1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13#include <linux/mm.h>
14#include <linux/swap.h> /* mm_account_reclaimed_pages() */
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/swab.h>
19#include <linux/bitops.h>
20#include <linux/slab.h>
21#include "slab.h"
22#include <linux/proc_fs.h>
23#include <linux/seq_file.h>
24#include <linux/kasan.h>
25#include <linux/kmsan.h>
26#include <linux/cpu.h>
27#include <linux/cpuset.h>
28#include <linux/mempolicy.h>
29#include <linux/ctype.h>
30#include <linux/stackdepot.h>
31#include <linux/debugobjects.h>
32#include <linux/kallsyms.h>
33#include <linux/kfence.h>
34#include <linux/memory.h>
35#include <linux/math64.h>
36#include <linux/fault-inject.h>
37#include <linux/kmemleak.h>
38#include <linux/stacktrace.h>
39#include <linux/prefetch.h>
40#include <linux/memcontrol.h>
41#include <linux/random.h>
42#include <kunit/test.h>
43#include <kunit/test-bug.h>
44#include <linux/sort.h>
45
46#include <linux/debugfs.h>
47#include <trace/events/kmem.h>
48
49#include "internal.h"
50
51/*
52 * Lock order:
53 *   1. slab_mutex (Global Mutex)
54 *   2. node->list_lock (Spinlock)
55 *   3. kmem_cache->cpu_slab->lock (Local lock)
56 *   4. slab_lock(slab) (Only on some arches)
57 *   5. object_map_lock (Only for debugging)
58 *
59 *   slab_mutex
60 *
61 *   The role of the slab_mutex is to protect the list of all the slabs
62 *   and to synchronize major metadata changes to slab cache structures.
63 *   Also synchronizes memory hotplug callbacks.
64 *
65 *   slab_lock
66 *
67 *   The slab_lock is a wrapper around the page lock, thus it is a bit
68 *   spinlock.
69 *
70 *   The slab_lock is only used on arches that do not have the ability
71 *   to do a cmpxchg_double. It only protects:
72 *
73 *	A. slab->freelist	-> List of free objects in a slab
74 *	B. slab->inuse		-> Number of objects in use
75 *	C. slab->objects	-> Number of objects in slab
76 *	D. slab->frozen		-> frozen state
77 *
78 *   Frozen slabs
79 *
80 *   If a slab is frozen then it is exempt from list management. It is
81 *   the cpu slab which is actively allocated from by the processor that
82 *   froze it and it is not on any list. The processor that froze the
83 *   slab is the one who can perform list operations on the slab. Other
84 *   processors may put objects onto the freelist but the processor that
85 *   froze the slab is the only one that can retrieve the objects from the
86 *   slab's freelist.
87 *
88 *   CPU partial slabs
89 *
90 *   The partially empty slabs cached on the CPU partial list are used
91 *   for performance reasons, which speeds up the allocation process.
92 *   These slabs are not frozen, but are also exempt from list management,
93 *   by clearing the PG_workingset flag when moving out of the node
94 *   partial list. Please see __slab_free() for more details.
95 *
96 *   To sum up, the current scheme is:
97 *   - node partial slab: PG_Workingset && !frozen
98 *   - cpu partial slab: !PG_Workingset && !frozen
99 *   - cpu slab: !PG_Workingset && frozen
100 *   - full slab: !PG_Workingset && !frozen
101 *
102 *   list_lock
103 *
104 *   The list_lock protects the partial and full list on each node and
105 *   the partial slab counter. If taken then no new slabs may be added or
106 *   removed from the lists nor make the number of partial slabs be modified.
107 *   (Note that the total number of slabs is an atomic value that may be
108 *   modified without taking the list lock).
109 *
110 *   The list_lock is a centralized lock and thus we avoid taking it as
111 *   much as possible. As long as SLUB does not have to handle partial
112 *   slabs, operations can continue without any centralized lock. F.e.
113 *   allocating a long series of objects that fill up slabs does not require
114 *   the list lock.
115 *
116 *   For debug caches, all allocations are forced to go through a list_lock
117 *   protected region to serialize against concurrent validation.
118 *
119 *   cpu_slab->lock local lock
120 *
121 *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
122 *   except the stat counters. This is a percpu structure manipulated only by
123 *   the local cpu, so the lock protects against being preempted or interrupted
124 *   by an irq. Fast path operations rely on lockless operations instead.
125 *
126 *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127 *   which means the lockless fastpath cannot be used as it might interfere with
128 *   an in-progress slow path operations. In this case the local lock is always
129 *   taken but it still utilizes the freelist for the common operations.
130 *
131 *   lockless fastpaths
132 *
133 *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134 *   are fully lockless when satisfied from the percpu slab (and when
135 *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
136 *   They also don't disable preemption or migration or irqs. They rely on
137 *   the transaction id (tid) field to detect being preempted or moved to
138 *   another cpu.
139 *
140 *   irq, preemption, migration considerations
141 *
142 *   Interrupts are disabled as part of list_lock or local_lock operations, or
143 *   around the slab_lock operation, in order to make the slab allocator safe
144 *   to use in the context of an irq.
145 *
146 *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147 *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148 *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149 *   doesn't have to be revalidated in each section protected by the local lock.
150 *
151 * SLUB assigns one slab for allocation to each processor.
152 * Allocations only occur from these slabs called cpu slabs.
153 *
154 * Slabs with free elements are kept on a partial list and during regular
155 * operations no list for full slabs is used. If an object in a full slab is
156 * freed then the slab will show up again on the partial lists.
157 * We track full slabs for debugging purposes though because otherwise we
158 * cannot scan all objects.
159 *
160 * Slabs are freed when they become empty. Teardown and setup is
161 * minimal so we rely on the page allocators per cpu caches for
162 * fast frees and allocs.
163 *
164 * slab->frozen		The slab is frozen and exempt from list processing.
165 * 			This means that the slab is dedicated to a purpose
166 * 			such as satisfying allocations for a specific
167 * 			processor. Objects may be freed in the slab while
168 * 			it is frozen but slab_free will then skip the usual
169 * 			list operations. It is up to the processor holding
170 * 			the slab to integrate the slab into the slab lists
171 * 			when the slab is no longer needed.
172 *
173 * 			One use of this flag is to mark slabs that are
174 * 			used for allocations. Then such a slab becomes a cpu
175 * 			slab. The cpu slab may be equipped with an additional
176 * 			freelist that allows lockless access to
177 * 			free objects in addition to the regular freelist
178 * 			that requires the slab lock.
179 *
180 * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
181 * 			options set. This moves	slab handling out of
182 * 			the fast path and disables lockless freelists.
183 */
184
185/*
186 * We could simply use migrate_disable()/enable() but as long as it's a
187 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
188 */
189#ifndef CONFIG_PREEMPT_RT
190#define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
191#define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
192#define USE_LOCKLESS_FAST_PATH()	(true)
193#else
194#define slub_get_cpu_ptr(var)		\
195({					\
196	migrate_disable();		\
197	this_cpu_ptr(var);		\
198})
199#define slub_put_cpu_ptr(var)		\
200do {					\
201	(void)(var);			\
202	migrate_enable();		\
203} while (0)
204#define USE_LOCKLESS_FAST_PATH()	(false)
205#endif
206
207#ifndef CONFIG_SLUB_TINY
208#define __fastpath_inline __always_inline
209#else
210#define __fastpath_inline
211#endif
212
213#ifdef CONFIG_SLUB_DEBUG
214#ifdef CONFIG_SLUB_DEBUG_ON
215DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
216#else
217DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
218#endif
219#endif		/* CONFIG_SLUB_DEBUG */
220
221/* Structure holding parameters for get_partial() call chain */
222struct partial_context {
223	gfp_t flags;
224	unsigned int orig_size;
225	void *object;
226};
227
228static inline bool kmem_cache_debug(struct kmem_cache *s)
229{
230	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
231}
232
233static inline bool slub_debug_orig_size(struct kmem_cache *s)
234{
235	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
236			(s->flags & SLAB_KMALLOC));
237}
238
239void *fixup_red_left(struct kmem_cache *s, void *p)
240{
241	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
242		p += s->red_left_pad;
243
244	return p;
245}
246
247static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
248{
249#ifdef CONFIG_SLUB_CPU_PARTIAL
250	return !kmem_cache_debug(s);
251#else
252	return false;
253#endif
254}
255
256/*
257 * Issues still to be resolved:
258 *
259 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
260 *
261 * - Variable sizing of the per node arrays
262 */
263
264/* Enable to log cmpxchg failures */
265#undef SLUB_DEBUG_CMPXCHG
266
267#ifndef CONFIG_SLUB_TINY
268/*
269 * Minimum number of partial slabs. These will be left on the partial
270 * lists even if they are empty. kmem_cache_shrink may reclaim them.
271 */
272#define MIN_PARTIAL 5
273
274/*
275 * Maximum number of desirable partial slabs.
276 * The existence of more partial slabs makes kmem_cache_shrink
277 * sort the partial list by the number of objects in use.
278 */
279#define MAX_PARTIAL 10
280#else
281#define MIN_PARTIAL 0
282#define MAX_PARTIAL 0
283#endif
284
285#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
286				SLAB_POISON | SLAB_STORE_USER)
287
288/*
289 * These debug flags cannot use CMPXCHG because there might be consistency
290 * issues when checking or reading debug information
291 */
292#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
293				SLAB_TRACE)
294
295
296/*
297 * Debugging flags that require metadata to be stored in the slab.  These get
298 * disabled when slab_debug=O is used and a cache's min order increases with
299 * metadata.
300 */
301#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
302
303#define OO_SHIFT	16
304#define OO_MASK		((1 << OO_SHIFT) - 1)
305#define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
306
307/* Internal SLUB flags */
308/* Poison object */
309#define __OBJECT_POISON		__SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
310/* Use cmpxchg_double */
311
312#ifdef system_has_freelist_aba
313#define __CMPXCHG_DOUBLE	__SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
314#else
315#define __CMPXCHG_DOUBLE	__SLAB_FLAG_UNUSED
316#endif
317
318/*
319 * Tracking user of a slab.
320 */
321#define TRACK_ADDRS_COUNT 16
322struct track {
323	unsigned long addr;	/* Called from address */
324#ifdef CONFIG_STACKDEPOT
325	depot_stack_handle_t handle;
326#endif
327	int cpu;		/* Was running on cpu */
328	int pid;		/* Pid context */
329	unsigned long when;	/* When did the operation occur */
330};
331
332enum track_item { TRACK_ALLOC, TRACK_FREE };
333
334#ifdef SLAB_SUPPORTS_SYSFS
335static int sysfs_slab_add(struct kmem_cache *);
336static int sysfs_slab_alias(struct kmem_cache *, const char *);
337#else
338static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
339static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
340							{ return 0; }
341#endif
342
343#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
344static void debugfs_slab_add(struct kmem_cache *);
345#else
346static inline void debugfs_slab_add(struct kmem_cache *s) { }
347#endif
348
349enum stat_item {
350	ALLOC_FASTPATH,		/* Allocation from cpu slab */
351	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
352	FREE_FASTPATH,		/* Free to cpu slab */
353	FREE_SLOWPATH,		/* Freeing not to cpu slab */
354	FREE_FROZEN,		/* Freeing to frozen slab */
355	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
356	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
357	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
358	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
359	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
360	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
361	FREE_SLAB,		/* Slab freed to the page allocator */
362	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
363	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
364	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
365	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
366	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
367	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
368	DEACTIVATE_BYPASS,	/* Implicit deactivation */
369	ORDER_FALLBACK,		/* Number of times fallback was necessary */
370	CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
371	CMPXCHG_DOUBLE_FAIL,	/* Failures of slab freelist update */
372	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
373	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
374	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
375	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
376	NR_SLUB_STAT_ITEMS
377};
378
379#ifndef CONFIG_SLUB_TINY
380/*
381 * When changing the layout, make sure freelist and tid are still compatible
382 * with this_cpu_cmpxchg_double() alignment requirements.
383 */
384struct kmem_cache_cpu {
385	union {
386		struct {
387			void **freelist;	/* Pointer to next available object */
388			unsigned long tid;	/* Globally unique transaction id */
389		};
390		freelist_aba_t freelist_tid;
391	};
392	struct slab *slab;	/* The slab from which we are allocating */
393#ifdef CONFIG_SLUB_CPU_PARTIAL
394	struct slab *partial;	/* Partially allocated slabs */
395#endif
396	local_lock_t lock;	/* Protects the fields above */
397#ifdef CONFIG_SLUB_STATS
398	unsigned int stat[NR_SLUB_STAT_ITEMS];
399#endif
400};
401#endif /* CONFIG_SLUB_TINY */
402
403static inline void stat(const struct kmem_cache *s, enum stat_item si)
404{
405#ifdef CONFIG_SLUB_STATS
406	/*
407	 * The rmw is racy on a preemptible kernel but this is acceptable, so
408	 * avoid this_cpu_add()'s irq-disable overhead.
409	 */
410	raw_cpu_inc(s->cpu_slab->stat[si]);
411#endif
412}
413
414static inline
415void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
416{
417#ifdef CONFIG_SLUB_STATS
418	raw_cpu_add(s->cpu_slab->stat[si], v);
419#endif
420}
421
422/*
423 * The slab lists for all objects.
424 */
425struct kmem_cache_node {
426	spinlock_t list_lock;
427	unsigned long nr_partial;
428	struct list_head partial;
429#ifdef CONFIG_SLUB_DEBUG
430	atomic_long_t nr_slabs;
431	atomic_long_t total_objects;
432	struct list_head full;
433#endif
434};
435
436static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
437{
438	return s->node[node];
439}
440
441/*
442 * Iterator over all nodes. The body will be executed for each node that has
443 * a kmem_cache_node structure allocated (which is true for all online nodes)
444 */
445#define for_each_kmem_cache_node(__s, __node, __n) \
446	for (__node = 0; __node < nr_node_ids; __node++) \
447		 if ((__n = get_node(__s, __node)))
448
449/*
450 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
451 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
452 * differ during memory hotplug/hotremove operations.
453 * Protected by slab_mutex.
454 */
455static nodemask_t slab_nodes;
456
457#ifndef CONFIG_SLUB_TINY
458/*
459 * Workqueue used for flush_cpu_slab().
460 */
461static struct workqueue_struct *flushwq;
462#endif
463
464/********************************************************************
465 * 			Core slab cache functions
466 *******************************************************************/
467
468/*
469 * freeptr_t represents a SLUB freelist pointer, which might be encoded
470 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
471 */
472typedef struct { unsigned long v; } freeptr_t;
473
474/*
475 * Returns freelist pointer (ptr). With hardening, this is obfuscated
476 * with an XOR of the address where the pointer is held and a per-cache
477 * random number.
478 */
479static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
480					    void *ptr, unsigned long ptr_addr)
481{
482	unsigned long encoded;
483
484#ifdef CONFIG_SLAB_FREELIST_HARDENED
485	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
486#else
487	encoded = (unsigned long)ptr;
488#endif
489	return (freeptr_t){.v = encoded};
490}
491
492static inline void *freelist_ptr_decode(const struct kmem_cache *s,
493					freeptr_t ptr, unsigned long ptr_addr)
494{
495	void *decoded;
496
497#ifdef CONFIG_SLAB_FREELIST_HARDENED
498	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
499#else
500	decoded = (void *)ptr.v;
501#endif
502	return decoded;
503}
504
505static inline void *get_freepointer(struct kmem_cache *s, void *object)
506{
507	unsigned long ptr_addr;
508	freeptr_t p;
509
510	object = kasan_reset_tag(object);
511	ptr_addr = (unsigned long)object + s->offset;
512	p = *(freeptr_t *)(ptr_addr);
513	return freelist_ptr_decode(s, p, ptr_addr);
514}
515
516#ifndef CONFIG_SLUB_TINY
517static void prefetch_freepointer(const struct kmem_cache *s, void *object)
518{
519	prefetchw(object + s->offset);
520}
521#endif
522
523/*
524 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
525 * pointer value in the case the current thread loses the race for the next
526 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
527 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
528 * KMSAN will still check all arguments of cmpxchg because of imperfect
529 * handling of inline assembly.
530 * To work around this problem, we apply __no_kmsan_checks to ensure that
531 * get_freepointer_safe() returns initialized memory.
532 */
533__no_kmsan_checks
534static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
535{
536	unsigned long freepointer_addr;
537	freeptr_t p;
538
539	if (!debug_pagealloc_enabled_static())
540		return get_freepointer(s, object);
541
542	object = kasan_reset_tag(object);
543	freepointer_addr = (unsigned long)object + s->offset;
544	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
545	return freelist_ptr_decode(s, p, freepointer_addr);
546}
547
548static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
549{
550	unsigned long freeptr_addr = (unsigned long)object + s->offset;
551
552#ifdef CONFIG_SLAB_FREELIST_HARDENED
553	BUG_ON(object == fp); /* naive detection of double free or corruption */
554#endif
555
556	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
557	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
558}
559
560/* Loop over all objects in a slab */
561#define for_each_object(__p, __s, __addr, __objects) \
562	for (__p = fixup_red_left(__s, __addr); \
563		__p < (__addr) + (__objects) * (__s)->size; \
564		__p += (__s)->size)
565
566static inline unsigned int order_objects(unsigned int order, unsigned int size)
567{
568	return ((unsigned int)PAGE_SIZE << order) / size;
569}
570
571static inline struct kmem_cache_order_objects oo_make(unsigned int order,
572		unsigned int size)
573{
574	struct kmem_cache_order_objects x = {
575		(order << OO_SHIFT) + order_objects(order, size)
576	};
577
578	return x;
579}
580
581static inline unsigned int oo_order(struct kmem_cache_order_objects x)
582{
583	return x.x >> OO_SHIFT;
584}
585
586static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
587{
588	return x.x & OO_MASK;
589}
590
591#ifdef CONFIG_SLUB_CPU_PARTIAL
592static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
593{
594	unsigned int nr_slabs;
595
596	s->cpu_partial = nr_objects;
597
598	/*
599	 * We take the number of objects but actually limit the number of
600	 * slabs on the per cpu partial list, in order to limit excessive
601	 * growth of the list. For simplicity we assume that the slabs will
602	 * be half-full.
603	 */
604	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
605	s->cpu_partial_slabs = nr_slabs;
606}
607#else
608static inline void
609slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
610{
611}
612#endif /* CONFIG_SLUB_CPU_PARTIAL */
613
614/*
615 * Per slab locking using the pagelock
616 */
617static __always_inline void slab_lock(struct slab *slab)
618{
619	struct page *page = slab_page(slab);
620
621	VM_BUG_ON_PAGE(PageTail(page), page);
622	bit_spin_lock(PG_locked, &page->flags);
623}
624
625static __always_inline void slab_unlock(struct slab *slab)
626{
627	struct page *page = slab_page(slab);
628
629	VM_BUG_ON_PAGE(PageTail(page), page);
630	bit_spin_unlock(PG_locked, &page->flags);
631}
632
633static inline bool
634__update_freelist_fast(struct slab *slab,
635		      void *freelist_old, unsigned long counters_old,
636		      void *freelist_new, unsigned long counters_new)
637{
638#ifdef system_has_freelist_aba
639	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
640	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
641
642	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
643#else
644	return false;
645#endif
646}
647
648static inline bool
649__update_freelist_slow(struct slab *slab,
650		      void *freelist_old, unsigned long counters_old,
651		      void *freelist_new, unsigned long counters_new)
652{
653	bool ret = false;
654
655	slab_lock(slab);
656	if (slab->freelist == freelist_old &&
657	    slab->counters == counters_old) {
658		slab->freelist = freelist_new;
659		slab->counters = counters_new;
660		ret = true;
661	}
662	slab_unlock(slab);
663
664	return ret;
665}
666
667/*
668 * Interrupts must be disabled (for the fallback code to work right), typically
669 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
670 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
671 * allocation/ free operation in hardirq context. Therefore nothing can
672 * interrupt the operation.
673 */
674static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
675		void *freelist_old, unsigned long counters_old,
676		void *freelist_new, unsigned long counters_new,
677		const char *n)
678{
679	bool ret;
680
681	if (USE_LOCKLESS_FAST_PATH())
682		lockdep_assert_irqs_disabled();
683
684	if (s->flags & __CMPXCHG_DOUBLE) {
685		ret = __update_freelist_fast(slab, freelist_old, counters_old,
686				            freelist_new, counters_new);
687	} else {
688		ret = __update_freelist_slow(slab, freelist_old, counters_old,
689				            freelist_new, counters_new);
690	}
691	if (likely(ret))
692		return true;
693
694	cpu_relax();
695	stat(s, CMPXCHG_DOUBLE_FAIL);
696
697#ifdef SLUB_DEBUG_CMPXCHG
698	pr_info("%s %s: cmpxchg double redo ", n, s->name);
699#endif
700
701	return false;
702}
703
704static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
705		void *freelist_old, unsigned long counters_old,
706		void *freelist_new, unsigned long counters_new,
707		const char *n)
708{
709	bool ret;
710
711	if (s->flags & __CMPXCHG_DOUBLE) {
712		ret = __update_freelist_fast(slab, freelist_old, counters_old,
713				            freelist_new, counters_new);
714	} else {
715		unsigned long flags;
716
717		local_irq_save(flags);
718		ret = __update_freelist_slow(slab, freelist_old, counters_old,
719				            freelist_new, counters_new);
720		local_irq_restore(flags);
721	}
722	if (likely(ret))
723		return true;
724
725	cpu_relax();
726	stat(s, CMPXCHG_DOUBLE_FAIL);
727
728#ifdef SLUB_DEBUG_CMPXCHG
729	pr_info("%s %s: cmpxchg double redo ", n, s->name);
730#endif
731
732	return false;
733}
734
735#ifdef CONFIG_SLUB_DEBUG
736static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
737static DEFINE_SPINLOCK(object_map_lock);
738
739static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
740		       struct slab *slab)
741{
742	void *addr = slab_address(slab);
743	void *p;
744
745	bitmap_zero(obj_map, slab->objects);
746
747	for (p = slab->freelist; p; p = get_freepointer(s, p))
748		set_bit(__obj_to_index(s, addr, p), obj_map);
749}
750
751#if IS_ENABLED(CONFIG_KUNIT)
752static bool slab_add_kunit_errors(void)
753{
754	struct kunit_resource *resource;
755
756	if (!kunit_get_current_test())
757		return false;
758
759	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
760	if (!resource)
761		return false;
762
763	(*(int *)resource->data)++;
764	kunit_put_resource(resource);
765	return true;
766}
767#else
768static inline bool slab_add_kunit_errors(void) { return false; }
769#endif
770
771static inline unsigned int size_from_object(struct kmem_cache *s)
772{
773	if (s->flags & SLAB_RED_ZONE)
774		return s->size - s->red_left_pad;
775
776	return s->size;
777}
778
779static inline void *restore_red_left(struct kmem_cache *s, void *p)
780{
781	if (s->flags & SLAB_RED_ZONE)
782		p -= s->red_left_pad;
783
784	return p;
785}
786
787/*
788 * Debug settings:
789 */
790#if defined(CONFIG_SLUB_DEBUG_ON)
791static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
792#else
793static slab_flags_t slub_debug;
794#endif
795
796static char *slub_debug_string;
797static int disable_higher_order_debug;
798
799/*
800 * slub is about to manipulate internal object metadata.  This memory lies
801 * outside the range of the allocated object, so accessing it would normally
802 * be reported by kasan as a bounds error.  metadata_access_enable() is used
803 * to tell kasan that these accesses are OK.
804 */
805static inline void metadata_access_enable(void)
806{
807	kasan_disable_current();
808}
809
810static inline void metadata_access_disable(void)
811{
812	kasan_enable_current();
813}
814
815/*
816 * Object debugging
817 */
818
819/* Verify that a pointer has an address that is valid within a slab page */
820static inline int check_valid_pointer(struct kmem_cache *s,
821				struct slab *slab, void *object)
822{
823	void *base;
824
825	if (!object)
826		return 1;
827
828	base = slab_address(slab);
829	object = kasan_reset_tag(object);
830	object = restore_red_left(s, object);
831	if (object < base || object >= base + slab->objects * s->size ||
832		(object - base) % s->size) {
833		return 0;
834	}
835
836	return 1;
837}
838
839static void print_section(char *level, char *text, u8 *addr,
840			  unsigned int length)
841{
842	metadata_access_enable();
843	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
844			16, 1, kasan_reset_tag((void *)addr), length, 1);
845	metadata_access_disable();
846}
847
848/*
849 * See comment in calculate_sizes().
850 */
851static inline bool freeptr_outside_object(struct kmem_cache *s)
852{
853	return s->offset >= s->inuse;
854}
855
856/*
857 * Return offset of the end of info block which is inuse + free pointer if
858 * not overlapping with object.
859 */
860static inline unsigned int get_info_end(struct kmem_cache *s)
861{
862	if (freeptr_outside_object(s))
863		return s->inuse + sizeof(void *);
864	else
865		return s->inuse;
866}
867
868static struct track *get_track(struct kmem_cache *s, void *object,
869	enum track_item alloc)
870{
871	struct track *p;
872
873	p = object + get_info_end(s);
874
875	return kasan_reset_tag(p + alloc);
876}
877
878#ifdef CONFIG_STACKDEPOT
879static noinline depot_stack_handle_t set_track_prepare(void)
880{
881	depot_stack_handle_t handle;
882	unsigned long entries[TRACK_ADDRS_COUNT];
883	unsigned int nr_entries;
884
885	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
886	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
887
888	return handle;
889}
890#else
891static inline depot_stack_handle_t set_track_prepare(void)
892{
893	return 0;
894}
895#endif
896
897static void set_track_update(struct kmem_cache *s, void *object,
898			     enum track_item alloc, unsigned long addr,
899			     depot_stack_handle_t handle)
900{
901	struct track *p = get_track(s, object, alloc);
902
903#ifdef CONFIG_STACKDEPOT
904	p->handle = handle;
905#endif
906	p->addr = addr;
907	p->cpu = smp_processor_id();
908	p->pid = current->pid;
909	p->when = jiffies;
910}
911
912static __always_inline void set_track(struct kmem_cache *s, void *object,
913				      enum track_item alloc, unsigned long addr)
914{
915	depot_stack_handle_t handle = set_track_prepare();
916
917	set_track_update(s, object, alloc, addr, handle);
918}
919
920static void init_tracking(struct kmem_cache *s, void *object)
921{
922	struct track *p;
923
924	if (!(s->flags & SLAB_STORE_USER))
925		return;
926
927	p = get_track(s, object, TRACK_ALLOC);
928	memset(p, 0, 2*sizeof(struct track));
929}
930
931static void print_track(const char *s, struct track *t, unsigned long pr_time)
932{
933	depot_stack_handle_t handle __maybe_unused;
934
935	if (!t->addr)
936		return;
937
938	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
939	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
940#ifdef CONFIG_STACKDEPOT
941	handle = READ_ONCE(t->handle);
942	if (handle)
943		stack_depot_print(handle);
944	else
945		pr_err("object allocation/free stack trace missing\n");
946#endif
947}
948
949void print_tracking(struct kmem_cache *s, void *object)
950{
951	unsigned long pr_time = jiffies;
952	if (!(s->flags & SLAB_STORE_USER))
953		return;
954
955	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
956	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
957}
958
959static void print_slab_info(const struct slab *slab)
960{
961	struct folio *folio = (struct folio *)slab_folio(slab);
962
963	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
964	       slab, slab->objects, slab->inuse, slab->freelist,
965	       folio_flags(folio, 0));
966}
967
968/*
969 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
970 * family will round up the real request size to these fixed ones, so
971 * there could be an extra area than what is requested. Save the original
972 * request size in the meta data area, for better debug and sanity check.
973 */
974static inline void set_orig_size(struct kmem_cache *s,
975				void *object, unsigned int orig_size)
976{
977	void *p = kasan_reset_tag(object);
978	unsigned int kasan_meta_size;
979
980	if (!slub_debug_orig_size(s))
981		return;
982
983	/*
984	 * KASAN can save its free meta data inside of the object at offset 0.
985	 * If this meta data size is larger than 'orig_size', it will overlap
986	 * the data redzone in [orig_size+1, object_size]. Thus, we adjust
987	 * 'orig_size' to be as at least as big as KASAN's meta data.
988	 */
989	kasan_meta_size = kasan_metadata_size(s, true);
990	if (kasan_meta_size > orig_size)
991		orig_size = kasan_meta_size;
992
993	p += get_info_end(s);
994	p += sizeof(struct track) * 2;
995
996	*(unsigned int *)p = orig_size;
997}
998
999static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
1000{
1001	void *p = kasan_reset_tag(object);
1002
1003	if (!slub_debug_orig_size(s))
1004		return s->object_size;
1005
1006	p += get_info_end(s);
1007	p += sizeof(struct track) * 2;
1008
1009	return *(unsigned int *)p;
1010}
1011
1012void skip_orig_size_check(struct kmem_cache *s, const void *object)
1013{
1014	set_orig_size(s, (void *)object, s->object_size);
1015}
1016
1017static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1018{
1019	struct va_format vaf;
1020	va_list args;
1021
1022	va_start(args, fmt);
1023	vaf.fmt = fmt;
1024	vaf.va = &args;
1025	pr_err("=============================================================================\n");
1026	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
1027	pr_err("-----------------------------------------------------------------------------\n\n");
1028	va_end(args);
1029}
1030
1031__printf(2, 3)
1032static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1033{
1034	struct va_format vaf;
1035	va_list args;
1036
1037	if (slab_add_kunit_errors())
1038		return;
1039
1040	va_start(args, fmt);
1041	vaf.fmt = fmt;
1042	vaf.va = &args;
1043	pr_err("FIX %s: %pV\n", s->name, &vaf);
1044	va_end(args);
1045}
1046
1047static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1048{
1049	unsigned int off;	/* Offset of last byte */
1050	u8 *addr = slab_address(slab);
1051
1052	print_tracking(s, p);
1053
1054	print_slab_info(slab);
1055
1056	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1057	       p, p - addr, get_freepointer(s, p));
1058
1059	if (s->flags & SLAB_RED_ZONE)
1060		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
1061			      s->red_left_pad);
1062	else if (p > addr + 16)
1063		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1064
1065	print_section(KERN_ERR,         "Object   ", p,
1066		      min_t(unsigned int, s->object_size, PAGE_SIZE));
1067	if (s->flags & SLAB_RED_ZONE)
1068		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
1069			s->inuse - s->object_size);
1070
1071	off = get_info_end(s);
1072
1073	if (s->flags & SLAB_STORE_USER)
1074		off += 2 * sizeof(struct track);
1075
1076	if (slub_debug_orig_size(s))
1077		off += sizeof(unsigned int);
1078
1079	off += kasan_metadata_size(s, false);
1080
1081	if (off != size_from_object(s))
1082		/* Beginning of the filler is the free pointer */
1083		print_section(KERN_ERR, "Padding  ", p + off,
1084			      size_from_object(s) - off);
1085
1086	dump_stack();
1087}
1088
1089static void object_err(struct kmem_cache *s, struct slab *slab,
1090			u8 *object, char *reason)
1091{
1092	if (slab_add_kunit_errors())
1093		return;
1094
1095	slab_bug(s, "%s", reason);
1096	print_trailer(s, slab, object);
1097	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1098}
1099
1100static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1101			       void **freelist, void *nextfree)
1102{
1103	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1104	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1105		object_err(s, slab, *freelist, "Freechain corrupt");
1106		*freelist = NULL;
1107		slab_fix(s, "Isolate corrupted freechain");
1108		return true;
1109	}
1110
1111	return false;
1112}
1113
1114static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1115			const char *fmt, ...)
1116{
1117	va_list args;
1118	char buf[100];
1119
1120	if (slab_add_kunit_errors())
1121		return;
1122
1123	va_start(args, fmt);
1124	vsnprintf(buf, sizeof(buf), fmt, args);
1125	va_end(args);
1126	slab_bug(s, "%s", buf);
1127	print_slab_info(slab);
1128	dump_stack();
1129	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1130}
1131
1132static void init_object(struct kmem_cache *s, void *object, u8 val)
1133{
1134	u8 *p = kasan_reset_tag(object);
1135	unsigned int poison_size = s->object_size;
1136
1137	if (s->flags & SLAB_RED_ZONE) {
1138		memset(p - s->red_left_pad, val, s->red_left_pad);
1139
1140		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1141			/*
1142			 * Redzone the extra allocated space by kmalloc than
1143			 * requested, and the poison size will be limited to
1144			 * the original request size accordingly.
1145			 */
1146			poison_size = get_orig_size(s, object);
1147		}
1148	}
1149
1150	if (s->flags & __OBJECT_POISON) {
1151		memset(p, POISON_FREE, poison_size - 1);
1152		p[poison_size - 1] = POISON_END;
1153	}
1154
1155	if (s->flags & SLAB_RED_ZONE)
1156		memset(p + poison_size, val, s->inuse - poison_size);
1157}
1158
1159static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1160						void *from, void *to)
1161{
1162	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1163	memset(from, data, to - from);
1164}
1165
1166static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1167			u8 *object, char *what,
1168			u8 *start, unsigned int value, unsigned int bytes)
1169{
1170	u8 *fault;
1171	u8 *end;
1172	u8 *addr = slab_address(slab);
1173
1174	metadata_access_enable();
1175	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1176	metadata_access_disable();
1177	if (!fault)
1178		return 1;
1179
1180	end = start + bytes;
1181	while (end > fault && end[-1] == value)
1182		end--;
1183
1184	if (slab_add_kunit_errors())
1185		goto skip_bug_print;
1186
1187	slab_bug(s, "%s overwritten", what);
1188	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1189					fault, end - 1, fault - addr,
1190					fault[0], value);
1191	print_trailer(s, slab, object);
1192	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1193
1194skip_bug_print:
1195	restore_bytes(s, what, value, fault, end);
1196	return 0;
1197}
1198
1199/*
1200 * Object layout:
1201 *
1202 * object address
1203 * 	Bytes of the object to be managed.
1204 * 	If the freepointer may overlay the object then the free
1205 *	pointer is at the middle of the object.
1206 *
1207 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1208 * 	0xa5 (POISON_END)
1209 *
1210 * object + s->object_size
1211 * 	Padding to reach word boundary. This is also used for Redzoning.
1212 * 	Padding is extended by another word if Redzoning is enabled and
1213 * 	object_size == inuse.
1214 *
1215 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1216 * 	0xcc (RED_ACTIVE) for objects in use.
1217 *
1218 * object + s->inuse
1219 * 	Meta data starts here.
1220 *
1221 * 	A. Free pointer (if we cannot overwrite object on free)
1222 * 	B. Tracking data for SLAB_STORE_USER
1223 *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1224 *	D. Padding to reach required alignment boundary or at minimum
1225 * 		one word if debugging is on to be able to detect writes
1226 * 		before the word boundary.
1227 *
1228 *	Padding is done using 0x5a (POISON_INUSE)
1229 *
1230 * object + s->size
1231 * 	Nothing is used beyond s->size.
1232 *
1233 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1234 * ignored. And therefore no slab options that rely on these boundaries
1235 * may be used with merged slabcaches.
1236 */
1237
1238static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1239{
1240	unsigned long off = get_info_end(s);	/* The end of info */
1241
1242	if (s->flags & SLAB_STORE_USER) {
1243		/* We also have user information there */
1244		off += 2 * sizeof(struct track);
1245
1246		if (s->flags & SLAB_KMALLOC)
1247			off += sizeof(unsigned int);
1248	}
1249
1250	off += kasan_metadata_size(s, false);
1251
1252	if (size_from_object(s) == off)
1253		return 1;
1254
1255	return check_bytes_and_report(s, slab, p, "Object padding",
1256			p + off, POISON_INUSE, size_from_object(s) - off);
1257}
1258
1259/* Check the pad bytes at the end of a slab page */
1260static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1261{
1262	u8 *start;
1263	u8 *fault;
1264	u8 *end;
1265	u8 *pad;
1266	int length;
1267	int remainder;
1268
1269	if (!(s->flags & SLAB_POISON))
1270		return;
1271
1272	start = slab_address(slab);
1273	length = slab_size(slab);
1274	end = start + length;
1275	remainder = length % s->size;
1276	if (!remainder)
1277		return;
1278
1279	pad = end - remainder;
1280	metadata_access_enable();
1281	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1282	metadata_access_disable();
1283	if (!fault)
1284		return;
1285	while (end > fault && end[-1] == POISON_INUSE)
1286		end--;
1287
1288	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1289			fault, end - 1, fault - start);
1290	print_section(KERN_ERR, "Padding ", pad, remainder);
1291
1292	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1293}
1294
1295static int check_object(struct kmem_cache *s, struct slab *slab,
1296					void *object, u8 val)
1297{
1298	u8 *p = object;
1299	u8 *endobject = object + s->object_size;
1300	unsigned int orig_size, kasan_meta_size;
1301
1302	if (s->flags & SLAB_RED_ZONE) {
1303		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1304			object - s->red_left_pad, val, s->red_left_pad))
1305			return 0;
1306
1307		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1308			endobject, val, s->inuse - s->object_size))
1309			return 0;
1310
1311		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1312			orig_size = get_orig_size(s, object);
1313
1314			if (s->object_size > orig_size  &&
1315				!check_bytes_and_report(s, slab, object,
1316					"kmalloc Redzone", p + orig_size,
1317					val, s->object_size - orig_size)) {
1318				return 0;
1319			}
1320		}
1321	} else {
1322		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1323			check_bytes_and_report(s, slab, p, "Alignment padding",
1324				endobject, POISON_INUSE,
1325				s->inuse - s->object_size);
1326		}
1327	}
1328
1329	if (s->flags & SLAB_POISON) {
1330		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1331			/*
1332			 * KASAN can save its free meta data inside of the
1333			 * object at offset 0. Thus, skip checking the part of
1334			 * the redzone that overlaps with the meta data.
1335			 */
1336			kasan_meta_size = kasan_metadata_size(s, true);
1337			if (kasan_meta_size < s->object_size - 1 &&
1338			    !check_bytes_and_report(s, slab, p, "Poison",
1339					p + kasan_meta_size, POISON_FREE,
1340					s->object_size - kasan_meta_size - 1))
1341				return 0;
1342			if (kasan_meta_size < s->object_size &&
1343			    !check_bytes_and_report(s, slab, p, "End Poison",
1344					p + s->object_size - 1, POISON_END, 1))
1345				return 0;
1346		}
1347		/*
1348		 * check_pad_bytes cleans up on its own.
1349		 */
1350		check_pad_bytes(s, slab, p);
1351	}
1352
1353	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1354		/*
1355		 * Object and freepointer overlap. Cannot check
1356		 * freepointer while object is allocated.
1357		 */
1358		return 1;
1359
1360	/* Check free pointer validity */
1361	if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1362		object_err(s, slab, p, "Freepointer corrupt");
1363		/*
1364		 * No choice but to zap it and thus lose the remainder
1365		 * of the free objects in this slab. May cause
1366		 * another error because the object count is now wrong.
1367		 */
1368		set_freepointer(s, p, NULL);
1369		return 0;
1370	}
1371	return 1;
1372}
1373
1374static int check_slab(struct kmem_cache *s, struct slab *slab)
1375{
1376	int maxobj;
1377
1378	if (!folio_test_slab(slab_folio(slab))) {
1379		slab_err(s, slab, "Not a valid slab page");
1380		return 0;
1381	}
1382
1383	maxobj = order_objects(slab_order(slab), s->size);
1384	if (slab->objects > maxobj) {
1385		slab_err(s, slab, "objects %u > max %u",
1386			slab->objects, maxobj);
1387		return 0;
1388	}
1389	if (slab->inuse > slab->objects) {
1390		slab_err(s, slab, "inuse %u > max %u",
1391			slab->inuse, slab->objects);
1392		return 0;
1393	}
1394	/* Slab_pad_check fixes things up after itself */
1395	slab_pad_check(s, slab);
1396	return 1;
1397}
1398
1399/*
1400 * Determine if a certain object in a slab is on the freelist. Must hold the
1401 * slab lock to guarantee that the chains are in a consistent state.
1402 */
1403static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1404{
1405	int nr = 0;
1406	void *fp;
1407	void *object = NULL;
1408	int max_objects;
1409
1410	fp = slab->freelist;
1411	while (fp && nr <= slab->objects) {
1412		if (fp == search)
1413			return 1;
1414		if (!check_valid_pointer(s, slab, fp)) {
1415			if (object) {
1416				object_err(s, slab, object,
1417					"Freechain corrupt");
1418				set_freepointer(s, object, NULL);
1419			} else {
1420				slab_err(s, slab, "Freepointer corrupt");
1421				slab->freelist = NULL;
1422				slab->inuse = slab->objects;
1423				slab_fix(s, "Freelist cleared");
1424				return 0;
1425			}
1426			break;
1427		}
1428		object = fp;
1429		fp = get_freepointer(s, object);
1430		nr++;
1431	}
1432
1433	max_objects = order_objects(slab_order(slab), s->size);
1434	if (max_objects > MAX_OBJS_PER_PAGE)
1435		max_objects = MAX_OBJS_PER_PAGE;
1436
1437	if (slab->objects != max_objects) {
1438		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1439			 slab->objects, max_objects);
1440		slab->objects = max_objects;
1441		slab_fix(s, "Number of objects adjusted");
1442	}
1443	if (slab->inuse != slab->objects - nr) {
1444		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1445			 slab->inuse, slab->objects - nr);
1446		slab->inuse = slab->objects - nr;
1447		slab_fix(s, "Object count adjusted");
1448	}
1449	return search == NULL;
1450}
1451
1452static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1453								int alloc)
1454{
1455	if (s->flags & SLAB_TRACE) {
1456		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1457			s->name,
1458			alloc ? "alloc" : "free",
1459			object, slab->inuse,
1460			slab->freelist);
1461
1462		if (!alloc)
1463			print_section(KERN_INFO, "Object ", (void *)object,
1464					s->object_size);
1465
1466		dump_stack();
1467	}
1468}
1469
1470/*
1471 * Tracking of fully allocated slabs for debugging purposes.
1472 */
1473static void add_full(struct kmem_cache *s,
1474	struct kmem_cache_node *n, struct slab *slab)
1475{
1476	if (!(s->flags & SLAB_STORE_USER))
1477		return;
1478
1479	lockdep_assert_held(&n->list_lock);
1480	list_add(&slab->slab_list, &n->full);
1481}
1482
1483static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1484{
1485	if (!(s->flags & SLAB_STORE_USER))
1486		return;
1487
1488	lockdep_assert_held(&n->list_lock);
1489	list_del(&slab->slab_list);
1490}
1491
1492static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1493{
1494	return atomic_long_read(&n->nr_slabs);
1495}
1496
1497static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1498{
1499	struct kmem_cache_node *n = get_node(s, node);
1500
1501	atomic_long_inc(&n->nr_slabs);
1502	atomic_long_add(objects, &n->total_objects);
1503}
1504static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1505{
1506	struct kmem_cache_node *n = get_node(s, node);
1507
1508	atomic_long_dec(&n->nr_slabs);
1509	atomic_long_sub(objects, &n->total_objects);
1510}
1511
1512/* Object debug checks for alloc/free paths */
1513static void setup_object_debug(struct kmem_cache *s, void *object)
1514{
1515	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1516		return;
1517
1518	init_object(s, object, SLUB_RED_INACTIVE);
1519	init_tracking(s, object);
1520}
1521
1522static
1523void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1524{
1525	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1526		return;
1527
1528	metadata_access_enable();
1529	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1530	metadata_access_disable();
1531}
1532
1533static inline int alloc_consistency_checks(struct kmem_cache *s,
1534					struct slab *slab, void *object)
1535{
1536	if (!check_slab(s, slab))
1537		return 0;
1538
1539	if (!check_valid_pointer(s, slab, object)) {
1540		object_err(s, slab, object, "Freelist Pointer check fails");
1541		return 0;
1542	}
1543
1544	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1545		return 0;
1546
1547	return 1;
1548}
1549
1550static noinline bool alloc_debug_processing(struct kmem_cache *s,
1551			struct slab *slab, void *object, int orig_size)
1552{
1553	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1554		if (!alloc_consistency_checks(s, slab, object))
1555			goto bad;
1556	}
1557
1558	/* Success. Perform special debug activities for allocs */
1559	trace(s, slab, object, 1);
1560	set_orig_size(s, object, orig_size);
1561	init_object(s, object, SLUB_RED_ACTIVE);
1562	return true;
1563
1564bad:
1565	if (folio_test_slab(slab_folio(slab))) {
1566		/*
1567		 * If this is a slab page then lets do the best we can
1568		 * to avoid issues in the future. Marking all objects
1569		 * as used avoids touching the remaining objects.
1570		 */
1571		slab_fix(s, "Marking all objects used");
1572		slab->inuse = slab->objects;
1573		slab->freelist = NULL;
1574	}
1575	return false;
1576}
1577
1578static inline int free_consistency_checks(struct kmem_cache *s,
1579		struct slab *slab, void *object, unsigned long addr)
1580{
1581	if (!check_valid_pointer(s, slab, object)) {
1582		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1583		return 0;
1584	}
1585
1586	if (on_freelist(s, slab, object)) {
1587		object_err(s, slab, object, "Object already free");
1588		return 0;
1589	}
1590
1591	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1592		return 0;
1593
1594	if (unlikely(s != slab->slab_cache)) {
1595		if (!folio_test_slab(slab_folio(slab))) {
1596			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1597				 object);
1598		} else if (!slab->slab_cache) {
1599			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1600			       object);
1601			dump_stack();
1602		} else
1603			object_err(s, slab, object,
1604					"page slab pointer corrupt.");
1605		return 0;
1606	}
1607	return 1;
1608}
1609
1610/*
1611 * Parse a block of slab_debug options. Blocks are delimited by ';'
1612 *
1613 * @str:    start of block
1614 * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1615 * @slabs:  return start of list of slabs, or NULL when there's no list
1616 * @init:   assume this is initial parsing and not per-kmem-create parsing
1617 *
1618 * returns the start of next block if there's any, or NULL
1619 */
1620static char *
1621parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1622{
1623	bool higher_order_disable = false;
1624
1625	/* Skip any completely empty blocks */
1626	while (*str && *str == ';')
1627		str++;
1628
1629	if (*str == ',') {
1630		/*
1631		 * No options but restriction on slabs. This means full
1632		 * debugging for slabs matching a pattern.
1633		 */
1634		*flags = DEBUG_DEFAULT_FLAGS;
1635		goto check_slabs;
1636	}
1637	*flags = 0;
1638
1639	/* Determine which debug features should be switched on */
1640	for (; *str && *str != ',' && *str != ';'; str++) {
1641		switch (tolower(*str)) {
1642		case '-':
1643			*flags = 0;
1644			break;
1645		case 'f':
1646			*flags |= SLAB_CONSISTENCY_CHECKS;
1647			break;
1648		case 'z':
1649			*flags |= SLAB_RED_ZONE;
1650			break;
1651		case 'p':
1652			*flags |= SLAB_POISON;
1653			break;
1654		case 'u':
1655			*flags |= SLAB_STORE_USER;
1656			break;
1657		case 't':
1658			*flags |= SLAB_TRACE;
1659			break;
1660		case 'a':
1661			*flags |= SLAB_FAILSLAB;
1662			break;
1663		case 'o':
1664			/*
1665			 * Avoid enabling debugging on caches if its minimum
1666			 * order would increase as a result.
1667			 */
1668			higher_order_disable = true;
1669			break;
1670		default:
1671			if (init)
1672				pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1673		}
1674	}
1675check_slabs:
1676	if (*str == ',')
1677		*slabs = ++str;
1678	else
1679		*slabs = NULL;
1680
1681	/* Skip over the slab list */
1682	while (*str && *str != ';')
1683		str++;
1684
1685	/* Skip any completely empty blocks */
1686	while (*str && *str == ';')
1687		str++;
1688
1689	if (init && higher_order_disable)
1690		disable_higher_order_debug = 1;
1691
1692	if (*str)
1693		return str;
1694	else
1695		return NULL;
1696}
1697
1698static int __init setup_slub_debug(char *str)
1699{
1700	slab_flags_t flags;
1701	slab_flags_t global_flags;
1702	char *saved_str;
1703	char *slab_list;
1704	bool global_slub_debug_changed = false;
1705	bool slab_list_specified = false;
1706
1707	global_flags = DEBUG_DEFAULT_FLAGS;
1708	if (*str++ != '=' || !*str)
1709		/*
1710		 * No options specified. Switch on full debugging.
1711		 */
1712		goto out;
1713
1714	saved_str = str;
1715	while (str) {
1716		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1717
1718		if (!slab_list) {
1719			global_flags = flags;
1720			global_slub_debug_changed = true;
1721		} else {
1722			slab_list_specified = true;
1723			if (flags & SLAB_STORE_USER)
1724				stack_depot_request_early_init();
1725		}
1726	}
1727
1728	/*
1729	 * For backwards compatibility, a single list of flags with list of
1730	 * slabs means debugging is only changed for those slabs, so the global
1731	 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1732	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1733	 * long as there is no option specifying flags without a slab list.
1734	 */
1735	if (slab_list_specified) {
1736		if (!global_slub_debug_changed)
1737			global_flags = slub_debug;
1738		slub_debug_string = saved_str;
1739	}
1740out:
1741	slub_debug = global_flags;
1742	if (slub_debug & SLAB_STORE_USER)
1743		stack_depot_request_early_init();
1744	if (slub_debug != 0 || slub_debug_string)
1745		static_branch_enable(&slub_debug_enabled);
1746	else
1747		static_branch_disable(&slub_debug_enabled);
1748	if ((static_branch_unlikely(&init_on_alloc) ||
1749	     static_branch_unlikely(&init_on_free)) &&
1750	    (slub_debug & SLAB_POISON))
1751		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1752	return 1;
1753}
1754
1755__setup("slab_debug", setup_slub_debug);
1756__setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1757
1758/*
1759 * kmem_cache_flags - apply debugging options to the cache
1760 * @flags:		flags to set
1761 * @name:		name of the cache
1762 *
1763 * Debug option(s) are applied to @flags. In addition to the debug
1764 * option(s), if a slab name (or multiple) is specified i.e.
1765 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1766 * then only the select slabs will receive the debug option(s).
1767 */
1768slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1769{
1770	char *iter;
1771	size_t len;
1772	char *next_block;
1773	slab_flags_t block_flags;
1774	slab_flags_t slub_debug_local = slub_debug;
1775
1776	if (flags & SLAB_NO_USER_FLAGS)
1777		return flags;
1778
1779	/*
1780	 * If the slab cache is for debugging (e.g. kmemleak) then
1781	 * don't store user (stack trace) information by default,
1782	 * but let the user enable it via the command line below.
1783	 */
1784	if (flags & SLAB_NOLEAKTRACE)
1785		slub_debug_local &= ~SLAB_STORE_USER;
1786
1787	len = strlen(name);
1788	next_block = slub_debug_string;
1789	/* Go through all blocks of debug options, see if any matches our slab's name */
1790	while (next_block) {
1791		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1792		if (!iter)
1793			continue;
1794		/* Found a block that has a slab list, search it */
1795		while (*iter) {
1796			char *end, *glob;
1797			size_t cmplen;
1798
1799			end = strchrnul(iter, ',');
1800			if (next_block && next_block < end)
1801				end = next_block - 1;
1802
1803			glob = strnchr(iter, end - iter, '*');
1804			if (glob)
1805				cmplen = glob - iter;
1806			else
1807				cmplen = max_t(size_t, len, (end - iter));
1808
1809			if (!strncmp(name, iter, cmplen)) {
1810				flags |= block_flags;
1811				return flags;
1812			}
1813
1814			if (!*end || *end == ';')
1815				break;
1816			iter = end + 1;
1817		}
1818	}
1819
1820	return flags | slub_debug_local;
1821}
1822#else /* !CONFIG_SLUB_DEBUG */
1823static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1824static inline
1825void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1826
1827static inline bool alloc_debug_processing(struct kmem_cache *s,
1828	struct slab *slab, void *object, int orig_size) { return true; }
1829
1830static inline bool free_debug_processing(struct kmem_cache *s,
1831	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1832	unsigned long addr, depot_stack_handle_t handle) { return true; }
1833
1834static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1835static inline int check_object(struct kmem_cache *s, struct slab *slab,
1836			void *object, u8 val) { return 1; }
1837static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1838static inline void set_track(struct kmem_cache *s, void *object,
1839			     enum track_item alloc, unsigned long addr) {}
1840static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1841					struct slab *slab) {}
1842static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1843					struct slab *slab) {}
1844slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1845{
1846	return flags;
1847}
1848#define slub_debug 0
1849
1850#define disable_higher_order_debug 0
1851
1852static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1853							{ return 0; }
1854static inline void inc_slabs_node(struct kmem_cache *s, int node,
1855							int objects) {}
1856static inline void dec_slabs_node(struct kmem_cache *s, int node,
1857							int objects) {}
1858
1859#ifndef CONFIG_SLUB_TINY
1860static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1861			       void **freelist, void *nextfree)
1862{
1863	return false;
1864}
1865#endif
1866#endif /* CONFIG_SLUB_DEBUG */
1867
1868static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
1869{
1870	return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1871		NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
1872}
1873
1874#ifdef CONFIG_MEMCG_KMEM
1875static inline void memcg_free_slab_cgroups(struct slab *slab)
1876{
1877	kfree(slab_objcgs(slab));
1878	slab->memcg_data = 0;
1879}
1880
1881static inline size_t obj_full_size(struct kmem_cache *s)
1882{
1883	/*
1884	 * For each accounted object there is an extra space which is used
1885	 * to store obj_cgroup membership. Charge it too.
1886	 */
1887	return s->size + sizeof(struct obj_cgroup *);
1888}
1889
1890/*
1891 * Returns false if the allocation should fail.
1892 */
1893static bool __memcg_slab_pre_alloc_hook(struct kmem_cache *s,
1894					struct list_lru *lru,
1895					struct obj_cgroup **objcgp,
1896					size_t objects, gfp_t flags)
1897{
1898	/*
1899	 * The obtained objcg pointer is safe to use within the current scope,
1900	 * defined by current task or set_active_memcg() pair.
1901	 * obj_cgroup_get() is used to get a permanent reference.
1902	 */
1903	struct obj_cgroup *objcg = current_obj_cgroup();
1904	if (!objcg)
1905		return true;
1906
1907	if (lru) {
1908		int ret;
1909		struct mem_cgroup *memcg;
1910
1911		memcg = get_mem_cgroup_from_objcg(objcg);
1912		ret = memcg_list_lru_alloc(memcg, lru, flags);
1913		css_put(&memcg->css);
1914
1915		if (ret)
1916			return false;
1917	}
1918
1919	if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s)))
1920		return false;
1921
1922	*objcgp = objcg;
1923	return true;
1924}
1925
1926/*
1927 * Returns false if the allocation should fail.
1928 */
1929static __fastpath_inline
1930bool memcg_slab_pre_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
1931			       struct obj_cgroup **objcgp, size_t objects,
1932			       gfp_t flags)
1933{
1934	if (!memcg_kmem_online())
1935		return true;
1936
1937	if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
1938		return true;
1939
1940	return likely(__memcg_slab_pre_alloc_hook(s, lru, objcgp, objects,
1941						  flags));
1942}
1943
1944static void __memcg_slab_post_alloc_hook(struct kmem_cache *s,
1945					 struct obj_cgroup *objcg,
1946					 gfp_t flags, size_t size,
1947					 void **p)
1948{
1949	struct slab *slab;
1950	unsigned long off;
1951	size_t i;
1952
1953	flags &= gfp_allowed_mask;
1954
1955	for (i = 0; i < size; i++) {
1956		if (likely(p[i])) {
1957			slab = virt_to_slab(p[i]);
1958
1959			if (!slab_objcgs(slab) &&
1960			    memcg_alloc_slab_cgroups(slab, s, flags, false)) {
1961				obj_cgroup_uncharge(objcg, obj_full_size(s));
1962				continue;
1963			}
1964
1965			off = obj_to_index(s, slab, p[i]);
1966			obj_cgroup_get(objcg);
1967			slab_objcgs(slab)[off] = objcg;
1968			mod_objcg_state(objcg, slab_pgdat(slab),
1969					cache_vmstat_idx(s), obj_full_size(s));
1970		} else {
1971			obj_cgroup_uncharge(objcg, obj_full_size(s));
1972		}
1973	}
1974}
1975
1976static __fastpath_inline
1977void memcg_slab_post_alloc_hook(struct kmem_cache *s, struct obj_cgroup *objcg,
1978				gfp_t flags, size_t size, void **p)
1979{
1980	if (likely(!memcg_kmem_online() || !objcg))
1981		return;
1982
1983	return __memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
1984}
1985
1986static void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
1987				   void **p, int objects,
1988				   struct obj_cgroup **objcgs)
1989{
1990	for (int i = 0; i < objects; i++) {
1991		struct obj_cgroup *objcg;
1992		unsigned int off;
1993
1994		off = obj_to_index(s, slab, p[i]);
1995		objcg = objcgs[off];
1996		if (!objcg)
1997			continue;
1998
1999		objcgs[off] = NULL;
2000		obj_cgroup_uncharge(objcg, obj_full_size(s));
2001		mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
2002				-obj_full_size(s));
2003		obj_cgroup_put(objcg);
2004	}
2005}
2006
2007static __fastpath_inline
2008void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2009			  int objects)
2010{
2011	struct obj_cgroup **objcgs;
2012
2013	if (!memcg_kmem_online())
2014		return;
2015
2016	objcgs = slab_objcgs(slab);
2017	if (likely(!objcgs))
2018		return;
2019
2020	__memcg_slab_free_hook(s, slab, p, objects, objcgs);
2021}
2022
2023static inline
2024void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects,
2025			   struct obj_cgroup *objcg)
2026{
2027	if (objcg)
2028		obj_cgroup_uncharge(objcg, objects * obj_full_size(s));
2029}
2030#else /* CONFIG_MEMCG_KMEM */
2031static inline void memcg_free_slab_cgroups(struct slab *slab)
2032{
2033}
2034
2035static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
2036					     struct list_lru *lru,
2037					     struct obj_cgroup **objcgp,
2038					     size_t objects, gfp_t flags)
2039{
2040	return true;
2041}
2042
2043static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
2044					      struct obj_cgroup *objcg,
2045					      gfp_t flags, size_t size,
2046					      void **p)
2047{
2048}
2049
2050static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2051					void **p, int objects)
2052{
2053}
2054
2055static inline
2056void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects,
2057				 struct obj_cgroup *objcg)
2058{
2059}
2060#endif /* CONFIG_MEMCG_KMEM */
2061
2062/*
2063 * Hooks for other subsystems that check memory allocations. In a typical
2064 * production configuration these hooks all should produce no code at all.
2065 *
2066 * Returns true if freeing of the object can proceed, false if its reuse
2067 * was delayed by KASAN quarantine, or it was returned to KFENCE.
2068 */
2069static __always_inline
2070bool slab_free_hook(struct kmem_cache *s, void *x, bool init)
2071{
2072	kmemleak_free_recursive(x, s->flags);
2073	kmsan_slab_free(s, x);
2074
2075	debug_check_no_locks_freed(x, s->object_size);
2076
2077	if (!(s->flags & SLAB_DEBUG_OBJECTS))
2078		debug_check_no_obj_freed(x, s->object_size);
2079
2080	/* Use KCSAN to help debug racy use-after-free. */
2081	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
2082		__kcsan_check_access(x, s->object_size,
2083				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2084
2085	if (kfence_free(x))
2086		return false;
2087
2088	/*
2089	 * As memory initialization might be integrated into KASAN,
2090	 * kasan_slab_free and initialization memset's must be
2091	 * kept together to avoid discrepancies in behavior.
2092	 *
2093	 * The initialization memset's clear the object and the metadata,
2094	 * but don't touch the SLAB redzone.
2095	 */
2096	if (unlikely(init)) {
2097		int rsize;
2098
2099		if (!kasan_has_integrated_init())
2100			memset(kasan_reset_tag(x), 0, s->object_size);
2101		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2102		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
2103		       s->size - s->inuse - rsize);
2104	}
2105	/* KASAN might put x into memory quarantine, delaying its reuse. */
2106	return !kasan_slab_free(s, x, init);
2107}
2108
2109static inline bool slab_free_freelist_hook(struct kmem_cache *s,
2110					   void **head, void **tail,
2111					   int *cnt)
2112{
2113
2114	void *object;
2115	void *next = *head;
2116	void *old_tail = *tail;
2117	bool init;
2118
2119	if (is_kfence_address(next)) {
2120		slab_free_hook(s, next, false);
2121		return false;
2122	}
2123
2124	/* Head and tail of the reconstructed freelist */
2125	*head = NULL;
2126	*tail = NULL;
2127
2128	init = slab_want_init_on_free(s);
2129
2130	do {
2131		object = next;
2132		next = get_freepointer(s, object);
2133
2134		/* If object's reuse doesn't have to be delayed */
2135		if (likely(slab_free_hook(s, object, init))) {
2136			/* Move object to the new freelist */
2137			set_freepointer(s, object, *head);
2138			*head = object;
2139			if (!*tail)
2140				*tail = object;
2141		} else {
2142			/*
2143			 * Adjust the reconstructed freelist depth
2144			 * accordingly if object's reuse is delayed.
2145			 */
2146			--(*cnt);
2147		}
2148	} while (object != old_tail);
2149
2150	return *head != NULL;
2151}
2152
2153static void *setup_object(struct kmem_cache *s, void *object)
2154{
2155	setup_object_debug(s, object);
2156	object = kasan_init_slab_obj(s, object);
2157	if (unlikely(s->ctor)) {
2158		kasan_unpoison_new_object(s, object);
2159		s->ctor(object);
2160		kasan_poison_new_object(s, object);
2161	}
2162	return object;
2163}
2164
2165/*
2166 * Slab allocation and freeing
2167 */
2168static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2169		struct kmem_cache_order_objects oo)
2170{
2171	struct folio *folio;
2172	struct slab *slab;
2173	unsigned int order = oo_order(oo);
2174
2175	folio = (struct folio *)alloc_pages_node(node, flags, order);
2176	if (!folio)
2177		return NULL;
2178
2179	slab = folio_slab(folio);
2180	__folio_set_slab(folio);
2181	/* Make the flag visible before any changes to folio->mapping */
2182	smp_wmb();
2183	if (folio_is_pfmemalloc(folio))
2184		slab_set_pfmemalloc(slab);
2185
2186	return slab;
2187}
2188
2189#ifdef CONFIG_SLAB_FREELIST_RANDOM
2190/* Pre-initialize the random sequence cache */
2191static int init_cache_random_seq(struct kmem_cache *s)
2192{
2193	unsigned int count = oo_objects(s->oo);
2194	int err;
2195
2196	/* Bailout if already initialised */
2197	if (s->random_seq)
2198		return 0;
2199
2200	err = cache_random_seq_create(s, count, GFP_KERNEL);
2201	if (err) {
2202		pr_err("SLUB: Unable to initialize free list for %s\n",
2203			s->name);
2204		return err;
2205	}
2206
2207	/* Transform to an offset on the set of pages */
2208	if (s->random_seq) {
2209		unsigned int i;
2210
2211		for (i = 0; i < count; i++)
2212			s->random_seq[i] *= s->size;
2213	}
2214	return 0;
2215}
2216
2217/* Initialize each random sequence freelist per cache */
2218static void __init init_freelist_randomization(void)
2219{
2220	struct kmem_cache *s;
2221
2222	mutex_lock(&slab_mutex);
2223
2224	list_for_each_entry(s, &slab_caches, list)
2225		init_cache_random_seq(s);
2226
2227	mutex_unlock(&slab_mutex);
2228}
2229
2230/* Get the next entry on the pre-computed freelist randomized */
2231static void *next_freelist_entry(struct kmem_cache *s,
2232				unsigned long *pos, void *start,
2233				unsigned long page_limit,
2234				unsigned long freelist_count)
2235{
2236	unsigned int idx;
2237
2238	/*
2239	 * If the target page allocation failed, the number of objects on the
2240	 * page might be smaller than the usual size defined by the cache.
2241	 */
2242	do {
2243		idx = s->random_seq[*pos];
2244		*pos += 1;
2245		if (*pos >= freelist_count)
2246			*pos = 0;
2247	} while (unlikely(idx >= page_limit));
2248
2249	return (char *)start + idx;
2250}
2251
2252/* Shuffle the single linked freelist based on a random pre-computed sequence */
2253static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2254{
2255	void *start;
2256	void *cur;
2257	void *next;
2258	unsigned long idx, pos, page_limit, freelist_count;
2259
2260	if (slab->objects < 2 || !s->random_seq)
2261		return false;
2262
2263	freelist_count = oo_objects(s->oo);
2264	pos = get_random_u32_below(freelist_count);
2265
2266	page_limit = slab->objects * s->size;
2267	start = fixup_red_left(s, slab_address(slab));
2268
2269	/* First entry is used as the base of the freelist */
2270	cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2271	cur = setup_object(s, cur);
2272	slab->freelist = cur;
2273
2274	for (idx = 1; idx < slab->objects; idx++) {
2275		next = next_freelist_entry(s, &pos, start, page_limit,
2276			freelist_count);
2277		next = setup_object(s, next);
2278		set_freepointer(s, cur, next);
2279		cur = next;
2280	}
2281	set_freepointer(s, cur, NULL);
2282
2283	return true;
2284}
2285#else
2286static inline int init_cache_random_seq(struct kmem_cache *s)
2287{
2288	return 0;
2289}
2290static inline void init_freelist_randomization(void) { }
2291static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2292{
2293	return false;
2294}
2295#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2296
2297static __always_inline void account_slab(struct slab *slab, int order,
2298					 struct kmem_cache *s, gfp_t gfp)
2299{
2300	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2301		memcg_alloc_slab_cgroups(slab, s, gfp, true);
2302
2303	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2304			    PAGE_SIZE << order);
2305}
2306
2307static __always_inline void unaccount_slab(struct slab *slab, int order,
2308					   struct kmem_cache *s)
2309{
2310	if (memcg_kmem_online())
2311		memcg_free_slab_cgroups(slab);
2312
2313	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2314			    -(PAGE_SIZE << order));
2315}
2316
2317static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2318{
2319	struct slab *slab;
2320	struct kmem_cache_order_objects oo = s->oo;
2321	gfp_t alloc_gfp;
2322	void *start, *p, *next;
2323	int idx;
2324	bool shuffle;
2325
2326	flags &= gfp_allowed_mask;
2327
2328	flags |= s->allocflags;
2329
2330	/*
2331	 * Let the initial higher-order allocation fail under memory pressure
2332	 * so we fall-back to the minimum order allocation.
2333	 */
2334	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2335	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2336		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2337
2338	slab = alloc_slab_page(alloc_gfp, node, oo);
2339	if (unlikely(!slab)) {
2340		oo = s->min;
2341		alloc_gfp = flags;
2342		/*
2343		 * Allocation may have failed due to fragmentation.
2344		 * Try a lower order alloc if possible
2345		 */
2346		slab = alloc_slab_page(alloc_gfp, node, oo);
2347		if (unlikely(!slab))
2348			return NULL;
2349		stat(s, ORDER_FALLBACK);
2350	}
2351
2352	slab->objects = oo_objects(oo);
2353	slab->inuse = 0;
2354	slab->frozen = 0;
2355
2356	account_slab(slab, oo_order(oo), s, flags);
2357
2358	slab->slab_cache = s;
2359
2360	kasan_poison_slab(slab);
2361
2362	start = slab_address(slab);
2363
2364	setup_slab_debug(s, slab, start);
2365
2366	shuffle = shuffle_freelist(s, slab);
2367
2368	if (!shuffle) {
2369		start = fixup_red_left(s, start);
2370		start = setup_object(s, start);
2371		slab->freelist = start;
2372		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2373			next = p + s->size;
2374			next = setup_object(s, next);
2375			set_freepointer(s, p, next);
2376			p = next;
2377		}
2378		set_freepointer(s, p, NULL);
2379	}
2380
2381	return slab;
2382}
2383
2384static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2385{
2386	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2387		flags = kmalloc_fix_flags(flags);
2388
2389	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2390
2391	return allocate_slab(s,
2392		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2393}
2394
2395static void __free_slab(struct kmem_cache *s, struct slab *slab)
2396{
2397	struct folio *folio = slab_folio(slab);
2398	int order = folio_order(folio);
2399	int pages = 1 << order;
2400
2401	__slab_clear_pfmemalloc(slab);
2402	folio->mapping = NULL;
2403	/* Make the mapping reset visible before clearing the flag */
2404	smp_wmb();
2405	__folio_clear_slab(folio);
2406	mm_account_reclaimed_pages(pages);
2407	unaccount_slab(slab, order, s);
2408	__free_pages(&folio->page, order);
2409}
2410
2411static void rcu_free_slab(struct rcu_head *h)
2412{
2413	struct slab *slab = container_of(h, struct slab, rcu_head);
2414
2415	__free_slab(slab->slab_cache, slab);
2416}
2417
2418static void free_slab(struct kmem_cache *s, struct slab *slab)
2419{
2420	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2421		void *p;
2422
2423		slab_pad_check(s, slab);
2424		for_each_object(p, s, slab_address(slab), slab->objects)
2425			check_object(s, slab, p, SLUB_RED_INACTIVE);
2426	}
2427
2428	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2429		call_rcu(&slab->rcu_head, rcu_free_slab);
2430	else
2431		__free_slab(s, slab);
2432}
2433
2434static void discard_slab(struct kmem_cache *s, struct slab *slab)
2435{
2436	dec_slabs_node(s, slab_nid(slab), slab->objects);
2437	free_slab(s, slab);
2438}
2439
2440/*
2441 * SLUB reuses PG_workingset bit to keep track of whether it's on
2442 * the per-node partial list.
2443 */
2444static inline bool slab_test_node_partial(const struct slab *slab)
2445{
2446	return folio_test_workingset((struct folio *)slab_folio(slab));
2447}
2448
2449static inline void slab_set_node_partial(struct slab *slab)
2450{
2451	set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2452}
2453
2454static inline void slab_clear_node_partial(struct slab *slab)
2455{
2456	clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2457}
2458
2459/*
2460 * Management of partially allocated slabs.
2461 */
2462static inline void
2463__add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2464{
2465	n->nr_partial++;
2466	if (tail == DEACTIVATE_TO_TAIL)
2467		list_add_tail(&slab->slab_list, &n->partial);
2468	else
2469		list_add(&slab->slab_list, &n->partial);
2470	slab_set_node_partial(slab);
2471}
2472
2473static inline void add_partial(struct kmem_cache_node *n,
2474				struct slab *slab, int tail)
2475{
2476	lockdep_assert_held(&n->list_lock);
2477	__add_partial(n, slab, tail);
2478}
2479
2480static inline void remove_partial(struct kmem_cache_node *n,
2481					struct slab *slab)
2482{
2483	lockdep_assert_held(&n->list_lock);
2484	list_del(&slab->slab_list);
2485	slab_clear_node_partial(slab);
2486	n->nr_partial--;
2487}
2488
2489/*
2490 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2491 * slab from the n->partial list. Remove only a single object from the slab, do
2492 * the alloc_debug_processing() checks and leave the slab on the list, or move
2493 * it to full list if it was the last free object.
2494 */
2495static void *alloc_single_from_partial(struct kmem_cache *s,
2496		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2497{
2498	void *object;
2499
2500	lockdep_assert_held(&n->list_lock);
2501
2502	object = slab->freelist;
2503	slab->freelist = get_freepointer(s, object);
2504	slab->inuse++;
2505
2506	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2507		remove_partial(n, slab);
2508		return NULL;
2509	}
2510
2511	if (slab->inuse == slab->objects) {
2512		remove_partial(n, slab);
2513		add_full(s, n, slab);
2514	}
2515
2516	return object;
2517}
2518
2519/*
2520 * Called only for kmem_cache_debug() caches to allocate from a freshly
2521 * allocated slab. Allocate a single object instead of whole freelist
2522 * and put the slab to the partial (or full) list.
2523 */
2524static void *alloc_single_from_new_slab(struct kmem_cache *s,
2525					struct slab *slab, int orig_size)
2526{
2527	int nid = slab_nid(slab);
2528	struct kmem_cache_node *n = get_node(s, nid);
2529	unsigned long flags;
2530	void *object;
2531
2532
2533	object = slab->freelist;
2534	slab->freelist = get_freepointer(s, object);
2535	slab->inuse = 1;
2536
2537	if (!alloc_debug_processing(s, slab, object, orig_size))
2538		/*
2539		 * It's not really expected that this would fail on a
2540		 * freshly allocated slab, but a concurrent memory
2541		 * corruption in theory could cause that.
2542		 */
2543		return NULL;
2544
2545	spin_lock_irqsave(&n->list_lock, flags);
2546
2547	if (slab->inuse == slab->objects)
2548		add_full(s, n, slab);
2549	else
2550		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2551
2552	inc_slabs_node(s, nid, slab->objects);
2553	spin_unlock_irqrestore(&n->list_lock, flags);
2554
2555	return object;
2556}
2557
2558#ifdef CONFIG_SLUB_CPU_PARTIAL
2559static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2560#else
2561static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2562				   int drain) { }
2563#endif
2564static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2565
2566/*
2567 * Try to allocate a partial slab from a specific node.
2568 */
2569static struct slab *get_partial_node(struct kmem_cache *s,
2570				     struct kmem_cache_node *n,
2571				     struct partial_context *pc)
2572{
2573	struct slab *slab, *slab2, *partial = NULL;
2574	unsigned long flags;
2575	unsigned int partial_slabs = 0;
2576
2577	/*
2578	 * Racy check. If we mistakenly see no partial slabs then we
2579	 * just allocate an empty slab. If we mistakenly try to get a
2580	 * partial slab and there is none available then get_partial()
2581	 * will return NULL.
2582	 */
2583	if (!n || !n->nr_partial)
2584		return NULL;
2585
2586	spin_lock_irqsave(&n->list_lock, flags);
2587	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2588		if (!pfmemalloc_match(slab, pc->flags))
2589			continue;
2590
2591		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2592			void *object = alloc_single_from_partial(s, n, slab,
2593							pc->orig_size);
2594			if (object) {
2595				partial = slab;
2596				pc->object = object;
2597				break;
2598			}
2599			continue;
2600		}
2601
2602		remove_partial(n, slab);
2603
2604		if (!partial) {
2605			partial = slab;
2606			stat(s, ALLOC_FROM_PARTIAL);
2607		} else {
2608			put_cpu_partial(s, slab, 0);
2609			stat(s, CPU_PARTIAL_NODE);
2610			partial_slabs++;
2611		}
2612#ifdef CONFIG_SLUB_CPU_PARTIAL
2613		if (!kmem_cache_has_cpu_partial(s)
2614			|| partial_slabs > s->cpu_partial_slabs / 2)
2615			break;
2616#else
2617		break;
2618#endif
2619
2620	}
2621	spin_unlock_irqrestore(&n->list_lock, flags);
2622	return partial;
2623}
2624
2625/*
2626 * Get a slab from somewhere. Search in increasing NUMA distances.
2627 */
2628static struct slab *get_any_partial(struct kmem_cache *s,
2629				    struct partial_context *pc)
2630{
2631#ifdef CONFIG_NUMA
2632	struct zonelist *zonelist;
2633	struct zoneref *z;
2634	struct zone *zone;
2635	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2636	struct slab *slab;
2637	unsigned int cpuset_mems_cookie;
2638
2639	/*
2640	 * The defrag ratio allows a configuration of the tradeoffs between
2641	 * inter node defragmentation and node local allocations. A lower
2642	 * defrag_ratio increases the tendency to do local allocations
2643	 * instead of attempting to obtain partial slabs from other nodes.
2644	 *
2645	 * If the defrag_ratio is set to 0 then kmalloc() always
2646	 * returns node local objects. If the ratio is higher then kmalloc()
2647	 * may return off node objects because partial slabs are obtained
2648	 * from other nodes and filled up.
2649	 *
2650	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2651	 * (which makes defrag_ratio = 1000) then every (well almost)
2652	 * allocation will first attempt to defrag slab caches on other nodes.
2653	 * This means scanning over all nodes to look for partial slabs which
2654	 * may be expensive if we do it every time we are trying to find a slab
2655	 * with available objects.
2656	 */
2657	if (!s->remote_node_defrag_ratio ||
2658			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2659		return NULL;
2660
2661	do {
2662		cpuset_mems_cookie = read_mems_allowed_begin();
2663		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2664		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2665			struct kmem_cache_node *n;
2666
2667			n = get_node(s, zone_to_nid(zone));
2668
2669			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2670					n->nr_partial > s->min_partial) {
2671				slab = get_partial_node(s, n, pc);
2672				if (slab) {
2673					/*
2674					 * Don't check read_mems_allowed_retry()
2675					 * here - if mems_allowed was updated in
2676					 * parallel, that was a harmless race
2677					 * between allocation and the cpuset
2678					 * update
2679					 */
2680					return slab;
2681				}
2682			}
2683		}
2684	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2685#endif	/* CONFIG_NUMA */
2686	return NULL;
2687}
2688
2689/*
2690 * Get a partial slab, lock it and return it.
2691 */
2692static struct slab *get_partial(struct kmem_cache *s, int node,
2693				struct partial_context *pc)
2694{
2695	struct slab *slab;
2696	int searchnode = node;
2697
2698	if (node == NUMA_NO_NODE)
2699		searchnode = numa_mem_id();
2700
2701	slab = get_partial_node(s, get_node(s, searchnode), pc);
2702	if (slab || node != NUMA_NO_NODE)
2703		return slab;
2704
2705	return get_any_partial(s, pc);
2706}
2707
2708#ifndef CONFIG_SLUB_TINY
2709
2710#ifdef CONFIG_PREEMPTION
2711/*
2712 * Calculate the next globally unique transaction for disambiguation
2713 * during cmpxchg. The transactions start with the cpu number and are then
2714 * incremented by CONFIG_NR_CPUS.
2715 */
2716#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2717#else
2718/*
2719 * No preemption supported therefore also no need to check for
2720 * different cpus.
2721 */
2722#define TID_STEP 1
2723#endif /* CONFIG_PREEMPTION */
2724
2725static inline unsigned long next_tid(unsigned long tid)
2726{
2727	return tid + TID_STEP;
2728}
2729
2730#ifdef SLUB_DEBUG_CMPXCHG
2731static inline unsigned int tid_to_cpu(unsigned long tid)
2732{
2733	return tid % TID_STEP;
2734}
2735
2736static inline unsigned long tid_to_event(unsigned long tid)
2737{
2738	return tid / TID_STEP;
2739}
2740#endif
2741
2742static inline unsigned int init_tid(int cpu)
2743{
2744	return cpu;
2745}
2746
2747static inline void note_cmpxchg_failure(const char *n,
2748		const struct kmem_cache *s, unsigned long tid)
2749{
2750#ifdef SLUB_DEBUG_CMPXCHG
2751	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2752
2753	pr_info("%s %s: cmpxchg redo ", n, s->name);
2754
2755#ifdef CONFIG_PREEMPTION
2756	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2757		pr_warn("due to cpu change %d -> %d\n",
2758			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2759	else
2760#endif
2761	if (tid_to_event(tid) != tid_to_event(actual_tid))
2762		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2763			tid_to_event(tid), tid_to_event(actual_tid));
2764	else
2765		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2766			actual_tid, tid, next_tid(tid));
2767#endif
2768	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2769}
2770
2771static void init_kmem_cache_cpus(struct kmem_cache *s)
2772{
2773	int cpu;
2774	struct kmem_cache_cpu *c;
2775
2776	for_each_possible_cpu(cpu) {
2777		c = per_cpu_ptr(s->cpu_slab, cpu);
2778		local_lock_init(&c->lock);
2779		c->tid = init_tid(cpu);
2780	}
2781}
2782
2783/*
2784 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2785 * unfreezes the slabs and puts it on the proper list.
2786 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2787 * by the caller.
2788 */
2789static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2790			    void *freelist)
2791{
2792	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2793	int free_delta = 0;
2794	void *nextfree, *freelist_iter, *freelist_tail;
2795	int tail = DEACTIVATE_TO_HEAD;
2796	unsigned long flags = 0;
2797	struct slab new;
2798	struct slab old;
2799
2800	if (slab->freelist) {
2801		stat(s, DEACTIVATE_REMOTE_FREES);
2802		tail = DEACTIVATE_TO_TAIL;
2803	}
2804
2805	/*
2806	 * Stage one: Count the objects on cpu's freelist as free_delta and
2807	 * remember the last object in freelist_tail for later splicing.
2808	 */
2809	freelist_tail = NULL;
2810	freelist_iter = freelist;
2811	while (freelist_iter) {
2812		nextfree = get_freepointer(s, freelist_iter);
2813
2814		/*
2815		 * If 'nextfree' is invalid, it is possible that the object at
2816		 * 'freelist_iter' is already corrupted.  So isolate all objects
2817		 * starting at 'freelist_iter' by skipping them.
2818		 */
2819		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2820			break;
2821
2822		freelist_tail = freelist_iter;
2823		free_delta++;
2824
2825		freelist_iter = nextfree;
2826	}
2827
2828	/*
2829	 * Stage two: Unfreeze the slab while splicing the per-cpu
2830	 * freelist to the head of slab's freelist.
2831	 */
2832	do {
2833		old.freelist = READ_ONCE(slab->freelist);
2834		old.counters = READ_ONCE(slab->counters);
2835		VM_BUG_ON(!old.frozen);
2836
2837		/* Determine target state of the slab */
2838		new.counters = old.counters;
2839		new.frozen = 0;
2840		if (freelist_tail) {
2841			new.inuse -= free_delta;
2842			set_freepointer(s, freelist_tail, old.freelist);
2843			new.freelist = freelist;
2844		} else {
2845			new.freelist = old.freelist;
2846		}
2847	} while (!slab_update_freelist(s, slab,
2848		old.freelist, old.counters,
2849		new.freelist, new.counters,
2850		"unfreezing slab"));
2851
2852	/*
2853	 * Stage three: Manipulate the slab list based on the updated state.
2854	 */
2855	if (!new.inuse && n->nr_partial >= s->min_partial) {
2856		stat(s, DEACTIVATE_EMPTY);
2857		discard_slab(s, slab);
2858		stat(s, FREE_SLAB);
2859	} else if (new.freelist) {
2860		spin_lock_irqsave(&n->list_lock, flags);
2861		add_partial(n, slab, tail);
2862		spin_unlock_irqrestore(&n->list_lock, flags);
2863		stat(s, tail);
2864	} else {
2865		stat(s, DEACTIVATE_FULL);
2866	}
2867}
2868
2869#ifdef CONFIG_SLUB_CPU_PARTIAL
2870static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
2871{
2872	struct kmem_cache_node *n = NULL, *n2 = NULL;
2873	struct slab *slab, *slab_to_discard = NULL;
2874	unsigned long flags = 0;
2875
2876	while (partial_slab) {
2877		slab = partial_slab;
2878		partial_slab = slab->next;
2879
2880		n2 = get_node(s, slab_nid(slab));
2881		if (n != n2) {
2882			if (n)
2883				spin_unlock_irqrestore(&n->list_lock, flags);
2884
2885			n = n2;
2886			spin_lock_irqsave(&n->list_lock, flags);
2887		}
2888
2889		if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
2890			slab->next = slab_to_discard;
2891			slab_to_discard = slab;
2892		} else {
2893			add_partial(n, slab, DEACTIVATE_TO_TAIL);
2894			stat(s, FREE_ADD_PARTIAL);
2895		}
2896	}
2897
2898	if (n)
2899		spin_unlock_irqrestore(&n->list_lock, flags);
2900
2901	while (slab_to_discard) {
2902		slab = slab_to_discard;
2903		slab_to_discard = slab_to_discard->next;
2904
2905		stat(s, DEACTIVATE_EMPTY);
2906		discard_slab(s, slab);
2907		stat(s, FREE_SLAB);
2908	}
2909}
2910
2911/*
2912 * Put all the cpu partial slabs to the node partial list.
2913 */
2914static void put_partials(struct kmem_cache *s)
2915{
2916	struct slab *partial_slab;
2917	unsigned long flags;
2918
2919	local_lock_irqsave(&s->cpu_slab->lock, flags);
2920	partial_slab = this_cpu_read(s->cpu_slab->partial);
2921	this_cpu_write(s->cpu_slab->partial, NULL);
2922	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2923
2924	if (partial_slab)
2925		__put_partials(s, partial_slab);
2926}
2927
2928static void put_partials_cpu(struct kmem_cache *s,
2929			     struct kmem_cache_cpu *c)
2930{
2931	struct slab *partial_slab;
2932
2933	partial_slab = slub_percpu_partial(c);
2934	c->partial = NULL;
2935
2936	if (partial_slab)
2937		__put_partials(s, partial_slab);
2938}
2939
2940/*
2941 * Put a slab into a partial slab slot if available.
2942 *
2943 * If we did not find a slot then simply move all the partials to the
2944 * per node partial list.
2945 */
2946static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2947{
2948	struct slab *oldslab;
2949	struct slab *slab_to_put = NULL;
2950	unsigned long flags;
2951	int slabs = 0;
2952
2953	local_lock_irqsave(&s->cpu_slab->lock, flags);
2954
2955	oldslab = this_cpu_read(s->cpu_slab->partial);
2956
2957	if (oldslab) {
2958		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2959			/*
2960			 * Partial array is full. Move the existing set to the
2961			 * per node partial list. Postpone the actual unfreezing
2962			 * outside of the critical section.
2963			 */
2964			slab_to_put = oldslab;
2965			oldslab = NULL;
2966		} else {
2967			slabs = oldslab->slabs;
2968		}
2969	}
2970
2971	slabs++;
2972
2973	slab->slabs = slabs;
2974	slab->next = oldslab;
2975
2976	this_cpu_write(s->cpu_slab->partial, slab);
2977
2978	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2979
2980	if (slab_to_put) {
2981		__put_partials(s, slab_to_put);
2982		stat(s, CPU_PARTIAL_DRAIN);
2983	}
2984}
2985
2986#else	/* CONFIG_SLUB_CPU_PARTIAL */
2987
2988static inline void put_partials(struct kmem_cache *s) { }
2989static inline void put_partials_cpu(struct kmem_cache *s,
2990				    struct kmem_cache_cpu *c) { }
2991
2992#endif	/* CONFIG_SLUB_CPU_PARTIAL */
2993
2994static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2995{
2996	unsigned long flags;
2997	struct slab *slab;
2998	void *freelist;
2999
3000	local_lock_irqsave(&s->cpu_slab->lock, flags);
3001
3002	slab = c->slab;
3003	freelist = c->freelist;
3004
3005	c->slab = NULL;
3006	c->freelist = NULL;
3007	c->tid = next_tid(c->tid);
3008
3009	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3010
3011	if (slab) {
3012		deactivate_slab(s, slab, freelist);
3013		stat(s, CPUSLAB_FLUSH);
3014	}
3015}
3016
3017static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3018{
3019	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3020	void *freelist = c->freelist;
3021	struct slab *slab = c->slab;
3022
3023	c->slab = NULL;
3024	c->freelist = NULL;
3025	c->tid = next_tid(c->tid);
3026
3027	if (slab) {
3028		deactivate_slab(s, slab, freelist);
3029		stat(s, CPUSLAB_FLUSH);
3030	}
3031
3032	put_partials_cpu(s, c);
3033}
3034
3035struct slub_flush_work {
3036	struct work_struct work;
3037	struct kmem_cache *s;
3038	bool skip;
3039};
3040
3041/*
3042 * Flush cpu slab.
3043 *
3044 * Called from CPU work handler with migration disabled.
3045 */
3046static void flush_cpu_slab(struct work_struct *w)
3047{
3048	struct kmem_cache *s;
3049	struct kmem_cache_cpu *c;
3050	struct slub_flush_work *sfw;
3051
3052	sfw = container_of(w, struct slub_flush_work, work);
3053
3054	s = sfw->s;
3055	c = this_cpu_ptr(s->cpu_slab);
3056
3057	if (c->slab)
3058		flush_slab(s, c);
3059
3060	put_partials(s);
3061}
3062
3063static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3064{
3065	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3066
3067	return c->slab || slub_percpu_partial(c);
3068}
3069
3070static DEFINE_MUTEX(flush_lock);
3071static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3072
3073static void flush_all_cpus_locked(struct kmem_cache *s)
3074{
3075	struct slub_flush_work *sfw;
3076	unsigned int cpu;
3077
3078	lockdep_assert_cpus_held();
3079	mutex_lock(&flush_lock);
3080
3081	for_each_online_cpu(cpu) {
3082		sfw = &per_cpu(slub_flush, cpu);
3083		if (!has_cpu_slab(cpu, s)) {
3084			sfw->skip = true;
3085			continue;
3086		}
3087		INIT_WORK(&sfw->work, flush_cpu_slab);
3088		sfw->skip = false;
3089		sfw->s = s;
3090		queue_work_on(cpu, flushwq, &sfw->work);
3091	}
3092
3093	for_each_online_cpu(cpu) {
3094		sfw = &per_cpu(slub_flush, cpu);
3095		if (sfw->skip)
3096			continue;
3097		flush_work(&sfw->work);
3098	}
3099
3100	mutex_unlock(&flush_lock);
3101}
3102
3103static void flush_all(struct kmem_cache *s)
3104{
3105	cpus_read_lock();
3106	flush_all_cpus_locked(s);
3107	cpus_read_unlock();
3108}
3109
3110/*
3111 * Use the cpu notifier to insure that the cpu slabs are flushed when
3112 * necessary.
3113 */
3114static int slub_cpu_dead(unsigned int cpu)
3115{
3116	struct kmem_cache *s;
3117
3118	mutex_lock(&slab_mutex);
3119	list_for_each_entry(s, &slab_caches, list)
3120		__flush_cpu_slab(s, cpu);
3121	mutex_unlock(&slab_mutex);
3122	return 0;
3123}
3124
3125#else /* CONFIG_SLUB_TINY */
3126static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3127static inline void flush_all(struct kmem_cache *s) { }
3128static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3129static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3130#endif /* CONFIG_SLUB_TINY */
3131
3132/*
3133 * Check if the objects in a per cpu structure fit numa
3134 * locality expectations.
3135 */
3136static inline int node_match(struct slab *slab, int node)
3137{
3138#ifdef CONFIG_NUMA
3139	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3140		return 0;
3141#endif
3142	return 1;
3143}
3144
3145#ifdef CONFIG_SLUB_DEBUG
3146static int count_free(struct slab *slab)
3147{
3148	return slab->objects - slab->inuse;
3149}
3150
3151static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3152{
3153	return atomic_long_read(&n->total_objects);
3154}
3155
3156/* Supports checking bulk free of a constructed freelist */
3157static inline bool free_debug_processing(struct kmem_cache *s,
3158	struct slab *slab, void *head, void *tail, int *bulk_cnt,
3159	unsigned long addr, depot_stack_handle_t handle)
3160{
3161	bool checks_ok = false;
3162	void *object = head;
3163	int cnt = 0;
3164
3165	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3166		if (!check_slab(s, slab))
3167			goto out;
3168	}
3169
3170	if (slab->inuse < *bulk_cnt) {
3171		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3172			 slab->inuse, *bulk_cnt);
3173		goto out;
3174	}
3175
3176next_object:
3177
3178	if (++cnt > *bulk_cnt)
3179		goto out_cnt;
3180
3181	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3182		if (!free_consistency_checks(s, slab, object, addr))
3183			goto out;
3184	}
3185
3186	if (s->flags & SLAB_STORE_USER)
3187		set_track_update(s, object, TRACK_FREE, addr, handle);
3188	trace(s, slab, object, 0);
3189	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3190	init_object(s, object, SLUB_RED_INACTIVE);
3191
3192	/* Reached end of constructed freelist yet? */
3193	if (object != tail) {
3194		object = get_freepointer(s, object);
3195		goto next_object;
3196	}
3197	checks_ok = true;
3198
3199out_cnt:
3200	if (cnt != *bulk_cnt) {
3201		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3202			 *bulk_cnt, cnt);
3203		*bulk_cnt = cnt;
3204	}
3205
3206out:
3207
3208	if (!checks_ok)
3209		slab_fix(s, "Object at 0x%p not freed", object);
3210
3211	return checks_ok;
3212}
3213#endif /* CONFIG_SLUB_DEBUG */
3214
3215#if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3216static unsigned long count_partial(struct kmem_cache_node *n,
3217					int (*get_count)(struct slab *))
3218{
3219	unsigned long flags;
3220	unsigned long x = 0;
3221	struct slab *slab;
3222
3223	spin_lock_irqsave(&n->list_lock, flags);
3224	list_for_each_entry(slab, &n->partial, slab_list)
3225		x += get_count(slab);
3226	spin_unlock_irqrestore(&n->list_lock, flags);
3227	return x;
3228}
3229#endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3230
3231#ifdef CONFIG_SLUB_DEBUG
3232static noinline void
3233slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3234{
3235	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3236				      DEFAULT_RATELIMIT_BURST);
3237	int node;
3238	struct kmem_cache_node *n;
3239
3240	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3241		return;
3242
3243	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
3244		nid, gfpflags, &gfpflags);
3245	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3246		s->name, s->object_size, s->size, oo_order(s->oo),
3247		oo_order(s->min));
3248
3249	if (oo_order(s->min) > get_order(s->object_size))
3250		pr_warn("  %s debugging increased min order, use slab_debug=O to disable.\n",
3251			s->name);
3252
3253	for_each_kmem_cache_node(s, node, n) {
3254		unsigned long nr_slabs;
3255		unsigned long nr_objs;
3256		unsigned long nr_free;
3257
3258		nr_free  = count_partial(n, count_free);
3259		nr_slabs = node_nr_slabs(n);
3260		nr_objs  = node_nr_objs(n);
3261
3262		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
3263			node, nr_slabs, nr_objs, nr_free);
3264	}
3265}
3266#else /* CONFIG_SLUB_DEBUG */
3267static inline void
3268slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3269#endif
3270
3271static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3272{
3273	if (unlikely(slab_test_pfmemalloc(slab)))
3274		return gfp_pfmemalloc_allowed(gfpflags);
3275
3276	return true;
3277}
3278
3279#ifndef CONFIG_SLUB_TINY
3280static inline bool
3281__update_cpu_freelist_fast(struct kmem_cache *s,
3282			   void *freelist_old, void *freelist_new,
3283			   unsigned long tid)
3284{
3285	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3286	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3287
3288	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3289					     &old.full, new.full);
3290}
3291
3292/*
3293 * Check the slab->freelist and either transfer the freelist to the
3294 * per cpu freelist or deactivate the slab.
3295 *
3296 * The slab is still frozen if the return value is not NULL.
3297 *
3298 * If this function returns NULL then the slab has been unfrozen.
3299 */
3300static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3301{
3302	struct slab new;
3303	unsigned long counters;
3304	void *freelist;
3305
3306	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3307
3308	do {
3309		freelist = slab->freelist;
3310		counters = slab->counters;
3311
3312		new.counters = counters;
3313
3314		new.inuse = slab->objects;
3315		new.frozen = freelist != NULL;
3316
3317	} while (!__slab_update_freelist(s, slab,
3318		freelist, counters,
3319		NULL, new.counters,
3320		"get_freelist"));
3321
3322	return freelist;
3323}
3324
3325/*
3326 * Freeze the partial slab and return the pointer to the freelist.
3327 */
3328static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3329{
3330	struct slab new;
3331	unsigned long counters;
3332	void *freelist;
3333
3334	do {
3335		freelist = slab->freelist;
3336		counters = slab->counters;
3337
3338		new.counters = counters;
3339		VM_BUG_ON(new.frozen);
3340
3341		new.inuse = slab->objects;
3342		new.frozen = 1;
3343
3344	} while (!slab_update_freelist(s, slab,
3345		freelist, counters,
3346		NULL, new.counters,
3347		"freeze_slab"));
3348
3349	return freelist;
3350}
3351
3352/*
3353 * Slow path. The lockless freelist is empty or we need to perform
3354 * debugging duties.
3355 *
3356 * Processing is still very fast if new objects have been freed to the
3357 * regular freelist. In that case we simply take over the regular freelist
3358 * as the lockless freelist and zap the regular freelist.
3359 *
3360 * If that is not working then we fall back to the partial lists. We take the
3361 * first element of the freelist as the object to allocate now and move the
3362 * rest of the freelist to the lockless freelist.
3363 *
3364 * And if we were unable to get a new slab from the partial slab lists then
3365 * we need to allocate a new slab. This is the slowest path since it involves
3366 * a call to the page allocator and the setup of a new slab.
3367 *
3368 * Version of __slab_alloc to use when we know that preemption is
3369 * already disabled (which is the case for bulk allocation).
3370 */
3371static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3372			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3373{
3374	void *freelist;
3375	struct slab *slab;
3376	unsigned long flags;
3377	struct partial_context pc;
3378
3379	stat(s, ALLOC_SLOWPATH);
3380
3381reread_slab:
3382
3383	slab = READ_ONCE(c->slab);
3384	if (!slab) {
3385		/*
3386		 * if the node is not online or has no normal memory, just
3387		 * ignore the node constraint
3388		 */
3389		if (unlikely(node != NUMA_NO_NODE &&
3390			     !node_isset(node, slab_nodes)))
3391			node = NUMA_NO_NODE;
3392		goto new_slab;
3393	}
3394
3395	if (unlikely(!node_match(slab, node))) {
3396		/*
3397		 * same as above but node_match() being false already
3398		 * implies node != NUMA_NO_NODE
3399		 */
3400		if (!node_isset(node, slab_nodes)) {
3401			node = NUMA_NO_NODE;
3402		} else {
3403			stat(s, ALLOC_NODE_MISMATCH);
3404			goto deactivate_slab;
3405		}
3406	}
3407
3408	/*
3409	 * By rights, we should be searching for a slab page that was
3410	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3411	 * information when the page leaves the per-cpu allocator
3412	 */
3413	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3414		goto deactivate_slab;
3415
3416	/* must check again c->slab in case we got preempted and it changed */
3417	local_lock_irqsave(&s->cpu_slab->lock, flags);
3418	if (unlikely(slab != c->slab)) {
3419		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3420		goto reread_slab;
3421	}
3422	freelist = c->freelist;
3423	if (freelist)
3424		goto load_freelist;
3425
3426	freelist = get_freelist(s, slab);
3427
3428	if (!freelist) {
3429		c->slab = NULL;
3430		c->tid = next_tid(c->tid);
3431		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3432		stat(s, DEACTIVATE_BYPASS);
3433		goto new_slab;
3434	}
3435
3436	stat(s, ALLOC_REFILL);
3437
3438load_freelist:
3439
3440	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3441
3442	/*
3443	 * freelist is pointing to the list of objects to be used.
3444	 * slab is pointing to the slab from which the objects are obtained.
3445	 * That slab must be frozen for per cpu allocations to work.
3446	 */
3447	VM_BUG_ON(!c->slab->frozen);
3448	c->freelist = get_freepointer(s, freelist);
3449	c->tid = next_tid(c->tid);
3450	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3451	return freelist;
3452
3453deactivate_slab:
3454
3455	local_lock_irqsave(&s->cpu_slab->lock, flags);
3456	if (slab != c->slab) {
3457		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3458		goto reread_slab;
3459	}
3460	freelist = c->freelist;
3461	c->slab = NULL;
3462	c->freelist = NULL;
3463	c->tid = next_tid(c->tid);
3464	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3465	deactivate_slab(s, slab, freelist);
3466
3467new_slab:
3468
3469#ifdef CONFIG_SLUB_CPU_PARTIAL
3470	while (slub_percpu_partial(c)) {
3471		local_lock_irqsave(&s->cpu_slab->lock, flags);
3472		if (unlikely(c->slab)) {
3473			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3474			goto reread_slab;
3475		}
3476		if (unlikely(!slub_percpu_partial(c))) {
3477			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3478			/* we were preempted and partial list got empty */
3479			goto new_objects;
3480		}
3481
3482		slab = slub_percpu_partial(c);
3483		slub_set_percpu_partial(c, slab);
3484
3485		if (likely(node_match(slab, node) &&
3486			   pfmemalloc_match(slab, gfpflags))) {
3487			c->slab = slab;
3488			freelist = get_freelist(s, slab);
3489			VM_BUG_ON(!freelist);
3490			stat(s, CPU_PARTIAL_ALLOC);
3491			goto load_freelist;
3492		}
3493
3494		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3495
3496		slab->next = NULL;
3497		__put_partials(s, slab);
3498	}
3499#endif
3500
3501new_objects:
3502
3503	pc.flags = gfpflags;
3504	pc.orig_size = orig_size;
3505	slab = get_partial(s, node, &pc);
3506	if (slab) {
3507		if (kmem_cache_debug(s)) {
3508			freelist = pc.object;
3509			/*
3510			 * For debug caches here we had to go through
3511			 * alloc_single_from_partial() so just store the
3512			 * tracking info and return the object.
3513			 */
3514			if (s->flags & SLAB_STORE_USER)
3515				set_track(s, freelist, TRACK_ALLOC, addr);
3516
3517			return freelist;
3518		}
3519
3520		freelist = freeze_slab(s, slab);
3521		goto retry_load_slab;
3522	}
3523
3524	slub_put_cpu_ptr(s->cpu_slab);
3525	slab = new_slab(s, gfpflags, node);
3526	c = slub_get_cpu_ptr(s->cpu_slab);
3527
3528	if (unlikely(!slab)) {
3529		slab_out_of_memory(s, gfpflags, node);
3530		return NULL;
3531	}
3532
3533	stat(s, ALLOC_SLAB);
3534
3535	if (kmem_cache_debug(s)) {
3536		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3537
3538		if (unlikely(!freelist))
3539			goto new_objects;
3540
3541		if (s->flags & SLAB_STORE_USER)
3542			set_track(s, freelist, TRACK_ALLOC, addr);
3543
3544		return freelist;
3545	}
3546
3547	/*
3548	 * No other reference to the slab yet so we can
3549	 * muck around with it freely without cmpxchg
3550	 */
3551	freelist = slab->freelist;
3552	slab->freelist = NULL;
3553	slab->inuse = slab->objects;
3554	slab->frozen = 1;
3555
3556	inc_slabs_node(s, slab_nid(slab), slab->objects);
3557
3558	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3559		/*
3560		 * For !pfmemalloc_match() case we don't load freelist so that
3561		 * we don't make further mismatched allocations easier.
3562		 */
3563		deactivate_slab(s, slab, get_freepointer(s, freelist));
3564		return freelist;
3565	}
3566
3567retry_load_slab:
3568
3569	local_lock_irqsave(&s->cpu_slab->lock, flags);
3570	if (unlikely(c->slab)) {
3571		void *flush_freelist = c->freelist;
3572		struct slab *flush_slab = c->slab;
3573
3574		c->slab = NULL;
3575		c->freelist = NULL;
3576		c->tid = next_tid(c->tid);
3577
3578		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3579
3580		deactivate_slab(s, flush_slab, flush_freelist);
3581
3582		stat(s, CPUSLAB_FLUSH);
3583
3584		goto retry_load_slab;
3585	}
3586	c->slab = slab;
3587
3588	goto load_freelist;
3589}
3590
3591/*
3592 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3593 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3594 * pointer.
3595 */
3596static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3597			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3598{
3599	void *p;
3600
3601#ifdef CONFIG_PREEMPT_COUNT
3602	/*
3603	 * We may have been preempted and rescheduled on a different
3604	 * cpu before disabling preemption. Need to reload cpu area
3605	 * pointer.
3606	 */
3607	c = slub_get_cpu_ptr(s->cpu_slab);
3608#endif
3609
3610	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3611#ifdef CONFIG_PREEMPT_COUNT
3612	slub_put_cpu_ptr(s->cpu_slab);
3613#endif
3614	return p;
3615}
3616
3617static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3618		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3619{
3620	struct kmem_cache_cpu *c;
3621	struct slab *slab;
3622	unsigned long tid;
3623	void *object;
3624
3625redo:
3626	/*
3627	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3628	 * enabled. We may switch back and forth between cpus while
3629	 * reading from one cpu area. That does not matter as long
3630	 * as we end up on the original cpu again when doing the cmpxchg.
3631	 *
3632	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3633	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3634	 * the tid. If we are preempted and switched to another cpu between the
3635	 * two reads, it's OK as the two are still associated with the same cpu
3636	 * and cmpxchg later will validate the cpu.
3637	 */
3638	c = raw_cpu_ptr(s->cpu_slab);
3639	tid = READ_ONCE(c->tid);
3640
3641	/*
3642	 * Irqless object alloc/free algorithm used here depends on sequence
3643	 * of fetching cpu_slab's data. tid should be fetched before anything
3644	 * on c to guarantee that object and slab associated with previous tid
3645	 * won't be used with current tid. If we fetch tid first, object and
3646	 * slab could be one associated with next tid and our alloc/free
3647	 * request will be failed. In this case, we will retry. So, no problem.
3648	 */
3649	barrier();
3650
3651	/*
3652	 * The transaction ids are globally unique per cpu and per operation on
3653	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3654	 * occurs on the right processor and that there was no operation on the
3655	 * linked list in between.
3656	 */
3657
3658	object = c->freelist;
3659	slab = c->slab;
3660
3661	if (!USE_LOCKLESS_FAST_PATH() ||
3662	    unlikely(!object || !slab || !node_match(slab, node))) {
3663		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3664	} else {
3665		void *next_object = get_freepointer_safe(s, object);
3666
3667		/*
3668		 * The cmpxchg will only match if there was no additional
3669		 * operation and if we are on the right processor.
3670		 *
3671		 * The cmpxchg does the following atomically (without lock
3672		 * semantics!)
3673		 * 1. Relocate first pointer to the current per cpu area.
3674		 * 2. Verify that tid and freelist have not been changed
3675		 * 3. If they were not changed replace tid and freelist
3676		 *
3677		 * Since this is without lock semantics the protection is only
3678		 * against code executing on this cpu *not* from access by
3679		 * other cpus.
3680		 */
3681		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3682			note_cmpxchg_failure("slab_alloc", s, tid);
3683			goto redo;
3684		}
3685		prefetch_freepointer(s, next_object);
3686		stat(s, ALLOC_FASTPATH);
3687	}
3688
3689	return object;
3690}
3691#else /* CONFIG_SLUB_TINY */
3692static void *__slab_alloc_node(struct kmem_cache *s,
3693		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3694{
3695	struct partial_context pc;
3696	struct slab *slab;
3697	void *object;
3698
3699	pc.flags = gfpflags;
3700	pc.orig_size = orig_size;
3701	slab = get_partial(s, node, &pc);
3702
3703	if (slab)
3704		return pc.object;
3705
3706	slab = new_slab(s, gfpflags, node);
3707	if (unlikely(!slab)) {
3708		slab_out_of_memory(s, gfpflags, node);
3709		return NULL;
3710	}
3711
3712	object = alloc_single_from_new_slab(s, slab, orig_size);
3713
3714	return object;
3715}
3716#endif /* CONFIG_SLUB_TINY */
3717
3718/*
3719 * If the object has been wiped upon free, make sure it's fully initialized by
3720 * zeroing out freelist pointer.
3721 */
3722static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3723						   void *obj)
3724{
3725	if (unlikely(slab_want_init_on_free(s)) && obj)
3726		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3727			0, sizeof(void *));
3728}
3729
3730noinline int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
3731{
3732	if (__should_failslab(s, gfpflags))
3733		return -ENOMEM;
3734	return 0;
3735}
3736ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
3737
3738static __fastpath_inline
3739struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
3740				       struct list_lru *lru,
3741				       struct obj_cgroup **objcgp,
3742				       size_t size, gfp_t flags)
3743{
3744	flags &= gfp_allowed_mask;
3745
3746	might_alloc(flags);
3747
3748	if (unlikely(should_failslab(s, flags)))
3749		return NULL;
3750
3751	if (unlikely(!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags)))
3752		return NULL;
3753
3754	return s;
3755}
3756
3757static __fastpath_inline
3758void slab_post_alloc_hook(struct kmem_cache *s,	struct obj_cgroup *objcg,
3759			  gfp_t flags, size_t size, void **p, bool init,
3760			  unsigned int orig_size)
3761{
3762	unsigned int zero_size = s->object_size;
3763	bool kasan_init = init;
3764	size_t i;
3765	gfp_t init_flags = flags & gfp_allowed_mask;
3766
3767	/*
3768	 * For kmalloc object, the allocated memory size(object_size) is likely
3769	 * larger than the requested size(orig_size). If redzone check is
3770	 * enabled for the extra space, don't zero it, as it will be redzoned
3771	 * soon. The redzone operation for this extra space could be seen as a
3772	 * replacement of current poisoning under certain debug option, and
3773	 * won't break other sanity checks.
3774	 */
3775	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
3776	    (s->flags & SLAB_KMALLOC))
3777		zero_size = orig_size;
3778
3779	/*
3780	 * When slab_debug is enabled, avoid memory initialization integrated
3781	 * into KASAN and instead zero out the memory via the memset below with
3782	 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
3783	 * cause false-positive reports. This does not lead to a performance
3784	 * penalty on production builds, as slab_debug is not intended to be
3785	 * enabled there.
3786	 */
3787	if (__slub_debug_enabled())
3788		kasan_init = false;
3789
3790	/*
3791	 * As memory initialization might be integrated into KASAN,
3792	 * kasan_slab_alloc and initialization memset must be
3793	 * kept together to avoid discrepancies in behavior.
3794	 *
3795	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
3796	 */
3797	for (i = 0; i < size; i++) {
3798		p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
3799		if (p[i] && init && (!kasan_init ||
3800				     !kasan_has_integrated_init()))
3801			memset(p[i], 0, zero_size);
3802		kmemleak_alloc_recursive(p[i], s->object_size, 1,
3803					 s->flags, init_flags);
3804		kmsan_slab_alloc(s, p[i], init_flags);
3805	}
3806
3807	memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
3808}
3809
3810/*
3811 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3812 * have the fastpath folded into their functions. So no function call
3813 * overhead for requests that can be satisfied on the fastpath.
3814 *
3815 * The fastpath works by first checking if the lockless freelist can be used.
3816 * If not then __slab_alloc is called for slow processing.
3817 *
3818 * Otherwise we can simply pick the next object from the lockless free list.
3819 */
3820static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3821		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3822{
3823	void *object;
3824	struct obj_cgroup *objcg = NULL;
3825	bool init = false;
3826
3827	s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3828	if (unlikely(!s))
3829		return NULL;
3830
3831	object = kfence_alloc(s, orig_size, gfpflags);
3832	if (unlikely(object))
3833		goto out;
3834
3835	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3836
3837	maybe_wipe_obj_freeptr(s, object);
3838	init = slab_want_init_on_alloc(gfpflags, s);
3839
3840out:
3841	/*
3842	 * When init equals 'true', like for kzalloc() family, only
3843	 * @orig_size bytes might be zeroed instead of s->object_size
3844	 */
3845	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
3846
3847	return object;
3848}
3849
3850void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3851{
3852	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
3853				    s->object_size);
3854
3855	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3856
3857	return ret;
3858}
3859EXPORT_SYMBOL(kmem_cache_alloc);
3860
3861void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3862			   gfp_t gfpflags)
3863{
3864	void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
3865				    s->object_size);
3866
3867	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3868
3869	return ret;
3870}
3871EXPORT_SYMBOL(kmem_cache_alloc_lru);
3872
3873/**
3874 * kmem_cache_alloc_node - Allocate an object on the specified node
3875 * @s: The cache to allocate from.
3876 * @gfpflags: See kmalloc().
3877 * @node: node number of the target node.
3878 *
3879 * Identical to kmem_cache_alloc but it will allocate memory on the given
3880 * node, which can improve the performance for cpu bound structures.
3881 *
3882 * Fallback to other node is possible if __GFP_THISNODE is not set.
3883 *
3884 * Return: pointer to the new object or %NULL in case of error
3885 */
3886void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3887{
3888	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3889
3890	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
3891
3892	return ret;
3893}
3894EXPORT_SYMBOL(kmem_cache_alloc_node);
3895
3896/*
3897 * To avoid unnecessary overhead, we pass through large allocation requests
3898 * directly to the page allocator. We use __GFP_COMP, because we will need to
3899 * know the allocation order to free the pages properly in kfree.
3900 */
3901static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
3902{
3903	struct folio *folio;
3904	void *ptr = NULL;
3905	unsigned int order = get_order(size);
3906
3907	if (unlikely(flags & GFP_SLAB_BUG_MASK))
3908		flags = kmalloc_fix_flags(flags);
3909
3910	flags |= __GFP_COMP;
3911	folio = (struct folio *)alloc_pages_node(node, flags, order);
3912	if (folio) {
3913		ptr = folio_address(folio);
3914		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
3915				      PAGE_SIZE << order);
3916	}
3917
3918	ptr = kasan_kmalloc_large(ptr, size, flags);
3919	/* As ptr might get tagged, call kmemleak hook after KASAN. */
3920	kmemleak_alloc(ptr, size, 1, flags);
3921	kmsan_kmalloc_large(ptr, size, flags);
3922
3923	return ptr;
3924}
3925
3926void *kmalloc_large(size_t size, gfp_t flags)
3927{
3928	void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
3929
3930	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
3931		      flags, NUMA_NO_NODE);
3932	return ret;
3933}
3934EXPORT_SYMBOL(kmalloc_large);
3935
3936void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3937{
3938	void *ret = __kmalloc_large_node(size, flags, node);
3939
3940	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
3941		      flags, node);
3942	return ret;
3943}
3944EXPORT_SYMBOL(kmalloc_large_node);
3945
3946static __always_inline
3947void *__do_kmalloc_node(size_t size, gfp_t flags, int node,
3948			unsigned long caller)
3949{
3950	struct kmem_cache *s;
3951	void *ret;
3952
3953	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3954		ret = __kmalloc_large_node(size, flags, node);
3955		trace_kmalloc(caller, ret, size,
3956			      PAGE_SIZE << get_order(size), flags, node);
3957		return ret;
3958	}
3959
3960	if (unlikely(!size))
3961		return ZERO_SIZE_PTR;
3962
3963	s = kmalloc_slab(size, flags, caller);
3964
3965	ret = slab_alloc_node(s, NULL, flags, node, caller, size);
3966	ret = kasan_kmalloc(s, ret, size, flags);
3967	trace_kmalloc(caller, ret, size, s->size, flags, node);
3968	return ret;
3969}
3970
3971void *__kmalloc_node(size_t size, gfp_t flags, int node)
3972{
3973	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3974}
3975EXPORT_SYMBOL(__kmalloc_node);
3976
3977void *__kmalloc(size_t size, gfp_t flags)
3978{
3979	return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
3980}
3981EXPORT_SYMBOL(__kmalloc);
3982
3983void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3984				  int node, unsigned long caller)
3985{
3986	return __do_kmalloc_node(size, flags, node, caller);
3987}
3988EXPORT_SYMBOL(__kmalloc_node_track_caller);
3989
3990void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
3991{
3992	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
3993					    _RET_IP_, size);
3994
3995	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
3996
3997	ret = kasan_kmalloc(s, ret, size, gfpflags);
3998	return ret;
3999}
4000EXPORT_SYMBOL(kmalloc_trace);
4001
4002void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
4003			 int node, size_t size)
4004{
4005	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4006
4007	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4008
4009	ret = kasan_kmalloc(s, ret, size, gfpflags);
4010	return ret;
4011}
4012EXPORT_SYMBOL(kmalloc_node_trace);
4013
4014static noinline void free_to_partial_list(
4015	struct kmem_cache *s, struct slab *slab,
4016	void *head, void *tail, int bulk_cnt,
4017	unsigned long addr)
4018{
4019	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4020	struct slab *slab_free = NULL;
4021	int cnt = bulk_cnt;
4022	unsigned long flags;
4023	depot_stack_handle_t handle = 0;
4024
4025	if (s->flags & SLAB_STORE_USER)
4026		handle = set_track_prepare();
4027
4028	spin_lock_irqsave(&n->list_lock, flags);
4029
4030	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4031		void *prior = slab->freelist;
4032
4033		/* Perform the actual freeing while we still hold the locks */
4034		slab->inuse -= cnt;
4035		set_freepointer(s, tail, prior);
4036		slab->freelist = head;
4037
4038		/*
4039		 * If the slab is empty, and node's partial list is full,
4040		 * it should be discarded anyway no matter it's on full or
4041		 * partial list.
4042		 */
4043		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4044			slab_free = slab;
4045
4046		if (!prior) {
4047			/* was on full list */
4048			remove_full(s, n, slab);
4049			if (!slab_free) {
4050				add_partial(n, slab, DEACTIVATE_TO_TAIL);
4051				stat(s, FREE_ADD_PARTIAL);
4052			}
4053		} else if (slab_free) {
4054			remove_partial(n, slab);
4055			stat(s, FREE_REMOVE_PARTIAL);
4056		}
4057	}
4058
4059	if (slab_free) {
4060		/*
4061		 * Update the counters while still holding n->list_lock to
4062		 * prevent spurious validation warnings
4063		 */
4064		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4065	}
4066
4067	spin_unlock_irqrestore(&n->list_lock, flags);
4068
4069	if (slab_free) {
4070		stat(s, FREE_SLAB);
4071		free_slab(s, slab_free);
4072	}
4073}
4074
4075/*
4076 * Slow path handling. This may still be called frequently since objects
4077 * have a longer lifetime than the cpu slabs in most processing loads.
4078 *
4079 * So we still attempt to reduce cache line usage. Just take the slab
4080 * lock and free the item. If there is no additional partial slab
4081 * handling required then we can return immediately.
4082 */
4083static void __slab_free(struct kmem_cache *s, struct slab *slab,
4084			void *head, void *tail, int cnt,
4085			unsigned long addr)
4086
4087{
4088	void *prior;
4089	int was_frozen;
4090	struct slab new;
4091	unsigned long counters;
4092	struct kmem_cache_node *n = NULL;
4093	unsigned long flags;
4094	bool on_node_partial;
4095
4096	stat(s, FREE_SLOWPATH);
4097
4098	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4099		free_to_partial_list(s, slab, head, tail, cnt, addr);
4100		return;
4101	}
4102
4103	do {
4104		if (unlikely(n)) {
4105			spin_unlock_irqrestore(&n->list_lock, flags);
4106			n = NULL;
4107		}
4108		prior = slab->freelist;
4109		counters = slab->counters;
4110		set_freepointer(s, tail, prior);
4111		new.counters = counters;
4112		was_frozen = new.frozen;
4113		new.inuse -= cnt;
4114		if ((!new.inuse || !prior) && !was_frozen) {
4115			/* Needs to be taken off a list */
4116			if (!kmem_cache_has_cpu_partial(s) || prior) {
4117
4118				n = get_node(s, slab_nid(slab));
4119				/*
4120				 * Speculatively acquire the list_lock.
4121				 * If the cmpxchg does not succeed then we may
4122				 * drop the list_lock without any processing.
4123				 *
4124				 * Otherwise the list_lock will synchronize with
4125				 * other processors updating the list of slabs.
4126				 */
4127				spin_lock_irqsave(&n->list_lock, flags);
4128
4129				on_node_partial = slab_test_node_partial(slab);
4130			}
4131		}
4132
4133	} while (!slab_update_freelist(s, slab,
4134		prior, counters,
4135		head, new.counters,
4136		"__slab_free"));
4137
4138	if (likely(!n)) {
4139
4140		if (likely(was_frozen)) {
4141			/*
4142			 * The list lock was not taken therefore no list
4143			 * activity can be necessary.
4144			 */
4145			stat(s, FREE_FROZEN);
4146		} else if (kmem_cache_has_cpu_partial(s) && !prior) {
4147			/*
4148			 * If we started with a full slab then put it onto the
4149			 * per cpu partial list.
4150			 */
4151			put_cpu_partial(s, slab, 1);
4152			stat(s, CPU_PARTIAL_FREE);
4153		}
4154
4155		return;
4156	}
4157
4158	/*
4159	 * This slab was partially empty but not on the per-node partial list,
4160	 * in which case we shouldn't manipulate its list, just return.
4161	 */
4162	if (prior && !on_node_partial) {
4163		spin_unlock_irqrestore(&n->list_lock, flags);
4164		return;
4165	}
4166
4167	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4168		goto slab_empty;
4169
4170	/*
4171	 * Objects left in the slab. If it was not on the partial list before
4172	 * then add it.
4173	 */
4174	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4175		add_partial(n, slab, DEACTIVATE_TO_TAIL);
4176		stat(s, FREE_ADD_PARTIAL);
4177	}
4178	spin_unlock_irqrestore(&n->list_lock, flags);
4179	return;
4180
4181slab_empty:
4182	if (prior) {
4183		/*
4184		 * Slab on the partial list.
4185		 */
4186		remove_partial(n, slab);
4187		stat(s, FREE_REMOVE_PARTIAL);
4188	}
4189
4190	spin_unlock_irqrestore(&n->list_lock, flags);
4191	stat(s, FREE_SLAB);
4192	discard_slab(s, slab);
4193}
4194
4195#ifndef CONFIG_SLUB_TINY
4196/*
4197 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4198 * can perform fastpath freeing without additional function calls.
4199 *
4200 * The fastpath is only possible if we are freeing to the current cpu slab
4201 * of this processor. This typically the case if we have just allocated
4202 * the item before.
4203 *
4204 * If fastpath is not possible then fall back to __slab_free where we deal
4205 * with all sorts of special processing.
4206 *
4207 * Bulk free of a freelist with several objects (all pointing to the
4208 * same slab) possible by specifying head and tail ptr, plus objects
4209 * count (cnt). Bulk free indicated by tail pointer being set.
4210 */
4211static __always_inline void do_slab_free(struct kmem_cache *s,
4212				struct slab *slab, void *head, void *tail,
4213				int cnt, unsigned long addr)
4214{
4215	struct kmem_cache_cpu *c;
4216	unsigned long tid;
4217	void **freelist;
4218
4219redo:
4220	/*
4221	 * Determine the currently cpus per cpu slab.
4222	 * The cpu may change afterward. However that does not matter since
4223	 * data is retrieved via this pointer. If we are on the same cpu
4224	 * during the cmpxchg then the free will succeed.
4225	 */
4226	c = raw_cpu_ptr(s->cpu_slab);
4227	tid = READ_ONCE(c->tid);
4228
4229	/* Same with comment on barrier() in slab_alloc_node() */
4230	barrier();
4231
4232	if (unlikely(slab != c->slab)) {
4233		__slab_free(s, slab, head, tail, cnt, addr);
4234		return;
4235	}
4236
4237	if (USE_LOCKLESS_FAST_PATH()) {
4238		freelist = READ_ONCE(c->freelist);
4239
4240		set_freepointer(s, tail, freelist);
4241
4242		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4243			note_cmpxchg_failure("slab_free", s, tid);
4244			goto redo;
4245		}
4246	} else {
4247		/* Update the free list under the local lock */
4248		local_lock(&s->cpu_slab->lock);
4249		c = this_cpu_ptr(s->cpu_slab);
4250		if (unlikely(slab != c->slab)) {
4251			local_unlock(&s->cpu_slab->lock);
4252			goto redo;
4253		}
4254		tid = c->tid;
4255		freelist = c->freelist;
4256
4257		set_freepointer(s, tail, freelist);
4258		c->freelist = head;
4259		c->tid = next_tid(tid);
4260
4261		local_unlock(&s->cpu_slab->lock);
4262	}
4263	stat_add(s, FREE_FASTPATH, cnt);
4264}
4265#else /* CONFIG_SLUB_TINY */
4266static void do_slab_free(struct kmem_cache *s,
4267				struct slab *slab, void *head, void *tail,
4268				int cnt, unsigned long addr)
4269{
4270	__slab_free(s, slab, head, tail, cnt, addr);
4271}
4272#endif /* CONFIG_SLUB_TINY */
4273
4274static __fastpath_inline
4275void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4276	       unsigned long addr)
4277{
4278	memcg_slab_free_hook(s, slab, &object, 1);
4279
4280	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
4281		do_slab_free(s, slab, object, object, 1, addr);
4282}
4283
4284static __fastpath_inline
4285void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4286		    void *tail, void **p, int cnt, unsigned long addr)
4287{
4288	memcg_slab_free_hook(s, slab, p, cnt);
4289	/*
4290	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4291	 * to remove objects, whose reuse must be delayed.
4292	 */
4293	if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4294		do_slab_free(s, slab, head, tail, cnt, addr);
4295}
4296
4297#ifdef CONFIG_KASAN_GENERIC
4298void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4299{
4300	do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4301}
4302#endif
4303
4304static inline struct kmem_cache *virt_to_cache(const void *obj)
4305{
4306	struct slab *slab;
4307
4308	slab = virt_to_slab(obj);
4309	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4310		return NULL;
4311	return slab->slab_cache;
4312}
4313
4314static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4315{
4316	struct kmem_cache *cachep;
4317
4318	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4319	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4320		return s;
4321
4322	cachep = virt_to_cache(x);
4323	if (WARN(cachep && cachep != s,
4324		 "%s: Wrong slab cache. %s but object is from %s\n",
4325		 __func__, s->name, cachep->name))
4326		print_tracking(cachep, x);
4327	return cachep;
4328}
4329
4330/**
4331 * kmem_cache_free - Deallocate an object
4332 * @s: The cache the allocation was from.
4333 * @x: The previously allocated object.
4334 *
4335 * Free an object which was previously allocated from this
4336 * cache.
4337 */
4338void kmem_cache_free(struct kmem_cache *s, void *x)
4339{
4340	s = cache_from_obj(s, x);
4341	if (!s)
4342		return;
4343	trace_kmem_cache_free(_RET_IP_, x, s);
4344	slab_free(s, virt_to_slab(x), x, _RET_IP_);
4345}
4346EXPORT_SYMBOL(kmem_cache_free);
4347
4348static void free_large_kmalloc(struct folio *folio, void *object)
4349{
4350	unsigned int order = folio_order(folio);
4351
4352	if (WARN_ON_ONCE(order == 0))
4353		pr_warn_once("object pointer: 0x%p\n", object);
4354
4355	kmemleak_free(object);
4356	kasan_kfree_large(object);
4357	kmsan_kfree_large(object);
4358
4359	lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4360			      -(PAGE_SIZE << order));
4361	folio_put(folio);
4362}
4363
4364/**
4365 * kfree - free previously allocated memory
4366 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4367 *
4368 * If @object is NULL, no operation is performed.
4369 */
4370void kfree(const void *object)
4371{
4372	struct folio *folio;
4373	struct slab *slab;
4374	struct kmem_cache *s;
4375	void *x = (void *)object;
4376
4377	trace_kfree(_RET_IP_, object);
4378
4379	if (unlikely(ZERO_OR_NULL_PTR(object)))
4380		return;
4381
4382	folio = virt_to_folio(object);
4383	if (unlikely(!folio_test_slab(folio))) {
4384		free_large_kmalloc(folio, (void *)object);
4385		return;
4386	}
4387
4388	slab = folio_slab(folio);
4389	s = slab->slab_cache;
4390	slab_free(s, slab, x, _RET_IP_);
4391}
4392EXPORT_SYMBOL(kfree);
4393
4394struct detached_freelist {
4395	struct slab *slab;
4396	void *tail;
4397	void *freelist;
4398	int cnt;
4399	struct kmem_cache *s;
4400};
4401
4402/*
4403 * This function progressively scans the array with free objects (with
4404 * a limited look ahead) and extract objects belonging to the same
4405 * slab.  It builds a detached freelist directly within the given
4406 * slab/objects.  This can happen without any need for
4407 * synchronization, because the objects are owned by running process.
4408 * The freelist is build up as a single linked list in the objects.
4409 * The idea is, that this detached freelist can then be bulk
4410 * transferred to the real freelist(s), but only requiring a single
4411 * synchronization primitive.  Look ahead in the array is limited due
4412 * to performance reasons.
4413 */
4414static inline
4415int build_detached_freelist(struct kmem_cache *s, size_t size,
4416			    void **p, struct detached_freelist *df)
4417{
4418	int lookahead = 3;
4419	void *object;
4420	struct folio *folio;
4421	size_t same;
4422
4423	object = p[--size];
4424	folio = virt_to_folio(object);
4425	if (!s) {
4426		/* Handle kalloc'ed objects */
4427		if (unlikely(!folio_test_slab(folio))) {
4428			free_large_kmalloc(folio, object);
4429			df->slab = NULL;
4430			return size;
4431		}
4432		/* Derive kmem_cache from object */
4433		df->slab = folio_slab(folio);
4434		df->s = df->slab->slab_cache;
4435	} else {
4436		df->slab = folio_slab(folio);
4437		df->s = cache_from_obj(s, object); /* Support for memcg */
4438	}
4439
4440	/* Start new detached freelist */
4441	df->tail = object;
4442	df->freelist = object;
4443	df->cnt = 1;
4444
4445	if (is_kfence_address(object))
4446		return size;
4447
4448	set_freepointer(df->s, object, NULL);
4449
4450	same = size;
4451	while (size) {
4452		object = p[--size];
4453		/* df->slab is always set at this point */
4454		if (df->slab == virt_to_slab(object)) {
4455			/* Opportunity build freelist */
4456			set_freepointer(df->s, object, df->freelist);
4457			df->freelist = object;
4458			df->cnt++;
4459			same--;
4460			if (size != same)
4461				swap(p[size], p[same]);
4462			continue;
4463		}
4464
4465		/* Limit look ahead search */
4466		if (!--lookahead)
4467			break;
4468	}
4469
4470	return same;
4471}
4472
4473/*
4474 * Internal bulk free of objects that were not initialised by the post alloc
4475 * hooks and thus should not be processed by the free hooks
4476 */
4477static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4478{
4479	if (!size)
4480		return;
4481
4482	do {
4483		struct detached_freelist df;
4484
4485		size = build_detached_freelist(s, size, p, &df);
4486		if (!df.slab)
4487			continue;
4488
4489		do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4490			     _RET_IP_);
4491	} while (likely(size));
4492}
4493
4494/* Note that interrupts must be enabled when calling this function. */
4495void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4496{
4497	if (!size)
4498		return;
4499
4500	do {
4501		struct detached_freelist df;
4502
4503		size = build_detached_freelist(s, size, p, &df);
4504		if (!df.slab)
4505			continue;
4506
4507		slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4508			       df.cnt, _RET_IP_);
4509	} while (likely(size));
4510}
4511EXPORT_SYMBOL(kmem_cache_free_bulk);
4512
4513#ifndef CONFIG_SLUB_TINY
4514static inline
4515int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4516			    void **p)
4517{
4518	struct kmem_cache_cpu *c;
4519	unsigned long irqflags;
4520	int i;
4521
4522	/*
4523	 * Drain objects in the per cpu slab, while disabling local
4524	 * IRQs, which protects against PREEMPT and interrupts
4525	 * handlers invoking normal fastpath.
4526	 */
4527	c = slub_get_cpu_ptr(s->cpu_slab);
4528	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4529
4530	for (i = 0; i < size; i++) {
4531		void *object = kfence_alloc(s, s->object_size, flags);
4532
4533		if (unlikely(object)) {
4534			p[i] = object;
4535			continue;
4536		}
4537
4538		object = c->freelist;
4539		if (unlikely(!object)) {
4540			/*
4541			 * We may have removed an object from c->freelist using
4542			 * the fastpath in the previous iteration; in that case,
4543			 * c->tid has not been bumped yet.
4544			 * Since ___slab_alloc() may reenable interrupts while
4545			 * allocating memory, we should bump c->tid now.
4546			 */
4547			c->tid = next_tid(c->tid);
4548
4549			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4550
4551			/*
4552			 * Invoking slow path likely have side-effect
4553			 * of re-populating per CPU c->freelist
4554			 */
4555			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
4556					    _RET_IP_, c, s->object_size);
4557			if (unlikely(!p[i]))
4558				goto error;
4559
4560			c = this_cpu_ptr(s->cpu_slab);
4561			maybe_wipe_obj_freeptr(s, p[i]);
4562
4563			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4564
4565			continue; /* goto for-loop */
4566		}
4567		c->freelist = get_freepointer(s, object);
4568		p[i] = object;
4569		maybe_wipe_obj_freeptr(s, p[i]);
4570		stat(s, ALLOC_FASTPATH);
4571	}
4572	c->tid = next_tid(c->tid);
4573	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4574	slub_put_cpu_ptr(s->cpu_slab);
4575
4576	return i;
4577
4578error:
4579	slub_put_cpu_ptr(s->cpu_slab);
4580	__kmem_cache_free_bulk(s, i, p);
4581	return 0;
4582
4583}
4584#else /* CONFIG_SLUB_TINY */
4585static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4586				   size_t size, void **p)
4587{
4588	int i;
4589
4590	for (i = 0; i < size; i++) {
4591		void *object = kfence_alloc(s, s->object_size, flags);
4592
4593		if (unlikely(object)) {
4594			p[i] = object;
4595			continue;
4596		}
4597
4598		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4599					 _RET_IP_, s->object_size);
4600		if (unlikely(!p[i]))
4601			goto error;
4602
4603		maybe_wipe_obj_freeptr(s, p[i]);
4604	}
4605
4606	return i;
4607
4608error:
4609	__kmem_cache_free_bulk(s, i, p);
4610	return 0;
4611}
4612#endif /* CONFIG_SLUB_TINY */
4613
4614/* Note that interrupts must be enabled when calling this function. */
4615int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4616			  void **p)
4617{
4618	int i;
4619	struct obj_cgroup *objcg = NULL;
4620
4621	if (!size)
4622		return 0;
4623
4624	/* memcg and kmem_cache debug support */
4625	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4626	if (unlikely(!s))
4627		return 0;
4628
4629	i = __kmem_cache_alloc_bulk(s, flags, size, p);
4630
4631	/*
4632	 * memcg and kmem_cache debug support and memory initialization.
4633	 * Done outside of the IRQ disabled fastpath loop.
4634	 */
4635	if (likely(i != 0)) {
4636		slab_post_alloc_hook(s, objcg, flags, size, p,
4637			slab_want_init_on_alloc(flags, s), s->object_size);
4638	} else {
4639		memcg_slab_alloc_error_hook(s, size, objcg);
4640	}
4641
4642	return i;
4643}
4644EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4645
4646
4647/*
4648 * Object placement in a slab is made very easy because we always start at
4649 * offset 0. If we tune the size of the object to the alignment then we can
4650 * get the required alignment by putting one properly sized object after
4651 * another.
4652 *
4653 * Notice that the allocation order determines the sizes of the per cpu
4654 * caches. Each processor has always one slab available for allocations.
4655 * Increasing the allocation order reduces the number of times that slabs
4656 * must be moved on and off the partial lists and is therefore a factor in
4657 * locking overhead.
4658 */
4659
4660/*
4661 * Minimum / Maximum order of slab pages. This influences locking overhead
4662 * and slab fragmentation. A higher order reduces the number of partial slabs
4663 * and increases the number of allocations possible without having to
4664 * take the list_lock.
4665 */
4666static unsigned int slub_min_order;
4667static unsigned int slub_max_order =
4668	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4669static unsigned int slub_min_objects;
4670
4671/*
4672 * Calculate the order of allocation given an slab object size.
4673 *
4674 * The order of allocation has significant impact on performance and other
4675 * system components. Generally order 0 allocations should be preferred since
4676 * order 0 does not cause fragmentation in the page allocator. Larger objects
4677 * be problematic to put into order 0 slabs because there may be too much
4678 * unused space left. We go to a higher order if more than 1/16th of the slab
4679 * would be wasted.
4680 *
4681 * In order to reach satisfactory performance we must ensure that a minimum
4682 * number of objects is in one slab. Otherwise we may generate too much
4683 * activity on the partial lists which requires taking the list_lock. This is
4684 * less a concern for large slabs though which are rarely used.
4685 *
4686 * slab_max_order specifies the order where we begin to stop considering the
4687 * number of objects in a slab as critical. If we reach slab_max_order then
4688 * we try to keep the page order as low as possible. So we accept more waste
4689 * of space in favor of a small page order.
4690 *
4691 * Higher order allocations also allow the placement of more objects in a
4692 * slab and thereby reduce object handling overhead. If the user has
4693 * requested a higher minimum order then we start with that one instead of
4694 * the smallest order which will fit the object.
4695 */
4696static inline unsigned int calc_slab_order(unsigned int size,
4697		unsigned int min_order, unsigned int max_order,
4698		unsigned int fract_leftover)
4699{
4700	unsigned int order;
4701
4702	for (order = min_order; order <= max_order; order++) {
4703
4704		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4705		unsigned int rem;
4706
4707		rem = slab_size % size;
4708
4709		if (rem <= slab_size / fract_leftover)
4710			break;
4711	}
4712
4713	return order;
4714}
4715
4716static inline int calculate_order(unsigned int size)
4717{
4718	unsigned int order;
4719	unsigned int min_objects;
4720	unsigned int max_objects;
4721	unsigned int min_order;
4722
4723	min_objects = slub_min_objects;
4724	if (!min_objects) {
4725		/*
4726		 * Some architectures will only update present cpus when
4727		 * onlining them, so don't trust the number if it's just 1. But
4728		 * we also don't want to use nr_cpu_ids always, as on some other
4729		 * architectures, there can be many possible cpus, but never
4730		 * onlined. Here we compromise between trying to avoid too high
4731		 * order on systems that appear larger than they are, and too
4732		 * low order on systems that appear smaller than they are.
4733		 */
4734		unsigned int nr_cpus = num_present_cpus();
4735		if (nr_cpus <= 1)
4736			nr_cpus = nr_cpu_ids;
4737		min_objects = 4 * (fls(nr_cpus) + 1);
4738	}
4739	/* min_objects can't be 0 because get_order(0) is undefined */
4740	max_objects = max(order_objects(slub_max_order, size), 1U);
4741	min_objects = min(min_objects, max_objects);
4742
4743	min_order = max_t(unsigned int, slub_min_order,
4744			  get_order(min_objects * size));
4745	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4746		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4747
4748	/*
4749	 * Attempt to find best configuration for a slab. This works by first
4750	 * attempting to generate a layout with the best possible configuration
4751	 * and backing off gradually.
4752	 *
4753	 * We start with accepting at most 1/16 waste and try to find the
4754	 * smallest order from min_objects-derived/slab_min_order up to
4755	 * slab_max_order that will satisfy the constraint. Note that increasing
4756	 * the order can only result in same or less fractional waste, not more.
4757	 *
4758	 * If that fails, we increase the acceptable fraction of waste and try
4759	 * again. The last iteration with fraction of 1/2 would effectively
4760	 * accept any waste and give us the order determined by min_objects, as
4761	 * long as at least single object fits within slab_max_order.
4762	 */
4763	for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
4764		order = calc_slab_order(size, min_order, slub_max_order,
4765					fraction);
4766		if (order <= slub_max_order)
4767			return order;
4768	}
4769
4770	/*
4771	 * Doh this slab cannot be placed using slab_max_order.
4772	 */
4773	order = get_order(size);
4774	if (order <= MAX_PAGE_ORDER)
4775		return order;
4776	return -ENOSYS;
4777}
4778
4779static void
4780init_kmem_cache_node(struct kmem_cache_node *n)
4781{
4782	n->nr_partial = 0;
4783	spin_lock_init(&n->list_lock);
4784	INIT_LIST_HEAD(&n->partial);
4785#ifdef CONFIG_SLUB_DEBUG
4786	atomic_long_set(&n->nr_slabs, 0);
4787	atomic_long_set(&n->total_objects, 0);
4788	INIT_LIST_HEAD(&n->full);
4789#endif
4790}
4791
4792#ifndef CONFIG_SLUB_TINY
4793static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4794{
4795	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4796			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4797			sizeof(struct kmem_cache_cpu));
4798
4799	/*
4800	 * Must align to double word boundary for the double cmpxchg
4801	 * instructions to work; see __pcpu_double_call_return_bool().
4802	 */
4803	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4804				     2 * sizeof(void *));
4805
4806	if (!s->cpu_slab)
4807		return 0;
4808
4809	init_kmem_cache_cpus(s);
4810
4811	return 1;
4812}
4813#else
4814static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4815{
4816	return 1;
4817}
4818#endif /* CONFIG_SLUB_TINY */
4819
4820static struct kmem_cache *kmem_cache_node;
4821
4822/*
4823 * No kmalloc_node yet so do it by hand. We know that this is the first
4824 * slab on the node for this slabcache. There are no concurrent accesses
4825 * possible.
4826 *
4827 * Note that this function only works on the kmem_cache_node
4828 * when allocating for the kmem_cache_node. This is used for bootstrapping
4829 * memory on a fresh node that has no slab structures yet.
4830 */
4831static void early_kmem_cache_node_alloc(int node)
4832{
4833	struct slab *slab;
4834	struct kmem_cache_node *n;
4835
4836	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4837
4838	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4839
4840	BUG_ON(!slab);
4841	if (slab_nid(slab) != node) {
4842		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4843		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
4844	}
4845
4846	n = slab->freelist;
4847	BUG_ON(!n);
4848#ifdef CONFIG_SLUB_DEBUG
4849	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4850	init_tracking(kmem_cache_node, n);
4851#endif
4852	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4853	slab->freelist = get_freepointer(kmem_cache_node, n);
4854	slab->inuse = 1;
4855	kmem_cache_node->node[node] = n;
4856	init_kmem_cache_node(n);
4857	inc_slabs_node(kmem_cache_node, node, slab->objects);
4858
4859	/*
4860	 * No locks need to be taken here as it has just been
4861	 * initialized and there is no concurrent access.
4862	 */
4863	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
4864}
4865
4866static void free_kmem_cache_nodes(struct kmem_cache *s)
4867{
4868	int node;
4869	struct kmem_cache_node *n;
4870
4871	for_each_kmem_cache_node(s, node, n) {
4872		s->node[node] = NULL;
4873		kmem_cache_free(kmem_cache_node, n);
4874	}
4875}
4876
4877void __kmem_cache_release(struct kmem_cache *s)
4878{
4879	cache_random_seq_destroy(s);
4880#ifndef CONFIG_SLUB_TINY
4881	free_percpu(s->cpu_slab);
4882#endif
4883	free_kmem_cache_nodes(s);
4884}
4885
4886static int init_kmem_cache_nodes(struct kmem_cache *s)
4887{
4888	int node;
4889
4890	for_each_node_mask(node, slab_nodes) {
4891		struct kmem_cache_node *n;
4892
4893		if (slab_state == DOWN) {
4894			early_kmem_cache_node_alloc(node);
4895			continue;
4896		}
4897		n = kmem_cache_alloc_node(kmem_cache_node,
4898						GFP_KERNEL, node);
4899
4900		if (!n) {
4901			free_kmem_cache_nodes(s);
4902			return 0;
4903		}
4904
4905		init_kmem_cache_node(n);
4906		s->node[node] = n;
4907	}
4908	return 1;
4909}
4910
4911static void set_cpu_partial(struct kmem_cache *s)
4912{
4913#ifdef CONFIG_SLUB_CPU_PARTIAL
4914	unsigned int nr_objects;
4915
4916	/*
4917	 * cpu_partial determined the maximum number of objects kept in the
4918	 * per cpu partial lists of a processor.
4919	 *
4920	 * Per cpu partial lists mainly contain slabs that just have one
4921	 * object freed. If they are used for allocation then they can be
4922	 * filled up again with minimal effort. The slab will never hit the
4923	 * per node partial lists and therefore no locking will be required.
4924	 *
4925	 * For backwards compatibility reasons, this is determined as number
4926	 * of objects, even though we now limit maximum number of pages, see
4927	 * slub_set_cpu_partial()
4928	 */
4929	if (!kmem_cache_has_cpu_partial(s))
4930		nr_objects = 0;
4931	else if (s->size >= PAGE_SIZE)
4932		nr_objects = 6;
4933	else if (s->size >= 1024)
4934		nr_objects = 24;
4935	else if (s->size >= 256)
4936		nr_objects = 52;
4937	else
4938		nr_objects = 120;
4939
4940	slub_set_cpu_partial(s, nr_objects);
4941#endif
4942}
4943
4944/*
4945 * calculate_sizes() determines the order and the distribution of data within
4946 * a slab object.
4947 */
4948static int calculate_sizes(struct kmem_cache *s)
4949{
4950	slab_flags_t flags = s->flags;
4951	unsigned int size = s->object_size;
4952	unsigned int order;
4953
4954	/*
4955	 * Round up object size to the next word boundary. We can only
4956	 * place the free pointer at word boundaries and this determines
4957	 * the possible location of the free pointer.
4958	 */
4959	size = ALIGN(size, sizeof(void *));
4960
4961#ifdef CONFIG_SLUB_DEBUG
4962	/*
4963	 * Determine if we can poison the object itself. If the user of
4964	 * the slab may touch the object after free or before allocation
4965	 * then we should never poison the object itself.
4966	 */
4967	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4968			!s->ctor)
4969		s->flags |= __OBJECT_POISON;
4970	else
4971		s->flags &= ~__OBJECT_POISON;
4972
4973
4974	/*
4975	 * If we are Redzoning then check if there is some space between the
4976	 * end of the object and the free pointer. If not then add an
4977	 * additional word to have some bytes to store Redzone information.
4978	 */
4979	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4980		size += sizeof(void *);
4981#endif
4982
4983	/*
4984	 * With that we have determined the number of bytes in actual use
4985	 * by the object and redzoning.
4986	 */
4987	s->inuse = size;
4988
4989	if (slub_debug_orig_size(s) ||
4990	    (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4991	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4992	    s->ctor) {
4993		/*
4994		 * Relocate free pointer after the object if it is not
4995		 * permitted to overwrite the first word of the object on
4996		 * kmem_cache_free.
4997		 *
4998		 * This is the case if we do RCU, have a constructor or
4999		 * destructor, are poisoning the objects, or are
5000		 * redzoning an object smaller than sizeof(void *).
5001		 *
5002		 * The assumption that s->offset >= s->inuse means free
5003		 * pointer is outside of the object is used in the
5004		 * freeptr_outside_object() function. If that is no
5005		 * longer true, the function needs to be modified.
5006		 */
5007		s->offset = size;
5008		size += sizeof(void *);
5009	} else {
5010		/*
5011		 * Store freelist pointer near middle of object to keep
5012		 * it away from the edges of the object to avoid small
5013		 * sized over/underflows from neighboring allocations.
5014		 */
5015		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5016	}
5017
5018#ifdef CONFIG_SLUB_DEBUG
5019	if (flags & SLAB_STORE_USER) {
5020		/*
5021		 * Need to store information about allocs and frees after
5022		 * the object.
5023		 */
5024		size += 2 * sizeof(struct track);
5025
5026		/* Save the original kmalloc request size */
5027		if (flags & SLAB_KMALLOC)
5028			size += sizeof(unsigned int);
5029	}
5030#endif
5031
5032	kasan_cache_create(s, &size, &s->flags);
5033#ifdef CONFIG_SLUB_DEBUG
5034	if (flags & SLAB_RED_ZONE) {
5035		/*
5036		 * Add some empty padding so that we can catch
5037		 * overwrites from earlier objects rather than let
5038		 * tracking information or the free pointer be
5039		 * corrupted if a user writes before the start
5040		 * of the object.
5041		 */
5042		size += sizeof(void *);
5043
5044		s->red_left_pad = sizeof(void *);
5045		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5046		size += s->red_left_pad;
5047	}
5048#endif
5049
5050	/*
5051	 * SLUB stores one object immediately after another beginning from
5052	 * offset 0. In order to align the objects we have to simply size
5053	 * each object to conform to the alignment.
5054	 */
5055	size = ALIGN(size, s->align);
5056	s->size = size;
5057	s->reciprocal_size = reciprocal_value(size);
5058	order = calculate_order(size);
5059
5060	if ((int)order < 0)
5061		return 0;
5062
5063	s->allocflags = 0;
5064	if (order)
5065		s->allocflags |= __GFP_COMP;
5066
5067	if (s->flags & SLAB_CACHE_DMA)
5068		s->allocflags |= GFP_DMA;
5069
5070	if (s->flags & SLAB_CACHE_DMA32)
5071		s->allocflags |= GFP_DMA32;
5072
5073	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5074		s->allocflags |= __GFP_RECLAIMABLE;
5075
5076	/*
5077	 * Determine the number of objects per slab
5078	 */
5079	s->oo = oo_make(order, size);
5080	s->min = oo_make(get_order(size), size);
5081
5082	return !!oo_objects(s->oo);
5083}
5084
5085static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
5086{
5087	s->flags = kmem_cache_flags(flags, s->name);
5088#ifdef CONFIG_SLAB_FREELIST_HARDENED
5089	s->random = get_random_long();
5090#endif
5091
5092	if (!calculate_sizes(s))
5093		goto error;
5094	if (disable_higher_order_debug) {
5095		/*
5096		 * Disable debugging flags that store metadata if the min slab
5097		 * order increased.
5098		 */
5099		if (get_order(s->size) > get_order(s->object_size)) {
5100			s->flags &= ~DEBUG_METADATA_FLAGS;
5101			s->offset = 0;
5102			if (!calculate_sizes(s))
5103				goto error;
5104		}
5105	}
5106
5107#ifdef system_has_freelist_aba
5108	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
5109		/* Enable fast mode */
5110		s->flags |= __CMPXCHG_DOUBLE;
5111	}
5112#endif
5113
5114	/*
5115	 * The larger the object size is, the more slabs we want on the partial
5116	 * list to avoid pounding the page allocator excessively.
5117	 */
5118	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
5119	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
5120
5121	set_cpu_partial(s);
5122
5123#ifdef CONFIG_NUMA
5124	s->remote_node_defrag_ratio = 1000;
5125#endif
5126
5127	/* Initialize the pre-computed randomized freelist if slab is up */
5128	if (slab_state >= UP) {
5129		if (init_cache_random_seq(s))
5130			goto error;
5131	}
5132
5133	if (!init_kmem_cache_nodes(s))
5134		goto error;
5135
5136	if (alloc_kmem_cache_cpus(s))
5137		return 0;
5138
5139error:
5140	__kmem_cache_release(s);
5141	return -EINVAL;
5142}
5143
5144static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
5145			      const char *text)
5146{
5147#ifdef CONFIG_SLUB_DEBUG
5148	void *addr = slab_address(slab);
5149	void *p;
5150
5151	slab_err(s, slab, text, s->name);
5152
5153	spin_lock(&object_map_lock);
5154	__fill_map(object_map, s, slab);
5155
5156	for_each_object(p, s, addr, slab->objects) {
5157
5158		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5159			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5160			print_tracking(s, p);
5161		}
5162	}
5163	spin_unlock(&object_map_lock);
5164#endif
5165}
5166
5167/*
5168 * Attempt to free all partial slabs on a node.
5169 * This is called from __kmem_cache_shutdown(). We must take list_lock
5170 * because sysfs file might still access partial list after the shutdowning.
5171 */
5172static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5173{
5174	LIST_HEAD(discard);
5175	struct slab *slab, *h;
5176
5177	BUG_ON(irqs_disabled());
5178	spin_lock_irq(&n->list_lock);
5179	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5180		if (!slab->inuse) {
5181			remove_partial(n, slab);
5182			list_add(&slab->slab_list, &discard);
5183		} else {
5184			list_slab_objects(s, slab,
5185			  "Objects remaining in %s on __kmem_cache_shutdown()");
5186		}
5187	}
5188	spin_unlock_irq(&n->list_lock);
5189
5190	list_for_each_entry_safe(slab, h, &discard, slab_list)
5191		discard_slab(s, slab);
5192}
5193
5194bool __kmem_cache_empty(struct kmem_cache *s)
5195{
5196	int node;
5197	struct kmem_cache_node *n;
5198
5199	for_each_kmem_cache_node(s, node, n)
5200		if (n->nr_partial || node_nr_slabs(n))
5201			return false;
5202	return true;
5203}
5204
5205/*
5206 * Release all resources used by a slab cache.
5207 */
5208int __kmem_cache_shutdown(struct kmem_cache *s)
5209{
5210	int node;
5211	struct kmem_cache_node *n;
5212
5213	flush_all_cpus_locked(s);
5214	/* Attempt to free all objects */
5215	for_each_kmem_cache_node(s, node, n) {
5216		free_partial(s, n);
5217		if (n->nr_partial || node_nr_slabs(n))
5218			return 1;
5219	}
5220	return 0;
5221}
5222
5223#ifdef CONFIG_PRINTK
5224void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5225{
5226	void *base;
5227	int __maybe_unused i;
5228	unsigned int objnr;
5229	void *objp;
5230	void *objp0;
5231	struct kmem_cache *s = slab->slab_cache;
5232	struct track __maybe_unused *trackp;
5233
5234	kpp->kp_ptr = object;
5235	kpp->kp_slab = slab;
5236	kpp->kp_slab_cache = s;
5237	base = slab_address(slab);
5238	objp0 = kasan_reset_tag(object);
5239#ifdef CONFIG_SLUB_DEBUG
5240	objp = restore_red_left(s, objp0);
5241#else
5242	objp = objp0;
5243#endif
5244	objnr = obj_to_index(s, slab, objp);
5245	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5246	objp = base + s->size * objnr;
5247	kpp->kp_objp = objp;
5248	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5249			 || (objp - base) % s->size) ||
5250	    !(s->flags & SLAB_STORE_USER))
5251		return;
5252#ifdef CONFIG_SLUB_DEBUG
5253	objp = fixup_red_left(s, objp);
5254	trackp = get_track(s, objp, TRACK_ALLOC);
5255	kpp->kp_ret = (void *)trackp->addr;
5256#ifdef CONFIG_STACKDEPOT
5257	{
5258		depot_stack_handle_t handle;
5259		unsigned long *entries;
5260		unsigned int nr_entries;
5261
5262		handle = READ_ONCE(trackp->handle);
5263		if (handle) {
5264			nr_entries = stack_depot_fetch(handle, &entries);
5265			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5266				kpp->kp_stack[i] = (void *)entries[i];
5267		}
5268
5269		trackp = get_track(s, objp, TRACK_FREE);
5270		handle = READ_ONCE(trackp->handle);
5271		if (handle) {
5272			nr_entries = stack_depot_fetch(handle, &entries);
5273			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5274				kpp->kp_free_stack[i] = (void *)entries[i];
5275		}
5276	}
5277#endif
5278#endif
5279}
5280#endif
5281
5282/********************************************************************
5283 *		Kmalloc subsystem
5284 *******************************************************************/
5285
5286static int __init setup_slub_min_order(char *str)
5287{
5288	get_option(&str, (int *)&slub_min_order);
5289
5290	if (slub_min_order > slub_max_order)
5291		slub_max_order = slub_min_order;
5292
5293	return 1;
5294}
5295
5296__setup("slab_min_order=", setup_slub_min_order);
5297__setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5298
5299
5300static int __init setup_slub_max_order(char *str)
5301{
5302	get_option(&str, (int *)&slub_max_order);
5303	slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5304
5305	if (slub_min_order > slub_max_order)
5306		slub_min_order = slub_max_order;
5307
5308	return 1;
5309}
5310
5311__setup("slab_max_order=", setup_slub_max_order);
5312__setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5313
5314static int __init setup_slub_min_objects(char *str)
5315{
5316	get_option(&str, (int *)&slub_min_objects);
5317
5318	return 1;
5319}
5320
5321__setup("slab_min_objects=", setup_slub_min_objects);
5322__setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
5323
5324#ifdef CONFIG_HARDENED_USERCOPY
5325/*
5326 * Rejects incorrectly sized objects and objects that are to be copied
5327 * to/from userspace but do not fall entirely within the containing slab
5328 * cache's usercopy region.
5329 *
5330 * Returns NULL if check passes, otherwise const char * to name of cache
5331 * to indicate an error.
5332 */
5333void __check_heap_object(const void *ptr, unsigned long n,
5334			 const struct slab *slab, bool to_user)
5335{
5336	struct kmem_cache *s;
5337	unsigned int offset;
5338	bool is_kfence = is_kfence_address(ptr);
5339
5340	ptr = kasan_reset_tag(ptr);
5341
5342	/* Find object and usable object size. */
5343	s = slab->slab_cache;
5344
5345	/* Reject impossible pointers. */
5346	if (ptr < slab_address(slab))
5347		usercopy_abort("SLUB object not in SLUB page?!", NULL,
5348			       to_user, 0, n);
5349
5350	/* Find offset within object. */
5351	if (is_kfence)
5352		offset = ptr - kfence_object_start(ptr);
5353	else
5354		offset = (ptr - slab_address(slab)) % s->size;
5355
5356	/* Adjust for redzone and reject if within the redzone. */
5357	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5358		if (offset < s->red_left_pad)
5359			usercopy_abort("SLUB object in left red zone",
5360				       s->name, to_user, offset, n);
5361		offset -= s->red_left_pad;
5362	}
5363
5364	/* Allow address range falling entirely within usercopy region. */
5365	if (offset >= s->useroffset &&
5366	    offset - s->useroffset <= s->usersize &&
5367	    n <= s->useroffset - offset + s->usersize)
5368		return;
5369
5370	usercopy_abort("SLUB object", s->name, to_user, offset, n);
5371}
5372#endif /* CONFIG_HARDENED_USERCOPY */
5373
5374#define SHRINK_PROMOTE_MAX 32
5375
5376/*
5377 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5378 * up most to the head of the partial lists. New allocations will then
5379 * fill those up and thus they can be removed from the partial lists.
5380 *
5381 * The slabs with the least items are placed last. This results in them
5382 * being allocated from last increasing the chance that the last objects
5383 * are freed in them.
5384 */
5385static int __kmem_cache_do_shrink(struct kmem_cache *s)
5386{
5387	int node;
5388	int i;
5389	struct kmem_cache_node *n;
5390	struct slab *slab;
5391	struct slab *t;
5392	struct list_head discard;
5393	struct list_head promote[SHRINK_PROMOTE_MAX];
5394	unsigned long flags;
5395	int ret = 0;
5396
5397	for_each_kmem_cache_node(s, node, n) {
5398		INIT_LIST_HEAD(&discard);
5399		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5400			INIT_LIST_HEAD(promote + i);
5401
5402		spin_lock_irqsave(&n->list_lock, flags);
5403
5404		/*
5405		 * Build lists of slabs to discard or promote.
5406		 *
5407		 * Note that concurrent frees may occur while we hold the
5408		 * list_lock. slab->inuse here is the upper limit.
5409		 */
5410		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5411			int free = slab->objects - slab->inuse;
5412
5413			/* Do not reread slab->inuse */
5414			barrier();
5415
5416			/* We do not keep full slabs on the list */
5417			BUG_ON(free <= 0);
5418
5419			if (free == slab->objects) {
5420				list_move(&slab->slab_list, &discard);
5421				slab_clear_node_partial(slab);
5422				n->nr_partial--;
5423				dec_slabs_node(s, node, slab->objects);
5424			} else if (free <= SHRINK_PROMOTE_MAX)
5425				list_move(&slab->slab_list, promote + free - 1);
5426		}
5427
5428		/*
5429		 * Promote the slabs filled up most to the head of the
5430		 * partial list.
5431		 */
5432		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5433			list_splice(promote + i, &n->partial);
5434
5435		spin_unlock_irqrestore(&n->list_lock, flags);
5436
5437		/* Release empty slabs */
5438		list_for_each_entry_safe(slab, t, &discard, slab_list)
5439			free_slab(s, slab);
5440
5441		if (node_nr_slabs(n))
5442			ret = 1;
5443	}
5444
5445	return ret;
5446}
5447
5448int __kmem_cache_shrink(struct kmem_cache *s)
5449{
5450	flush_all(s);
5451	return __kmem_cache_do_shrink(s);
5452}
5453
5454static int slab_mem_going_offline_callback(void *arg)
5455{
5456	struct kmem_cache *s;
5457
5458	mutex_lock(&slab_mutex);
5459	list_for_each_entry(s, &slab_caches, list) {
5460		flush_all_cpus_locked(s);
5461		__kmem_cache_do_shrink(s);
5462	}
5463	mutex_unlock(&slab_mutex);
5464
5465	return 0;
5466}
5467
5468static void slab_mem_offline_callback(void *arg)
5469{
5470	struct memory_notify *marg = arg;
5471	int offline_node;
5472
5473	offline_node = marg->status_change_nid_normal;
5474
5475	/*
5476	 * If the node still has available memory. we need kmem_cache_node
5477	 * for it yet.
5478	 */
5479	if (offline_node < 0)
5480		return;
5481
5482	mutex_lock(&slab_mutex);
5483	node_clear(offline_node, slab_nodes);
5484	/*
5485	 * We no longer free kmem_cache_node structures here, as it would be
5486	 * racy with all get_node() users, and infeasible to protect them with
5487	 * slab_mutex.
5488	 */
5489	mutex_unlock(&slab_mutex);
5490}
5491
5492static int slab_mem_going_online_callback(void *arg)
5493{
5494	struct kmem_cache_node *n;
5495	struct kmem_cache *s;
5496	struct memory_notify *marg = arg;
5497	int nid = marg->status_change_nid_normal;
5498	int ret = 0;
5499
5500	/*
5501	 * If the node's memory is already available, then kmem_cache_node is
5502	 * already created. Nothing to do.
5503	 */
5504	if (nid < 0)
5505		return 0;
5506
5507	/*
5508	 * We are bringing a node online. No memory is available yet. We must
5509	 * allocate a kmem_cache_node structure in order to bring the node
5510	 * online.
5511	 */
5512	mutex_lock(&slab_mutex);
5513	list_for_each_entry(s, &slab_caches, list) {
5514		/*
5515		 * The structure may already exist if the node was previously
5516		 * onlined and offlined.
5517		 */
5518		if (get_node(s, nid))
5519			continue;
5520		/*
5521		 * XXX: kmem_cache_alloc_node will fallback to other nodes
5522		 *      since memory is not yet available from the node that
5523		 *      is brought up.
5524		 */
5525		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5526		if (!n) {
5527			ret = -ENOMEM;
5528			goto out;
5529		}
5530		init_kmem_cache_node(n);
5531		s->node[nid] = n;
5532	}
5533	/*
5534	 * Any cache created after this point will also have kmem_cache_node
5535	 * initialized for the new node.
5536	 */
5537	node_set(nid, slab_nodes);
5538out:
5539	mutex_unlock(&slab_mutex);
5540	return ret;
5541}
5542
5543static int slab_memory_callback(struct notifier_block *self,
5544				unsigned long action, void *arg)
5545{
5546	int ret = 0;
5547
5548	switch (action) {
5549	case MEM_GOING_ONLINE:
5550		ret = slab_mem_going_online_callback(arg);
5551		break;
5552	case MEM_GOING_OFFLINE:
5553		ret = slab_mem_going_offline_callback(arg);
5554		break;
5555	case MEM_OFFLINE:
5556	case MEM_CANCEL_ONLINE:
5557		slab_mem_offline_callback(arg);
5558		break;
5559	case MEM_ONLINE:
5560	case MEM_CANCEL_OFFLINE:
5561		break;
5562	}
5563	if (ret)
5564		ret = notifier_from_errno(ret);
5565	else
5566		ret = NOTIFY_OK;
5567	return ret;
5568}
5569
5570/********************************************************************
5571 *			Basic setup of slabs
5572 *******************************************************************/
5573
5574/*
5575 * Used for early kmem_cache structures that were allocated using
5576 * the page allocator. Allocate them properly then fix up the pointers
5577 * that may be pointing to the wrong kmem_cache structure.
5578 */
5579
5580static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
5581{
5582	int node;
5583	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
5584	struct kmem_cache_node *n;
5585
5586	memcpy(s, static_cache, kmem_cache->object_size);
5587
5588	/*
5589	 * This runs very early, and only the boot processor is supposed to be
5590	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
5591	 * IPIs around.
5592	 */
5593	__flush_cpu_slab(s, smp_processor_id());
5594	for_each_kmem_cache_node(s, node, n) {
5595		struct slab *p;
5596
5597		list_for_each_entry(p, &n->partial, slab_list)
5598			p->slab_cache = s;
5599
5600#ifdef CONFIG_SLUB_DEBUG
5601		list_for_each_entry(p, &n->full, slab_list)
5602			p->slab_cache = s;
5603#endif
5604	}
5605	list_add(&s->list, &slab_caches);
5606	return s;
5607}
5608
5609void __init kmem_cache_init(void)
5610{
5611	static __initdata struct kmem_cache boot_kmem_cache,
5612		boot_kmem_cache_node;
5613	int node;
5614
5615	if (debug_guardpage_minorder())
5616		slub_max_order = 0;
5617
5618	/* Print slub debugging pointers without hashing */
5619	if (__slub_debug_enabled())
5620		no_hash_pointers_enable(NULL);
5621
5622	kmem_cache_node = &boot_kmem_cache_node;
5623	kmem_cache = &boot_kmem_cache;
5624
5625	/*
5626	 * Initialize the nodemask for which we will allocate per node
5627	 * structures. Here we don't need taking slab_mutex yet.
5628	 */
5629	for_each_node_state(node, N_NORMAL_MEMORY)
5630		node_set(node, slab_nodes);
5631
5632	create_boot_cache(kmem_cache_node, "kmem_cache_node",
5633		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
5634
5635	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5636
5637	/* Able to allocate the per node structures */
5638	slab_state = PARTIAL;
5639
5640	create_boot_cache(kmem_cache, "kmem_cache",
5641			offsetof(struct kmem_cache, node) +
5642				nr_node_ids * sizeof(struct kmem_cache_node *),
5643		       SLAB_HWCACHE_ALIGN, 0, 0);
5644
5645	kmem_cache = bootstrap(&boot_kmem_cache);
5646	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5647
5648	/* Now we can use the kmem_cache to allocate kmalloc slabs */
5649	setup_kmalloc_cache_index_table();
5650	create_kmalloc_caches();
5651
5652	/* Setup random freelists for each cache */
5653	init_freelist_randomization();
5654
5655	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5656				  slub_cpu_dead);
5657
5658	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5659		cache_line_size(),
5660		slub_min_order, slub_max_order, slub_min_objects,
5661		nr_cpu_ids, nr_node_ids);
5662}
5663
5664void __init kmem_cache_init_late(void)
5665{
5666#ifndef CONFIG_SLUB_TINY
5667	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5668	WARN_ON(!flushwq);
5669#endif
5670}
5671
5672struct kmem_cache *
5673__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5674		   slab_flags_t flags, void (*ctor)(void *))
5675{
5676	struct kmem_cache *s;
5677
5678	s = find_mergeable(size, align, flags, name, ctor);
5679	if (s) {
5680		if (sysfs_slab_alias(s, name))
5681			return NULL;
5682
5683		s->refcount++;
5684
5685		/*
5686		 * Adjust the object sizes so that we clear
5687		 * the complete object on kzalloc.
5688		 */
5689		s->object_size = max(s->object_size, size);
5690		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5691	}
5692
5693	return s;
5694}
5695
5696int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5697{
5698	int err;
5699
5700	err = kmem_cache_open(s, flags);
5701	if (err)
5702		return err;
5703
5704	/* Mutex is not taken during early boot */
5705	if (slab_state <= UP)
5706		return 0;
5707
5708	err = sysfs_slab_add(s);
5709	if (err) {
5710		__kmem_cache_release(s);
5711		return err;
5712	}
5713
5714	if (s->flags & SLAB_STORE_USER)
5715		debugfs_slab_add(s);
5716
5717	return 0;
5718}
5719
5720#ifdef SLAB_SUPPORTS_SYSFS
5721static int count_inuse(struct slab *slab)
5722{
5723	return slab->inuse;
5724}
5725
5726static int count_total(struct slab *slab)
5727{
5728	return slab->objects;
5729}
5730#endif
5731
5732#ifdef CONFIG_SLUB_DEBUG
5733static void validate_slab(struct kmem_cache *s, struct slab *slab,
5734			  unsigned long *obj_map)
5735{
5736	void *p;
5737	void *addr = slab_address(slab);
5738
5739	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5740		return;
5741
5742	/* Now we know that a valid freelist exists */
5743	__fill_map(obj_map, s, slab);
5744	for_each_object(p, s, addr, slab->objects) {
5745		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5746			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5747
5748		if (!check_object(s, slab, p, val))
5749			break;
5750	}
5751}
5752
5753static int validate_slab_node(struct kmem_cache *s,
5754		struct kmem_cache_node *n, unsigned long *obj_map)
5755{
5756	unsigned long count = 0;
5757	struct slab *slab;
5758	unsigned long flags;
5759
5760	spin_lock_irqsave(&n->list_lock, flags);
5761
5762	list_for_each_entry(slab, &n->partial, slab_list) {
5763		validate_slab(s, slab, obj_map);
5764		count++;
5765	}
5766	if (count != n->nr_partial) {
5767		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5768		       s->name, count, n->nr_partial);
5769		slab_add_kunit_errors();
5770	}
5771
5772	if (!(s->flags & SLAB_STORE_USER))
5773		goto out;
5774
5775	list_for_each_entry(slab, &n->full, slab_list) {
5776		validate_slab(s, slab, obj_map);
5777		count++;
5778	}
5779	if (count != node_nr_slabs(n)) {
5780		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5781		       s->name, count, node_nr_slabs(n));
5782		slab_add_kunit_errors();
5783	}
5784
5785out:
5786	spin_unlock_irqrestore(&n->list_lock, flags);
5787	return count;
5788}
5789
5790long validate_slab_cache(struct kmem_cache *s)
5791{
5792	int node;
5793	unsigned long count = 0;
5794	struct kmem_cache_node *n;
5795	unsigned long *obj_map;
5796
5797	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5798	if (!obj_map)
5799		return -ENOMEM;
5800
5801	flush_all(s);
5802	for_each_kmem_cache_node(s, node, n)
5803		count += validate_slab_node(s, n, obj_map);
5804
5805	bitmap_free(obj_map);
5806
5807	return count;
5808}
5809EXPORT_SYMBOL(validate_slab_cache);
5810
5811#ifdef CONFIG_DEBUG_FS
5812/*
5813 * Generate lists of code addresses where slabcache objects are allocated
5814 * and freed.
5815 */
5816
5817struct location {
5818	depot_stack_handle_t handle;
5819	unsigned long count;
5820	unsigned long addr;
5821	unsigned long waste;
5822	long long sum_time;
5823	long min_time;
5824	long max_time;
5825	long min_pid;
5826	long max_pid;
5827	DECLARE_BITMAP(cpus, NR_CPUS);
5828	nodemask_t nodes;
5829};
5830
5831struct loc_track {
5832	unsigned long max;
5833	unsigned long count;
5834	struct location *loc;
5835	loff_t idx;
5836};
5837
5838static struct dentry *slab_debugfs_root;
5839
5840static void free_loc_track(struct loc_track *t)
5841{
5842	if (t->max)
5843		free_pages((unsigned long)t->loc,
5844			get_order(sizeof(struct location) * t->max));
5845}
5846
5847static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5848{
5849	struct location *l;
5850	int order;
5851
5852	order = get_order(sizeof(struct location) * max);
5853
5854	l = (void *)__get_free_pages(flags, order);
5855	if (!l)
5856		return 0;
5857
5858	if (t->count) {
5859		memcpy(l, t->loc, sizeof(struct location) * t->count);
5860		free_loc_track(t);
5861	}
5862	t->max = max;
5863	t->loc = l;
5864	return 1;
5865}
5866
5867static int add_location(struct loc_track *t, struct kmem_cache *s,
5868				const struct track *track,
5869				unsigned int orig_size)
5870{
5871	long start, end, pos;
5872	struct location *l;
5873	unsigned long caddr, chandle, cwaste;
5874	unsigned long age = jiffies - track->when;
5875	depot_stack_handle_t handle = 0;
5876	unsigned int waste = s->object_size - orig_size;
5877
5878#ifdef CONFIG_STACKDEPOT
5879	handle = READ_ONCE(track->handle);
5880#endif
5881	start = -1;
5882	end = t->count;
5883
5884	for ( ; ; ) {
5885		pos = start + (end - start + 1) / 2;
5886
5887		/*
5888		 * There is nothing at "end". If we end up there
5889		 * we need to add something to before end.
5890		 */
5891		if (pos == end)
5892			break;
5893
5894		l = &t->loc[pos];
5895		caddr = l->addr;
5896		chandle = l->handle;
5897		cwaste = l->waste;
5898		if ((track->addr == caddr) && (handle == chandle) &&
5899			(waste == cwaste)) {
5900
5901			l->count++;
5902			if (track->when) {
5903				l->sum_time += age;
5904				if (age < l->min_time)
5905					l->min_time = age;
5906				if (age > l->max_time)
5907					l->max_time = age;
5908
5909				if (track->pid < l->min_pid)
5910					l->min_pid = track->pid;
5911				if (track->pid > l->max_pid)
5912					l->max_pid = track->pid;
5913
5914				cpumask_set_cpu(track->cpu,
5915						to_cpumask(l->cpus));
5916			}
5917			node_set(page_to_nid(virt_to_page(track)), l->nodes);
5918			return 1;
5919		}
5920
5921		if (track->addr < caddr)
5922			end = pos;
5923		else if (track->addr == caddr && handle < chandle)
5924			end = pos;
5925		else if (track->addr == caddr && handle == chandle &&
5926				waste < cwaste)
5927			end = pos;
5928		else
5929			start = pos;
5930	}
5931
5932	/*
5933	 * Not found. Insert new tracking element.
5934	 */
5935	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5936		return 0;
5937
5938	l = t->loc + pos;
5939	if (pos < t->count)
5940		memmove(l + 1, l,
5941			(t->count - pos) * sizeof(struct location));
5942	t->count++;
5943	l->count = 1;
5944	l->addr = track->addr;
5945	l->sum_time = age;
5946	l->min_time = age;
5947	l->max_time = age;
5948	l->min_pid = track->pid;
5949	l->max_pid = track->pid;
5950	l->handle = handle;
5951	l->waste = waste;
5952	cpumask_clear(to_cpumask(l->cpus));
5953	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5954	nodes_clear(l->nodes);
5955	node_set(page_to_nid(virt_to_page(track)), l->nodes);
5956	return 1;
5957}
5958
5959static void process_slab(struct loc_track *t, struct kmem_cache *s,
5960		struct slab *slab, enum track_item alloc,
5961		unsigned long *obj_map)
5962{
5963	void *addr = slab_address(slab);
5964	bool is_alloc = (alloc == TRACK_ALLOC);
5965	void *p;
5966
5967	__fill_map(obj_map, s, slab);
5968
5969	for_each_object(p, s, addr, slab->objects)
5970		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5971			add_location(t, s, get_track(s, p, alloc),
5972				     is_alloc ? get_orig_size(s, p) :
5973						s->object_size);
5974}
5975#endif  /* CONFIG_DEBUG_FS   */
5976#endif	/* CONFIG_SLUB_DEBUG */
5977
5978#ifdef SLAB_SUPPORTS_SYSFS
5979enum slab_stat_type {
5980	SL_ALL,			/* All slabs */
5981	SL_PARTIAL,		/* Only partially allocated slabs */
5982	SL_CPU,			/* Only slabs used for cpu caches */
5983	SL_OBJECTS,		/* Determine allocated objects not slabs */
5984	SL_TOTAL		/* Determine object capacity not slabs */
5985};
5986
5987#define SO_ALL		(1 << SL_ALL)
5988#define SO_PARTIAL	(1 << SL_PARTIAL)
5989#define SO_CPU		(1 << SL_CPU)
5990#define SO_OBJECTS	(1 << SL_OBJECTS)
5991#define SO_TOTAL	(1 << SL_TOTAL)
5992
5993static ssize_t show_slab_objects(struct kmem_cache *s,
5994				 char *buf, unsigned long flags)
5995{
5996	unsigned long total = 0;
5997	int node;
5998	int x;
5999	unsigned long *nodes;
6000	int len = 0;
6001
6002	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6003	if (!nodes)
6004		return -ENOMEM;
6005
6006	if (flags & SO_CPU) {
6007		int cpu;
6008
6009		for_each_possible_cpu(cpu) {
6010			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6011							       cpu);
6012			int node;
6013			struct slab *slab;
6014
6015			slab = READ_ONCE(c->slab);
6016			if (!slab)
6017				continue;
6018
6019			node = slab_nid(slab);
6020			if (flags & SO_TOTAL)
6021				x = slab->objects;
6022			else if (flags & SO_OBJECTS)
6023				x = slab->inuse;
6024			else
6025				x = 1;
6026
6027			total += x;
6028			nodes[node] += x;
6029
6030#ifdef CONFIG_SLUB_CPU_PARTIAL
6031			slab = slub_percpu_partial_read_once(c);
6032			if (slab) {
6033				node = slab_nid(slab);
6034				if (flags & SO_TOTAL)
6035					WARN_ON_ONCE(1);
6036				else if (flags & SO_OBJECTS)
6037					WARN_ON_ONCE(1);
6038				else
6039					x = slab->slabs;
6040				total += x;
6041				nodes[node] += x;
6042			}
6043#endif
6044		}
6045	}
6046
6047	/*
6048	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6049	 * already held which will conflict with an existing lock order:
6050	 *
6051	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6052	 *
6053	 * We don't really need mem_hotplug_lock (to hold off
6054	 * slab_mem_going_offline_callback) here because slab's memory hot
6055	 * unplug code doesn't destroy the kmem_cache->node[] data.
6056	 */
6057
6058#ifdef CONFIG_SLUB_DEBUG
6059	if (flags & SO_ALL) {
6060		struct kmem_cache_node *n;
6061
6062		for_each_kmem_cache_node(s, node, n) {
6063
6064			if (flags & SO_TOTAL)
6065				x = node_nr_objs(n);
6066			else if (flags & SO_OBJECTS)
6067				x = node_nr_objs(n) - count_partial(n, count_free);
6068			else
6069				x = node_nr_slabs(n);
6070			total += x;
6071			nodes[node] += x;
6072		}
6073
6074	} else
6075#endif
6076	if (flags & SO_PARTIAL) {
6077		struct kmem_cache_node *n;
6078
6079		for_each_kmem_cache_node(s, node, n) {
6080			if (flags & SO_TOTAL)
6081				x = count_partial(n, count_total);
6082			else if (flags & SO_OBJECTS)
6083				x = count_partial(n, count_inuse);
6084			else
6085				x = n->nr_partial;
6086			total += x;
6087			nodes[node] += x;
6088		}
6089	}
6090
6091	len += sysfs_emit_at(buf, len, "%lu", total);
6092#ifdef CONFIG_NUMA
6093	for (node = 0; node < nr_node_ids; node++) {
6094		if (nodes[node])
6095			len += sysfs_emit_at(buf, len, " N%d=%lu",
6096					     node, nodes[node]);
6097	}
6098#endif
6099	len += sysfs_emit_at(buf, len, "\n");
6100	kfree(nodes);
6101
6102	return len;
6103}
6104
6105#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6106#define to_slab(n) container_of(n, struct kmem_cache, kobj)
6107
6108struct slab_attribute {
6109	struct attribute attr;
6110	ssize_t (*show)(struct kmem_cache *s, char *buf);
6111	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6112};
6113
6114#define SLAB_ATTR_RO(_name) \
6115	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6116
6117#define SLAB_ATTR(_name) \
6118	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6119
6120static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6121{
6122	return sysfs_emit(buf, "%u\n", s->size);
6123}
6124SLAB_ATTR_RO(slab_size);
6125
6126static ssize_t align_show(struct kmem_cache *s, char *buf)
6127{
6128	return sysfs_emit(buf, "%u\n", s->align);
6129}
6130SLAB_ATTR_RO(align);
6131
6132static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6133{
6134	return sysfs_emit(buf, "%u\n", s->object_size);
6135}
6136SLAB_ATTR_RO(object_size);
6137
6138static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6139{
6140	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6141}
6142SLAB_ATTR_RO(objs_per_slab);
6143
6144static ssize_t order_show(struct kmem_cache *s, char *buf)
6145{
6146	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6147}
6148SLAB_ATTR_RO(order);
6149
6150static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6151{
6152	return sysfs_emit(buf, "%lu\n", s->min_partial);
6153}
6154
6155static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6156				 size_t length)
6157{
6158	unsigned long min;
6159	int err;
6160
6161	err = kstrtoul(buf, 10, &min);
6162	if (err)
6163		return err;
6164
6165	s->min_partial = min;
6166	return length;
6167}
6168SLAB_ATTR(min_partial);
6169
6170static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6171{
6172	unsigned int nr_partial = 0;
6173#ifdef CONFIG_SLUB_CPU_PARTIAL
6174	nr_partial = s->cpu_partial;
6175#endif
6176
6177	return sysfs_emit(buf, "%u\n", nr_partial);
6178}
6179
6180static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6181				 size_t length)
6182{
6183	unsigned int objects;
6184	int err;
6185
6186	err = kstrtouint(buf, 10, &objects);
6187	if (err)
6188		return err;
6189	if (objects && !kmem_cache_has_cpu_partial(s))
6190		return -EINVAL;
6191
6192	slub_set_cpu_partial(s, objects);
6193	flush_all(s);
6194	return length;
6195}
6196SLAB_ATTR(cpu_partial);
6197
6198static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6199{
6200	if (!s->ctor)
6201		return 0;
6202	return sysfs_emit(buf, "%pS\n", s->ctor);
6203}
6204SLAB_ATTR_RO(ctor);
6205
6206static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6207{
6208	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6209}
6210SLAB_ATTR_RO(aliases);
6211
6212static ssize_t partial_show(struct kmem_cache *s, char *buf)
6213{
6214	return show_slab_objects(s, buf, SO_PARTIAL);
6215}
6216SLAB_ATTR_RO(partial);
6217
6218static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6219{
6220	return show_slab_objects(s, buf, SO_CPU);
6221}
6222SLAB_ATTR_RO(cpu_slabs);
6223
6224static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6225{
6226	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6227}
6228SLAB_ATTR_RO(objects_partial);
6229
6230static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6231{
6232	int objects = 0;
6233	int slabs = 0;
6234	int cpu __maybe_unused;
6235	int len = 0;
6236
6237#ifdef CONFIG_SLUB_CPU_PARTIAL
6238	for_each_online_cpu(cpu) {
6239		struct slab *slab;
6240
6241		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6242
6243		if (slab)
6244			slabs += slab->slabs;
6245	}
6246#endif
6247
6248	/* Approximate half-full slabs, see slub_set_cpu_partial() */
6249	objects = (slabs * oo_objects(s->oo)) / 2;
6250	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6251
6252#ifdef CONFIG_SLUB_CPU_PARTIAL
6253	for_each_online_cpu(cpu) {
6254		struct slab *slab;
6255
6256		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6257		if (slab) {
6258			slabs = READ_ONCE(slab->slabs);
6259			objects = (slabs * oo_objects(s->oo)) / 2;
6260			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6261					     cpu, objects, slabs);
6262		}
6263	}
6264#endif
6265	len += sysfs_emit_at(buf, len, "\n");
6266
6267	return len;
6268}
6269SLAB_ATTR_RO(slabs_cpu_partial);
6270
6271static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6272{
6273	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
6274}
6275SLAB_ATTR_RO(reclaim_account);
6276
6277static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6278{
6279	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6280}
6281SLAB_ATTR_RO(hwcache_align);
6282
6283#ifdef CONFIG_ZONE_DMA
6284static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6285{
6286	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6287}
6288SLAB_ATTR_RO(cache_dma);
6289#endif
6290
6291#ifdef CONFIG_HARDENED_USERCOPY
6292static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6293{
6294	return sysfs_emit(buf, "%u\n", s->usersize);
6295}
6296SLAB_ATTR_RO(usersize);
6297#endif
6298
6299static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6300{
6301	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6302}
6303SLAB_ATTR_RO(destroy_by_rcu);
6304
6305#ifdef CONFIG_SLUB_DEBUG
6306static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6307{
6308	return show_slab_objects(s, buf, SO_ALL);
6309}
6310SLAB_ATTR_RO(slabs);
6311
6312static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6313{
6314	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6315}
6316SLAB_ATTR_RO(total_objects);
6317
6318static ssize_t objects_show(struct kmem_cache *s, char *buf)
6319{
6320	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6321}
6322SLAB_ATTR_RO(objects);
6323
6324static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6325{
6326	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
6327}
6328SLAB_ATTR_RO(sanity_checks);
6329
6330static ssize_t trace_show(struct kmem_cache *s, char *buf)
6331{
6332	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
6333}
6334SLAB_ATTR_RO(trace);
6335
6336static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6337{
6338	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6339}
6340
6341SLAB_ATTR_RO(red_zone);
6342
6343static ssize_t poison_show(struct kmem_cache *s, char *buf)
6344{
6345	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6346}
6347
6348SLAB_ATTR_RO(poison);
6349
6350static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6351{
6352	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6353}
6354
6355SLAB_ATTR_RO(store_user);
6356
6357static ssize_t validate_show(struct kmem_cache *s, char *buf)
6358{
6359	return 0;
6360}
6361
6362static ssize_t validate_store(struct kmem_cache *s,
6363			const char *buf, size_t length)
6364{
6365	int ret = -EINVAL;
6366
6367	if (buf[0] == '1' && kmem_cache_debug(s)) {
6368		ret = validate_slab_cache(s);
6369		if (ret >= 0)
6370			ret = length;
6371	}
6372	return ret;
6373}
6374SLAB_ATTR(validate);
6375
6376#endif /* CONFIG_SLUB_DEBUG */
6377
6378#ifdef CONFIG_FAILSLAB
6379static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6380{
6381	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6382}
6383
6384static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6385				size_t length)
6386{
6387	if (s->refcount > 1)
6388		return -EINVAL;
6389
6390	if (buf[0] == '1')
6391		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6392	else
6393		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6394
6395	return length;
6396}
6397SLAB_ATTR(failslab);
6398#endif
6399
6400static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6401{
6402	return 0;
6403}
6404
6405static ssize_t shrink_store(struct kmem_cache *s,
6406			const char *buf, size_t length)
6407{
6408	if (buf[0] == '1')
6409		kmem_cache_shrink(s);
6410	else
6411		return -EINVAL;
6412	return length;
6413}
6414SLAB_ATTR(shrink);
6415
6416#ifdef CONFIG_NUMA
6417static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6418{
6419	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6420}
6421
6422static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6423				const char *buf, size_t length)
6424{
6425	unsigned int ratio;
6426	int err;
6427
6428	err = kstrtouint(buf, 10, &ratio);
6429	if (err)
6430		return err;
6431	if (ratio > 100)
6432		return -ERANGE;
6433
6434	s->remote_node_defrag_ratio = ratio * 10;
6435
6436	return length;
6437}
6438SLAB_ATTR(remote_node_defrag_ratio);
6439#endif
6440
6441#ifdef CONFIG_SLUB_STATS
6442static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6443{
6444	unsigned long sum  = 0;
6445	int cpu;
6446	int len = 0;
6447	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6448
6449	if (!data)
6450		return -ENOMEM;
6451
6452	for_each_online_cpu(cpu) {
6453		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6454
6455		data[cpu] = x;
6456		sum += x;
6457	}
6458
6459	len += sysfs_emit_at(buf, len, "%lu", sum);
6460
6461#ifdef CONFIG_SMP
6462	for_each_online_cpu(cpu) {
6463		if (data[cpu])
6464			len += sysfs_emit_at(buf, len, " C%d=%u",
6465					     cpu, data[cpu]);
6466	}
6467#endif
6468	kfree(data);
6469	len += sysfs_emit_at(buf, len, "\n");
6470
6471	return len;
6472}
6473
6474static void clear_stat(struct kmem_cache *s, enum stat_item si)
6475{
6476	int cpu;
6477
6478	for_each_online_cpu(cpu)
6479		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
6480}
6481
6482#define STAT_ATTR(si, text) 					\
6483static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
6484{								\
6485	return show_stat(s, buf, si);				\
6486}								\
6487static ssize_t text##_store(struct kmem_cache *s,		\
6488				const char *buf, size_t length)	\
6489{								\
6490	if (buf[0] != '0')					\
6491		return -EINVAL;					\
6492	clear_stat(s, si);					\
6493	return length;						\
6494}								\
6495SLAB_ATTR(text);						\
6496
6497STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
6498STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
6499STAT_ATTR(FREE_FASTPATH, free_fastpath);
6500STAT_ATTR(FREE_SLOWPATH, free_slowpath);
6501STAT_ATTR(FREE_FROZEN, free_frozen);
6502STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
6503STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
6504STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
6505STAT_ATTR(ALLOC_SLAB, alloc_slab);
6506STAT_ATTR(ALLOC_REFILL, alloc_refill);
6507STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
6508STAT_ATTR(FREE_SLAB, free_slab);
6509STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
6510STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
6511STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
6512STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
6513STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
6514STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
6515STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
6516STAT_ATTR(ORDER_FALLBACK, order_fallback);
6517STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
6518STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
6519STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
6520STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
6521STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
6522STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6523#endif	/* CONFIG_SLUB_STATS */
6524
6525#ifdef CONFIG_KFENCE
6526static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
6527{
6528	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
6529}
6530
6531static ssize_t skip_kfence_store(struct kmem_cache *s,
6532			const char *buf, size_t length)
6533{
6534	int ret = length;
6535
6536	if (buf[0] == '0')
6537		s->flags &= ~SLAB_SKIP_KFENCE;
6538	else if (buf[0] == '1')
6539		s->flags |= SLAB_SKIP_KFENCE;
6540	else
6541		ret = -EINVAL;
6542
6543	return ret;
6544}
6545SLAB_ATTR(skip_kfence);
6546#endif
6547
6548static struct attribute *slab_attrs[] = {
6549	&slab_size_attr.attr,
6550	&object_size_attr.attr,
6551	&objs_per_slab_attr.attr,
6552	&order_attr.attr,
6553	&min_partial_attr.attr,
6554	&cpu_partial_attr.attr,
6555	&objects_partial_attr.attr,
6556	&partial_attr.attr,
6557	&cpu_slabs_attr.attr,
6558	&ctor_attr.attr,
6559	&aliases_attr.attr,
6560	&align_attr.attr,
6561	&hwcache_align_attr.attr,
6562	&reclaim_account_attr.attr,
6563	&destroy_by_rcu_attr.attr,
6564	&shrink_attr.attr,
6565	&slabs_cpu_partial_attr.attr,
6566#ifdef CONFIG_SLUB_DEBUG
6567	&total_objects_attr.attr,
6568	&objects_attr.attr,
6569	&slabs_attr.attr,
6570	&sanity_checks_attr.attr,
6571	&trace_attr.attr,
6572	&red_zone_attr.attr,
6573	&poison_attr.attr,
6574	&store_user_attr.attr,
6575	&validate_attr.attr,
6576#endif
6577#ifdef CONFIG_ZONE_DMA
6578	&cache_dma_attr.attr,
6579#endif
6580#ifdef CONFIG_NUMA
6581	&remote_node_defrag_ratio_attr.attr,
6582#endif
6583#ifdef CONFIG_SLUB_STATS
6584	&alloc_fastpath_attr.attr,
6585	&alloc_slowpath_attr.attr,
6586	&free_fastpath_attr.attr,
6587	&free_slowpath_attr.attr,
6588	&free_frozen_attr.attr,
6589	&free_add_partial_attr.attr,
6590	&free_remove_partial_attr.attr,
6591	&alloc_from_partial_attr.attr,
6592	&alloc_slab_attr.attr,
6593	&alloc_refill_attr.attr,
6594	&alloc_node_mismatch_attr.attr,
6595	&free_slab_attr.attr,
6596	&cpuslab_flush_attr.attr,
6597	&deactivate_full_attr.attr,
6598	&deactivate_empty_attr.attr,
6599	&deactivate_to_head_attr.attr,
6600	&deactivate_to_tail_attr.attr,
6601	&deactivate_remote_frees_attr.attr,
6602	&deactivate_bypass_attr.attr,
6603	&order_fallback_attr.attr,
6604	&cmpxchg_double_fail_attr.attr,
6605	&cmpxchg_double_cpu_fail_attr.attr,
6606	&cpu_partial_alloc_attr.attr,
6607	&cpu_partial_free_attr.attr,
6608	&cpu_partial_node_attr.attr,
6609	&cpu_partial_drain_attr.attr,
6610#endif
6611#ifdef CONFIG_FAILSLAB
6612	&failslab_attr.attr,
6613#endif
6614#ifdef CONFIG_HARDENED_USERCOPY
6615	&usersize_attr.attr,
6616#endif
6617#ifdef CONFIG_KFENCE
6618	&skip_kfence_attr.attr,
6619#endif
6620
6621	NULL
6622};
6623
6624static const struct attribute_group slab_attr_group = {
6625	.attrs = slab_attrs,
6626};
6627
6628static ssize_t slab_attr_show(struct kobject *kobj,
6629				struct attribute *attr,
6630				char *buf)
6631{
6632	struct slab_attribute *attribute;
6633	struct kmem_cache *s;
6634
6635	attribute = to_slab_attr(attr);
6636	s = to_slab(kobj);
6637
6638	if (!attribute->show)
6639		return -EIO;
6640
6641	return attribute->show(s, buf);
6642}
6643
6644static ssize_t slab_attr_store(struct kobject *kobj,
6645				struct attribute *attr,
6646				const char *buf, size_t len)
6647{
6648	struct slab_attribute *attribute;
6649	struct kmem_cache *s;
6650
6651	attribute = to_slab_attr(attr);
6652	s = to_slab(kobj);
6653
6654	if (!attribute->store)
6655		return -EIO;
6656
6657	return attribute->store(s, buf, len);
6658}
6659
6660static void kmem_cache_release(struct kobject *k)
6661{
6662	slab_kmem_cache_release(to_slab(k));
6663}
6664
6665static const struct sysfs_ops slab_sysfs_ops = {
6666	.show = slab_attr_show,
6667	.store = slab_attr_store,
6668};
6669
6670static const struct kobj_type slab_ktype = {
6671	.sysfs_ops = &slab_sysfs_ops,
6672	.release = kmem_cache_release,
6673};
6674
6675static struct kset *slab_kset;
6676
6677static inline struct kset *cache_kset(struct kmem_cache *s)
6678{
6679	return slab_kset;
6680}
6681
6682#define ID_STR_LENGTH 32
6683
6684/* Create a unique string id for a slab cache:
6685 *
6686 * Format	:[flags-]size
6687 */
6688static char *create_unique_id(struct kmem_cache *s)
6689{
6690	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6691	char *p = name;
6692
6693	if (!name)
6694		return ERR_PTR(-ENOMEM);
6695
6696	*p++ = ':';
6697	/*
6698	 * First flags affecting slabcache operations. We will only
6699	 * get here for aliasable slabs so we do not need to support
6700	 * too many flags. The flags here must cover all flags that
6701	 * are matched during merging to guarantee that the id is
6702	 * unique.
6703	 */
6704	if (s->flags & SLAB_CACHE_DMA)
6705		*p++ = 'd';
6706	if (s->flags & SLAB_CACHE_DMA32)
6707		*p++ = 'D';
6708	if (s->flags & SLAB_RECLAIM_ACCOUNT)
6709		*p++ = 'a';
6710	if (s->flags & SLAB_CONSISTENCY_CHECKS)
6711		*p++ = 'F';
6712	if (s->flags & SLAB_ACCOUNT)
6713		*p++ = 'A';
6714	if (p != name + 1)
6715		*p++ = '-';
6716	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6717
6718	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6719		kfree(name);
6720		return ERR_PTR(-EINVAL);
6721	}
6722	kmsan_unpoison_memory(name, p - name);
6723	return name;
6724}
6725
6726static int sysfs_slab_add(struct kmem_cache *s)
6727{
6728	int err;
6729	const char *name;
6730	struct kset *kset = cache_kset(s);
6731	int unmergeable = slab_unmergeable(s);
6732
6733	if (!unmergeable && disable_higher_order_debug &&
6734			(slub_debug & DEBUG_METADATA_FLAGS))
6735		unmergeable = 1;
6736
6737	if (unmergeable) {
6738		/*
6739		 * Slabcache can never be merged so we can use the name proper.
6740		 * This is typically the case for debug situations. In that
6741		 * case we can catch duplicate names easily.
6742		 */
6743		sysfs_remove_link(&slab_kset->kobj, s->name);
6744		name = s->name;
6745	} else {
6746		/*
6747		 * Create a unique name for the slab as a target
6748		 * for the symlinks.
6749		 */
6750		name = create_unique_id(s);
6751		if (IS_ERR(name))
6752			return PTR_ERR(name);
6753	}
6754
6755	s->kobj.kset = kset;
6756	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6757	if (err)
6758		goto out;
6759
6760	err = sysfs_create_group(&s->kobj, &slab_attr_group);
6761	if (err)
6762		goto out_del_kobj;
6763
6764	if (!unmergeable) {
6765		/* Setup first alias */
6766		sysfs_slab_alias(s, s->name);
6767	}
6768out:
6769	if (!unmergeable)
6770		kfree(name);
6771	return err;
6772out_del_kobj:
6773	kobject_del(&s->kobj);
6774	goto out;
6775}
6776
6777void sysfs_slab_unlink(struct kmem_cache *s)
6778{
6779	kobject_del(&s->kobj);
6780}
6781
6782void sysfs_slab_release(struct kmem_cache *s)
6783{
6784	kobject_put(&s->kobj);
6785}
6786
6787/*
6788 * Need to buffer aliases during bootup until sysfs becomes
6789 * available lest we lose that information.
6790 */
6791struct saved_alias {
6792	struct kmem_cache *s;
6793	const char *name;
6794	struct saved_alias *next;
6795};
6796
6797static struct saved_alias *alias_list;
6798
6799static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6800{
6801	struct saved_alias *al;
6802
6803	if (slab_state == FULL) {
6804		/*
6805		 * If we have a leftover link then remove it.
6806		 */
6807		sysfs_remove_link(&slab_kset->kobj, name);
6808		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6809	}
6810
6811	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6812	if (!al)
6813		return -ENOMEM;
6814
6815	al->s = s;
6816	al->name = name;
6817	al->next = alias_list;
6818	alias_list = al;
6819	kmsan_unpoison_memory(al, sizeof(*al));
6820	return 0;
6821}
6822
6823static int __init slab_sysfs_init(void)
6824{
6825	struct kmem_cache *s;
6826	int err;
6827
6828	mutex_lock(&slab_mutex);
6829
6830	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6831	if (!slab_kset) {
6832		mutex_unlock(&slab_mutex);
6833		pr_err("Cannot register slab subsystem.\n");
6834		return -ENOMEM;
6835	}
6836
6837	slab_state = FULL;
6838
6839	list_for_each_entry(s, &slab_caches, list) {
6840		err = sysfs_slab_add(s);
6841		if (err)
6842			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6843			       s->name);
6844	}
6845
6846	while (alias_list) {
6847		struct saved_alias *al = alias_list;
6848
6849		alias_list = alias_list->next;
6850		err = sysfs_slab_alias(al->s, al->name);
6851		if (err)
6852			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6853			       al->name);
6854		kfree(al);
6855	}
6856
6857	mutex_unlock(&slab_mutex);
6858	return 0;
6859}
6860late_initcall(slab_sysfs_init);
6861#endif /* SLAB_SUPPORTS_SYSFS */
6862
6863#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6864static int slab_debugfs_show(struct seq_file *seq, void *v)
6865{
6866	struct loc_track *t = seq->private;
6867	struct location *l;
6868	unsigned long idx;
6869
6870	idx = (unsigned long) t->idx;
6871	if (idx < t->count) {
6872		l = &t->loc[idx];
6873
6874		seq_printf(seq, "%7ld ", l->count);
6875
6876		if (l->addr)
6877			seq_printf(seq, "%pS", (void *)l->addr);
6878		else
6879			seq_puts(seq, "<not-available>");
6880
6881		if (l->waste)
6882			seq_printf(seq, " waste=%lu/%lu",
6883				l->count * l->waste, l->waste);
6884
6885		if (l->sum_time != l->min_time) {
6886			seq_printf(seq, " age=%ld/%llu/%ld",
6887				l->min_time, div_u64(l->sum_time, l->count),
6888				l->max_time);
6889		} else
6890			seq_printf(seq, " age=%ld", l->min_time);
6891
6892		if (l->min_pid != l->max_pid)
6893			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6894		else
6895			seq_printf(seq, " pid=%ld",
6896				l->min_pid);
6897
6898		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6899			seq_printf(seq, " cpus=%*pbl",
6900				 cpumask_pr_args(to_cpumask(l->cpus)));
6901
6902		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6903			seq_printf(seq, " nodes=%*pbl",
6904				 nodemask_pr_args(&l->nodes));
6905
6906#ifdef CONFIG_STACKDEPOT
6907		{
6908			depot_stack_handle_t handle;
6909			unsigned long *entries;
6910			unsigned int nr_entries, j;
6911
6912			handle = READ_ONCE(l->handle);
6913			if (handle) {
6914				nr_entries = stack_depot_fetch(handle, &entries);
6915				seq_puts(seq, "\n");
6916				for (j = 0; j < nr_entries; j++)
6917					seq_printf(seq, "        %pS\n", (void *)entries[j]);
6918			}
6919		}
6920#endif
6921		seq_puts(seq, "\n");
6922	}
6923
6924	if (!idx && !t->count)
6925		seq_puts(seq, "No data\n");
6926
6927	return 0;
6928}
6929
6930static void slab_debugfs_stop(struct seq_file *seq, void *v)
6931{
6932}
6933
6934static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6935{
6936	struct loc_track *t = seq->private;
6937
6938	t->idx = ++(*ppos);
6939	if (*ppos <= t->count)
6940		return ppos;
6941
6942	return NULL;
6943}
6944
6945static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6946{
6947	struct location *loc1 = (struct location *)a;
6948	struct location *loc2 = (struct location *)b;
6949
6950	if (loc1->count > loc2->count)
6951		return -1;
6952	else
6953		return 1;
6954}
6955
6956static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6957{
6958	struct loc_track *t = seq->private;
6959
6960	t->idx = *ppos;
6961	return ppos;
6962}
6963
6964static const struct seq_operations slab_debugfs_sops = {
6965	.start  = slab_debugfs_start,
6966	.next   = slab_debugfs_next,
6967	.stop   = slab_debugfs_stop,
6968	.show   = slab_debugfs_show,
6969};
6970
6971static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6972{
6973
6974	struct kmem_cache_node *n;
6975	enum track_item alloc;
6976	int node;
6977	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6978						sizeof(struct loc_track));
6979	struct kmem_cache *s = file_inode(filep)->i_private;
6980	unsigned long *obj_map;
6981
6982	if (!t)
6983		return -ENOMEM;
6984
6985	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6986	if (!obj_map) {
6987		seq_release_private(inode, filep);
6988		return -ENOMEM;
6989	}
6990
6991	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6992		alloc = TRACK_ALLOC;
6993	else
6994		alloc = TRACK_FREE;
6995
6996	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6997		bitmap_free(obj_map);
6998		seq_release_private(inode, filep);
6999		return -ENOMEM;
7000	}
7001
7002	for_each_kmem_cache_node(s, node, n) {
7003		unsigned long flags;
7004		struct slab *slab;
7005
7006		if (!node_nr_slabs(n))
7007			continue;
7008
7009		spin_lock_irqsave(&n->list_lock, flags);
7010		list_for_each_entry(slab, &n->partial, slab_list)
7011			process_slab(t, s, slab, alloc, obj_map);
7012		list_for_each_entry(slab, &n->full, slab_list)
7013			process_slab(t, s, slab, alloc, obj_map);
7014		spin_unlock_irqrestore(&n->list_lock, flags);
7015	}
7016
7017	/* Sort locations by count */
7018	sort_r(t->loc, t->count, sizeof(struct location),
7019		cmp_loc_by_count, NULL, NULL);
7020
7021	bitmap_free(obj_map);
7022	return 0;
7023}
7024
7025static int slab_debug_trace_release(struct inode *inode, struct file *file)
7026{
7027	struct seq_file *seq = file->private_data;
7028	struct loc_track *t = seq->private;
7029
7030	free_loc_track(t);
7031	return seq_release_private(inode, file);
7032}
7033
7034static const struct file_operations slab_debugfs_fops = {
7035	.open    = slab_debug_trace_open,
7036	.read    = seq_read,
7037	.llseek  = seq_lseek,
7038	.release = slab_debug_trace_release,
7039};
7040
7041static void debugfs_slab_add(struct kmem_cache *s)
7042{
7043	struct dentry *slab_cache_dir;
7044
7045	if (unlikely(!slab_debugfs_root))
7046		return;
7047
7048	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7049
7050	debugfs_create_file("alloc_traces", 0400,
7051		slab_cache_dir, s, &slab_debugfs_fops);
7052
7053	debugfs_create_file("free_traces", 0400,
7054		slab_cache_dir, s, &slab_debugfs_fops);
7055}
7056
7057void debugfs_slab_release(struct kmem_cache *s)
7058{
7059	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7060}
7061
7062static int __init slab_debugfs_init(void)
7063{
7064	struct kmem_cache *s;
7065
7066	slab_debugfs_root = debugfs_create_dir("slab", NULL);
7067
7068	list_for_each_entry(s, &slab_caches, list)
7069		if (s->flags & SLAB_STORE_USER)
7070			debugfs_slab_add(s);
7071
7072	return 0;
7073
7074}
7075__initcall(slab_debugfs_init);
7076#endif
7077/*
7078 * The /proc/slabinfo ABI
7079 */
7080#ifdef CONFIG_SLUB_DEBUG
7081void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7082{
7083	unsigned long nr_slabs = 0;
7084	unsigned long nr_objs = 0;
7085	unsigned long nr_free = 0;
7086	int node;
7087	struct kmem_cache_node *n;
7088
7089	for_each_kmem_cache_node(s, node, n) {
7090		nr_slabs += node_nr_slabs(n);
7091		nr_objs += node_nr_objs(n);
7092		nr_free += count_partial(n, count_free);
7093	}
7094
7095	sinfo->active_objs = nr_objs - nr_free;
7096	sinfo->num_objs = nr_objs;
7097	sinfo->active_slabs = nr_slabs;
7098	sinfo->num_slabs = nr_slabs;
7099	sinfo->objects_per_slab = oo_objects(s->oo);
7100	sinfo->cache_order = oo_order(s->oo);
7101}
7102
7103void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7104{
7105}
7106
7107ssize_t slabinfo_write(struct file *file, const char __user *buffer,
7108		       size_t count, loff_t *ppos)
7109{
7110	return -EIO;
7111}
7112#endif /* CONFIG_SLUB_DEBUG */
7113