionally duplicate an existing const string
71 * @s: the string to duplicate
72 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
73 *
74 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
75 * must not be passed to krealloc().
76 *
77 * Return: source string if it is in .rodata section otherwise
78 * fallback to kstrdup.
79 */
80const char *kstrdup_const(const char *s, gfp_t gfp)
81{
82	if (is_kernel_rodata((unsigned long)s))
83		return s;
84
85	return kstrdup(s, gfp);
86}
87EXPORT_SYMBOL(kstrdup_const);
88
89/**
90 * kstrndup - allocate space for and copy an existing string
91 * @s: the string to duplicate
92 * @max: read at most @max chars from @s
93 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
94 *
95 * Note: Use kmemdup_nul() instead if the size is known exactly.
96 *
97 * Return: newly allocated copy of @s or %NULL in case of error
98 */
99char *kstrndup(const char *s, size_t max, gfp_t gfp)
100{
101	size_t len;
102	char *buf;
103
104	if (!s)
105		return NULL;
106
107	len = strnlen(s, max);
108	buf = kmalloc_track_caller(len+1, gfp);
109	if (buf) {
110		memcpy(buf, s, len);
111		buf[len] = '\0';
112	}
113	return buf;
114}
115EXPORT_SYMBOL(kstrndup);
116
117/**
118 * kmemdup - duplicate region of memory
119 *
120 * @src: memory region to duplicate
121 * @len: memory region length
122 * @gfp: GFP mask to use
123 *
124 * Return: newly allocated copy of @src or %NULL in case of error,
125 * result is physically contiguous. Use kfree() to free.
126 */
127void *kmemdup(const void *src, size_t len, gfp_t gfp)
128{
129	void *p;
130
131	p = kmalloc_track_caller(len, gfp);
132	if (p)
133		memcpy(p, src, len);
134	return p;
135}
136EXPORT_SYMBOL(kmemdup);
137
138/**
139 * kmemdup_array - duplicate a given array.
140 *
141 * @src: array to duplicate.
142 * @element_size: size of each element of array.
143 * @count: number of elements to duplicate from array.
144 * @gfp: GFP mask to use.
145 *
146 * Return: duplicated array of @src or %NULL in case of error,
147 * result is physically contiguous. Use kfree() to free.
148 */
149void *kmemdup_array(const void *src, size_t element_size, size_t count, gfp_t gfp)
150{
151	return kmemdup(src, size_mul(element_size, count), gfp);
152}
153EXPORT_SYMBOL(kmemdup_array);
154
155/**
156 * kvmemdup - duplicate region of memory
157 *
158 * @src: memory region to duplicate
159 * @len: memory region length
160 * @gfp: GFP mask to use
161 *
162 * Return: newly allocated copy of @src or %NULL in case of error,
163 * result may be not physically contiguous. Use kvfree() to free.
164 */
165void *kvmemdup(const void *src, size_t len, gfp_t gfp)
166{
167	void *p;
168
169	p = kvmalloc(len, gfp);
170	if (p)
171		memcpy(p, src, len);
172	return p;
173}
174EXPORT_SYMBOL(kvmemdup);
175
176/**
177 * kmemdup_nul - Create a NUL-terminated string from unterminated data
178 * @s: The data to stringify
179 * @len: The size of the data
180 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
181 *
182 * Return: newly allocated copy of @s with NUL-termination or %NULL in
183 * case of error
184 */
185char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
186{
187	char *buf;
188
189	if (!s)
190		return NULL;
191
192	buf = kmalloc_track_caller(len + 1, gfp);
193	if (buf) {
194		memcpy(buf, s, len);
195		buf[len] = '\0';
196	}
197	return buf;
198}
199EXPORT_SYMBOL(kmemdup_nul);
200
201/**
202 * memdup_user - duplicate memory region from user space
203 *
204 * @src: source address in user space
205 * @len: number of bytes to copy
206 *
207 * Return: an ERR_PTR() on failure.  Result is physically
208 * contiguous, to be freed by kfree().
209 */
210void *memdup_user(const void __user *src, size_t len)
211{
212	void *p;
213
214	p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
215	if (!p)
216		return ERR_PTR(-ENOMEM);
217
218	if (copy_from_user(p, src, len)) {
219		kfree(p);
220		return ERR_PTR(-EFAULT);
221	}
222
223	return p;
224}
225EXPORT_SYMBOL(memdup_user);
226
227/**
228 * vmemdup_user - duplicate memory region from user space
229 *
230 * @src: source address in user space
231 * @len: number of bytes to copy
232 *
233 * Return: an ERR_PTR() on failure.  Result may be not
234 * physically contiguous.  Use kvfree() to free.
235 */
236void *vmemdup_user(const void __user *src, size_t len)
237{
238	void *p;
239
240	p = kvmalloc(len, GFP_USER);
241	if (!p)
242		return ERR_PTR(-ENOMEM);
243
244	if (copy_from_user(p, src, len)) {
245		kvfree(p);
246		return ERR_PTR(-EFAULT);
247	}
248
249	return p;
250}
251EXPORT_SYMBOL(vmemdup_user);
252
253/**
254 * strndup_user - duplicate an existing string from user space
255 * @s: The string to duplicate
256 * @n: Maximum number of bytes to copy, including the trailing NUL.
257 *
258 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
259 */
260char *strndup_user(const char __user *s, long n)
261{
262	char *p;
263	long length;
264
265	length = strnlen_user(s, n);
266
267	if (!length)
268		return ERR_PTR(-EFAULT);
269
270	if (length > n)
271		return ERR_PTR(-EINVAL);
272
273	p = memdup_user(s, length);
274
275	if (IS_ERR(p))
276		return p;
277
278	p[length - 1] = '\0';
279
280	return p;
281}
282EXPORT_SYMBOL(strndup_user);
283
284/**
285 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
286 *
287 * @src: source address in user space
288 * @len: number of bytes to copy
289 *
290 * Return: an ERR_PTR() on failure.
291 */
292void *memdup_user_nul(const void __user *src, size_t len)
293{
294	char *p;
295
296	/*
297	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
298	 * cause pagefault, which makes it pointless to use GFP_NOFS
299	 * or GFP_ATOMIC.
300	 */
301	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
302	if (!p)
303		return ERR_PTR(-ENOMEM);
304
305	if (copy_from_user(p, src, len)) {
306		kfree(p);
307		return ERR_PTR(-EFAULT);
308	}
309	p[len] = '\0';
310
311	return p;
312}
313EXPORT_SYMBOL(memdup_user_nul);
314
315/* Check if the vma is being used as a stack by this task */
316int vma_is_stack_for_current(struct vm_area_struct *vma)
317{
318	struct task_struct * __maybe_unused t = current;
319
320	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
321}
322
323/*
324 * Change backing file, only valid to use during initial VMA setup.
325 */
326void vma_set_file(struct vm_area_struct *vma, struct file *file)
327{
328	/* Changing an anonymous vma with this is illegal */
329	get_file(file);
330	swap(vma->vm_file, file);
331	fput(file);
332}
333EXPORT_SYMBOL(vma_set_file);
334
335#ifndef STACK_RND_MASK
336#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
337#endif
338
339unsigned long randomize_stack_top(unsigned long stack_top)
340{
341	unsigned long random_variable = 0;
342
343	if (current->flags & PF_RANDOMIZE) {
344		random_variable = get_random_long();
345		random_variable &= STACK_RND_MASK;
346		random_variable <<= PAGE_SHIFT;
347	}
348#ifdef CONFIG_STACK_GROWSUP
349	return PAGE_ALIGN(stack_top) + random_variable;
350#else
351	return PAGE_ALIGN(stack_top) - random_variable;
352#endif
353}
354
355/**
356 * randomize_page - Generate a random, page aligned address
357 * @start:	The smallest acceptable address the caller will take.
358 * @range:	The size of the area, starting at @start, within which the
359 *		random address must fall.
360 *
361 * If @start + @range would overflow, @range is capped.
362 *
363 * NOTE: Historical use of randomize_range, which this replaces, presumed that
364 * @start was already page aligned.  We now align it regardless.
365 *
366 * Return: A page aligned address within [start, start + range).  On error,
367 * @start is returned.
368 */
369unsigned long randomize_page(unsigned long start, unsigned long range)
370{
371	if (!PAGE_ALIGNED(start)) {
372		range -= PAGE_ALIGN(start) - start;
373		start = PAGE_ALIGN(start);
374	}
375
376	if (start > ULONG_MAX - range)
377		range = ULONG_MAX - start;
378
379	range >>= PAGE_SHIFT;
380
381	if (range == 0)
382		return start;
383
384	return start + (get_random_long() % range << PAGE_SHIFT);
385}
386
387#ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
388unsigned long __weak arch_randomize_brk(struct mm_struct *mm)
389{
390	/* Is the current task 32bit ? */
391	if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
392		return randomize_page(mm->brk, SZ_32M);
393
394	return randomize_page(mm->brk, SZ_1G);
395}
396
397unsigned long arch_mmap_rnd(void)
398{
399	unsigned long rnd;
400
401#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
402	if (is_compat_task())
403		rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
404	else
405#endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
406		rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
407
408	return rnd << PAGE_SHIFT;
409}
410
411static int mmap_is_legacy(struct rlimit *rlim_stack)
412{
413	if (current->personality & ADDR_COMPAT_LAYOUT)
414		return 1;
415
416	/* On parisc the stack always grows up - so a unlimited stack should
417	 * not be an indicator to use the legacy memory layout. */
418	if (rlim_stack->rlim_cur == RLIM_INFINITY &&
419		!IS_ENABLED(CONFIG_STACK_GROWSUP))
420		return 1;
421
422	return sysctl_legacy_va_layout;
423}
424
425/*
426 * Leave enough space between the mmap area and the stack to honour ulimit in
427 * the face of randomisation.
428 */
429#define MIN_GAP		(SZ_128M)
430#define MAX_GAP		(STACK_TOP / 6 * 5)
431
432static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
433{
434#ifdef CONFIG_STACK_GROWSUP
435	/*
436	 * For an upwards growing stack the calculation is much simpler.
437	 * Memory for the maximum stack size is reserved at the top of the
438	 * task. mmap_base starts directly below the stack and grows
439	 * downwards.
440	 */
441	return PAGE_ALIGN_DOWN(mmap_upper_limit(rlim_stack) - rnd);
442#else
443	unsigned long gap = rlim_stack->rlim_cur;
444	unsigned long pad = stack_guard_gap;
445
446	/* Account for stack randomization if necessary */
447	if (current->flags & PF_RANDOMIZE)
448		pad += (STACK_RND_MASK << PAGE_SHIFT);
449
450	/* Values close to RLIM_INFINITY can overflow. */
451	if (gap + pad > gap)
452		gap += pad;
453
454	if (gap < MIN_GAP)
455		gap = MIN_GAP;
456	else if (gap > MAX_GAP)
457		gap = MAX_GAP;
458
459	return PAGE_ALIGN(STACK_TOP - gap - rnd);
460#endif
461}
462
463void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
464{
465	unsigned long random_factor = 0UL;
466
467	if (current->flags & PF_RANDOMIZE)
468		random_factor = arch_mmap_rnd();
469
470	if (mmap_is_legacy(rlim_stack)) {
471		mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
472		mm->get_unmapped_area = arch_get_unmapped_area;
473	} else {
474		mm->mmap_base = mmap_base(random_factor, rlim_stack);
475		mm->get_unmapped_area = arch_get_unmapped_area_topdown;
476	}
477}
478#elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
479void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
480{
481	mm->mmap_base = TASK_UNMAPPED_BASE;
482	mm->get_unmapped_area = arch_get_unmapped_area;
483}
484#endif
485
486/**
487 * __account_locked_vm - account locked pages to an mm's locked_vm
488 * @mm:          mm to account against
489 * @pages:       number of pages to account
490 * @inc:         %true if @pages should be considered positive, %false if not
491 * @task:        task used to check RLIMIT_MEMLOCK
492 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
493 *
494 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
495 * that mmap_lock is held as writer.
496 *
497 * Return:
498 * * 0       on success
499 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
500 */
501int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
502			struct task_struct *task, bool bypass_rlim)
503{
504	unsigned long locked_vm, limit;
505	int ret = 0;
506
507	mmap_assert_write_locked(mm);
508
509	locked_vm = mm->locked_vm;
510	if (inc) {
511		if (!bypass_rlim) {
512			limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
513			if (locked_vm + pages > limit)
514				ret = -ENOMEM;
515		}
516		if (!ret)
517			mm->locked_vm = locked_vm + pages;
518	} else {
519		WARN_ON_ONCE(pages > locked_vm);
520		mm->locked_vm = locked_vm - pages;
521	}
522
523	pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
524		 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
525		 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
526		 ret ? " - exceeded" : "");
527
528	return ret;
529}
530EXPORT_SYMBOL_GPL(__account_locked_vm);
531
532/**
533 * account_locked_vm - account locked pages to an mm's locked_vm
534 * @mm:          mm to account against, may be NULL
535 * @pages:       number of pages to account
536 * @inc:         %true if @pages should be considered positive, %false if not
537 *
538 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
539 *
540 * Return:
541 * * 0       on success, or if mm is NULL
542 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
543 */
544int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
545{
546	int ret;
547
548	if (pages == 0 || !mm)
549		return 0;
550
551	mmap_write_lock(mm);
552	ret = __account_locked_vm(mm, pages, inc, current,
553				  capable(CAP_IPC_LOCK));
554	mmap_write_unlock(mm);
555
556	return ret;
557}
558EXPORT_SYMBOL_GPL(account_locked_vm);
559
560unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
561	unsigned long len, unsigned long prot,
562	unsigned long flag, unsigned long pgoff)
563{
564	unsigned long ret;
565	struct mm_struct *mm = current->mm;
566	unsigned long populate;
567	LIST_HEAD(uf);
568
569	ret = security_mmap_file(file, prot, flag);
570	if (!ret) {
571		if (mmap_write_lock_killable(mm))
572			return -EINTR;
573		ret = do_mmap(file, addr, len, prot, flag, 0, pgoff, &populate,
574			      &uf);
575		mmap_write_unlock(mm);
576		userfaultfd_unmap_complete(mm, &uf);
577		if (populate)
578			mm_populate(ret, populate);
579	}
580	return ret;
581}
582
583unsigned long vm_mmap(struct file *file, unsigned long addr,
584	unsigned long len, unsigned long prot,
585	unsigned long flag, unsigned long offset)
586{
587	if (unlikely(offset + PAGE_ALIGN(len) < offset))
588		return -EINVAL;
589	if (unlikely(offset_in_page(offset)))
590		return -EINVAL;
591
592	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
593}
594EXPORT_SYMBOL(vm_mmap);
595
596/**
597 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
598 * failure, fall back to non-contiguous (vmalloc) allocation.
599 * @size: size of the request.
600 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
601 * @node: numa node to allocate from
602 *
603 * Uses kmalloc to get the memory but if the allocation fails then falls back
604 * to the vmalloc allocator. Use kvfree for freeing the memory.
605 *
606 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
607 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
608 * preferable to the vmalloc fallback, due to visible performance drawbacks.
609 *
610 * Return: pointer to the allocated memory of %NULL in case of failure
611 */
612void *kvmalloc_node(size_t size, gfp_t flags, int node)
613{
614	gfp_t kmalloc_flags = flags;
615	void *ret;
616
617	/*
618	 * We want to attempt a large physically contiguous block first because
619	 * it is less likely to fragment multiple larger blocks and therefore
620	 * contribute to a long term fragmentation less than vmalloc fallback.
621	 * However make sure that larger requests are not too disruptive - no
622	 * OOM killer and no allocation failure warnings as we have a fallback.
623	 */
624	if (size > PAGE_SIZE) {
625		kmalloc_flags |= __GFP_NOWARN;
626
627		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
628			kmalloc_flags |= __GFP_NORETRY;
629
630		/* nofail semantic is implemented by the vmalloc fallback */
631		kmalloc_flags &= ~__GFP_NOFAIL;
632	}
633
634	ret = kmalloc_node(size, kmalloc_flags, node);
635
636	/*
637	 * It doesn't really make sense to fallback to vmalloc for sub page
638	 * requests
639	 */
640	if (ret || size <= PAGE_SIZE)
641		return ret;
642
643	/* non-sleeping allocations are not supported by vmalloc */
644	if (!gfpflags_allow_blocking(flags))
645		return NULL;
646
647	/* Don't even allow crazy sizes */
648	if (unlikely(size > INT_MAX)) {
649		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
650		return NULL;
651	}
652
653	/*
654	 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
655	 * since the callers already cannot assume anything
656	 * about the resulting pointer, and cannot play
657	 * protection games.
658	 */
659	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
660			flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
661			node, __builtin_return_address(0));
662}
663EXPORT_SYMBOL(kvmalloc_node);
664
665/**
666 * kvfree() - Free memory.
667 * @addr: Pointer to allocated memory.
668 *
669 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
670 * It is slightly more efficient to use kfree() or vfree() if you are certain
671 * that you know which one to use.
672 *
673 * Context: Either preemptible task context or not-NMI interrupt.
674 */
675void kvfree(const void *addr)
676{
677	if (is_vmalloc_addr(addr))
678		vfree(addr);
679	else
680		kfree(addr);
681}
682EXPORT_SYMBOL(kvfree);
683
684/**
685 * kvfree_sensitive - Free a data object containing sensitive information.
686 * @addr: address of the data object to be freed.
687 * @len: length of the data object.
688 *
689 * Use the special memzero_explicit() function to clear the content of a
690 * kvmalloc'ed object containing sensitive data to make sure that the
691 * compiler won't optimize out the data clearing.
692 */
693void kvfree_sensitive(const void *addr, size_t len)
694{
695	if (likely(!ZERO_OR_NULL_PTR(addr))) {
696		memzero_explicit((void *)addr, len);
697		kvfree(addr);
698	}
699}
700EXPORT_SYMBOL(kvfree_sensitive);
701
702void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
703{
704	void *newp;
705
706	if (oldsize >= newsize)
707		return (void *)p;
708	newp = kvmalloc(newsize, flags);
709	if (!newp)
710		return NULL;
711	memcpy(newp, p, oldsize);
712	kvfree(p);
713	return newp;
714}
715EXPORT_SYMBOL(kvrealloc);
716
717/**
718 * __vmalloc_array - allocate memory for a virtually contiguous array.
719 * @n: number of elements.
720 * @size: element size.
721 * @flags: the type of memory to allocate (see kmalloc).
722 */
723void *__vmalloc_array(size_t n, size_t size, gfp_t flags)
724{
725	size_t bytes;
726
727	if (unlikely(check_mul_overflow(n, size, &bytes)))
728		return NULL;
729	return __vmalloc(bytes, flags);
730}
731EXPORT_SYMBOL(__vmalloc_array);
732
733/**
734 * vmalloc_array - allocate memory for a virtually contiguous array.
735 * @n: number of elements.
736 * @size: element size.
737 */
738void *vmalloc_array(size_t n, size_t size)
739{
740	return __vmalloc_array(n, size, GFP_KERNEL);
741}
742EXPORT_SYMBOL(vmalloc_array);
743
744/**
745 * __vcalloc - allocate and zero memory for a virtually contiguous array.
746 * @n: number of elements.
747 * @size: element size.
748 * @flags: the type of memory to allocate (see kmalloc).
749 */
750void *__vcalloc(size_t n, size_t size, gfp_t flags)
751{
752	return __vmalloc_array(n, size, flags | __GFP_ZERO);
753}
754EXPORT_SYMBOL(__vcalloc);
755
756/**
757 * vcalloc - allocate and zero memory for a virtually contiguous array.
758 * @n: number of elements.
759 * @size: element size.
760 */
761void *vcalloc(size_t n, size_t size)
762{
763	return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO);
764}
765EXPORT_SYMBOL(vcalloc);
766
767struct anon_vma *folio_anon_vma(struct folio *folio)
768{
769	unsigned long mapping = (unsigned long)folio->mapping;
770
771	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
772		return NULL;
773	return (void *)(mapping - PAGE_MAPPING_ANON);
774}
775
776/**
777 * folio_mapping - Find the mapping where this folio is stored.
778 * @folio: The folio.
779 *
780 * For folios which are in the page cache, return the mapping that this
781 * page belongs to.  Folios in the swap cache return the swap mapping
782 * this page is stored in (which is different from the mapping for the
783 * swap file or swap device where the data is stored).
784 *
785 * You can call this for folios which aren't in the swap cache or page
786 * cache and it will return NULL.
787 */
788struct address_space *folio_mapping(struct folio *folio)
789{
790	struct address_space *mapping;
791
792	/* This happens if someone calls flush_dcache_page on slab page */
793	if (unlikely(folio_test_slab(folio)))
794		return NULL;
795
796	if (unlikely(folio_test_swapcache(folio)))
797		return swap_address_space(folio->swap);
798
799	mapping = folio->mapping;
800	if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
801		return NULL;
802
803	return mapping;
804}
805EXPORT_SYMBOL(folio_mapping);
806
807/**
808 * folio_copy - Copy the contents of one folio to another.
809 * @dst: Folio to copy to.
810 * @src: Folio to copy from.
811 *
812 * The bytes in the folio represented by @src are copied to @dst.
813 * Assumes the caller has validated that @dst is at least as large as @src.
814 * Can be called in atomic context for order-0 folios, but if the folio is
815 * larger, it may sleep.
816 */
817void folio_copy(struct folio *dst, struct folio *src)
818{
819	long i = 0;
820	long nr = folio_nr_pages(src);
821
822	for (;;) {
823		copy_highpage(folio_page(dst, i), folio_page(src, i));
824		if (++i == nr)
825			break;
826		cond_resched();
827	}
828}
829EXPORT_SYMBOL(folio_copy);
830
831int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
832int sysctl_overcommit_ratio __read_mostly = 50;
833unsigned long sysctl_overcommit_kbytes __read_mostly;
834int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
835unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
836unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
837
838int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
839		size_t *lenp, loff_t *ppos)
840{
841	int ret;
842
843	ret = proc_dointvec(table, write, buffer, lenp, ppos);
844	if (ret == 0 && write)
845		sysctl_overcommit_kbytes = 0;
846	return ret;
847}
848
849static void sync_overcommit_as(struct work_struct *dummy)
850{
851	percpu_counter_sync(&vm_committed_as);
852}
853
854int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
855		size_t *lenp, loff_t *ppos)
856{
857	struct ctl_table t;
858	int new_policy = -1;
859	int ret;
860
861	/*
862	 * The deviation of sync_overcommit_as could be big with loose policy
863	 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
864	 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
865	 * with the strict "NEVER", and to avoid possible race condition (even
866	 * though user usually won't too frequently do the switching to policy
867	 * OVERCOMMIT_NEVER), the switch is done in the following order:
868	 *	1. changing the batch
869	 *	2. sync percpu count on each CPU
870	 *	3. switch the policy
871	 */
872	if (write) {
873		t = *table;
874		t.data = &new_policy;
875		ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
876		if (ret || new_policy == -1)
877			return ret;
878
879		mm_compute_batch(new_policy);
880		if (new_policy == OVERCOMMIT_NEVER)
881			schedule_on_each_cpu(sync_overcommit_as);
882		sysctl_overcommit_memory = new_policy;
883	} else {
884		ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
885	}
886
887	return ret;
888}
889
890int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
891		size_t *lenp, loff_t *ppos)
892{
893	int ret;
894
895	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
896	if (ret == 0 && write)
897		sysctl_overcommit_ratio = 0;
898	return ret;
899}
900
901/*
902 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
903 */
904unsigned long vm_commit_limit(void)
905{
906	unsigned long allowed;
907
908	if (sysctl_overcommit_kbytes)
909		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
910	else
911		allowed = ((totalram_pages() - hugetlb_total_pages())
912			   * sysctl_overcommit_ratio / 100);
913	allowed += total_swap_pages;
914
915	return allowed;
916}
917
918/*
919 * Make sure vm_committed_as in one cacheline and not cacheline shared with
920 * other variables. It can be updated by several CPUs frequently.
921 */
922struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
923
924/*
925 * The global memory commitment made in the system can be a metric
926 * that can be used to drive ballooning decisions when Linux is hosted
927 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
928 * balancing memory across competing virtual machines that are hosted.
929 * Several metrics drive this policy engine including the guest reported
930 * memory commitment.
931 *
932 * The time cost of this is very low for small platforms, and for big
933 * platform like a 2S/36C/72T Skylake server, in worst case where
934 * vm_committed_as's spinlock is under severe contention, the time cost
935 * could be about 30~40 microseconds.
936 */
937unsigned long vm_memory_committed(void)
938{
939	return percpu_counter_sum_positive(&vm_committed_as);
940}
941EXPORT_SYMBOL_GPL(vm_memory_committed);
942
943/*
944 * Check that a process has enough memory to allocate a new virtual
945 * mapping. 0 means there is enough memory for the allocation to
946 * succeed and -ENOMEM implies there is not.
947 *
948 * We currently support three overcommit policies, which are set via the
949 * vm.overcommit_memory sysctl.  See Documentation/mm/overcommit-accounting.rst
950 *
951 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
952 * Additional code 2002 Jul 20 by Robert Love.
953 *
954 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
955 *
956 * Note this is a helper function intended to be used by LSMs which
957 * wish to use this logic.
958 */
959int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
960{
961	long allowed;
962	unsigned long bytes_failed;
963
964	vm_acct_memory(pages);
965
966	/*
967	 * Sometimes we want to use more memory than we have
968	 */
969	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
970		return 0;
971
972	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
973		if (pages > totalram_pages() + total_swap_pages)
974			goto error;
975		return 0;
976	}
977
978	allowed = vm_commit_limit();
979	/*
980	 * Reserve some for root
981	 */
982	if (!cap_sys_admin)
983		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
984
985	/*
986	 * Don't let a single process grow so big a user can't recover
987	 */
988	if (mm) {
989		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
990
991		allowed -= min_t(long, mm->total_vm / 32, reserve);
992	}
993
994	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
995		return 0;
996error:
997	bytes_failed = pages << PAGE_SHIFT;
998	pr_warn_ratelimited("%s: pid: %d, comm: %s, bytes: %lu not enough memory for the allocation\n",
999			    __func__, current->pid, current->comm, bytes_failed);
1000	vm_unacct_memory(pages);
1001
1002	return -ENOMEM;
1003}
1004
1005/**
1006 * get_cmdline() - copy the cmdline value to a buffer.
1007 * @task:     the task whose cmdline value to copy.
1008 * @buffer:   the buffer to copy to.
1009 * @buflen:   the length of the buffer. Larger cmdline values are truncated
1010 *            to this length.
1011 *
1012 * Return: the size of the cmdline field copied. Note that the copy does
1013 * not guarantee an ending NULL byte.
1014 */
1015int get_cmdline(struct task_struct *task, char *buffer, int buflen)
1016{
1017	int res = 0;
1018	unsigned int len;
1019	struct mm_struct *mm = get_task_mm(task);
1020	unsigned long arg_start, arg_end, env_start, env_end;
1021	if (!mm)
1022		goto out;
1023	if (!mm->arg_end)
1024		goto out_mm;	/* Shh! No looking before we're done */
1025
1026	spin_lock(&mm->arg_lock);
1027	arg_start = mm->arg_start;
1028	arg_end = mm->arg_end;
1029	env_start = mm->env_start;
1030	env_end = mm->env_end;
1031	spin_unlock(&mm->arg_lock);
1032
1033	len = arg_end - arg_start;
1034
1035	if (len > buflen)
1036		len = buflen;
1037
1038	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
1039
1040	/*
1041	 * If the nul at the end of args has been overwritten, then
1042	 * assume application is using setproctitle(3).
1043	 */
1044	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
1045		len = strnlen(buffer, res);
1046		if (len < res) {
1047			res = len;
1048		} else {
1049			len = env_end - env_start;
1050			if (len > buflen - res)
1051				len = buflen - res;
1052			res += access_process_vm(task, env_start,
1053						 buffer+res, len,
1054						 FOLL_FORCE);
1055			res = strnlen(buffer, res);
1056		}
1057	}
1058out_mm:
1059	mmput(mm);
1060out:
1061	return res;
1062}
1063
1064int __weak memcmp_pages(struct page *page1, struct page *page2)
1065{
1066	char *addr1, *addr2;
1067	int ret;
1068
1069	addr1 = kmap_local_page(page1);
1070	addr2 = kmap_local_page(page2);
1071	ret = memcmp(addr1, addr2, PAGE_SIZE);
1072	kunmap_local(addr2);
1073	kunmap_local(addr1);
1074	return ret;
1075}
1076
1077#ifdef CONFIG_PRINTK
1078/**
1079 * mem_dump_obj - Print available provenance information
1080 * @object: object for which to find provenance information.
1081 *
1082 * This function uses pr_cont(), so that the caller is expected to have
1083 * printed out whatever preamble is appropriate.  The provenance information
1084 * depends on the type of object and on how much debugging is enabled.
1085 * For example, for a slab-cache object, the slab name is printed, and,
1086 * if available, the return address and stack trace from the allocation
1087 * and last free path of that object.
1088 */
1089void mem_dump_obj(void *object)
1090{
1091	const char *type;
1092
1093	if (kmem_dump_obj(object))
1094		return;
1095
1096	if (vmalloc_dump_obj(object))
1097		return;
1098
1099	if (is_vmalloc_addr(object))
1100		type = "vmalloc memory";
1101	else if (virt_addr_valid(object))
1102		type = "non-slab/vmalloc memory";
1103	else if (object == NULL)
1104		type = "NULL pointer";
1105	else if (object == ZERO_SIZE_PTR)
1106		type = "zero-size pointer";
1107	else
1108		type = "non-paged memory";
1109
1110	pr_cont(" %s\n", type);
1111}
1112EXPORT_SYMBOL_GPL(mem_dump_obj);
1113#endif
1114
1115/*
1116 * A driver might set a page logically offline -- PageOffline() -- and
1117 * turn the page inaccessible in the hypervisor; after that, access to page
1118 * content can be fatal.
1119 *
1120 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
1121 * pages after checking PageOffline(); however, these PFN walkers can race
1122 * with drivers that set PageOffline().
1123 *
1124 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
1125 * synchronize with such drivers, achieving that a page cannot be set
1126 * PageOffline() while frozen.
1127 *
1128 * page_offline_begin()/page_offline_end() is used by drivers that care about
1129 * such races when setting a page PageOffline().
1130 */
1131static DECLARE_RWSEM(page_offline_rwsem);
1132
1133void page_offline_freeze(void)
1134{
1135	down_read(&page_offline_rwsem);
1136}
1137
1138void page_offline_thaw(void)
1139{
1140	up_read(&page_offline_rwsem);
1141}
1142
1143void page_offline_begin(void)
1144{
1145	down_write(&page_offline_rwsem);
1146}
1147EXPORT_SYMBOL(page_offline_begin);
1148
1149void page_offline_end(void)
1150{
1151	up_write(&page_offline_rwsem);
1152}
1153EXPORT_SYMBOL(page_offline_end);
1154
1155#ifndef flush_dcache_folio
1156void flush_dcache_folio(struct folio *folio)
1157{
1158	long i, nr = folio_nr_pages(folio);
1159
1160	for (i = 0; i < nr; i++)
1161		flush_dcache_page(folio_page(folio, i));
1162}
1163EXPORT_SYMBOL(flush_dcache_folio);
1164#endif
1165