1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/mm/swap.c
4 *
5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6 */
7
8/*
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17#include <linux/mm.h>
18#include <linux/sched.h>
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/pagevec.h>
24#include <linux/init.h>
25#include <linux/export.h>
26#include <linux/mm_inline.h>
27#include <linux/percpu_counter.h>
28#include <linux/memremap.h>
29#include <linux/percpu.h>
30#include <linux/cpu.h>
31#include <linux/notifier.h>
32#include <linux/backing-dev.h>
33#include <linux/memcontrol.h>
34#include <linux/gfp.h>
35#include <linux/uio.h>
36#include <linux/hugetlb.h>
37#include <linux/page_idle.h>
38#include <linux/local_lock.h>
39#include <linux/buffer_head.h>
40
41#include "internal.h"
42
43#define CREATE_TRACE_POINTS
44#include <trace/events/pagemap.h>
45
46/* How many pages do we try to swap or page in/out together? As a power of 2 */
47int page_cluster;
48const int page_cluster_max = 31;
49
50/* Protecting only lru_rotate.fbatch which requires disabling interrupts */
51struct lru_rotate {
52	local_lock_t lock;
53	struct folio_batch fbatch;
54};
55static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
56	.lock = INIT_LOCAL_LOCK(lock),
57};
58
59/*
60 * The following folio batches are grouped together because they are protected
61 * by disabling preemption (and interrupts remain enabled).
62 */
63struct cpu_fbatches {
64	local_lock_t lock;
65	struct folio_batch lru_add;
66	struct folio_batch lru_deactivate_file;
67	struct folio_batch lru_deactivate;
68	struct folio_batch lru_lazyfree;
69#ifdef CONFIG_SMP
70	struct folio_batch activate;
71#endif
72};
73static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
74	.lock = INIT_LOCAL_LOCK(lock),
75};
76
77static void __page_cache_release(struct folio *folio, struct lruvec **lruvecp,
78		unsigned long *flagsp)
79{
80	if (folio_test_lru(folio)) {
81		folio_lruvec_relock_irqsave(folio, lruvecp, flagsp);
82		lruvec_del_folio(*lruvecp, folio);
83		__folio_clear_lru_flags(folio);
84	}
85
86	/*
87	 * In rare cases, when truncation or holepunching raced with
88	 * munlock after VM_LOCKED was cleared, Mlocked may still be
89	 * found set here.  This does not indicate a problem, unless
90	 * "unevictable_pgs_cleared" appears worryingly large.
91	 */
92	if (unlikely(folio_test_mlocked(folio))) {
93		long nr_pages = folio_nr_pages(folio);
94
95		__folio_clear_mlocked(folio);
96		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
97		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
98	}
99}
100
101/*
102 * This path almost never happens for VM activity - pages are normally freed
103 * in batches.  But it gets used by networking - and for compound pages.
104 */
105static void page_cache_release(struct folio *folio)
106{
107	struct lruvec *lruvec = NULL;
108	unsigned long flags;
109
110	__page_cache_release(folio, &lruvec, &flags);
111	if (lruvec)
112		unlock_page_lruvec_irqrestore(lruvec, flags);
113}
114
115static void __folio_put_small(struct folio *folio)
116{
117	page_cache_release(folio);
118	mem_cgroup_uncharge(folio);
119	free_unref_page(&folio->page, 0);
120}
121
122static void __folio_put_large(struct folio *folio)
123{
124	/*
125	 * __page_cache_release() is supposed to be called for thp, not for
126	 * hugetlb. This is because hugetlb page does never have PageLRU set
127	 * (it's never listed to any LRU lists) and no memcg routines should
128	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
129	 */
130	if (!folio_test_hugetlb(folio))
131		page_cache_release(folio);
132	destroy_large_folio(folio);
133}
134
135void __folio_put(struct folio *folio)
136{
137	if (unlikely(folio_is_zone_device(folio)))
138		free_zone_device_page(&folio->page);
139	else if (unlikely(folio_test_large(folio)))
140		__folio_put_large(folio);
141	else
142		__folio_put_small(folio);
143}
144EXPORT_SYMBOL(__folio_put);
145
146/**
147 * put_pages_list() - release a list of pages
148 * @pages: list of pages threaded on page->lru
149 *
150 * Release a list of pages which are strung together on page.lru.
151 */
152void put_pages_list(struct list_head *pages)
153{
154	struct folio_batch fbatch;
155	struct folio *folio, *next;
156
157	folio_batch_init(&fbatch);
158	list_for_each_entry_safe(folio, next, pages, lru) {
159		if (!folio_put_testzero(folio))
160			continue;
161		if (folio_test_large(folio)) {
162			__folio_put_large(folio);
163			continue;
164		}
165		/* LRU flag must be clear because it's passed using the lru */
166		if (folio_batch_add(&fbatch, folio) > 0)
167			continue;
168		free_unref_folios(&fbatch);
169	}
170
171	if (fbatch.nr)
172		free_unref_folios(&fbatch);
173	INIT_LIST_HEAD(pages);
174}
175EXPORT_SYMBOL(put_pages_list);
176
177typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
178
179static void lru_add_fn(struct lruvec *lruvec, struct folio *folio)
180{
181	int was_unevictable = folio_test_clear_unevictable(folio);
182	long nr_pages = folio_nr_pages(folio);
183
184	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
185
186	/*
187	 * Is an smp_mb__after_atomic() still required here, before
188	 * folio_evictable() tests the mlocked flag, to rule out the possibility
189	 * of stranding an evictable folio on an unevictable LRU?  I think
190	 * not, because __munlock_folio() only clears the mlocked flag
191	 * while the LRU lock is held.
192	 *
193	 * (That is not true of __page_cache_release(), and not necessarily
194	 * true of folios_put(): but those only clear the mlocked flag after
195	 * folio_put_testzero() has excluded any other users of the folio.)
196	 */
197	if (folio_evictable(folio)) {
198		if (was_unevictable)
199			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
200	} else {
201		folio_clear_active(folio);
202		folio_set_unevictable(folio);
203		/*
204		 * folio->mlock_count = !!folio_test_mlocked(folio)?
205		 * But that leaves __mlock_folio() in doubt whether another
206		 * actor has already counted the mlock or not.  Err on the
207		 * safe side, underestimate, let page reclaim fix it, rather
208		 * than leaving a page on the unevictable LRU indefinitely.
209		 */
210		folio->mlock_count = 0;
211		if (!was_unevictable)
212			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
213	}
214
215	lruvec_add_folio(lruvec, folio);
216	trace_mm_lru_insertion(folio);
217}
218
219static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
220{
221	int i;
222	struct lruvec *lruvec = NULL;
223	unsigned long flags = 0;
224
225	for (i = 0; i < folio_batch_count(fbatch); i++) {
226		struct folio *folio = fbatch->folios[i];
227
228		/* block memcg migration while the folio moves between lru */
229		if (move_fn != lru_add_fn && !folio_test_clear_lru(folio))
230			continue;
231
232		folio_lruvec_relock_irqsave(folio, &lruvec, &flags);
233		move_fn(lruvec, folio);
234
235		folio_set_lru(folio);
236	}
237
238	if (lruvec)
239		unlock_page_lruvec_irqrestore(lruvec, flags);
240	folios_put(fbatch);
241}
242
243static void folio_batch_add_and_move(struct folio_batch *fbatch,
244		struct folio *folio, move_fn_t move_fn)
245{
246	if (folio_batch_add(fbatch, folio) && !folio_test_large(folio) &&
247	    !lru_cache_disabled())
248		return;
249	folio_batch_move_lru(fbatch, move_fn);
250}
251
252static void lru_move_tail_fn(struct lruvec *lruvec, struct folio *folio)
253{
254	if (!folio_test_unevictable(folio)) {
255		lruvec_del_folio(lruvec, folio);
256		folio_clear_active(folio);
257		lruvec_add_folio_tail(lruvec, folio);
258		__count_vm_events(PGROTATED, folio_nr_pages(folio));
259	}
260}
261
262/*
263 * Writeback is about to end against a folio which has been marked for
264 * immediate reclaim.  If it still appears to be reclaimable, move it
265 * to the tail of the inactive list.
266 *
267 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
268 */
269void folio_rotate_reclaimable(struct folio *folio)
270{
271	if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
272	    !folio_test_unevictable(folio) && folio_test_lru(folio)) {
273		struct folio_batch *fbatch;
274		unsigned long flags;
275
276		folio_get(folio);
277		local_lock_irqsave(&lru_rotate.lock, flags);
278		fbatch = this_cpu_ptr(&lru_rotate.fbatch);
279		folio_batch_add_and_move(fbatch, folio, lru_move_tail_fn);
280		local_unlock_irqrestore(&lru_rotate.lock, flags);
281	}
282}
283
284void lru_note_cost(struct lruvec *lruvec, bool file,
285		   unsigned int nr_io, unsigned int nr_rotated)
286{
287	unsigned long cost;
288
289	/*
290	 * Reflect the relative cost of incurring IO and spending CPU
291	 * time on rotations. This doesn't attempt to make a precise
292	 * comparison, it just says: if reloads are about comparable
293	 * between the LRU lists, or rotations are overwhelmingly
294	 * different between them, adjust scan balance for CPU work.
295	 */
296	cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
297
298	do {
299		unsigned long lrusize;
300
301		/*
302		 * Hold lruvec->lru_lock is safe here, since
303		 * 1) The pinned lruvec in reclaim, or
304		 * 2) From a pre-LRU page during refault (which also holds the
305		 *    rcu lock, so would be safe even if the page was on the LRU
306		 *    and could move simultaneously to a new lruvec).
307		 */
308		spin_lock_irq(&lruvec->lru_lock);
309		/* Record cost event */
310		if (file)
311			lruvec->file_cost += cost;
312		else
313			lruvec->anon_cost += cost;
314
315		/*
316		 * Decay previous events
317		 *
318		 * Because workloads change over time (and to avoid
319		 * overflow) we keep these statistics as a floating
320		 * average, which ends up weighing recent refaults
321		 * more than old ones.
322		 */
323		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
324			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
325			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
326			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
327
328		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
329			lruvec->file_cost /= 2;
330			lruvec->anon_cost /= 2;
331		}
332		spin_unlock_irq(&lruvec->lru_lock);
333	} while ((lruvec = parent_lruvec(lruvec)));
334}
335
336void lru_note_cost_refault(struct folio *folio)
337{
338	lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
339		      folio_nr_pages(folio), 0);
340}
341
342static void folio_activate_fn(struct lruvec *lruvec, struct folio *folio)
343{
344	if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
345		long nr_pages = folio_nr_pages(folio);
346
347		lruvec_del_folio(lruvec, folio);
348		folio_set_active(folio);
349		lruvec_add_folio(lruvec, folio);
350		trace_mm_lru_activate(folio);
351
352		__count_vm_events(PGACTIVATE, nr_pages);
353		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
354				     nr_pages);
355	}
356}
357
358#ifdef CONFIG_SMP
359static void folio_activate_drain(int cpu)
360{
361	struct folio_batch *fbatch = &per_cpu(cpu_fbatches.activate, cpu);
362
363	if (folio_batch_count(fbatch))
364		folio_batch_move_lru(fbatch, folio_activate_fn);
365}
366
367void folio_activate(struct folio *folio)
368{
369	if (folio_test_lru(folio) && !folio_test_active(folio) &&
370	    !folio_test_unevictable(folio)) {
371		struct folio_batch *fbatch;
372
373		folio_get(folio);
374		local_lock(&cpu_fbatches.lock);
375		fbatch = this_cpu_ptr(&cpu_fbatches.activate);
376		folio_batch_add_and_move(fbatch, folio, folio_activate_fn);
377		local_unlock(&cpu_fbatches.lock);
378	}
379}
380
381#else
382static inline void folio_activate_drain(int cpu)
383{
384}
385
386void folio_activate(struct folio *folio)
387{
388	struct lruvec *lruvec;
389
390	if (folio_test_clear_lru(folio)) {
391		lruvec = folio_lruvec_lock_irq(folio);
392		folio_activate_fn(lruvec, folio);
393		unlock_page_lruvec_irq(lruvec);
394		folio_set_lru(folio);
395	}
396}
397#endif
398
399static void __lru_cache_activate_folio(struct folio *folio)
400{
401	struct folio_batch *fbatch;
402	int i;
403
404	local_lock(&cpu_fbatches.lock);
405	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
406
407	/*
408	 * Search backwards on the optimistic assumption that the folio being
409	 * activated has just been added to this batch. Note that only
410	 * the local batch is examined as a !LRU folio could be in the
411	 * process of being released, reclaimed, migrated or on a remote
412	 * batch that is currently being drained. Furthermore, marking
413	 * a remote batch's folio active potentially hits a race where
414	 * a folio is marked active just after it is added to the inactive
415	 * list causing accounting errors and BUG_ON checks to trigger.
416	 */
417	for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
418		struct folio *batch_folio = fbatch->folios[i];
419
420		if (batch_folio == folio) {
421			folio_set_active(folio);
422			break;
423		}
424	}
425
426	local_unlock(&cpu_fbatches.lock);
427}
428
429#ifdef CONFIG_LRU_GEN
430static void folio_inc_refs(struct folio *folio)
431{
432	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
433
434	if (folio_test_unevictable(folio))
435		return;
436
437	if (!folio_test_referenced(folio)) {
438		folio_set_referenced(folio);
439		return;
440	}
441
442	if (!folio_test_workingset(folio)) {
443		folio_set_workingset(folio);
444		return;
445	}
446
447	/* see the comment on MAX_NR_TIERS */
448	do {
449		new_flags = old_flags & LRU_REFS_MASK;
450		if (new_flags == LRU_REFS_MASK)
451			break;
452
453		new_flags += BIT(LRU_REFS_PGOFF);
454		new_flags |= old_flags & ~LRU_REFS_MASK;
455	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
456}
457#else
458static void folio_inc_refs(struct folio *folio)
459{
460}
461#endif /* CONFIG_LRU_GEN */
462
463/*
464 * Mark a page as having seen activity.
465 *
466 * inactive,unreferenced	->	inactive,referenced
467 * inactive,referenced		->	active,unreferenced
468 * active,unreferenced		->	active,referenced
469 *
470 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
471 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
472 */
473void folio_mark_accessed(struct folio *folio)
474{
475	if (lru_gen_enabled()) {
476		folio_inc_refs(folio);
477		return;
478	}
479
480	if (!folio_test_referenced(folio)) {
481		folio_set_referenced(folio);
482	} else if (folio_test_unevictable(folio)) {
483		/*
484		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
485		 * this list is never rotated or maintained, so marking an
486		 * unevictable page accessed has no effect.
487		 */
488	} else if (!folio_test_active(folio)) {
489		/*
490		 * If the folio is on the LRU, queue it for activation via
491		 * cpu_fbatches.activate. Otherwise, assume the folio is in a
492		 * folio_batch, mark it active and it'll be moved to the active
493		 * LRU on the next drain.
494		 */
495		if (folio_test_lru(folio))
496			folio_activate(folio);
497		else
498			__lru_cache_activate_folio(folio);
499		folio_clear_referenced(folio);
500		workingset_activation(folio);
501	}
502	if (folio_test_idle(folio))
503		folio_clear_idle(folio);
504}
505EXPORT_SYMBOL(folio_mark_accessed);
506
507/**
508 * folio_add_lru - Add a folio to an LRU list.
509 * @folio: The folio to be added to the LRU.
510 *
511 * Queue the folio for addition to the LRU. The decision on whether
512 * to add the page to the [in]active [file|anon] list is deferred until the
513 * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
514 * have the folio added to the active list using folio_mark_accessed().
515 */
516void folio_add_lru(struct folio *folio)
517{
518	struct folio_batch *fbatch;
519
520	VM_BUG_ON_FOLIO(folio_test_active(folio) &&
521			folio_test_unevictable(folio), folio);
522	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
523
524	/* see the comment in lru_gen_add_folio() */
525	if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
526	    lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
527		folio_set_active(folio);
528
529	folio_get(folio);
530	local_lock(&cpu_fbatches.lock);
531	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
532	folio_batch_add_and_move(fbatch, folio, lru_add_fn);
533	local_unlock(&cpu_fbatches.lock);
534}
535EXPORT_SYMBOL(folio_add_lru);
536
537/**
538 * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
539 * @folio: The folio to be added to the LRU.
540 * @vma: VMA in which the folio is mapped.
541 *
542 * If the VMA is mlocked, @folio is added to the unevictable list.
543 * Otherwise, it is treated the same way as folio_add_lru().
544 */
545void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
546{
547	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
548
549	if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
550		mlock_new_folio(folio);
551	else
552		folio_add_lru(folio);
553}
554
555/*
556 * If the folio cannot be invalidated, it is moved to the
557 * inactive list to speed up its reclaim.  It is moved to the
558 * head of the list, rather than the tail, to give the flusher
559 * threads some time to write it out, as this is much more
560 * effective than the single-page writeout from reclaim.
561 *
562 * If the folio isn't mapped and dirty/writeback, the folio
563 * could be reclaimed asap using the reclaim flag.
564 *
565 * 1. active, mapped folio -> none
566 * 2. active, dirty/writeback folio -> inactive, head, reclaim
567 * 3. inactive, mapped folio -> none
568 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
569 * 5. inactive, clean -> inactive, tail
570 * 6. Others -> none
571 *
572 * In 4, it moves to the head of the inactive list so the folio is
573 * written out by flusher threads as this is much more efficient
574 * than the single-page writeout from reclaim.
575 */
576static void lru_deactivate_file_fn(struct lruvec *lruvec, struct folio *folio)
577{
578	bool active = folio_test_active(folio);
579	long nr_pages = folio_nr_pages(folio);
580
581	if (folio_test_unevictable(folio))
582		return;
583
584	/* Some processes are using the folio */
585	if (folio_mapped(folio))
586		return;
587
588	lruvec_del_folio(lruvec, folio);
589	folio_clear_active(folio);
590	folio_clear_referenced(folio);
591
592	if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
593		/*
594		 * Setting the reclaim flag could race with
595		 * folio_end_writeback() and confuse readahead.  But the
596		 * race window is _really_ small and  it's not a critical
597		 * problem.
598		 */
599		lruvec_add_folio(lruvec, folio);
600		folio_set_reclaim(folio);
601	} else {
602		/*
603		 * The folio's writeback ended while it was in the batch.
604		 * We move that folio to the tail of the inactive list.
605		 */
606		lruvec_add_folio_tail(lruvec, folio);
607		__count_vm_events(PGROTATED, nr_pages);
608	}
609
610	if (active) {
611		__count_vm_events(PGDEACTIVATE, nr_pages);
612		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
613				     nr_pages);
614	}
615}
616
617static void lru_deactivate_fn(struct lruvec *lruvec, struct folio *folio)
618{
619	if (!folio_test_unevictable(folio) && (folio_test_active(folio) || lru_gen_enabled())) {
620		long nr_pages = folio_nr_pages(folio);
621
622		lruvec_del_folio(lruvec, folio);
623		folio_clear_active(folio);
624		folio_clear_referenced(folio);
625		lruvec_add_folio(lruvec, folio);
626
627		__count_vm_events(PGDEACTIVATE, nr_pages);
628		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
629				     nr_pages);
630	}
631}
632
633static void lru_lazyfree_fn(struct lruvec *lruvec, struct folio *folio)
634{
635	if (folio_test_anon(folio) && folio_test_swapbacked(folio) &&
636	    !folio_test_swapcache(folio) && !folio_test_unevictable(folio)) {
637		long nr_pages = folio_nr_pages(folio);
638
639		lruvec_del_folio(lruvec, folio);
640		folio_clear_active(folio);
641		folio_clear_referenced(folio);
642		/*
643		 * Lazyfree folios are clean anonymous folios.  They have
644		 * the swapbacked flag cleared, to distinguish them from normal
645		 * anonymous folios
646		 */
647		folio_clear_swapbacked(folio);
648		lruvec_add_folio(lruvec, folio);
649
650		__count_vm_events(PGLAZYFREE, nr_pages);
651		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
652				     nr_pages);
653	}
654}
655
656/*
657 * Drain pages out of the cpu's folio_batch.
658 * Either "cpu" is the current CPU, and preemption has already been
659 * disabled; or "cpu" is being hot-unplugged, and is already dead.
660 */
661void lru_add_drain_cpu(int cpu)
662{
663	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
664	struct folio_batch *fbatch = &fbatches->lru_add;
665
666	if (folio_batch_count(fbatch))
667		folio_batch_move_lru(fbatch, lru_add_fn);
668
669	fbatch = &per_cpu(lru_rotate.fbatch, cpu);
670	/* Disabling interrupts below acts as a compiler barrier. */
671	if (data_race(folio_batch_count(fbatch))) {
672		unsigned long flags;
673
674		/* No harm done if a racing interrupt already did this */
675		local_lock_irqsave(&lru_rotate.lock, flags);
676		folio_batch_move_lru(fbatch, lru_move_tail_fn);
677		local_unlock_irqrestore(&lru_rotate.lock, flags);
678	}
679
680	fbatch = &fbatches->lru_deactivate_file;
681	if (folio_batch_count(fbatch))
682		folio_batch_move_lru(fbatch, lru_deactivate_file_fn);
683
684	fbatch = &fbatches->lru_deactivate;
685	if (folio_batch_count(fbatch))
686		folio_batch_move_lru(fbatch, lru_deactivate_fn);
687
688	fbatch = &fbatches->lru_lazyfree;
689	if (folio_batch_count(fbatch))
690		folio_batch_move_lru(fbatch, lru_lazyfree_fn);
691
692	folio_activate_drain(cpu);
693}
694
695/**
696 * deactivate_file_folio() - Deactivate a file folio.
697 * @folio: Folio to deactivate.
698 *
699 * This function hints to the VM that @folio is a good reclaim candidate,
700 * for example if its invalidation fails due to the folio being dirty
701 * or under writeback.
702 *
703 * Context: Caller holds a reference on the folio.
704 */
705void deactivate_file_folio(struct folio *folio)
706{
707	struct folio_batch *fbatch;
708
709	/* Deactivating an unevictable folio will not accelerate reclaim */
710	if (folio_test_unevictable(folio))
711		return;
712
713	folio_get(folio);
714	local_lock(&cpu_fbatches.lock);
715	fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate_file);
716	folio_batch_add_and_move(fbatch, folio, lru_deactivate_file_fn);
717	local_unlock(&cpu_fbatches.lock);
718}
719
720/*
721 * folio_deactivate - deactivate a folio
722 * @folio: folio to deactivate
723 *
724 * folio_deactivate() moves @folio to the inactive list if @folio was on the
725 * active list and was not unevictable. This is done to accelerate the
726 * reclaim of @folio.
727 */
728void folio_deactivate(struct folio *folio)
729{
730	if (folio_test_lru(folio) && !folio_test_unevictable(folio) &&
731	    (folio_test_active(folio) || lru_gen_enabled())) {
732		struct folio_batch *fbatch;
733
734		folio_get(folio);
735		local_lock(&cpu_fbatches.lock);
736		fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate);
737		folio_batch_add_and_move(fbatch, folio, lru_deactivate_fn);
738		local_unlock(&cpu_fbatches.lock);
739	}
740}
741
742/**
743 * folio_mark_lazyfree - make an anon folio lazyfree
744 * @folio: folio to deactivate
745 *
746 * folio_mark_lazyfree() moves @folio to the inactive file list.
747 * This is done to accelerate the reclaim of @folio.
748 */
749void folio_mark_lazyfree(struct folio *folio)
750{
751	if (folio_test_lru(folio) && folio_test_anon(folio) &&
752	    folio_test_swapbacked(folio) && !folio_test_swapcache(folio) &&
753	    !folio_test_unevictable(folio)) {
754		struct folio_batch *fbatch;
755
756		folio_get(folio);
757		local_lock(&cpu_fbatches.lock);
758		fbatch = this_cpu_ptr(&cpu_fbatches.lru_lazyfree);
759		folio_batch_add_and_move(fbatch, folio, lru_lazyfree_fn);
760		local_unlock(&cpu_fbatches.lock);
761	}
762}
763
764void lru_add_drain(void)
765{
766	local_lock(&cpu_fbatches.lock);
767	lru_add_drain_cpu(smp_processor_id());
768	local_unlock(&cpu_fbatches.lock);
769	mlock_drain_local();
770}
771
772/*
773 * It's called from per-cpu workqueue context in SMP case so
774 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
775 * the same cpu. It shouldn't be a problem in !SMP case since
776 * the core is only one and the locks will disable preemption.
777 */
778static void lru_add_and_bh_lrus_drain(void)
779{
780	local_lock(&cpu_fbatches.lock);
781	lru_add_drain_cpu(smp_processor_id());
782	local_unlock(&cpu_fbatches.lock);
783	invalidate_bh_lrus_cpu();
784	mlock_drain_local();
785}
786
787void lru_add_drain_cpu_zone(struct zone *zone)
788{
789	local_lock(&cpu_fbatches.lock);
790	lru_add_drain_cpu(smp_processor_id());
791	drain_local_pages(zone);
792	local_unlock(&cpu_fbatches.lock);
793	mlock_drain_local();
794}
795
796#ifdef CONFIG_SMP
797
798static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
799
800static void lru_add_drain_per_cpu(struct work_struct *dummy)
801{
802	lru_add_and_bh_lrus_drain();
803}
804
805static bool cpu_needs_drain(unsigned int cpu)
806{
807	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
808
809	/* Check these in order of likelihood that they're not zero */
810	return folio_batch_count(&fbatches->lru_add) ||
811		data_race(folio_batch_count(&per_cpu(lru_rotate.fbatch, cpu))) ||
812		folio_batch_count(&fbatches->lru_deactivate_file) ||
813		folio_batch_count(&fbatches->lru_deactivate) ||
814		folio_batch_count(&fbatches->lru_lazyfree) ||
815		folio_batch_count(&fbatches->activate) ||
816		need_mlock_drain(cpu) ||
817		has_bh_in_lru(cpu, NULL);
818}
819
820/*
821 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
822 * kworkers being shut down before our page_alloc_cpu_dead callback is
823 * executed on the offlined cpu.
824 * Calling this function with cpu hotplug locks held can actually lead
825 * to obscure indirect dependencies via WQ context.
826 */
827static inline void __lru_add_drain_all(bool force_all_cpus)
828{
829	/*
830	 * lru_drain_gen - Global pages generation number
831	 *
832	 * (A) Definition: global lru_drain_gen = x implies that all generations
833	 *     0 < n <= x are already *scheduled* for draining.
834	 *
835	 * This is an optimization for the highly-contended use case where a
836	 * user space workload keeps constantly generating a flow of pages for
837	 * each CPU.
838	 */
839	static unsigned int lru_drain_gen;
840	static struct cpumask has_work;
841	static DEFINE_MUTEX(lock);
842	unsigned cpu, this_gen;
843
844	/*
845	 * Make sure nobody triggers this path before mm_percpu_wq is fully
846	 * initialized.
847	 */
848	if (WARN_ON(!mm_percpu_wq))
849		return;
850
851	/*
852	 * Guarantee folio_batch counter stores visible by this CPU
853	 * are visible to other CPUs before loading the current drain
854	 * generation.
855	 */
856	smp_mb();
857
858	/*
859	 * (B) Locally cache global LRU draining generation number
860	 *
861	 * The read barrier ensures that the counter is loaded before the mutex
862	 * is taken. It pairs with smp_mb() inside the mutex critical section
863	 * at (D).
864	 */
865	this_gen = smp_load_acquire(&lru_drain_gen);
866
867	mutex_lock(&lock);
868
869	/*
870	 * (C) Exit the draining operation if a newer generation, from another
871	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
872	 */
873	if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
874		goto done;
875
876	/*
877	 * (D) Increment global generation number
878	 *
879	 * Pairs with smp_load_acquire() at (B), outside of the critical
880	 * section. Use a full memory barrier to guarantee that the
881	 * new global drain generation number is stored before loading
882	 * folio_batch counters.
883	 *
884	 * This pairing must be done here, before the for_each_online_cpu loop
885	 * below which drains the page vectors.
886	 *
887	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
888	 * Assume CPU #z is in the middle of the for_each_online_cpu loop
889	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
890	 * along, adds some pages to its per-cpu vectors, then calls
891	 * lru_add_drain_all().
892	 *
893	 * If the paired barrier is done at any later step, e.g. after the
894	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
895	 * added pages.
896	 */
897	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
898	smp_mb();
899
900	cpumask_clear(&has_work);
901	for_each_online_cpu(cpu) {
902		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
903
904		if (cpu_needs_drain(cpu)) {
905			INIT_WORK(work, lru_add_drain_per_cpu);
906			queue_work_on(cpu, mm_percpu_wq, work);
907			__cpumask_set_cpu(cpu, &has_work);
908		}
909	}
910
911	for_each_cpu(cpu, &has_work)
912		flush_work(&per_cpu(lru_add_drain_work, cpu));
913
914done:
915	mutex_unlock(&lock);
916}
917
918void lru_add_drain_all(void)
919{
920	__lru_add_drain_all(false);
921}
922#else
923void lru_add_drain_all(void)
924{
925	lru_add_drain();
926}
927#endif /* CONFIG_SMP */
928
929atomic_t lru_disable_count = ATOMIC_INIT(0);
930
931/*
932 * lru_cache_disable() needs to be called before we start compiling
933 * a list of pages to be migrated using isolate_lru_page().
934 * It drains pages on LRU cache and then disable on all cpus until
935 * lru_cache_enable is called.
936 *
937 * Must be paired with a call to lru_cache_enable().
938 */
939void lru_cache_disable(void)
940{
941	atomic_inc(&lru_disable_count);
942	/*
943	 * Readers of lru_disable_count are protected by either disabling
944	 * preemption or rcu_read_lock:
945	 *
946	 * preempt_disable, local_irq_disable  [bh_lru_lock()]
947	 * rcu_read_lock		       [rt_spin_lock CONFIG_PREEMPT_RT]
948	 * preempt_disable		       [local_lock !CONFIG_PREEMPT_RT]
949	 *
950	 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
951	 * preempt_disable() regions of code. So any CPU which sees
952	 * lru_disable_count = 0 will have exited the critical
953	 * section when synchronize_rcu() returns.
954	 */
955	synchronize_rcu_expedited();
956#ifdef CONFIG_SMP
957	__lru_add_drain_all(true);
958#else
959	lru_add_and_bh_lrus_drain();
960#endif
961}
962
963/**
964 * folios_put_refs - Reduce the reference count on a batch of folios.
965 * @folios: The folios.
966 * @refs: The number of refs to subtract from each folio.
967 *
968 * Like folio_put(), but for a batch of folios.  This is more efficient
969 * than writing the loop yourself as it will optimise the locks which need
970 * to be taken if the folios are freed.  The folios batch is returned
971 * empty and ready to be reused for another batch; there is no need
972 * to reinitialise it.  If @refs is NULL, we subtract one from each
973 * folio refcount.
974 *
975 * Context: May be called in process or interrupt context, but not in NMI
976 * context.  May be called while holding a spinlock.
977 */
978void folios_put_refs(struct folio_batch *folios, unsigned int *refs)
979{
980	int i, j;
981	struct lruvec *lruvec = NULL;
982	unsigned long flags = 0;
983
984	for (i = 0, j = 0; i < folios->nr; i++) {
985		struct folio *folio = folios->folios[i];
986		unsigned int nr_refs = refs ? refs[i] : 1;
987
988		if (is_huge_zero_page(&folio->page))
989			continue;
990
991		if (folio_is_zone_device(folio)) {
992			if (lruvec) {
993				unlock_page_lruvec_irqrestore(lruvec, flags);
994				lruvec = NULL;
995			}
996			if (put_devmap_managed_page_refs(&folio->page, nr_refs))
997				continue;
998			if (folio_ref_sub_and_test(folio, nr_refs))
999				free_zone_device_page(&folio->page);
1000			continue;
1001		}
1002
1003		if (!folio_ref_sub_and_test(folio, nr_refs))
1004			continue;
1005
1006		/* hugetlb has its own memcg */
1007		if (folio_test_hugetlb(folio)) {
1008			if (lruvec) {
1009				unlock_page_lruvec_irqrestore(lruvec, flags);
1010				lruvec = NULL;
1011			}
1012			free_huge_folio(folio);
1013			continue;
1014		}
1015		if (folio_test_large(folio) &&
1016		    folio_test_large_rmappable(folio))
1017			folio_undo_large_rmappable(folio);
1018
1019		__page_cache_release(folio, &lruvec, &flags);
1020
1021		if (j != i)
1022			folios->folios[j] = folio;
1023		j++;
1024	}
1025	if (lruvec)
1026		unlock_page_lruvec_irqrestore(lruvec, flags);
1027	if (!j) {
1028		folio_batch_reinit(folios);
1029		return;
1030	}
1031
1032	folios->nr = j;
1033	mem_cgroup_uncharge_folios(folios);
1034	free_unref_folios(folios);
1035}
1036EXPORT_SYMBOL(folios_put_refs);
1037
1038/**
1039 * release_pages - batched put_page()
1040 * @arg: array of pages to release
1041 * @nr: number of pages
1042 *
1043 * Decrement the reference count on all the pages in @arg.  If it
1044 * fell to zero, remove the page from the LRU and free it.
1045 *
1046 * Note that the argument can be an array of pages, encoded pages,
1047 * or folio pointers. We ignore any encoded bits, and turn any of
1048 * them into just a folio that gets free'd.
1049 */
1050void release_pages(release_pages_arg arg, int nr)
1051{
1052	struct folio_batch fbatch;
1053	int refs[PAGEVEC_SIZE];
1054	struct encoded_page **encoded = arg.encoded_pages;
1055	int i;
1056
1057	folio_batch_init(&fbatch);
1058	for (i = 0; i < nr; i++) {
1059		/* Turn any of the argument types into a folio */
1060		struct folio *folio = page_folio(encoded_page_ptr(encoded[i]));
1061
1062		/* Is our next entry actually "nr_pages" -> "nr_refs" ? */
1063		refs[fbatch.nr] = 1;
1064		if (unlikely(encoded_page_flags(encoded[i]) &
1065			     ENCODED_PAGE_BIT_NR_PAGES_NEXT))
1066			refs[fbatch.nr] = encoded_nr_pages(encoded[++i]);
1067
1068		if (folio_batch_add(&fbatch, folio) > 0)
1069			continue;
1070		folios_put_refs(&fbatch, refs);
1071	}
1072
1073	if (fbatch.nr)
1074		folios_put_refs(&fbatch, refs);
1075}
1076EXPORT_SYMBOL(release_pages);
1077
1078/*
1079 * The folios which we're about to release may be in the deferred lru-addition
1080 * queues.  That would prevent them from really being freed right now.  That's
1081 * OK from a correctness point of view but is inefficient - those folios may be
1082 * cache-warm and we want to give them back to the page allocator ASAP.
1083 *
1084 * So __folio_batch_release() will drain those queues here.
1085 * folio_batch_move_lru() calls folios_put() directly to avoid
1086 * mutual recursion.
1087 */
1088void __folio_batch_release(struct folio_batch *fbatch)
1089{
1090	if (!fbatch->percpu_pvec_drained) {
1091		lru_add_drain();
1092		fbatch->percpu_pvec_drained = true;
1093	}
1094	folios_put(fbatch);
1095}
1096EXPORT_SYMBOL(__folio_batch_release);
1097
1098/**
1099 * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1100 * @fbatch: The batch to prune
1101 *
1102 * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1103 * entries.  This function prunes all the non-folio entries from @fbatch
1104 * without leaving holes, so that it can be passed on to folio-only batch
1105 * operations.
1106 */
1107void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1108{
1109	unsigned int i, j;
1110
1111	for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1112		struct folio *folio = fbatch->folios[i];
1113		if (!xa_is_value(folio))
1114			fbatch->folios[j++] = folio;
1115	}
1116	fbatch->nr = j;
1117}
1118
1119/*
1120 * Perform any setup for the swap system
1121 */
1122void __init swap_setup(void)
1123{
1124	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1125
1126	/* Use a smaller cluster for small-memory machines */
1127	if (megs < 16)
1128		page_cluster = 2;
1129	else
1130		page_cluster = 3;
1131	/*
1132	 * Right now other parts of the system means that we
1133	 * _really_ don't want to cluster much more
1134	 */
1135}
1136