1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/mm/swapfile.c
4 *
5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6 *  Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9#include <linux/blkdev.h>
10#include <linux/mm.h>
11#include <linux/sched/mm.h>
12#include <linux/sched/task.h>
13#include <linux/hugetlb.h>
14#include <linux/mman.h>
15#include <linux/slab.h>
16#include <linux/kernel_stat.h>
17#include <linux/swap.h>
18#include <linux/vmalloc.h>
19#include <linux/pagemap.h>
20#include <linux/namei.h>
21#include <linux/shmem_fs.h>
22#include <linux/blk-cgroup.h>
23#include <linux/random.h>
24#include <linux/writeback.h>
25#include <linux/proc_fs.h>
26#include <linux/seq_file.h>
27#include <linux/init.h>
28#include <linux/ksm.h>
29#include <linux/rmap.h>
30#include <linux/security.h>
31#include <linux/backing-dev.h>
32#include <linux/mutex.h>
33#include <linux/capability.h>
34#include <linux/syscalls.h>
35#include <linux/memcontrol.h>
36#include <linux/poll.h>
37#include <linux/oom.h>
38#include <linux/swapfile.h>
39#include <linux/export.h>
40#include <linux/swap_slots.h>
41#include <linux/sort.h>
42#include <linux/completion.h>
43#include <linux/suspend.h>
44#include <linux/zswap.h>
45#include <linux/plist.h>
46
47#include <asm/tlbflush.h>
48#include <linux/swapops.h>
49#include <linux/swap_cgroup.h>
50#include "internal.h"
51#include "swap.h"
52
53static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
54				 unsigned char);
55static void free_swap_count_continuations(struct swap_info_struct *);
56
57static DEFINE_SPINLOCK(swap_lock);
58static unsigned int nr_swapfiles;
59atomic_long_t nr_swap_pages;
60/*
61 * Some modules use swappable objects and may try to swap them out under
62 * memory pressure (via the shrinker). Before doing so, they may wish to
63 * check to see if any swap space is available.
64 */
65EXPORT_SYMBOL_GPL(nr_swap_pages);
66/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
67long total_swap_pages;
68static int least_priority = -1;
69unsigned long swapfile_maximum_size;
70#ifdef CONFIG_MIGRATION
71bool swap_migration_ad_supported;
72#endif	/* CONFIG_MIGRATION */
73
74static const char Bad_file[] = "Bad swap file entry ";
75static const char Unused_file[] = "Unused swap file entry ";
76static const char Bad_offset[] = "Bad swap offset entry ";
77static const char Unused_offset[] = "Unused swap offset entry ";
78
79/*
80 * all active swap_info_structs
81 * protected with swap_lock, and ordered by priority.
82 */
83static PLIST_HEAD(swap_active_head);
84
85/*
86 * all available (active, not full) swap_info_structs
87 * protected with swap_avail_lock, ordered by priority.
88 * This is used by folio_alloc_swap() instead of swap_active_head
89 * because swap_active_head includes all swap_info_structs,
90 * but folio_alloc_swap() doesn't need to look at full ones.
91 * This uses its own lock instead of swap_lock because when a
92 * swap_info_struct changes between not-full/full, it needs to
93 * add/remove itself to/from this list, but the swap_info_struct->lock
94 * is held and the locking order requires swap_lock to be taken
95 * before any swap_info_struct->lock.
96 */
97static struct plist_head *swap_avail_heads;
98static DEFINE_SPINLOCK(swap_avail_lock);
99
100static struct swap_info_struct *swap_info[MAX_SWAPFILES];
101
102static DEFINE_MUTEX(swapon_mutex);
103
104static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
105/* Activity counter to indicate that a swapon or swapoff has occurred */
106static atomic_t proc_poll_event = ATOMIC_INIT(0);
107
108atomic_t nr_rotate_swap = ATOMIC_INIT(0);
109
110static struct swap_info_struct *swap_type_to_swap_info(int type)
111{
112	if (type >= MAX_SWAPFILES)
113		return NULL;
114
115	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
116}
117
118static inline unsigned char swap_count(unsigned char ent)
119{
120	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
121}
122
123/* Reclaim the swap entry anyway if possible */
124#define TTRS_ANYWAY		0x1
125/*
126 * Reclaim the swap entry if there are no more mappings of the
127 * corresponding page
128 */
129#define TTRS_UNMAPPED		0x2
130/* Reclaim the swap entry if swap is getting full*/
131#define TTRS_FULL		0x4
132
133/* returns 1 if swap entry is freed */
134static int __try_to_reclaim_swap(struct swap_info_struct *si,
135				 unsigned long offset, unsigned long flags)
136{
137	swp_entry_t entry = swp_entry(si->type, offset);
138	struct folio *folio;
139	int ret = 0;
140
141	folio = filemap_get_folio(swap_address_space(entry), offset);
142	if (IS_ERR(folio))
143		return 0;
144	/*
145	 * When this function is called from scan_swap_map_slots() and it's
146	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
147	 * here. We have to use trylock for avoiding deadlock. This is a special
148	 * case and you should use folio_free_swap() with explicit folio_lock()
149	 * in usual operations.
150	 */
151	if (folio_trylock(folio)) {
152		if ((flags & TTRS_ANYWAY) ||
153		    ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
154		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
155			ret = folio_free_swap(folio);
156		folio_unlock(folio);
157	}
158	folio_put(folio);
159	return ret;
160}
161
162static inline struct swap_extent *first_se(struct swap_info_struct *sis)
163{
164	struct rb_node *rb = rb_first(&sis->swap_extent_root);
165	return rb_entry(rb, struct swap_extent, rb_node);
166}
167
168static inline struct swap_extent *next_se(struct swap_extent *se)
169{
170	struct rb_node *rb = rb_next(&se->rb_node);
171	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
172}
173
174/*
175 * swapon tell device that all the old swap contents can be discarded,
176 * to allow the swap device to optimize its wear-levelling.
177 */
178static int discard_swap(struct swap_info_struct *si)
179{
180	struct swap_extent *se;
181	sector_t start_block;
182	sector_t nr_blocks;
183	int err = 0;
184
185	/* Do not discard the swap header page! */
186	se = first_se(si);
187	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
188	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
189	if (nr_blocks) {
190		err = blkdev_issue_discard(si->bdev, start_block,
191				nr_blocks, GFP_KERNEL);
192		if (err)
193			return err;
194		cond_resched();
195	}
196
197	for (se = next_se(se); se; se = next_se(se)) {
198		start_block = se->start_block << (PAGE_SHIFT - 9);
199		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
200
201		err = blkdev_issue_discard(si->bdev, start_block,
202				nr_blocks, GFP_KERNEL);
203		if (err)
204			break;
205
206		cond_resched();
207	}
208	return err;		/* That will often be -EOPNOTSUPP */
209}
210
211static struct swap_extent *
212offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
213{
214	struct swap_extent *se;
215	struct rb_node *rb;
216
217	rb = sis->swap_extent_root.rb_node;
218	while (rb) {
219		se = rb_entry(rb, struct swap_extent, rb_node);
220		if (offset < se->start_page)
221			rb = rb->rb_left;
222		else if (offset >= se->start_page + se->nr_pages)
223			rb = rb->rb_right;
224		else
225			return se;
226	}
227	/* It *must* be present */
228	BUG();
229}
230
231sector_t swap_folio_sector(struct folio *folio)
232{
233	struct swap_info_struct *sis = swp_swap_info(folio->swap);
234	struct swap_extent *se;
235	sector_t sector;
236	pgoff_t offset;
237
238	offset = swp_offset(folio->swap);
239	se = offset_to_swap_extent(sis, offset);
240	sector = se->start_block + (offset - se->start_page);
241	return sector << (PAGE_SHIFT - 9);
242}
243
244/*
245 * swap allocation tell device that a cluster of swap can now be discarded,
246 * to allow the swap device to optimize its wear-levelling.
247 */
248static void discard_swap_cluster(struct swap_info_struct *si,
249				 pgoff_t start_page, pgoff_t nr_pages)
250{
251	struct swap_extent *se = offset_to_swap_extent(si, start_page);
252
253	while (nr_pages) {
254		pgoff_t offset = start_page - se->start_page;
255		sector_t start_block = se->start_block + offset;
256		sector_t nr_blocks = se->nr_pages - offset;
257
258		if (nr_blocks > nr_pages)
259			nr_blocks = nr_pages;
260		start_page += nr_blocks;
261		nr_pages -= nr_blocks;
262
263		start_block <<= PAGE_SHIFT - 9;
264		nr_blocks <<= PAGE_SHIFT - 9;
265		if (blkdev_issue_discard(si->bdev, start_block,
266					nr_blocks, GFP_NOIO))
267			break;
268
269		se = next_se(se);
270	}
271}
272
273#ifdef CONFIG_THP_SWAP
274#define SWAPFILE_CLUSTER	HPAGE_PMD_NR
275
276#define swap_entry_size(size)	(size)
277#else
278#define SWAPFILE_CLUSTER	256
279
280/*
281 * Define swap_entry_size() as constant to let compiler to optimize
282 * out some code if !CONFIG_THP_SWAP
283 */
284#define swap_entry_size(size)	1
285#endif
286#define LATENCY_LIMIT		256
287
288static inline void cluster_set_flag(struct swap_cluster_info *info,
289	unsigned int flag)
290{
291	info->flags = flag;
292}
293
294static inline unsigned int cluster_count(struct swap_cluster_info *info)
295{
296	return info->data;
297}
298
299static inline void cluster_set_count(struct swap_cluster_info *info,
300				     unsigned int c)
301{
302	info->data = c;
303}
304
305static inline void cluster_set_count_flag(struct swap_cluster_info *info,
306					 unsigned int c, unsigned int f)
307{
308	info->flags = f;
309	info->data = c;
310}
311
312static inline unsigned int cluster_next(struct swap_cluster_info *info)
313{
314	return info->data;
315}
316
317static inline void cluster_set_next(struct swap_cluster_info *info,
318				    unsigned int n)
319{
320	info->data = n;
321}
322
323static inline void cluster_set_next_flag(struct swap_cluster_info *info,
324					 unsigned int n, unsigned int f)
325{
326	info->flags = f;
327	info->data = n;
328}
329
330static inline bool cluster_is_free(struct swap_cluster_info *info)
331{
332	return info->flags & CLUSTER_FLAG_FREE;
333}
334
335static inline bool cluster_is_null(struct swap_cluster_info *info)
336{
337	return info->flags & CLUSTER_FLAG_NEXT_NULL;
338}
339
340static inline void cluster_set_null(struct swap_cluster_info *info)
341{
342	info->flags = CLUSTER_FLAG_NEXT_NULL;
343	info->data = 0;
344}
345
346static inline bool cluster_is_huge(struct swap_cluster_info *info)
347{
348	if (IS_ENABLED(CONFIG_THP_SWAP))
349		return info->flags & CLUSTER_FLAG_HUGE;
350	return false;
351}
352
353static inline void cluster_clear_huge(struct swap_cluster_info *info)
354{
355	info->flags &= ~CLUSTER_FLAG_HUGE;
356}
357
358static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
359						     unsigned long offset)
360{
361	struct swap_cluster_info *ci;
362
363	ci = si->cluster_info;
364	if (ci) {
365		ci += offset / SWAPFILE_CLUSTER;
366		spin_lock(&ci->lock);
367	}
368	return ci;
369}
370
371static inline void unlock_cluster(struct swap_cluster_info *ci)
372{
373	if (ci)
374		spin_unlock(&ci->lock);
375}
376
377/*
378 * Determine the locking method in use for this device.  Return
379 * swap_cluster_info if SSD-style cluster-based locking is in place.
380 */
381static inline struct swap_cluster_info *lock_cluster_or_swap_info(
382		struct swap_info_struct *si, unsigned long offset)
383{
384	struct swap_cluster_info *ci;
385
386	/* Try to use fine-grained SSD-style locking if available: */
387	ci = lock_cluster(si, offset);
388	/* Otherwise, fall back to traditional, coarse locking: */
389	if (!ci)
390		spin_lock(&si->lock);
391
392	return ci;
393}
394
395static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
396					       struct swap_cluster_info *ci)
397{
398	if (ci)
399		unlock_cluster(ci);
400	else
401		spin_unlock(&si->lock);
402}
403
404static inline bool cluster_list_empty(struct swap_cluster_list *list)
405{
406	return cluster_is_null(&list->head);
407}
408
409static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
410{
411	return cluster_next(&list->head);
412}
413
414static void cluster_list_init(struct swap_cluster_list *list)
415{
416	cluster_set_null(&list->head);
417	cluster_set_null(&list->tail);
418}
419
420static void cluster_list_add_tail(struct swap_cluster_list *list,
421				  struct swap_cluster_info *ci,
422				  unsigned int idx)
423{
424	if (cluster_list_empty(list)) {
425		cluster_set_next_flag(&list->head, idx, 0);
426		cluster_set_next_flag(&list->tail, idx, 0);
427	} else {
428		struct swap_cluster_info *ci_tail;
429		unsigned int tail = cluster_next(&list->tail);
430
431		/*
432		 * Nested cluster lock, but both cluster locks are
433		 * only acquired when we held swap_info_struct->lock
434		 */
435		ci_tail = ci + tail;
436		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
437		cluster_set_next(ci_tail, idx);
438		spin_unlock(&ci_tail->lock);
439		cluster_set_next_flag(&list->tail, idx, 0);
440	}
441}
442
443static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
444					   struct swap_cluster_info *ci)
445{
446	unsigned int idx;
447
448	idx = cluster_next(&list->head);
449	if (cluster_next(&list->tail) == idx) {
450		cluster_set_null(&list->head);
451		cluster_set_null(&list->tail);
452	} else
453		cluster_set_next_flag(&list->head,
454				      cluster_next(&ci[idx]), 0);
455
456	return idx;
457}
458
459/* Add a cluster to discard list and schedule it to do discard */
460static void swap_cluster_schedule_discard(struct swap_info_struct *si,
461		unsigned int idx)
462{
463	/*
464	 * If scan_swap_map_slots() can't find a free cluster, it will check
465	 * si->swap_map directly. To make sure the discarding cluster isn't
466	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
467	 * It will be cleared after discard
468	 */
469	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
470			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
471
472	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
473
474	schedule_work(&si->discard_work);
475}
476
477static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
478{
479	struct swap_cluster_info *ci = si->cluster_info;
480
481	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
482	cluster_list_add_tail(&si->free_clusters, ci, idx);
483}
484
485/*
486 * Doing discard actually. After a cluster discard is finished, the cluster
487 * will be added to free cluster list. caller should hold si->lock.
488*/
489static void swap_do_scheduled_discard(struct swap_info_struct *si)
490{
491	struct swap_cluster_info *info, *ci;
492	unsigned int idx;
493
494	info = si->cluster_info;
495
496	while (!cluster_list_empty(&si->discard_clusters)) {
497		idx = cluster_list_del_first(&si->discard_clusters, info);
498		spin_unlock(&si->lock);
499
500		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
501				SWAPFILE_CLUSTER);
502
503		spin_lock(&si->lock);
504		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
505		__free_cluster(si, idx);
506		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
507				0, SWAPFILE_CLUSTER);
508		unlock_cluster(ci);
509	}
510}
511
512static void swap_discard_work(struct work_struct *work)
513{
514	struct swap_info_struct *si;
515
516	si = container_of(work, struct swap_info_struct, discard_work);
517
518	spin_lock(&si->lock);
519	swap_do_scheduled_discard(si);
520	spin_unlock(&si->lock);
521}
522
523static void swap_users_ref_free(struct percpu_ref *ref)
524{
525	struct swap_info_struct *si;
526
527	si = container_of(ref, struct swap_info_struct, users);
528	complete(&si->comp);
529}
530
531static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
532{
533	struct swap_cluster_info *ci = si->cluster_info;
534
535	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
536	cluster_list_del_first(&si->free_clusters, ci);
537	cluster_set_count_flag(ci + idx, 0, 0);
538}
539
540static void free_cluster(struct swap_info_struct *si, unsigned long idx)
541{
542	struct swap_cluster_info *ci = si->cluster_info + idx;
543
544	VM_BUG_ON(cluster_count(ci) != 0);
545	/*
546	 * If the swap is discardable, prepare discard the cluster
547	 * instead of free it immediately. The cluster will be freed
548	 * after discard.
549	 */
550	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
551	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
552		swap_cluster_schedule_discard(si, idx);
553		return;
554	}
555
556	__free_cluster(si, idx);
557}
558
559/*
560 * The cluster corresponding to page_nr will be used. The cluster will be
561 * removed from free cluster list and its usage counter will be increased.
562 */
563static void inc_cluster_info_page(struct swap_info_struct *p,
564	struct swap_cluster_info *cluster_info, unsigned long page_nr)
565{
566	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
567
568	if (!cluster_info)
569		return;
570	if (cluster_is_free(&cluster_info[idx]))
571		alloc_cluster(p, idx);
572
573	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
574	cluster_set_count(&cluster_info[idx],
575		cluster_count(&cluster_info[idx]) + 1);
576}
577
578/*
579 * The cluster corresponding to page_nr decreases one usage. If the usage
580 * counter becomes 0, which means no page in the cluster is in using, we can
581 * optionally discard the cluster and add it to free cluster list.
582 */
583static void dec_cluster_info_page(struct swap_info_struct *p,
584	struct swap_cluster_info *cluster_info, unsigned long page_nr)
585{
586	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
587
588	if (!cluster_info)
589		return;
590
591	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
592	cluster_set_count(&cluster_info[idx],
593		cluster_count(&cluster_info[idx]) - 1);
594
595	if (cluster_count(&cluster_info[idx]) == 0)
596		free_cluster(p, idx);
597}
598
599/*
600 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
601 * cluster list. Avoiding such abuse to avoid list corruption.
602 */
603static bool
604scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
605	unsigned long offset)
606{
607	struct percpu_cluster *percpu_cluster;
608	bool conflict;
609
610	offset /= SWAPFILE_CLUSTER;
611	conflict = !cluster_list_empty(&si->free_clusters) &&
612		offset != cluster_list_first(&si->free_clusters) &&
613		cluster_is_free(&si->cluster_info[offset]);
614
615	if (!conflict)
616		return false;
617
618	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
619	cluster_set_null(&percpu_cluster->index);
620	return true;
621}
622
623/*
624 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
625 * might involve allocating a new cluster for current CPU too.
626 */
627static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
628	unsigned long *offset, unsigned long *scan_base)
629{
630	struct percpu_cluster *cluster;
631	struct swap_cluster_info *ci;
632	unsigned long tmp, max;
633
634new_cluster:
635	cluster = this_cpu_ptr(si->percpu_cluster);
636	if (cluster_is_null(&cluster->index)) {
637		if (!cluster_list_empty(&si->free_clusters)) {
638			cluster->index = si->free_clusters.head;
639			cluster->next = cluster_next(&cluster->index) *
640					SWAPFILE_CLUSTER;
641		} else if (!cluster_list_empty(&si->discard_clusters)) {
642			/*
643			 * we don't have free cluster but have some clusters in
644			 * discarding, do discard now and reclaim them, then
645			 * reread cluster_next_cpu since we dropped si->lock
646			 */
647			swap_do_scheduled_discard(si);
648			*scan_base = this_cpu_read(*si->cluster_next_cpu);
649			*offset = *scan_base;
650			goto new_cluster;
651		} else
652			return false;
653	}
654
655	/*
656	 * Other CPUs can use our cluster if they can't find a free cluster,
657	 * check if there is still free entry in the cluster
658	 */
659	tmp = cluster->next;
660	max = min_t(unsigned long, si->max,
661		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
662	if (tmp < max) {
663		ci = lock_cluster(si, tmp);
664		while (tmp < max) {
665			if (!si->swap_map[tmp])
666				break;
667			tmp++;
668		}
669		unlock_cluster(ci);
670	}
671	if (tmp >= max) {
672		cluster_set_null(&cluster->index);
673		goto new_cluster;
674	}
675	cluster->next = tmp + 1;
676	*offset = tmp;
677	*scan_base = tmp;
678	return true;
679}
680
681static void __del_from_avail_list(struct swap_info_struct *p)
682{
683	int nid;
684
685	assert_spin_locked(&p->lock);
686	for_each_node(nid)
687		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
688}
689
690static void del_from_avail_list(struct swap_info_struct *p)
691{
692	spin_lock(&swap_avail_lock);
693	__del_from_avail_list(p);
694	spin_unlock(&swap_avail_lock);
695}
696
697static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
698			     unsigned int nr_entries)
699{
700	unsigned int end = offset + nr_entries - 1;
701
702	if (offset == si->lowest_bit)
703		si->lowest_bit += nr_entries;
704	if (end == si->highest_bit)
705		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
706	WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
707	if (si->inuse_pages == si->pages) {
708		si->lowest_bit = si->max;
709		si->highest_bit = 0;
710		del_from_avail_list(si);
711	}
712}
713
714static void add_to_avail_list(struct swap_info_struct *p)
715{
716	int nid;
717
718	spin_lock(&swap_avail_lock);
719	for_each_node(nid)
720		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
721	spin_unlock(&swap_avail_lock);
722}
723
724static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
725			    unsigned int nr_entries)
726{
727	unsigned long begin = offset;
728	unsigned long end = offset + nr_entries - 1;
729	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
730
731	if (offset < si->lowest_bit)
732		si->lowest_bit = offset;
733	if (end > si->highest_bit) {
734		bool was_full = !si->highest_bit;
735
736		WRITE_ONCE(si->highest_bit, end);
737		if (was_full && (si->flags & SWP_WRITEOK))
738			add_to_avail_list(si);
739	}
740	if (si->flags & SWP_BLKDEV)
741		swap_slot_free_notify =
742			si->bdev->bd_disk->fops->swap_slot_free_notify;
743	else
744		swap_slot_free_notify = NULL;
745	while (offset <= end) {
746		arch_swap_invalidate_page(si->type, offset);
747		if (swap_slot_free_notify)
748			swap_slot_free_notify(si->bdev, offset);
749		offset++;
750	}
751	clear_shadow_from_swap_cache(si->type, begin, end);
752
753	/*
754	 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
755	 * only after the above cleanups are done.
756	 */
757	smp_wmb();
758	atomic_long_add(nr_entries, &nr_swap_pages);
759	WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
760}
761
762static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
763{
764	unsigned long prev;
765
766	if (!(si->flags & SWP_SOLIDSTATE)) {
767		si->cluster_next = next;
768		return;
769	}
770
771	prev = this_cpu_read(*si->cluster_next_cpu);
772	/*
773	 * Cross the swap address space size aligned trunk, choose
774	 * another trunk randomly to avoid lock contention on swap
775	 * address space if possible.
776	 */
777	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
778	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
779		/* No free swap slots available */
780		if (si->highest_bit <= si->lowest_bit)
781			return;
782		next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
783		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
784		next = max_t(unsigned int, next, si->lowest_bit);
785	}
786	this_cpu_write(*si->cluster_next_cpu, next);
787}
788
789static bool swap_offset_available_and_locked(struct swap_info_struct *si,
790					     unsigned long offset)
791{
792	if (data_race(!si->swap_map[offset])) {
793		spin_lock(&si->lock);
794		return true;
795	}
796
797	if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
798		spin_lock(&si->lock);
799		return true;
800	}
801
802	return false;
803}
804
805static int scan_swap_map_slots(struct swap_info_struct *si,
806			       unsigned char usage, int nr,
807			       swp_entry_t slots[])
808{
809	struct swap_cluster_info *ci;
810	unsigned long offset;
811	unsigned long scan_base;
812	unsigned long last_in_cluster = 0;
813	int latency_ration = LATENCY_LIMIT;
814	int n_ret = 0;
815	bool scanned_many = false;
816
817	/*
818	 * We try to cluster swap pages by allocating them sequentially
819	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
820	 * way, however, we resort to first-free allocation, starting
821	 * a new cluster.  This prevents us from scattering swap pages
822	 * all over the entire swap partition, so that we reduce
823	 * overall disk seek times between swap pages.  -- sct
824	 * But we do now try to find an empty cluster.  -Andrea
825	 * And we let swap pages go all over an SSD partition.  Hugh
826	 */
827
828	si->flags += SWP_SCANNING;
829	/*
830	 * Use percpu scan base for SSD to reduce lock contention on
831	 * cluster and swap cache.  For HDD, sequential access is more
832	 * important.
833	 */
834	if (si->flags & SWP_SOLIDSTATE)
835		scan_base = this_cpu_read(*si->cluster_next_cpu);
836	else
837		scan_base = si->cluster_next;
838	offset = scan_base;
839
840	/* SSD algorithm */
841	if (si->cluster_info) {
842		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
843			goto scan;
844	} else if (unlikely(!si->cluster_nr--)) {
845		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
846			si->cluster_nr = SWAPFILE_CLUSTER - 1;
847			goto checks;
848		}
849
850		spin_unlock(&si->lock);
851
852		/*
853		 * If seek is expensive, start searching for new cluster from
854		 * start of partition, to minimize the span of allocated swap.
855		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
856		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
857		 */
858		scan_base = offset = si->lowest_bit;
859		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
860
861		/* Locate the first empty (unaligned) cluster */
862		for (; last_in_cluster <= si->highest_bit; offset++) {
863			if (si->swap_map[offset])
864				last_in_cluster = offset + SWAPFILE_CLUSTER;
865			else if (offset == last_in_cluster) {
866				spin_lock(&si->lock);
867				offset -= SWAPFILE_CLUSTER - 1;
868				si->cluster_next = offset;
869				si->cluster_nr = SWAPFILE_CLUSTER - 1;
870				goto checks;
871			}
872			if (unlikely(--latency_ration < 0)) {
873				cond_resched();
874				latency_ration = LATENCY_LIMIT;
875			}
876		}
877
878		offset = scan_base;
879		spin_lock(&si->lock);
880		si->cluster_nr = SWAPFILE_CLUSTER - 1;
881	}
882
883checks:
884	if (si->cluster_info) {
885		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
886		/* take a break if we already got some slots */
887			if (n_ret)
888				goto done;
889			if (!scan_swap_map_try_ssd_cluster(si, &offset,
890							&scan_base))
891				goto scan;
892		}
893	}
894	if (!(si->flags & SWP_WRITEOK))
895		goto no_page;
896	if (!si->highest_bit)
897		goto no_page;
898	if (offset > si->highest_bit)
899		scan_base = offset = si->lowest_bit;
900
901	ci = lock_cluster(si, offset);
902	/* reuse swap entry of cache-only swap if not busy. */
903	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
904		int swap_was_freed;
905		unlock_cluster(ci);
906		spin_unlock(&si->lock);
907		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
908		spin_lock(&si->lock);
909		/* entry was freed successfully, try to use this again */
910		if (swap_was_freed)
911			goto checks;
912		goto scan; /* check next one */
913	}
914
915	if (si->swap_map[offset]) {
916		unlock_cluster(ci);
917		if (!n_ret)
918			goto scan;
919		else
920			goto done;
921	}
922	WRITE_ONCE(si->swap_map[offset], usage);
923	inc_cluster_info_page(si, si->cluster_info, offset);
924	unlock_cluster(ci);
925
926	swap_range_alloc(si, offset, 1);
927	slots[n_ret++] = swp_entry(si->type, offset);
928
929	/* got enough slots or reach max slots? */
930	if ((n_ret == nr) || (offset >= si->highest_bit))
931		goto done;
932
933	/* search for next available slot */
934
935	/* time to take a break? */
936	if (unlikely(--latency_ration < 0)) {
937		if (n_ret)
938			goto done;
939		spin_unlock(&si->lock);
940		cond_resched();
941		spin_lock(&si->lock);
942		latency_ration = LATENCY_LIMIT;
943	}
944
945	/* try to get more slots in cluster */
946	if (si->cluster_info) {
947		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
948			goto checks;
949	} else if (si->cluster_nr && !si->swap_map[++offset]) {
950		/* non-ssd case, still more slots in cluster? */
951		--si->cluster_nr;
952		goto checks;
953	}
954
955	/*
956	 * Even if there's no free clusters available (fragmented),
957	 * try to scan a little more quickly with lock held unless we
958	 * have scanned too many slots already.
959	 */
960	if (!scanned_many) {
961		unsigned long scan_limit;
962
963		if (offset < scan_base)
964			scan_limit = scan_base;
965		else
966			scan_limit = si->highest_bit;
967		for (; offset <= scan_limit && --latency_ration > 0;
968		     offset++) {
969			if (!si->swap_map[offset])
970				goto checks;
971		}
972	}
973
974done:
975	set_cluster_next(si, offset + 1);
976	si->flags -= SWP_SCANNING;
977	return n_ret;
978
979scan:
980	spin_unlock(&si->lock);
981	while (++offset <= READ_ONCE(si->highest_bit)) {
982		if (unlikely(--latency_ration < 0)) {
983			cond_resched();
984			latency_ration = LATENCY_LIMIT;
985			scanned_many = true;
986		}
987		if (swap_offset_available_and_locked(si, offset))
988			goto checks;
989	}
990	offset = si->lowest_bit;
991	while (offset < scan_base) {
992		if (unlikely(--latency_ration < 0)) {
993			cond_resched();
994			latency_ration = LATENCY_LIMIT;
995			scanned_many = true;
996		}
997		if (swap_offset_available_and_locked(si, offset))
998			goto checks;
999		offset++;
1000	}
1001	spin_lock(&si->lock);
1002
1003no_page:
1004	si->flags -= SWP_SCANNING;
1005	return n_ret;
1006}
1007
1008static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1009{
1010	unsigned long idx;
1011	struct swap_cluster_info *ci;
1012	unsigned long offset;
1013
1014	/*
1015	 * Should not even be attempting cluster allocations when huge
1016	 * page swap is disabled.  Warn and fail the allocation.
1017	 */
1018	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1019		VM_WARN_ON_ONCE(1);
1020		return 0;
1021	}
1022
1023	if (cluster_list_empty(&si->free_clusters))
1024		return 0;
1025
1026	idx = cluster_list_first(&si->free_clusters);
1027	offset = idx * SWAPFILE_CLUSTER;
1028	ci = lock_cluster(si, offset);
1029	alloc_cluster(si, idx);
1030	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1031
1032	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1033	unlock_cluster(ci);
1034	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1035	*slot = swp_entry(si->type, offset);
1036
1037	return 1;
1038}
1039
1040static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1041{
1042	unsigned long offset = idx * SWAPFILE_CLUSTER;
1043	struct swap_cluster_info *ci;
1044
1045	ci = lock_cluster(si, offset);
1046	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1047	cluster_set_count_flag(ci, 0, 0);
1048	free_cluster(si, idx);
1049	unlock_cluster(ci);
1050	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1051}
1052
1053int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1054{
1055	unsigned long size = swap_entry_size(entry_size);
1056	struct swap_info_struct *si, *next;
1057	long avail_pgs;
1058	int n_ret = 0;
1059	int node;
1060
1061	/* Only single cluster request supported */
1062	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1063
1064	spin_lock(&swap_avail_lock);
1065
1066	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1067	if (avail_pgs <= 0) {
1068		spin_unlock(&swap_avail_lock);
1069		goto noswap;
1070	}
1071
1072	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1073
1074	atomic_long_sub(n_goal * size, &nr_swap_pages);
1075
1076start_over:
1077	node = numa_node_id();
1078	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1079		/* requeue si to after same-priority siblings */
1080		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1081		spin_unlock(&swap_avail_lock);
1082		spin_lock(&si->lock);
1083		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1084			spin_lock(&swap_avail_lock);
1085			if (plist_node_empty(&si->avail_lists[node])) {
1086				spin_unlock(&si->lock);
1087				goto nextsi;
1088			}
1089			WARN(!si->highest_bit,
1090			     "swap_info %d in list but !highest_bit\n",
1091			     si->type);
1092			WARN(!(si->flags & SWP_WRITEOK),
1093			     "swap_info %d in list but !SWP_WRITEOK\n",
1094			     si->type);
1095			__del_from_avail_list(si);
1096			spin_unlock(&si->lock);
1097			goto nextsi;
1098		}
1099		if (size == SWAPFILE_CLUSTER) {
1100			if (si->flags & SWP_BLKDEV)
1101				n_ret = swap_alloc_cluster(si, swp_entries);
1102		} else
1103			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1104						    n_goal, swp_entries);
1105		spin_unlock(&si->lock);
1106		if (n_ret || size == SWAPFILE_CLUSTER)
1107			goto check_out;
1108		cond_resched();
1109
1110		spin_lock(&swap_avail_lock);
1111nextsi:
1112		/*
1113		 * if we got here, it's likely that si was almost full before,
1114		 * and since scan_swap_map_slots() can drop the si->lock,
1115		 * multiple callers probably all tried to get a page from the
1116		 * same si and it filled up before we could get one; or, the si
1117		 * filled up between us dropping swap_avail_lock and taking
1118		 * si->lock. Since we dropped the swap_avail_lock, the
1119		 * swap_avail_head list may have been modified; so if next is
1120		 * still in the swap_avail_head list then try it, otherwise
1121		 * start over if we have not gotten any slots.
1122		 */
1123		if (plist_node_empty(&next->avail_lists[node]))
1124			goto start_over;
1125	}
1126
1127	spin_unlock(&swap_avail_lock);
1128
1129check_out:
1130	if (n_ret < n_goal)
1131		atomic_long_add((long)(n_goal - n_ret) * size,
1132				&nr_swap_pages);
1133noswap:
1134	return n_ret;
1135}
1136
1137static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1138{
1139	struct swap_info_struct *p;
1140	unsigned long offset;
1141
1142	if (!entry.val)
1143		goto out;
1144	p = swp_swap_info(entry);
1145	if (!p)
1146		goto bad_nofile;
1147	if (data_race(!(p->flags & SWP_USED)))
1148		goto bad_device;
1149	offset = swp_offset(entry);
1150	if (offset >= p->max)
1151		goto bad_offset;
1152	if (data_race(!p->swap_map[swp_offset(entry)]))
1153		goto bad_free;
1154	return p;
1155
1156bad_free:
1157	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1158	goto out;
1159bad_offset:
1160	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1161	goto out;
1162bad_device:
1163	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1164	goto out;
1165bad_nofile:
1166	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1167out:
1168	return NULL;
1169}
1170
1171static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1172					struct swap_info_struct *q)
1173{
1174	struct swap_info_struct *p;
1175
1176	p = _swap_info_get(entry);
1177
1178	if (p != q) {
1179		if (q != NULL)
1180			spin_unlock(&q->lock);
1181		if (p != NULL)
1182			spin_lock(&p->lock);
1183	}
1184	return p;
1185}
1186
1187static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1188					      unsigned long offset,
1189					      unsigned char usage)
1190{
1191	unsigned char count;
1192	unsigned char has_cache;
1193
1194	count = p->swap_map[offset];
1195
1196	has_cache = count & SWAP_HAS_CACHE;
1197	count &= ~SWAP_HAS_CACHE;
1198
1199	if (usage == SWAP_HAS_CACHE) {
1200		VM_BUG_ON(!has_cache);
1201		has_cache = 0;
1202	} else if (count == SWAP_MAP_SHMEM) {
1203		/*
1204		 * Or we could insist on shmem.c using a special
1205		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1206		 */
1207		count = 0;
1208	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1209		if (count == COUNT_CONTINUED) {
1210			if (swap_count_continued(p, offset, count))
1211				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1212			else
1213				count = SWAP_MAP_MAX;
1214		} else
1215			count--;
1216	}
1217
1218	usage = count | has_cache;
1219	if (usage)
1220		WRITE_ONCE(p->swap_map[offset], usage);
1221	else
1222		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1223
1224	return usage;
1225}
1226
1227/*
1228 * When we get a swap entry, if there aren't some other ways to
1229 * prevent swapoff, such as the folio in swap cache is locked, page
1230 * table lock is held, etc., the swap entry may become invalid because
1231 * of swapoff.  Then, we need to enclose all swap related functions
1232 * with get_swap_device() and put_swap_device(), unless the swap
1233 * functions call get/put_swap_device() by themselves.
1234 *
1235 * Note that when only holding the PTL, swapoff might succeed immediately
1236 * after freeing a swap entry. Therefore, immediately after
1237 * __swap_entry_free(), the swap info might become stale and should not
1238 * be touched without a prior get_swap_device().
1239 *
1240 * Check whether swap entry is valid in the swap device.  If so,
1241 * return pointer to swap_info_struct, and keep the swap entry valid
1242 * via preventing the swap device from being swapoff, until
1243 * put_swap_device() is called.  Otherwise return NULL.
1244 *
1245 * Notice that swapoff or swapoff+swapon can still happen before the
1246 * percpu_ref_tryget_live() in get_swap_device() or after the
1247 * percpu_ref_put() in put_swap_device() if there isn't any other way
1248 * to prevent swapoff.  The caller must be prepared for that.  For
1249 * example, the following situation is possible.
1250 *
1251 *   CPU1				CPU2
1252 *   do_swap_page()
1253 *     ...				swapoff+swapon
1254 *     __read_swap_cache_async()
1255 *       swapcache_prepare()
1256 *         __swap_duplicate()
1257 *           // check swap_map
1258 *     // verify PTE not changed
1259 *
1260 * In __swap_duplicate(), the swap_map need to be checked before
1261 * changing partly because the specified swap entry may be for another
1262 * swap device which has been swapoff.  And in do_swap_page(), after
1263 * the page is read from the swap device, the PTE is verified not
1264 * changed with the page table locked to check whether the swap device
1265 * has been swapoff or swapoff+swapon.
1266 */
1267struct swap_info_struct *get_swap_device(swp_entry_t entry)
1268{
1269	struct swap_info_struct *si;
1270	unsigned long offset;
1271
1272	if (!entry.val)
1273		goto out;
1274	si = swp_swap_info(entry);
1275	if (!si)
1276		goto bad_nofile;
1277	if (!percpu_ref_tryget_live(&si->users))
1278		goto out;
1279	/*
1280	 * Guarantee the si->users are checked before accessing other
1281	 * fields of swap_info_struct.
1282	 *
1283	 * Paired with the spin_unlock() after setup_swap_info() in
1284	 * enable_swap_info().
1285	 */
1286	smp_rmb();
1287	offset = swp_offset(entry);
1288	if (offset >= si->max)
1289		goto put_out;
1290
1291	return si;
1292bad_nofile:
1293	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1294out:
1295	return NULL;
1296put_out:
1297	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1298	percpu_ref_put(&si->users);
1299	return NULL;
1300}
1301
1302static unsigned char __swap_entry_free(struct swap_info_struct *p,
1303				       swp_entry_t entry)
1304{
1305	struct swap_cluster_info *ci;
1306	unsigned long offset = swp_offset(entry);
1307	unsigned char usage;
1308
1309	ci = lock_cluster_or_swap_info(p, offset);
1310	usage = __swap_entry_free_locked(p, offset, 1);
1311	unlock_cluster_or_swap_info(p, ci);
1312	if (!usage)
1313		free_swap_slot(entry);
1314
1315	return usage;
1316}
1317
1318static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1319{
1320	struct swap_cluster_info *ci;
1321	unsigned long offset = swp_offset(entry);
1322	unsigned char count;
1323
1324	ci = lock_cluster(p, offset);
1325	count = p->swap_map[offset];
1326	VM_BUG_ON(count != SWAP_HAS_CACHE);
1327	p->swap_map[offset] = 0;
1328	dec_cluster_info_page(p, p->cluster_info, offset);
1329	unlock_cluster(ci);
1330
1331	mem_cgroup_uncharge_swap(entry, 1);
1332	swap_range_free(p, offset, 1);
1333}
1334
1335/*
1336 * Caller has made sure that the swap device corresponding to entry
1337 * is still around or has not been recycled.
1338 */
1339void swap_free(swp_entry_t entry)
1340{
1341	struct swap_info_struct *p;
1342
1343	p = _swap_info_get(entry);
1344	if (p)
1345		__swap_entry_free(p, entry);
1346}
1347
1348/*
1349 * Called after dropping swapcache to decrease refcnt to swap entries.
1350 */
1351void put_swap_folio(struct folio *folio, swp_entry_t entry)
1352{
1353	unsigned long offset = swp_offset(entry);
1354	unsigned long idx = offset / SWAPFILE_CLUSTER;
1355	struct swap_cluster_info *ci;
1356	struct swap_info_struct *si;
1357	unsigned char *map;
1358	unsigned int i, free_entries = 0;
1359	unsigned char val;
1360	int size = swap_entry_size(folio_nr_pages(folio));
1361
1362	si = _swap_info_get(entry);
1363	if (!si)
1364		return;
1365
1366	ci = lock_cluster_or_swap_info(si, offset);
1367	if (size == SWAPFILE_CLUSTER) {
1368		VM_BUG_ON(!cluster_is_huge(ci));
1369		map = si->swap_map + offset;
1370		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1371			val = map[i];
1372			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1373			if (val == SWAP_HAS_CACHE)
1374				free_entries++;
1375		}
1376		cluster_clear_huge(ci);
1377		if (free_entries == SWAPFILE_CLUSTER) {
1378			unlock_cluster_or_swap_info(si, ci);
1379			spin_lock(&si->lock);
1380			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1381			swap_free_cluster(si, idx);
1382			spin_unlock(&si->lock);
1383			return;
1384		}
1385	}
1386	for (i = 0; i < size; i++, entry.val++) {
1387		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1388			unlock_cluster_or_swap_info(si, ci);
1389			free_swap_slot(entry);
1390			if (i == size - 1)
1391				return;
1392			lock_cluster_or_swap_info(si, offset);
1393		}
1394	}
1395	unlock_cluster_or_swap_info(si, ci);
1396}
1397
1398#ifdef CONFIG_THP_SWAP
1399int split_swap_cluster(swp_entry_t entry)
1400{
1401	struct swap_info_struct *si;
1402	struct swap_cluster_info *ci;
1403	unsigned long offset = swp_offset(entry);
1404
1405	si = _swap_info_get(entry);
1406	if (!si)
1407		return -EBUSY;
1408	ci = lock_cluster(si, offset);
1409	cluster_clear_huge(ci);
1410	unlock_cluster(ci);
1411	return 0;
1412}
1413#endif
1414
1415static int swp_entry_cmp(const void *ent1, const void *ent2)
1416{
1417	const swp_entry_t *e1 = ent1, *e2 = ent2;
1418
1419	return (int)swp_type(*e1) - (int)swp_type(*e2);
1420}
1421
1422void swapcache_free_entries(swp_entry_t *entries, int n)
1423{
1424	struct swap_info_struct *p, *prev;
1425	int i;
1426
1427	if (n <= 0)
1428		return;
1429
1430	prev = NULL;
1431	p = NULL;
1432
1433	/*
1434	 * Sort swap entries by swap device, so each lock is only taken once.
1435	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1436	 * so low that it isn't necessary to optimize further.
1437	 */
1438	if (nr_swapfiles > 1)
1439		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1440	for (i = 0; i < n; ++i) {
1441		p = swap_info_get_cont(entries[i], prev);
1442		if (p)
1443			swap_entry_free(p, entries[i]);
1444		prev = p;
1445	}
1446	if (p)
1447		spin_unlock(&p->lock);
1448}
1449
1450int __swap_count(swp_entry_t entry)
1451{
1452	struct swap_info_struct *si = swp_swap_info(entry);
1453	pgoff_t offset = swp_offset(entry);
1454
1455	return swap_count(si->swap_map[offset]);
1456}
1457
1458/*
1459 * How many references to @entry are currently swapped out?
1460 * This does not give an exact answer when swap count is continued,
1461 * but does include the high COUNT_CONTINUED flag to allow for that.
1462 */
1463int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1464{
1465	pgoff_t offset = swp_offset(entry);
1466	struct swap_cluster_info *ci;
1467	int count;
1468
1469	ci = lock_cluster_or_swap_info(si, offset);
1470	count = swap_count(si->swap_map[offset]);
1471	unlock_cluster_or_swap_info(si, ci);
1472	return count;
1473}
1474
1475/*
1476 * How many references to @entry are currently swapped out?
1477 * This considers COUNT_CONTINUED so it returns exact answer.
1478 */
1479int swp_swapcount(swp_entry_t entry)
1480{
1481	int count, tmp_count, n;
1482	struct swap_info_struct *p;
1483	struct swap_cluster_info *ci;
1484	struct page *page;
1485	pgoff_t offset;
1486	unsigned char *map;
1487
1488	p = _swap_info_get(entry);
1489	if (!p)
1490		return 0;
1491
1492	offset = swp_offset(entry);
1493
1494	ci = lock_cluster_or_swap_info(p, offset);
1495
1496	count = swap_count(p->swap_map[offset]);
1497	if (!(count & COUNT_CONTINUED))
1498		goto out;
1499
1500	count &= ~COUNT_CONTINUED;
1501	n = SWAP_MAP_MAX + 1;
1502
1503	page = vmalloc_to_page(p->swap_map + offset);
1504	offset &= ~PAGE_MASK;
1505	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1506
1507	do {
1508		page = list_next_entry(page, lru);
1509		map = kmap_local_page(page);
1510		tmp_count = map[offset];
1511		kunmap_local(map);
1512
1513		count += (tmp_count & ~COUNT_CONTINUED) * n;
1514		n *= (SWAP_CONT_MAX + 1);
1515	} while (tmp_count & COUNT_CONTINUED);
1516out:
1517	unlock_cluster_or_swap_info(p, ci);
1518	return count;
1519}
1520
1521static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1522					 swp_entry_t entry)
1523{
1524	struct swap_cluster_info *ci;
1525	unsigned char *map = si->swap_map;
1526	unsigned long roffset = swp_offset(entry);
1527	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1528	int i;
1529	bool ret = false;
1530
1531	ci = lock_cluster_or_swap_info(si, offset);
1532	if (!ci || !cluster_is_huge(ci)) {
1533		if (swap_count(map[roffset]))
1534			ret = true;
1535		goto unlock_out;
1536	}
1537	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1538		if (swap_count(map[offset + i])) {
1539			ret = true;
1540			break;
1541		}
1542	}
1543unlock_out:
1544	unlock_cluster_or_swap_info(si, ci);
1545	return ret;
1546}
1547
1548static bool folio_swapped(struct folio *folio)
1549{
1550	swp_entry_t entry = folio->swap;
1551	struct swap_info_struct *si = _swap_info_get(entry);
1552
1553	if (!si)
1554		return false;
1555
1556	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1557		return swap_swapcount(si, entry) != 0;
1558
1559	return swap_page_trans_huge_swapped(si, entry);
1560}
1561
1562/**
1563 * folio_free_swap() - Free the swap space used for this folio.
1564 * @folio: The folio to remove.
1565 *
1566 * If swap is getting full, or if there are no more mappings of this folio,
1567 * then call folio_free_swap to free its swap space.
1568 *
1569 * Return: true if we were able to release the swap space.
1570 */
1571bool folio_free_swap(struct folio *folio)
1572{
1573	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1574
1575	if (!folio_test_swapcache(folio))
1576		return false;
1577	if (folio_test_writeback(folio))
1578		return false;
1579	if (folio_swapped(folio))
1580		return false;
1581
1582	/*
1583	 * Once hibernation has begun to create its image of memory,
1584	 * there's a danger that one of the calls to folio_free_swap()
1585	 * - most probably a call from __try_to_reclaim_swap() while
1586	 * hibernation is allocating its own swap pages for the image,
1587	 * but conceivably even a call from memory reclaim - will free
1588	 * the swap from a folio which has already been recorded in the
1589	 * image as a clean swapcache folio, and then reuse its swap for
1590	 * another page of the image.  On waking from hibernation, the
1591	 * original folio might be freed under memory pressure, then
1592	 * later read back in from swap, now with the wrong data.
1593	 *
1594	 * Hibernation suspends storage while it is writing the image
1595	 * to disk so check that here.
1596	 */
1597	if (pm_suspended_storage())
1598		return false;
1599
1600	delete_from_swap_cache(folio);
1601	folio_set_dirty(folio);
1602	return true;
1603}
1604
1605/*
1606 * Free the swap entry like above, but also try to
1607 * free the page cache entry if it is the last user.
1608 */
1609int free_swap_and_cache(swp_entry_t entry)
1610{
1611	struct swap_info_struct *p;
1612	unsigned char count;
1613
1614	if (non_swap_entry(entry))
1615		return 1;
1616
1617	p = get_swap_device(entry);
1618	if (p) {
1619		if (WARN_ON(data_race(!p->swap_map[swp_offset(entry)]))) {
1620			put_swap_device(p);
1621			return 0;
1622		}
1623
1624		count = __swap_entry_free(p, entry);
1625		if (count == SWAP_HAS_CACHE &&
1626		    !swap_page_trans_huge_swapped(p, entry))
1627			__try_to_reclaim_swap(p, swp_offset(entry),
1628					      TTRS_UNMAPPED | TTRS_FULL);
1629		put_swap_device(p);
1630	}
1631	return p != NULL;
1632}
1633
1634#ifdef CONFIG_HIBERNATION
1635
1636swp_entry_t get_swap_page_of_type(int type)
1637{
1638	struct swap_info_struct *si = swap_type_to_swap_info(type);
1639	swp_entry_t entry = {0};
1640
1641	if (!si)
1642		goto fail;
1643
1644	/* This is called for allocating swap entry, not cache */
1645	spin_lock(&si->lock);
1646	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1647		atomic_long_dec(&nr_swap_pages);
1648	spin_unlock(&si->lock);
1649fail:
1650	return entry;
1651}
1652
1653/*
1654 * Find the swap type that corresponds to given device (if any).
1655 *
1656 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1657 * from 0, in which the swap header is expected to be located.
1658 *
1659 * This is needed for the suspend to disk (aka swsusp).
1660 */
1661int swap_type_of(dev_t device, sector_t offset)
1662{
1663	int type;
1664
1665	if (!device)
1666		return -1;
1667
1668	spin_lock(&swap_lock);
1669	for (type = 0; type < nr_swapfiles; type++) {
1670		struct swap_info_struct *sis = swap_info[type];
1671
1672		if (!(sis->flags & SWP_WRITEOK))
1673			continue;
1674
1675		if (device == sis->bdev->bd_dev) {
1676			struct swap_extent *se = first_se(sis);
1677
1678			if (se->start_block == offset) {
1679				spin_unlock(&swap_lock);
1680				return type;
1681			}
1682		}
1683	}
1684	spin_unlock(&swap_lock);
1685	return -ENODEV;
1686}
1687
1688int find_first_swap(dev_t *device)
1689{
1690	int type;
1691
1692	spin_lock(&swap_lock);
1693	for (type = 0; type < nr_swapfiles; type++) {
1694		struct swap_info_struct *sis = swap_info[type];
1695
1696		if (!(sis->flags & SWP_WRITEOK))
1697			continue;
1698		*device = sis->bdev->bd_dev;
1699		spin_unlock(&swap_lock);
1700		return type;
1701	}
1702	spin_unlock(&swap_lock);
1703	return -ENODEV;
1704}
1705
1706/*
1707 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1708 * corresponding to given index in swap_info (swap type).
1709 */
1710sector_t swapdev_block(int type, pgoff_t offset)
1711{
1712	struct swap_info_struct *si = swap_type_to_swap_info(type);
1713	struct swap_extent *se;
1714
1715	if (!si || !(si->flags & SWP_WRITEOK))
1716		return 0;
1717	se = offset_to_swap_extent(si, offset);
1718	return se->start_block + (offset - se->start_page);
1719}
1720
1721/*
1722 * Return either the total number of swap pages of given type, or the number
1723 * of free pages of that type (depending on @free)
1724 *
1725 * This is needed for software suspend
1726 */
1727unsigned int count_swap_pages(int type, int free)
1728{
1729	unsigned int n = 0;
1730
1731	spin_lock(&swap_lock);
1732	if ((unsigned int)type < nr_swapfiles) {
1733		struct swap_info_struct *sis = swap_info[type];
1734
1735		spin_lock(&sis->lock);
1736		if (sis->flags & SWP_WRITEOK) {
1737			n = sis->pages;
1738			if (free)
1739				n -= sis->inuse_pages;
1740		}
1741		spin_unlock(&sis->lock);
1742	}
1743	spin_unlock(&swap_lock);
1744	return n;
1745}
1746#endif /* CONFIG_HIBERNATION */
1747
1748static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1749{
1750	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1751}
1752
1753/*
1754 * No need to decide whether this PTE shares the swap entry with others,
1755 * just let do_wp_page work it out if a write is requested later - to
1756 * force COW, vm_page_prot omits write permission from any private vma.
1757 */
1758static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1759		unsigned long addr, swp_entry_t entry, struct folio *folio)
1760{
1761	struct page *page;
1762	struct folio *swapcache;
1763	spinlock_t *ptl;
1764	pte_t *pte, new_pte, old_pte;
1765	bool hwpoisoned = false;
1766	int ret = 1;
1767
1768	swapcache = folio;
1769	folio = ksm_might_need_to_copy(folio, vma, addr);
1770	if (unlikely(!folio))
1771		return -ENOMEM;
1772	else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
1773		hwpoisoned = true;
1774		folio = swapcache;
1775	}
1776
1777	page = folio_file_page(folio, swp_offset(entry));
1778	if (PageHWPoison(page))
1779		hwpoisoned = true;
1780
1781	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1782	if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1783						swp_entry_to_pte(entry)))) {
1784		ret = 0;
1785		goto out;
1786	}
1787
1788	old_pte = ptep_get(pte);
1789
1790	if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
1791		swp_entry_t swp_entry;
1792
1793		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1794		if (hwpoisoned) {
1795			swp_entry = make_hwpoison_entry(page);
1796		} else {
1797			swp_entry = make_poisoned_swp_entry();
1798		}
1799		new_pte = swp_entry_to_pte(swp_entry);
1800		ret = 0;
1801		goto setpte;
1802	}
1803
1804	/*
1805	 * Some architectures may have to restore extra metadata to the page
1806	 * when reading from swap. This metadata may be indexed by swap entry
1807	 * so this must be called before swap_free().
1808	 */
1809	arch_swap_restore(entry, folio);
1810
1811	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1812	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1813	folio_get(folio);
1814	if (folio == swapcache) {
1815		rmap_t rmap_flags = RMAP_NONE;
1816
1817		/*
1818		 * See do_swap_page(): writeback would be problematic.
1819		 * However, we do a folio_wait_writeback() just before this
1820		 * call and have the folio locked.
1821		 */
1822		VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
1823		if (pte_swp_exclusive(old_pte))
1824			rmap_flags |= RMAP_EXCLUSIVE;
1825
1826		folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
1827	} else { /* ksm created a completely new copy */
1828		folio_add_new_anon_rmap(folio, vma, addr);
1829		folio_add_lru_vma(folio, vma);
1830	}
1831	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1832	if (pte_swp_soft_dirty(old_pte))
1833		new_pte = pte_mksoft_dirty(new_pte);
1834	if (pte_swp_uffd_wp(old_pte))
1835		new_pte = pte_mkuffd_wp(new_pte);
1836setpte:
1837	set_pte_at(vma->vm_mm, addr, pte, new_pte);
1838	swap_free(entry);
1839out:
1840	if (pte)
1841		pte_unmap_unlock(pte, ptl);
1842	if (folio != swapcache) {
1843		folio_unlock(folio);
1844		folio_put(folio);
1845	}
1846	return ret;
1847}
1848
1849static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1850			unsigned long addr, unsigned long end,
1851			unsigned int type)
1852{
1853	pte_t *pte = NULL;
1854	struct swap_info_struct *si;
1855
1856	si = swap_info[type];
1857	do {
1858		struct folio *folio;
1859		unsigned long offset;
1860		unsigned char swp_count;
1861		swp_entry_t entry;
1862		int ret;
1863		pte_t ptent;
1864
1865		if (!pte++) {
1866			pte = pte_offset_map(pmd, addr);
1867			if (!pte)
1868				break;
1869		}
1870
1871		ptent = ptep_get_lockless(pte);
1872
1873		if (!is_swap_pte(ptent))
1874			continue;
1875
1876		entry = pte_to_swp_entry(ptent);
1877		if (swp_type(entry) != type)
1878			continue;
1879
1880		offset = swp_offset(entry);
1881		pte_unmap(pte);
1882		pte = NULL;
1883
1884		folio = swap_cache_get_folio(entry, vma, addr);
1885		if (!folio) {
1886			struct page *page;
1887			struct vm_fault vmf = {
1888				.vma = vma,
1889				.address = addr,
1890				.real_address = addr,
1891				.pmd = pmd,
1892			};
1893
1894			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1895						&vmf);
1896			if (page)
1897				folio = page_folio(page);
1898		}
1899		if (!folio) {
1900			swp_count = READ_ONCE(si->swap_map[offset]);
1901			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1902				continue;
1903			return -ENOMEM;
1904		}
1905
1906		folio_lock(folio);
1907		folio_wait_writeback(folio);
1908		ret = unuse_pte(vma, pmd, addr, entry, folio);
1909		if (ret < 0) {
1910			folio_unlock(folio);
1911			folio_put(folio);
1912			return ret;
1913		}
1914
1915		folio_free_swap(folio);
1916		folio_unlock(folio);
1917		folio_put(folio);
1918	} while (addr += PAGE_SIZE, addr != end);
1919
1920	if (pte)
1921		pte_unmap(pte);
1922	return 0;
1923}
1924
1925static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1926				unsigned long addr, unsigned long end,
1927				unsigned int type)
1928{
1929	pmd_t *pmd;
1930	unsigned long next;
1931	int ret;
1932
1933	pmd = pmd_offset(pud, addr);
1934	do {
1935		cond_resched();
1936		next = pmd_addr_end(addr, end);
1937		ret = unuse_pte_range(vma, pmd, addr, next, type);
1938		if (ret)
1939			return ret;
1940	} while (pmd++, addr = next, addr != end);
1941	return 0;
1942}
1943
1944static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1945				unsigned long addr, unsigned long end,
1946				unsigned int type)
1947{
1948	pud_t *pud;
1949	unsigned long next;
1950	int ret;
1951
1952	pud = pud_offset(p4d, addr);
1953	do {
1954		next = pud_addr_end(addr, end);
1955		if (pud_none_or_clear_bad(pud))
1956			continue;
1957		ret = unuse_pmd_range(vma, pud, addr, next, type);
1958		if (ret)
1959			return ret;
1960	} while (pud++, addr = next, addr != end);
1961	return 0;
1962}
1963
1964static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1965				unsigned long addr, unsigned long end,
1966				unsigned int type)
1967{
1968	p4d_t *p4d;
1969	unsigned long next;
1970	int ret;
1971
1972	p4d = p4d_offset(pgd, addr);
1973	do {
1974		next = p4d_addr_end(addr, end);
1975		if (p4d_none_or_clear_bad(p4d))
1976			continue;
1977		ret = unuse_pud_range(vma, p4d, addr, next, type);
1978		if (ret)
1979			return ret;
1980	} while (p4d++, addr = next, addr != end);
1981	return 0;
1982}
1983
1984static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1985{
1986	pgd_t *pgd;
1987	unsigned long addr, end, next;
1988	int ret;
1989
1990	addr = vma->vm_start;
1991	end = vma->vm_end;
1992
1993	pgd = pgd_offset(vma->vm_mm, addr);
1994	do {
1995		next = pgd_addr_end(addr, end);
1996		if (pgd_none_or_clear_bad(pgd))
1997			continue;
1998		ret = unuse_p4d_range(vma, pgd, addr, next, type);
1999		if (ret)
2000			return ret;
2001	} while (pgd++, addr = next, addr != end);
2002	return 0;
2003}
2004
2005static int unuse_mm(struct mm_struct *mm, unsigned int type)
2006{
2007	struct vm_area_struct *vma;
2008	int ret = 0;
2009	VMA_ITERATOR(vmi, mm, 0);
2010
2011	mmap_read_lock(mm);
2012	for_each_vma(vmi, vma) {
2013		if (vma->anon_vma) {
2014			ret = unuse_vma(vma, type);
2015			if (ret)
2016				break;
2017		}
2018
2019		cond_resched();
2020	}
2021	mmap_read_unlock(mm);
2022	return ret;
2023}
2024
2025/*
2026 * Scan swap_map from current position to next entry still in use.
2027 * Return 0 if there are no inuse entries after prev till end of
2028 * the map.
2029 */
2030static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2031					unsigned int prev)
2032{
2033	unsigned int i;
2034	unsigned char count;
2035
2036	/*
2037	 * No need for swap_lock here: we're just looking
2038	 * for whether an entry is in use, not modifying it; false
2039	 * hits are okay, and sys_swapoff() has already prevented new
2040	 * allocations from this area (while holding swap_lock).
2041	 */
2042	for (i = prev + 1; i < si->max; i++) {
2043		count = READ_ONCE(si->swap_map[i]);
2044		if (count && swap_count(count) != SWAP_MAP_BAD)
2045			break;
2046		if ((i % LATENCY_LIMIT) == 0)
2047			cond_resched();
2048	}
2049
2050	if (i == si->max)
2051		i = 0;
2052
2053	return i;
2054}
2055
2056static int try_to_unuse(unsigned int type)
2057{
2058	struct mm_struct *prev_mm;
2059	struct mm_struct *mm;
2060	struct list_head *p;
2061	int retval = 0;
2062	struct swap_info_struct *si = swap_info[type];
2063	struct folio *folio;
2064	swp_entry_t entry;
2065	unsigned int i;
2066
2067	if (!READ_ONCE(si->inuse_pages))
2068		goto success;
2069
2070retry:
2071	retval = shmem_unuse(type);
2072	if (retval)
2073		return retval;
2074
2075	prev_mm = &init_mm;
2076	mmget(prev_mm);
2077
2078	spin_lock(&mmlist_lock);
2079	p = &init_mm.mmlist;
2080	while (READ_ONCE(si->inuse_pages) &&
2081	       !signal_pending(current) &&
2082	       (p = p->next) != &init_mm.mmlist) {
2083
2084		mm = list_entry(p, struct mm_struct, mmlist);
2085		if (!mmget_not_zero(mm))
2086			continue;
2087		spin_unlock(&mmlist_lock);
2088		mmput(prev_mm);
2089		prev_mm = mm;
2090		retval = unuse_mm(mm, type);
2091		if (retval) {
2092			mmput(prev_mm);
2093			return retval;
2094		}
2095
2096		/*
2097		 * Make sure that we aren't completely killing
2098		 * interactive performance.
2099		 */
2100		cond_resched();
2101		spin_lock(&mmlist_lock);
2102	}
2103	spin_unlock(&mmlist_lock);
2104
2105	mmput(prev_mm);
2106
2107	i = 0;
2108	while (READ_ONCE(si->inuse_pages) &&
2109	       !signal_pending(current) &&
2110	       (i = find_next_to_unuse(si, i)) != 0) {
2111
2112		entry = swp_entry(type, i);
2113		folio = filemap_get_folio(swap_address_space(entry), i);
2114		if (IS_ERR(folio))
2115			continue;
2116
2117		/*
2118		 * It is conceivable that a racing task removed this folio from
2119		 * swap cache just before we acquired the page lock. The folio
2120		 * might even be back in swap cache on another swap area. But
2121		 * that is okay, folio_free_swap() only removes stale folios.
2122		 */
2123		folio_lock(folio);
2124		folio_wait_writeback(folio);
2125		folio_free_swap(folio);
2126		folio_unlock(folio);
2127		folio_put(folio);
2128	}
2129
2130	/*
2131	 * Lets check again to see if there are still swap entries in the map.
2132	 * If yes, we would need to do retry the unuse logic again.
2133	 * Under global memory pressure, swap entries can be reinserted back
2134	 * into process space after the mmlist loop above passes over them.
2135	 *
2136	 * Limit the number of retries? No: when mmget_not_zero()
2137	 * above fails, that mm is likely to be freeing swap from
2138	 * exit_mmap(), which proceeds at its own independent pace;
2139	 * and even shmem_writepage() could have been preempted after
2140	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2141	 * and robust (though cpu-intensive) just to keep retrying.
2142	 */
2143	if (READ_ONCE(si->inuse_pages)) {
2144		if (!signal_pending(current))
2145			goto retry;
2146		return -EINTR;
2147	}
2148
2149success:
2150	/*
2151	 * Make sure that further cleanups after try_to_unuse() returns happen
2152	 * after swap_range_free() reduces si->inuse_pages to 0.
2153	 */
2154	smp_mb();
2155	return 0;
2156}
2157
2158/*
2159 * After a successful try_to_unuse, if no swap is now in use, we know
2160 * we can empty the mmlist.  swap_lock must be held on entry and exit.
2161 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2162 * added to the mmlist just after page_duplicate - before would be racy.
2163 */
2164static void drain_mmlist(void)
2165{
2166	struct list_head *p, *next;
2167	unsigned int type;
2168
2169	for (type = 0; type < nr_swapfiles; type++)
2170		if (swap_info[type]->inuse_pages)
2171			return;
2172	spin_lock(&mmlist_lock);
2173	list_for_each_safe(p, next, &init_mm.mmlist)
2174		list_del_init(p);
2175	spin_unlock(&mmlist_lock);
2176}
2177
2178/*
2179 * Free all of a swapdev's extent information
2180 */
2181static void destroy_swap_extents(struct swap_info_struct *sis)
2182{
2183	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2184		struct rb_node *rb = sis->swap_extent_root.rb_node;
2185		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2186
2187		rb_erase(rb, &sis->swap_extent_root);
2188		kfree(se);
2189	}
2190
2191	if (sis->flags & SWP_ACTIVATED) {
2192		struct file *swap_file = sis->swap_file;
2193		struct address_space *mapping = swap_file->f_mapping;
2194
2195		sis->flags &= ~SWP_ACTIVATED;
2196		if (mapping->a_ops->swap_deactivate)
2197			mapping->a_ops->swap_deactivate(swap_file);
2198	}
2199}
2200
2201/*
2202 * Add a block range (and the corresponding page range) into this swapdev's
2203 * extent tree.
2204 *
2205 * This function rather assumes that it is called in ascending page order.
2206 */
2207int
2208add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2209		unsigned long nr_pages, sector_t start_block)
2210{
2211	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2212	struct swap_extent *se;
2213	struct swap_extent *new_se;
2214
2215	/*
2216	 * place the new node at the right most since the
2217	 * function is called in ascending page order.
2218	 */
2219	while (*link) {
2220		parent = *link;
2221		link = &parent->rb_right;
2222	}
2223
2224	if (parent) {
2225		se = rb_entry(parent, struct swap_extent, rb_node);
2226		BUG_ON(se->start_page + se->nr_pages != start_page);
2227		if (se->start_block + se->nr_pages == start_block) {
2228			/* Merge it */
2229			se->nr_pages += nr_pages;
2230			return 0;
2231		}
2232	}
2233
2234	/* No merge, insert a new extent. */
2235	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2236	if (new_se == NULL)
2237		return -ENOMEM;
2238	new_se->start_page = start_page;
2239	new_se->nr_pages = nr_pages;
2240	new_se->start_block = start_block;
2241
2242	rb_link_node(&new_se->rb_node, parent, link);
2243	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2244	return 1;
2245}
2246EXPORT_SYMBOL_GPL(add_swap_extent);
2247
2248/*
2249 * A `swap extent' is a simple thing which maps a contiguous range of pages
2250 * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2251 * built at swapon time and is then used at swap_writepage/swap_read_folio
2252 * time for locating where on disk a page belongs.
2253 *
2254 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2255 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2256 * swap files identically.
2257 *
2258 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2259 * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2260 * swapfiles are handled *identically* after swapon time.
2261 *
2262 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2263 * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2264 * blocks are found which do not fall within the PAGE_SIZE alignment
2265 * requirements, they are simply tossed out - we will never use those blocks
2266 * for swapping.
2267 *
2268 * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2269 * prevents users from writing to the swap device, which will corrupt memory.
2270 *
2271 * The amount of disk space which a single swap extent represents varies.
2272 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2273 * extents in the rbtree. - akpm.
2274 */
2275static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2276{
2277	struct file *swap_file = sis->swap_file;
2278	struct address_space *mapping = swap_file->f_mapping;
2279	struct inode *inode = mapping->host;
2280	int ret;
2281
2282	if (S_ISBLK(inode->i_mode)) {
2283		ret = add_swap_extent(sis, 0, sis->max, 0);
2284		*span = sis->pages;
2285		return ret;
2286	}
2287
2288	if (mapping->a_ops->swap_activate) {
2289		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2290		if (ret < 0)
2291			return ret;
2292		sis->flags |= SWP_ACTIVATED;
2293		if ((sis->flags & SWP_FS_OPS) &&
2294		    sio_pool_init() != 0) {
2295			destroy_swap_extents(sis);
2296			return -ENOMEM;
2297		}
2298		return ret;
2299	}
2300
2301	return generic_swapfile_activate(sis, swap_file, span);
2302}
2303
2304static int swap_node(struct swap_info_struct *p)
2305{
2306	struct block_device *bdev;
2307
2308	if (p->bdev)
2309		bdev = p->bdev;
2310	else
2311		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2312
2313	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2314}
2315
2316static void setup_swap_info(struct swap_info_struct *p, int prio,
2317			    unsigned char *swap_map,
2318			    struct swap_cluster_info *cluster_info)
2319{
2320	int i;
2321
2322	if (prio >= 0)
2323		p->prio = prio;
2324	else
2325		p->prio = --least_priority;
2326	/*
2327	 * the plist prio is negated because plist ordering is
2328	 * low-to-high, while swap ordering is high-to-low
2329	 */
2330	p->list.prio = -p->prio;
2331	for_each_node(i) {
2332		if (p->prio >= 0)
2333			p->avail_lists[i].prio = -p->prio;
2334		else {
2335			if (swap_node(p) == i)
2336				p->avail_lists[i].prio = 1;
2337			else
2338				p->avail_lists[i].prio = -p->prio;
2339		}
2340	}
2341	p->swap_map = swap_map;
2342	p->cluster_info = cluster_info;
2343}
2344
2345static void _enable_swap_info(struct swap_info_struct *p)
2346{
2347	p->flags |= SWP_WRITEOK;
2348	atomic_long_add(p->pages, &nr_swap_pages);
2349	total_swap_pages += p->pages;
2350
2351	assert_spin_locked(&swap_lock);
2352	/*
2353	 * both lists are plists, and thus priority ordered.
2354	 * swap_active_head needs to be priority ordered for swapoff(),
2355	 * which on removal of any swap_info_struct with an auto-assigned
2356	 * (i.e. negative) priority increments the auto-assigned priority
2357	 * of any lower-priority swap_info_structs.
2358	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2359	 * which allocates swap pages from the highest available priority
2360	 * swap_info_struct.
2361	 */
2362	plist_add(&p->list, &swap_active_head);
2363
2364	/* add to available list iff swap device is not full */
2365	if (p->highest_bit)
2366		add_to_avail_list(p);
2367}
2368
2369static void enable_swap_info(struct swap_info_struct *p, int prio,
2370				unsigned char *swap_map,
2371				struct swap_cluster_info *cluster_info)
2372{
2373	spin_lock(&swap_lock);
2374	spin_lock(&p->lock);
2375	setup_swap_info(p, prio, swap_map, cluster_info);
2376	spin_unlock(&p->lock);
2377	spin_unlock(&swap_lock);
2378	/*
2379	 * Finished initializing swap device, now it's safe to reference it.
2380	 */
2381	percpu_ref_resurrect(&p->users);
2382	spin_lock(&swap_lock);
2383	spin_lock(&p->lock);
2384	_enable_swap_info(p);
2385	spin_unlock(&p->lock);
2386	spin_unlock(&swap_lock);
2387}
2388
2389static void reinsert_swap_info(struct swap_info_struct *p)
2390{
2391	spin_lock(&swap_lock);
2392	spin_lock(&p->lock);
2393	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2394	_enable_swap_info(p);
2395	spin_unlock(&p->lock);
2396	spin_unlock(&swap_lock);
2397}
2398
2399bool has_usable_swap(void)
2400{
2401	bool ret = true;
2402
2403	spin_lock(&swap_lock);
2404	if (plist_head_empty(&swap_active_head))
2405		ret = false;
2406	spin_unlock(&swap_lock);
2407	return ret;
2408}
2409
2410SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2411{
2412	struct swap_info_struct *p = NULL;
2413	unsigned char *swap_map;
2414	struct swap_cluster_info *cluster_info;
2415	struct file *swap_file, *victim;
2416	struct address_space *mapping;
2417	struct inode *inode;
2418	struct filename *pathname;
2419	int err, found = 0;
2420	unsigned int old_block_size;
2421
2422	if (!capable(CAP_SYS_ADMIN))
2423		return -EPERM;
2424
2425	BUG_ON(!current->mm);
2426
2427	pathname = getname(specialfile);
2428	if (IS_ERR(pathname))
2429		return PTR_ERR(pathname);
2430
2431	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2432	err = PTR_ERR(victim);
2433	if (IS_ERR(victim))
2434		goto out;
2435
2436	mapping = victim->f_mapping;
2437	spin_lock(&swap_lock);
2438	plist_for_each_entry(p, &swap_active_head, list) {
2439		if (p->flags & SWP_WRITEOK) {
2440			if (p->swap_file->f_mapping == mapping) {
2441				found = 1;
2442				break;
2443			}
2444		}
2445	}
2446	if (!found) {
2447		err = -EINVAL;
2448		spin_unlock(&swap_lock);
2449		goto out_dput;
2450	}
2451	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2452		vm_unacct_memory(p->pages);
2453	else {
2454		err = -ENOMEM;
2455		spin_unlock(&swap_lock);
2456		goto out_dput;
2457	}
2458	spin_lock(&p->lock);
2459	del_from_avail_list(p);
2460	if (p->prio < 0) {
2461		struct swap_info_struct *si = p;
2462		int nid;
2463
2464		plist_for_each_entry_continue(si, &swap_active_head, list) {
2465			si->prio++;
2466			si->list.prio--;
2467			for_each_node(nid) {
2468				if (si->avail_lists[nid].prio != 1)
2469					si->avail_lists[nid].prio--;
2470			}
2471		}
2472		least_priority++;
2473	}
2474	plist_del(&p->list, &swap_active_head);
2475	atomic_long_sub(p->pages, &nr_swap_pages);
2476	total_swap_pages -= p->pages;
2477	p->flags &= ~SWP_WRITEOK;
2478	spin_unlock(&p->lock);
2479	spin_unlock(&swap_lock);
2480
2481	disable_swap_slots_cache_lock();
2482
2483	set_current_oom_origin();
2484	err = try_to_unuse(p->type);
2485	clear_current_oom_origin();
2486
2487	if (err) {
2488		/* re-insert swap space back into swap_list */
2489		reinsert_swap_info(p);
2490		reenable_swap_slots_cache_unlock();
2491		goto out_dput;
2492	}
2493
2494	reenable_swap_slots_cache_unlock();
2495
2496	/*
2497	 * Wait for swap operations protected by get/put_swap_device()
2498	 * to complete.
2499	 *
2500	 * We need synchronize_rcu() here to protect the accessing to
2501	 * the swap cache data structure.
2502	 */
2503	percpu_ref_kill(&p->users);
2504	synchronize_rcu();
2505	wait_for_completion(&p->comp);
2506
2507	flush_work(&p->discard_work);
2508
2509	destroy_swap_extents(p);
2510	if (p->flags & SWP_CONTINUED)
2511		free_swap_count_continuations(p);
2512
2513	if (!p->bdev || !bdev_nonrot(p->bdev))
2514		atomic_dec(&nr_rotate_swap);
2515
2516	mutex_lock(&swapon_mutex);
2517	spin_lock(&swap_lock);
2518	spin_lock(&p->lock);
2519	drain_mmlist();
2520
2521	/* wait for anyone still in scan_swap_map_slots */
2522	p->highest_bit = 0;		/* cuts scans short */
2523	while (p->flags >= SWP_SCANNING) {
2524		spin_unlock(&p->lock);
2525		spin_unlock(&swap_lock);
2526		schedule_timeout_uninterruptible(1);
2527		spin_lock(&swap_lock);
2528		spin_lock(&p->lock);
2529	}
2530
2531	swap_file = p->swap_file;
2532	old_block_size = p->old_block_size;
2533	p->swap_file = NULL;
2534	p->max = 0;
2535	swap_map = p->swap_map;
2536	p->swap_map = NULL;
2537	cluster_info = p->cluster_info;
2538	p->cluster_info = NULL;
2539	spin_unlock(&p->lock);
2540	spin_unlock(&swap_lock);
2541	arch_swap_invalidate_area(p->type);
2542	zswap_swapoff(p->type);
2543	mutex_unlock(&swapon_mutex);
2544	free_percpu(p->percpu_cluster);
2545	p->percpu_cluster = NULL;
2546	free_percpu(p->cluster_next_cpu);
2547	p->cluster_next_cpu = NULL;
2548	vfree(swap_map);
2549	kvfree(cluster_info);
2550	/* Destroy swap account information */
2551	swap_cgroup_swapoff(p->type);
2552	exit_swap_address_space(p->type);
2553
2554	inode = mapping->host;
2555	if (p->bdev_file) {
2556		set_blocksize(p->bdev, old_block_size);
2557		fput(p->bdev_file);
2558		p->bdev_file = NULL;
2559	}
2560
2561	inode_lock(inode);
2562	inode->i_flags &= ~S_SWAPFILE;
2563	inode_unlock(inode);
2564	filp_close(swap_file, NULL);
2565
2566	/*
2567	 * Clear the SWP_USED flag after all resources are freed so that swapon
2568	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2569	 * not hold p->lock after we cleared its SWP_WRITEOK.
2570	 */
2571	spin_lock(&swap_lock);
2572	p->flags = 0;
2573	spin_unlock(&swap_lock);
2574
2575	err = 0;
2576	atomic_inc(&proc_poll_event);
2577	wake_up_interruptible(&proc_poll_wait);
2578
2579out_dput:
2580	filp_close(victim, NULL);
2581out:
2582	putname(pathname);
2583	return err;
2584}
2585
2586#ifdef CONFIG_PROC_FS
2587static __poll_t swaps_poll(struct file *file, poll_table *wait)
2588{
2589	struct seq_file *seq = file->private_data;
2590
2591	poll_wait(file, &proc_poll_wait, wait);
2592
2593	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2594		seq->poll_event = atomic_read(&proc_poll_event);
2595		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2596	}
2597
2598	return EPOLLIN | EPOLLRDNORM;
2599}
2600
2601/* iterator */
2602static void *swap_start(struct seq_file *swap, loff_t *pos)
2603{
2604	struct swap_info_struct *si;
2605	int type;
2606	loff_t l = *pos;
2607
2608	mutex_lock(&swapon_mutex);
2609
2610	if (!l)
2611		return SEQ_START_TOKEN;
2612
2613	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2614		if (!(si->flags & SWP_USED) || !si->swap_map)
2615			continue;
2616		if (!--l)
2617			return si;
2618	}
2619
2620	return NULL;
2621}
2622
2623static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2624{
2625	struct swap_info_struct *si = v;
2626	int type;
2627
2628	if (v == SEQ_START_TOKEN)
2629		type = 0;
2630	else
2631		type = si->type + 1;
2632
2633	++(*pos);
2634	for (; (si = swap_type_to_swap_info(type)); type++) {
2635		if (!(si->flags & SWP_USED) || !si->swap_map)
2636			continue;
2637		return si;
2638	}
2639
2640	return NULL;
2641}
2642
2643static void swap_stop(struct seq_file *swap, void *v)
2644{
2645	mutex_unlock(&swapon_mutex);
2646}
2647
2648static int swap_show(struct seq_file *swap, void *v)
2649{
2650	struct swap_info_struct *si = v;
2651	struct file *file;
2652	int len;
2653	unsigned long bytes, inuse;
2654
2655	if (si == SEQ_START_TOKEN) {
2656		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2657		return 0;
2658	}
2659
2660	bytes = K(si->pages);
2661	inuse = K(READ_ONCE(si->inuse_pages));
2662
2663	file = si->swap_file;
2664	len = seq_file_path(swap, file, " \t\n\\");
2665	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2666			len < 40 ? 40 - len : 1, " ",
2667			S_ISBLK(file_inode(file)->i_mode) ?
2668				"partition" : "file\t",
2669			bytes, bytes < 10000000 ? "\t" : "",
2670			inuse, inuse < 10000000 ? "\t" : "",
2671			si->prio);
2672	return 0;
2673}
2674
2675static const struct seq_operations swaps_op = {
2676	.start =	swap_start,
2677	.next =		swap_next,
2678	.stop =		swap_stop,
2679	.show =		swap_show
2680};
2681
2682static int swaps_open(struct inode *inode, struct file *file)
2683{
2684	struct seq_file *seq;
2685	int ret;
2686
2687	ret = seq_open(file, &swaps_op);
2688	if (ret)
2689		return ret;
2690
2691	seq = file->private_data;
2692	seq->poll_event = atomic_read(&proc_poll_event);
2693	return 0;
2694}
2695
2696static const struct proc_ops swaps_proc_ops = {
2697	.proc_flags	= PROC_ENTRY_PERMANENT,
2698	.proc_open	= swaps_open,
2699	.proc_read	= seq_read,
2700	.proc_lseek	= seq_lseek,
2701	.proc_release	= seq_release,
2702	.proc_poll	= swaps_poll,
2703};
2704
2705static int __init procswaps_init(void)
2706{
2707	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2708	return 0;
2709}
2710__initcall(procswaps_init);
2711#endif /* CONFIG_PROC_FS */
2712
2713#ifdef MAX_SWAPFILES_CHECK
2714static int __init max_swapfiles_check(void)
2715{
2716	MAX_SWAPFILES_CHECK();
2717	return 0;
2718}
2719late_initcall(max_swapfiles_check);
2720#endif
2721
2722static struct swap_info_struct *alloc_swap_info(void)
2723{
2724	struct swap_info_struct *p;
2725	struct swap_info_struct *defer = NULL;
2726	unsigned int type;
2727	int i;
2728
2729	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2730	if (!p)
2731		return ERR_PTR(-ENOMEM);
2732
2733	if (percpu_ref_init(&p->users, swap_users_ref_free,
2734			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2735		kvfree(p);
2736		return ERR_PTR(-ENOMEM);
2737	}
2738
2739	spin_lock(&swap_lock);
2740	for (type = 0; type < nr_swapfiles; type++) {
2741		if (!(swap_info[type]->flags & SWP_USED))
2742			break;
2743	}
2744	if (type >= MAX_SWAPFILES) {
2745		spin_unlock(&swap_lock);
2746		percpu_ref_exit(&p->users);
2747		kvfree(p);
2748		return ERR_PTR(-EPERM);
2749	}
2750	if (type >= nr_swapfiles) {
2751		p->type = type;
2752		/*
2753		 * Publish the swap_info_struct after initializing it.
2754		 * Note that kvzalloc() above zeroes all its fields.
2755		 */
2756		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2757		nr_swapfiles++;
2758	} else {
2759		defer = p;
2760		p = swap_info[type];
2761		/*
2762		 * Do not memset this entry: a racing procfs swap_next()
2763		 * would be relying on p->type to remain valid.
2764		 */
2765	}
2766	p->swap_extent_root = RB_ROOT;
2767	plist_node_init(&p->list, 0);
2768	for_each_node(i)
2769		plist_node_init(&p->avail_lists[i], 0);
2770	p->flags = SWP_USED;
2771	spin_unlock(&swap_lock);
2772	if (defer) {
2773		percpu_ref_exit(&defer->users);
2774		kvfree(defer);
2775	}
2776	spin_lock_init(&p->lock);
2777	spin_lock_init(&p->cont_lock);
2778	init_completion(&p->comp);
2779
2780	return p;
2781}
2782
2783static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2784{
2785	int error;
2786
2787	if (S_ISBLK(inode->i_mode)) {
2788		p->bdev_file = bdev_file_open_by_dev(inode->i_rdev,
2789				BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL);
2790		if (IS_ERR(p->bdev_file)) {
2791			error = PTR_ERR(p->bdev_file);
2792			p->bdev_file = NULL;
2793			return error;
2794		}
2795		p->bdev = file_bdev(p->bdev_file);
2796		p->old_block_size = block_size(p->bdev);
2797		error = set_blocksize(p->bdev, PAGE_SIZE);
2798		if (error < 0)
2799			return error;
2800		/*
2801		 * Zoned block devices contain zones that have a sequential
2802		 * write only restriction.  Hence zoned block devices are not
2803		 * suitable for swapping.  Disallow them here.
2804		 */
2805		if (bdev_is_zoned(p->bdev))
2806			return -EINVAL;
2807		p->flags |= SWP_BLKDEV;
2808	} else if (S_ISREG(inode->i_mode)) {
2809		p->bdev = inode->i_sb->s_bdev;
2810	}
2811
2812	return 0;
2813}
2814
2815
2816/*
2817 * Find out how many pages are allowed for a single swap device. There
2818 * are two limiting factors:
2819 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2820 * 2) the number of bits in the swap pte, as defined by the different
2821 * architectures.
2822 *
2823 * In order to find the largest possible bit mask, a swap entry with
2824 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2825 * decoded to a swp_entry_t again, and finally the swap offset is
2826 * extracted.
2827 *
2828 * This will mask all the bits from the initial ~0UL mask that can't
2829 * be encoded in either the swp_entry_t or the architecture definition
2830 * of a swap pte.
2831 */
2832unsigned long generic_max_swapfile_size(void)
2833{
2834	return swp_offset(pte_to_swp_entry(
2835			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2836}
2837
2838/* Can be overridden by an architecture for additional checks. */
2839__weak unsigned long arch_max_swapfile_size(void)
2840{
2841	return generic_max_swapfile_size();
2842}
2843
2844static unsigned long read_swap_header(struct swap_info_struct *p,
2845					union swap_header *swap_header,
2846					struct inode *inode)
2847{
2848	int i;
2849	unsigned long maxpages;
2850	unsigned long swapfilepages;
2851	unsigned long last_page;
2852
2853	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2854		pr_err("Unable to find swap-space signature\n");
2855		return 0;
2856	}
2857
2858	/* swap partition endianness hack... */
2859	if (swab32(swap_header->info.version) == 1) {
2860		swab32s(&swap_header->info.version);
2861		swab32s(&swap_header->info.last_page);
2862		swab32s(&swap_header->info.nr_badpages);
2863		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2864			return 0;
2865		for (i = 0; i < swap_header->info.nr_badpages; i++)
2866			swab32s(&swap_header->info.badpages[i]);
2867	}
2868	/* Check the swap header's sub-version */
2869	if (swap_header->info.version != 1) {
2870		pr_warn("Unable to handle swap header version %d\n",
2871			swap_header->info.version);
2872		return 0;
2873	}
2874
2875	p->lowest_bit  = 1;
2876	p->cluster_next = 1;
2877	p->cluster_nr = 0;
2878
2879	maxpages = swapfile_maximum_size;
2880	last_page = swap_header->info.last_page;
2881	if (!last_page) {
2882		pr_warn("Empty swap-file\n");
2883		return 0;
2884	}
2885	if (last_page > maxpages) {
2886		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2887			K(maxpages), K(last_page));
2888	}
2889	if (maxpages > last_page) {
2890		maxpages = last_page + 1;
2891		/* p->max is an unsigned int: don't overflow it */
2892		if ((unsigned int)maxpages == 0)
2893			maxpages = UINT_MAX;
2894	}
2895	p->highest_bit = maxpages - 1;
2896
2897	if (!maxpages)
2898		return 0;
2899	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2900	if (swapfilepages && maxpages > swapfilepages) {
2901		pr_warn("Swap area shorter than signature indicates\n");
2902		return 0;
2903	}
2904	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2905		return 0;
2906	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2907		return 0;
2908
2909	return maxpages;
2910}
2911
2912#define SWAP_CLUSTER_INFO_COLS						\
2913	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2914#define SWAP_CLUSTER_SPACE_COLS						\
2915	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2916#define SWAP_CLUSTER_COLS						\
2917	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2918
2919static int setup_swap_map_and_extents(struct swap_info_struct *p,
2920					union swap_header *swap_header,
2921					unsigned char *swap_map,
2922					struct swap_cluster_info *cluster_info,
2923					unsigned long maxpages,
2924					sector_t *span)
2925{
2926	unsigned int j, k;
2927	unsigned int nr_good_pages;
2928	int nr_extents;
2929	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2930	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2931	unsigned long i, idx;
2932
2933	nr_good_pages = maxpages - 1;	/* omit header page */
2934
2935	cluster_list_init(&p->free_clusters);
2936	cluster_list_init(&p->discard_clusters);
2937
2938	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2939		unsigned int page_nr = swap_header->info.badpages[i];
2940		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2941			return -EINVAL;
2942		if (page_nr < maxpages) {
2943			swap_map[page_nr] = SWAP_MAP_BAD;
2944			nr_good_pages--;
2945			/*
2946			 * Haven't marked the cluster free yet, no list
2947			 * operation involved
2948			 */
2949			inc_cluster_info_page(p, cluster_info, page_nr);
2950		}
2951	}
2952
2953	/* Haven't marked the cluster free yet, no list operation involved */
2954	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2955		inc_cluster_info_page(p, cluster_info, i);
2956
2957	if (nr_good_pages) {
2958		swap_map[0] = SWAP_MAP_BAD;
2959		/*
2960		 * Not mark the cluster free yet, no list
2961		 * operation involved
2962		 */
2963		inc_cluster_info_page(p, cluster_info, 0);
2964		p->max = maxpages;
2965		p->pages = nr_good_pages;
2966		nr_extents = setup_swap_extents(p, span);
2967		if (nr_extents < 0)
2968			return nr_extents;
2969		nr_good_pages = p->pages;
2970	}
2971	if (!nr_good_pages) {
2972		pr_warn("Empty swap-file\n");
2973		return -EINVAL;
2974	}
2975
2976	if (!cluster_info)
2977		return nr_extents;
2978
2979
2980	/*
2981	 * Reduce false cache line sharing between cluster_info and
2982	 * sharing same address space.
2983	 */
2984	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2985		j = (k + col) % SWAP_CLUSTER_COLS;
2986		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2987			idx = i * SWAP_CLUSTER_COLS + j;
2988			if (idx >= nr_clusters)
2989				continue;
2990			if (cluster_count(&cluster_info[idx]))
2991				continue;
2992			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2993			cluster_list_add_tail(&p->free_clusters, cluster_info,
2994					      idx);
2995		}
2996	}
2997	return nr_extents;
2998}
2999
3000SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3001{
3002	struct swap_info_struct *p;
3003	struct filename *name;
3004	struct file *swap_file = NULL;
3005	struct address_space *mapping;
3006	struct dentry *dentry;
3007	int prio;
3008	int error;
3009	union swap_header *swap_header;
3010	int nr_extents;
3011	sector_t span;
3012	unsigned long maxpages;
3013	unsigned char *swap_map = NULL;
3014	struct swap_cluster_info *cluster_info = NULL;
3015	struct page *page = NULL;
3016	struct inode *inode = NULL;
3017	bool inced_nr_rotate_swap = false;
3018
3019	if (swap_flags & ~SWAP_FLAGS_VALID)
3020		return -EINVAL;
3021
3022	if (!capable(CAP_SYS_ADMIN))
3023		return -EPERM;
3024
3025	if (!swap_avail_heads)
3026		return -ENOMEM;
3027
3028	p = alloc_swap_info();
3029	if (IS_ERR(p))
3030		return PTR_ERR(p);
3031
3032	INIT_WORK(&p->discard_work, swap_discard_work);
3033
3034	name = getname(specialfile);
3035	if (IS_ERR(name)) {
3036		error = PTR_ERR(name);
3037		name = NULL;
3038		goto bad_swap;
3039	}
3040	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3041	if (IS_ERR(swap_file)) {
3042		error = PTR_ERR(swap_file);
3043		swap_file = NULL;
3044		goto bad_swap;
3045	}
3046
3047	p->swap_file = swap_file;
3048	mapping = swap_file->f_mapping;
3049	dentry = swap_file->f_path.dentry;
3050	inode = mapping->host;
3051
3052	error = claim_swapfile(p, inode);
3053	if (unlikely(error))
3054		goto bad_swap;
3055
3056	inode_lock(inode);
3057	if (d_unlinked(dentry) || cant_mount(dentry)) {
3058		error = -ENOENT;
3059		goto bad_swap_unlock_inode;
3060	}
3061	if (IS_SWAPFILE(inode)) {
3062		error = -EBUSY;
3063		goto bad_swap_unlock_inode;
3064	}
3065
3066	/*
3067	 * Read the swap header.
3068	 */
3069	if (!mapping->a_ops->read_folio) {
3070		error = -EINVAL;
3071		goto bad_swap_unlock_inode;
3072	}
3073	page = read_mapping_page(mapping, 0, swap_file);
3074	if (IS_ERR(page)) {
3075		error = PTR_ERR(page);
3076		goto bad_swap_unlock_inode;
3077	}
3078	swap_header = kmap(page);
3079
3080	maxpages = read_swap_header(p, swap_header, inode);
3081	if (unlikely(!maxpages)) {
3082		error = -EINVAL;
3083		goto bad_swap_unlock_inode;
3084	}
3085
3086	/* OK, set up the swap map and apply the bad block list */
3087	swap_map = vzalloc(maxpages);
3088	if (!swap_map) {
3089		error = -ENOMEM;
3090		goto bad_swap_unlock_inode;
3091	}
3092
3093	if (p->bdev && bdev_stable_writes(p->bdev))
3094		p->flags |= SWP_STABLE_WRITES;
3095
3096	if (p->bdev && bdev_synchronous(p->bdev))
3097		p->flags |= SWP_SYNCHRONOUS_IO;
3098
3099	if (p->bdev && bdev_nonrot(p->bdev)) {
3100		int cpu;
3101		unsigned long ci, nr_cluster;
3102
3103		p->flags |= SWP_SOLIDSTATE;
3104		p->cluster_next_cpu = alloc_percpu(unsigned int);
3105		if (!p->cluster_next_cpu) {
3106			error = -ENOMEM;
3107			goto bad_swap_unlock_inode;
3108		}
3109		/*
3110		 * select a random position to start with to help wear leveling
3111		 * SSD
3112		 */
3113		for_each_possible_cpu(cpu) {
3114			per_cpu(*p->cluster_next_cpu, cpu) =
3115				get_random_u32_inclusive(1, p->highest_bit);
3116		}
3117		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3118
3119		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3120					GFP_KERNEL);
3121		if (!cluster_info) {
3122			error = -ENOMEM;
3123			goto bad_swap_unlock_inode;
3124		}
3125
3126		for (ci = 0; ci < nr_cluster; ci++)
3127			spin_lock_init(&((cluster_info + ci)->lock));
3128
3129		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3130		if (!p->percpu_cluster) {
3131			error = -ENOMEM;
3132			goto bad_swap_unlock_inode;
3133		}
3134		for_each_possible_cpu(cpu) {
3135			struct percpu_cluster *cluster;
3136			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3137			cluster_set_null(&cluster->index);
3138		}
3139	} else {
3140		atomic_inc(&nr_rotate_swap);
3141		inced_nr_rotate_swap = true;
3142	}
3143
3144	error = swap_cgroup_swapon(p->type, maxpages);
3145	if (error)
3146		goto bad_swap_unlock_inode;
3147
3148	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3149		cluster_info, maxpages, &span);
3150	if (unlikely(nr_extents < 0)) {
3151		error = nr_extents;
3152		goto bad_swap_unlock_inode;
3153	}
3154
3155	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3156	    p->bdev && bdev_max_discard_sectors(p->bdev)) {
3157		/*
3158		 * When discard is enabled for swap with no particular
3159		 * policy flagged, we set all swap discard flags here in
3160		 * order to sustain backward compatibility with older
3161		 * swapon(8) releases.
3162		 */
3163		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3164			     SWP_PAGE_DISCARD);
3165
3166		/*
3167		 * By flagging sys_swapon, a sysadmin can tell us to
3168		 * either do single-time area discards only, or to just
3169		 * perform discards for released swap page-clusters.
3170		 * Now it's time to adjust the p->flags accordingly.
3171		 */
3172		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3173			p->flags &= ~SWP_PAGE_DISCARD;
3174		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3175			p->flags &= ~SWP_AREA_DISCARD;
3176
3177		/* issue a swapon-time discard if it's still required */
3178		if (p->flags & SWP_AREA_DISCARD) {
3179			int err = discard_swap(p);
3180			if (unlikely(err))
3181				pr_err("swapon: discard_swap(%p): %d\n",
3182					p, err);
3183		}
3184	}
3185
3186	error = init_swap_address_space(p->type, maxpages);
3187	if (error)
3188		goto bad_swap_unlock_inode;
3189
3190	error = zswap_swapon(p->type, maxpages);
3191	if (error)
3192		goto free_swap_address_space;
3193
3194	/*
3195	 * Flush any pending IO and dirty mappings before we start using this
3196	 * swap device.
3197	 */
3198	inode->i_flags |= S_SWAPFILE;
3199	error = inode_drain_writes(inode);
3200	if (error) {
3201		inode->i_flags &= ~S_SWAPFILE;
3202		goto free_swap_zswap;
3203	}
3204
3205	mutex_lock(&swapon_mutex);
3206	prio = -1;
3207	if (swap_flags & SWAP_FLAG_PREFER)
3208		prio =
3209		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3210	enable_swap_info(p, prio, swap_map, cluster_info);
3211
3212	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3213		K(p->pages), name->name, p->prio, nr_extents,
3214		K((unsigned long long)span),
3215		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3216		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3217		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3218		(p->flags & SWP_PAGE_DISCARD) ? "c" : "");
3219
3220	mutex_unlock(&swapon_mutex);
3221	atomic_inc(&proc_poll_event);
3222	wake_up_interruptible(&proc_poll_wait);
3223
3224	error = 0;
3225	goto out;
3226free_swap_zswap:
3227	zswap_swapoff(p->type);
3228free_swap_address_space:
3229	exit_swap_address_space(p->type);
3230bad_swap_unlock_inode:
3231	inode_unlock(inode);
3232bad_swap:
3233	free_percpu(p->percpu_cluster);
3234	p->percpu_cluster = NULL;
3235	free_percpu(p->cluster_next_cpu);
3236	p->cluster_next_cpu = NULL;
3237	if (p->bdev_file) {
3238		set_blocksize(p->bdev, p->old_block_size);
3239		fput(p->bdev_file);
3240		p->bdev_file = NULL;
3241	}
3242	inode = NULL;
3243	destroy_swap_extents(p);
3244	swap_cgroup_swapoff(p->type);
3245	spin_lock(&swap_lock);
3246	p->swap_file = NULL;
3247	p->flags = 0;
3248	spin_unlock(&swap_lock);
3249	vfree(swap_map);
3250	kvfree(cluster_info);
3251	if (inced_nr_rotate_swap)
3252		atomic_dec(&nr_rotate_swap);
3253	if (swap_file)
3254		filp_close(swap_file, NULL);
3255out:
3256	if (page && !IS_ERR(page)) {
3257		kunmap(page);
3258		put_page(page);
3259	}
3260	if (name)
3261		putname(name);
3262	if (inode)
3263		inode_unlock(inode);
3264	if (!error)
3265		enable_swap_slots_cache();
3266	return error;
3267}
3268
3269void si_swapinfo(struct sysinfo *val)
3270{
3271	unsigned int type;
3272	unsigned long nr_to_be_unused = 0;
3273
3274	spin_lock(&swap_lock);
3275	for (type = 0; type < nr_swapfiles; type++) {
3276		struct swap_info_struct *si = swap_info[type];
3277
3278		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3279			nr_to_be_unused += READ_ONCE(si->inuse_pages);
3280	}
3281	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3282	val->totalswap = total_swap_pages + nr_to_be_unused;
3283	spin_unlock(&swap_lock);
3284}
3285
3286/*
3287 * Verify that a swap entry is valid and increment its swap map count.
3288 *
3289 * Returns error code in following case.
3290 * - success -> 0
3291 * - swp_entry is invalid -> EINVAL
3292 * - swp_entry is migration entry -> EINVAL
3293 * - swap-cache reference is requested but there is already one. -> EEXIST
3294 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3295 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3296 */
3297static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3298{
3299	struct swap_info_struct *p;
3300	struct swap_cluster_info *ci;
3301	unsigned long offset;
3302	unsigned char count;
3303	unsigned char has_cache;
3304	int err;
3305
3306	p = swp_swap_info(entry);
3307
3308	offset = swp_offset(entry);
3309	ci = lock_cluster_or_swap_info(p, offset);
3310
3311	count = p->swap_map[offset];
3312
3313	/*
3314	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3315	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3316	 */
3317	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3318		err = -ENOENT;
3319		goto unlock_out;
3320	}
3321
3322	has_cache = count & SWAP_HAS_CACHE;
3323	count &= ~SWAP_HAS_CACHE;
3324	err = 0;
3325
3326	if (usage == SWAP_HAS_CACHE) {
3327
3328		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3329		if (!has_cache && count)
3330			has_cache = SWAP_HAS_CACHE;
3331		else if (has_cache)		/* someone else added cache */
3332			err = -EEXIST;
3333		else				/* no users remaining */
3334			err = -ENOENT;
3335
3336	} else if (count || has_cache) {
3337
3338		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3339			count += usage;
3340		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3341			err = -EINVAL;
3342		else if (swap_count_continued(p, offset, count))
3343			count = COUNT_CONTINUED;
3344		else
3345			err = -ENOMEM;
3346	} else
3347		err = -ENOENT;			/* unused swap entry */
3348
3349	if (!err)
3350		WRITE_ONCE(p->swap_map[offset], count | has_cache);
3351
3352unlock_out:
3353	unlock_cluster_or_swap_info(p, ci);
3354	return err;
3355}
3356
3357/*
3358 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3359 * (in which case its reference count is never incremented).
3360 */
3361void swap_shmem_alloc(swp_entry_t entry)
3362{
3363	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3364}
3365
3366/*
3367 * Increase reference count of swap entry by 1.
3368 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3369 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3370 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3371 * might occur if a page table entry has got corrupted.
3372 */
3373int swap_duplicate(swp_entry_t entry)
3374{
3375	int err = 0;
3376
3377	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3378		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3379	return err;
3380}
3381
3382/*
3383 * @entry: swap entry for which we allocate swap cache.
3384 *
3385 * Called when allocating swap cache for existing swap entry,
3386 * This can return error codes. Returns 0 at success.
3387 * -EEXIST means there is a swap cache.
3388 * Note: return code is different from swap_duplicate().
3389 */
3390int swapcache_prepare(swp_entry_t entry)
3391{
3392	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3393}
3394
3395void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry)
3396{
3397	struct swap_cluster_info *ci;
3398	unsigned long offset = swp_offset(entry);
3399	unsigned char usage;
3400
3401	ci = lock_cluster_or_swap_info(si, offset);
3402	usage = __swap_entry_free_locked(si, offset, SWAP_HAS_CACHE);
3403	unlock_cluster_or_swap_info(si, ci);
3404	if (!usage)
3405		free_swap_slot(entry);
3406}
3407
3408struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3409{
3410	return swap_type_to_swap_info(swp_type(entry));
3411}
3412
3413/*
3414 * out-of-line methods to avoid include hell.
3415 */
3416struct address_space *swapcache_mapping(struct folio *folio)
3417{
3418	return swp_swap_info(folio->swap)->swap_file->f_mapping;
3419}
3420EXPORT_SYMBOL_GPL(swapcache_mapping);
3421
3422pgoff_t __page_file_index(struct page *page)
3423{
3424	swp_entry_t swap = page_swap_entry(page);
3425	return swp_offset(swap);
3426}
3427EXPORT_SYMBOL_GPL(__page_file_index);
3428
3429/*
3430 * add_swap_count_continuation - called when a swap count is duplicated
3431 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3432 * page of the original vmalloc'ed swap_map, to hold the continuation count
3433 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3434 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3435 *
3436 * These continuation pages are seldom referenced: the common paths all work
3437 * on the original swap_map, only referring to a continuation page when the
3438 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3439 *
3440 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3441 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3442 * can be called after dropping locks.
3443 */
3444int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3445{
3446	struct swap_info_struct *si;
3447	struct swap_cluster_info *ci;
3448	struct page *head;
3449	struct page *page;
3450	struct page *list_page;
3451	pgoff_t offset;
3452	unsigned char count;
3453	int ret = 0;
3454
3455	/*
3456	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3457	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3458	 */
3459	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3460
3461	si = get_swap_device(entry);
3462	if (!si) {
3463		/*
3464		 * An acceptable race has occurred since the failing
3465		 * __swap_duplicate(): the swap device may be swapoff
3466		 */
3467		goto outer;
3468	}
3469	spin_lock(&si->lock);
3470
3471	offset = swp_offset(entry);
3472
3473	ci = lock_cluster(si, offset);
3474
3475	count = swap_count(si->swap_map[offset]);
3476
3477	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3478		/*
3479		 * The higher the swap count, the more likely it is that tasks
3480		 * will race to add swap count continuation: we need to avoid
3481		 * over-provisioning.
3482		 */
3483		goto out;
3484	}
3485
3486	if (!page) {
3487		ret = -ENOMEM;
3488		goto out;
3489	}
3490
3491	head = vmalloc_to_page(si->swap_map + offset);
3492	offset &= ~PAGE_MASK;
3493
3494	spin_lock(&si->cont_lock);
3495	/*
3496	 * Page allocation does not initialize the page's lru field,
3497	 * but it does always reset its private field.
3498	 */
3499	if (!page_private(head)) {
3500		BUG_ON(count & COUNT_CONTINUED);
3501		INIT_LIST_HEAD(&head->lru);
3502		set_page_private(head, SWP_CONTINUED);
3503		si->flags |= SWP_CONTINUED;
3504	}
3505
3506	list_for_each_entry(list_page, &head->lru, lru) {
3507		unsigned char *map;
3508
3509		/*
3510		 * If the previous map said no continuation, but we've found
3511		 * a continuation page, free our allocation and use this one.
3512		 */
3513		if (!(count & COUNT_CONTINUED))
3514			goto out_unlock_cont;
3515
3516		map = kmap_local_page(list_page) + offset;
3517		count = *map;
3518		kunmap_local(map);
3519
3520		/*
3521		 * If this continuation count now has some space in it,
3522		 * free our allocation and use this one.
3523		 */
3524		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3525			goto out_unlock_cont;
3526	}
3527
3528	list_add_tail(&page->lru, &head->lru);
3529	page = NULL;			/* now it's attached, don't free it */
3530out_unlock_cont:
3531	spin_unlock(&si->cont_lock);
3532out:
3533	unlock_cluster(ci);
3534	spin_unlock(&si->lock);
3535	put_swap_device(si);
3536outer:
3537	if (page)
3538		__free_page(page);
3539	return ret;
3540}
3541
3542/*
3543 * swap_count_continued - when the original swap_map count is incremented
3544 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3545 * into, carry if so, or else fail until a new continuation page is allocated;
3546 * when the original swap_map count is decremented from 0 with continuation,
3547 * borrow from the continuation and report whether it still holds more.
3548 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3549 * lock.
3550 */
3551static bool swap_count_continued(struct swap_info_struct *si,
3552				 pgoff_t offset, unsigned char count)
3553{
3554	struct page *head;
3555	struct page *page;
3556	unsigned char *map;
3557	bool ret;
3558
3559	head = vmalloc_to_page(si->swap_map + offset);
3560	if (page_private(head) != SWP_CONTINUED) {
3561		BUG_ON(count & COUNT_CONTINUED);
3562		return false;		/* need to add count continuation */
3563	}
3564
3565	spin_lock(&si->cont_lock);
3566	offset &= ~PAGE_MASK;
3567	page = list_next_entry(head, lru);
3568	map = kmap_local_page(page) + offset;
3569
3570	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3571		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3572
3573	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3574		/*
3575		 * Think of how you add 1 to 999
3576		 */
3577		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3578			kunmap_local(map);
3579			page = list_next_entry(page, lru);
3580			BUG_ON(page == head);
3581			map = kmap_local_page(page) + offset;
3582		}
3583		if (*map == SWAP_CONT_MAX) {
3584			kunmap_local(map);
3585			page = list_next_entry(page, lru);
3586			if (page == head) {
3587				ret = false;	/* add count continuation */
3588				goto out;
3589			}
3590			map = kmap_local_page(page) + offset;
3591init_map:		*map = 0;		/* we didn't zero the page */
3592		}
3593		*map += 1;
3594		kunmap_local(map);
3595		while ((page = list_prev_entry(page, lru)) != head) {
3596			map = kmap_local_page(page) + offset;
3597			*map = COUNT_CONTINUED;
3598			kunmap_local(map);
3599		}
3600		ret = true;			/* incremented */
3601
3602	} else {				/* decrementing */
3603		/*
3604		 * Think of how you subtract 1 from 1000
3605		 */
3606		BUG_ON(count != COUNT_CONTINUED);
3607		while (*map == COUNT_CONTINUED) {
3608			kunmap_local(map);
3609			page = list_next_entry(page, lru);
3610			BUG_ON(page == head);
3611			map = kmap_local_page(page) + offset;
3612		}
3613		BUG_ON(*map == 0);
3614		*map -= 1;
3615		if (*map == 0)
3616			count = 0;
3617		kunmap_local(map);
3618		while ((page = list_prev_entry(page, lru)) != head) {
3619			map = kmap_local_page(page) + offset;
3620			*map = SWAP_CONT_MAX | count;
3621			count = COUNT_CONTINUED;
3622			kunmap_local(map);
3623		}
3624		ret = count == COUNT_CONTINUED;
3625	}
3626out:
3627	spin_unlock(&si->cont_lock);
3628	return ret;
3629}
3630
3631/*
3632 * free_swap_count_continuations - swapoff free all the continuation pages
3633 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3634 */
3635static void free_swap_count_continuations(struct swap_info_struct *si)
3636{
3637	pgoff_t offset;
3638
3639	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3640		struct page *head;
3641		head = vmalloc_to_page(si->swap_map + offset);
3642		if (page_private(head)) {
3643			struct page *page, *next;
3644
3645			list_for_each_entry_safe(page, next, &head->lru, lru) {
3646				list_del(&page->lru);
3647				__free_page(page);
3648			}
3649		}
3650	}
3651}
3652
3653#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3654void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3655{
3656	struct swap_info_struct *si, *next;
3657	int nid = folio_nid(folio);
3658
3659	if (!(gfp & __GFP_IO))
3660		return;
3661
3662	if (!blk_cgroup_congested())
3663		return;
3664
3665	/*
3666	 * We've already scheduled a throttle, avoid taking the global swap
3667	 * lock.
3668	 */
3669	if (current->throttle_disk)
3670		return;
3671
3672	spin_lock(&swap_avail_lock);
3673	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3674				  avail_lists[nid]) {
3675		if (si->bdev) {
3676			blkcg_schedule_throttle(si->bdev->bd_disk, true);
3677			break;
3678		}
3679	}
3680	spin_unlock(&swap_avail_lock);
3681}
3682#endif
3683
3684static int __init swapfile_init(void)
3685{
3686	int nid;
3687
3688	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3689					 GFP_KERNEL);
3690	if (!swap_avail_heads) {
3691		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3692		return -ENOMEM;
3693	}
3694
3695	for_each_node(nid)
3696		plist_head_init(&swap_avail_heads[nid]);
3697
3698	swapfile_maximum_size = arch_max_swapfile_size();
3699
3700#ifdef CONFIG_MIGRATION
3701	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3702		swap_migration_ad_supported = true;
3703#endif	/* CONFIG_MIGRATION */
3704
3705	return 0;
3706}
3707subsys_initcall(swapfile_init);
3708