1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13#include <linux/mm.h>
14#include <linux/swap.h> /* mm_account_reclaimed_pages() */
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/swab.h>
19#include <linux/bitops.h>
20#include <linux/slab.h>
21#include "slab.h"
22#include <linux/proc_fs.h>
23#include <linux/seq_file.h>
24#include <linux/kasan.h>
25#include <linux/kmsan.h>
26#include <linux/cpu.h>
27#include <linux/cpuset.h>
28#include <linux/mempolicy.h>
29#include <linux/ctype.h>
30#include <linux/stackdepot.h>
31#include <linux/debugobjects.h>
32#include <linux/kallsyms.h>
33#include <linux/kfence.h>
34#include <linux/memory.h>
35#include <linux/math64.h>
36#include <linux/fault-inject.h>
37#include <linux/stacktrace.h>
38#include <linux/prefetch.h>
39#include <linux/memcontrol.h>
40#include <linux/random.h>
41#include <kunit/test.h>
42#include <kunit/test-bug.h>
43#include <linux/sort.h>
44
45#include <linux/debugfs.h>
46#include <trace/events/kmem.h>
47
48#include "internal.h"
49
50/*
51 * Lock order:
52 *   1. slab_mutex (Global Mutex)
53 *   2. node->list_lock (Spinlock)
54 *   3. kmem_cache->cpu_slab->lock (Local lock)
55 *   4. slab_lock(slab) (Only on some arches)
56 *   5. object_map_lock (Only for debugging)
57 *
58 *   slab_mutex
59 *
60 *   The role of the slab_mutex is to protect the list of all the slabs
61 *   and to synchronize major metadata changes to slab cache structures.
62 *   Also synchronizes memory hotplug callbacks.
63 *
64 *   slab_lock
65 *
66 *   The slab_lock is a wrapper around the page lock, thus it is a bit
67 *   spinlock.
68 *
69 *   The slab_lock is only used on arches that do not have the ability
70 *   to do a cmpxchg_double. It only protects:
71 *
72 *	A. slab->freelist	-> List of free objects in a slab
73 *	B. slab->inuse		-> Number of objects in use
74 *	C. slab->objects	-> Number of objects in slab
75 *	D. slab->frozen		-> frozen state
76 *
77 *   Frozen slabs
78 *
79 *   If a slab is frozen then it is exempt from list management. It is not
80 *   on any list except per cpu partial list. The processor that froze the
81 *   slab is the one who can perform list operations on the slab. Other
82 *   processors may put objects onto the freelist but the processor that
83 *   froze the slab is the only one that can retrieve the objects from the
84 *   slab's freelist.
85 *
86 *   list_lock
87 *
88 *   The list_lock protects the partial and full list on each node and
89 *   the partial slab counter. If taken then no new slabs may be added or
90 *   removed from the lists nor make the number of partial slabs be modified.
91 *   (Note that the total number of slabs is an atomic value that may be
92 *   modified without taking the list lock).
93 *
94 *   The list_lock is a centralized lock and thus we avoid taking it as
95 *   much as possible. As long as SLUB does not have to handle partial
96 *   slabs, operations can continue without any centralized lock. F.e.
97 *   allocating a long series of objects that fill up slabs does not require
98 *   the list lock.
99 *
100 *   For debug caches, all allocations are forced to go through a list_lock
101 *   protected region to serialize against concurrent validation.
102 *
103 *   cpu_slab->lock local lock
104 *
105 *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
106 *   except the stat counters. This is a percpu structure manipulated only by
107 *   the local cpu, so the lock protects against being preempted or interrupted
108 *   by an irq. Fast path operations rely on lockless operations instead.
109 *
110 *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
111 *   which means the lockless fastpath cannot be used as it might interfere with
112 *   an in-progress slow path operations. In this case the local lock is always
113 *   taken but it still utilizes the freelist for the common operations.
114 *
115 *   lockless fastpaths
116 *
117 *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
118 *   are fully lockless when satisfied from the percpu slab (and when
119 *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
120 *   They also don't disable preemption or migration or irqs. They rely on
121 *   the transaction id (tid) field to detect being preempted or moved to
122 *   another cpu.
123 *
124 *   irq, preemption, migration considerations
125 *
126 *   Interrupts are disabled as part of list_lock or local_lock operations, or
127 *   around the slab_lock operation, in order to make the slab allocator safe
128 *   to use in the context of an irq.
129 *
130 *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
131 *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
132 *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
133 *   doesn't have to be revalidated in each section protected by the local lock.
134 *
135 * SLUB assigns one slab for allocation to each processor.
136 * Allocations only occur from these slabs called cpu slabs.
137 *
138 * Slabs with free elements are kept on a partial list and during regular
139 * operations no list for full slabs is used. If an object in a full slab is
140 * freed then the slab will show up again on the partial lists.
141 * We track full slabs for debugging purposes though because otherwise we
142 * cannot scan all objects.
143 *
144 * Slabs are freed when they become empty. Teardown and setup is
145 * minimal so we rely on the page allocators per cpu caches for
146 * fast frees and allocs.
147 *
148 * slab->frozen		The slab is frozen and exempt from list processing.
149 * 			This means that the slab is dedicated to a purpose
150 * 			such as satisfying allocations for a specific
151 * 			processor. Objects may be freed in the slab while
152 * 			it is frozen but slab_free will then skip the usual
153 * 			list operations. It is up to the processor holding
154 * 			the slab to integrate the slab into the slab lists
155 * 			when the slab is no longer needed.
156 *
157 * 			One use of this flag is to mark slabs that are
158 * 			used for allocations. Then such a slab becomes a cpu
159 * 			slab. The cpu slab may be equipped with an additional
160 * 			freelist that allows lockless access to
161 * 			free objects in addition to the regular freelist
162 * 			that requires the slab lock.
163 *
164 * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
165 * 			options set. This moves	slab handling out of
166 * 			the fast path and disables lockless freelists.
167 */
168
169/*
170 * We could simply use migrate_disable()/enable() but as long as it's a
171 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
172 */
173#ifndef CONFIG_PREEMPT_RT
174#define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
175#define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
176#define USE_LOCKLESS_FAST_PATH()	(true)
177#else
178#define slub_get_cpu_ptr(var)		\
179({					\
180	migrate_disable();		\
181	this_cpu_ptr(var);		\
182})
183#define slub_put_cpu_ptr(var)		\
184do {					\
185	(void)(var);			\
186	migrate_enable();		\
187} while (0)
188#define USE_LOCKLESS_FAST_PATH()	(false)
189#endif
190
191#ifndef CONFIG_SLUB_TINY
192#define __fastpath_inline __always_inline
193#else
194#define __fastpath_inline
195#endif
196
197#ifdef CONFIG_SLUB_DEBUG
198#ifdef CONFIG_SLUB_DEBUG_ON
199DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
200#else
201DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
202#endif
203#endif		/* CONFIG_SLUB_DEBUG */
204
205/* Structure holding parameters for get_partial() call chain */
206struct partial_context {
207	struct slab **slab;
208	gfp_t flags;
209	unsigned int orig_size;
210};
211
212static inline bool kmem_cache_debug(struct kmem_cache *s)
213{
214	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
215}
216
217static inline bool slub_debug_orig_size(struct kmem_cache *s)
218{
219	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
220			(s->flags & SLAB_KMALLOC));
221}
222
223void *fixup_red_left(struct kmem_cache *s, void *p)
224{
225	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
226		p += s->red_left_pad;
227
228	return p;
229}
230
231static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
232{
233#ifdef CONFIG_SLUB_CPU_PARTIAL
234	return !kmem_cache_debug(s);
235#else
236	return false;
237#endif
238}
239
240/*
241 * Issues still to be resolved:
242 *
243 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
244 *
245 * - Variable sizing of the per node arrays
246 */
247
248/* Enable to log cmpxchg failures */
249#undef SLUB_DEBUG_CMPXCHG
250
251#ifndef CONFIG_SLUB_TINY
252/*
253 * Minimum number of partial slabs. These will be left on the partial
254 * lists even if they are empty. kmem_cache_shrink may reclaim them.
255 */
256#define MIN_PARTIAL 5
257
258/*
259 * Maximum number of desirable partial slabs.
260 * The existence of more partial slabs makes kmem_cache_shrink
261 * sort the partial list by the number of objects in use.
262 */
263#define MAX_PARTIAL 10
264#else
265#define MIN_PARTIAL 0
266#define MAX_PARTIAL 0
267#endif
268
269#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
270				SLAB_POISON | SLAB_STORE_USER)
271
272/*
273 * These debug flags cannot use CMPXCHG because there might be consistency
274 * issues when checking or reading debug information
275 */
276#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
277				SLAB_TRACE)
278
279
280/*
281 * Debugging flags that require metadata to be stored in the slab.  These get
282 * disabled when slub_debug=O is used and a cache's min order increases with
283 * metadata.
284 */
285#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
286
287#define OO_SHIFT	16
288#define OO_MASK		((1 << OO_SHIFT) - 1)
289#define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
290
291/* Internal SLUB flags */
292/* Poison object */
293#define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
294/* Use cmpxchg_double */
295
296#ifdef system_has_freelist_aba
297#define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
298#else
299#define __CMPXCHG_DOUBLE	((slab_flags_t __force)0U)
300#endif
301
302/*
303 * Tracking user of a slab.
304 */
305#define TRACK_ADDRS_COUNT 16
306struct track {
307	unsigned long addr;	/* Called from address */
308#ifdef CONFIG_STACKDEPOT
309	depot_stack_handle_t handle;
310#endif
311	int cpu;		/* Was running on cpu */
312	int pid;		/* Pid context */
313	unsigned long when;	/* When did the operation occur */
314};
315
316enum track_item { TRACK_ALLOC, TRACK_FREE };
317
318#ifdef SLAB_SUPPORTS_SYSFS
319static int sysfs_slab_add(struct kmem_cache *);
320static int sysfs_slab_alias(struct kmem_cache *, const char *);
321#else
322static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
323static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
324							{ return 0; }
325#endif
326
327#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
328static void debugfs_slab_add(struct kmem_cache *);
329#else
330static inline void debugfs_slab_add(struct kmem_cache *s) { }
331#endif
332
333static inline void stat(const struct kmem_cache *s, enum stat_item si)
334{
335#ifdef CONFIG_SLUB_STATS
336	/*
337	 * The rmw is racy on a preemptible kernel but this is acceptable, so
338	 * avoid this_cpu_add()'s irq-disable overhead.
339	 */
340	raw_cpu_inc(s->cpu_slab->stat[si]);
341#endif
342}
343
344/*
345 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
346 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
347 * differ during memory hotplug/hotremove operations.
348 * Protected by slab_mutex.
349 */
350static nodemask_t slab_nodes;
351
352#ifndef CONFIG_SLUB_TINY
353/*
354 * Workqueue used for flush_cpu_slab().
355 */
356static struct workqueue_struct *flushwq;
357#endif
358
359/********************************************************************
360 * 			Core slab cache functions
361 *******************************************************************/
362
363/*
364 * freeptr_t represents a SLUB freelist pointer, which might be encoded
365 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
366 */
367typedef struct { unsigned long v; } freeptr_t;
368
369/*
370 * Returns freelist pointer (ptr). With hardening, this is obfuscated
371 * with an XOR of the address where the pointer is held and a per-cache
372 * random number.
373 */
374static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
375					    void *ptr, unsigned long ptr_addr)
376{
377	unsigned long encoded;
378
379#ifdef CONFIG_SLAB_FREELIST_HARDENED
380	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
381#else
382	encoded = (unsigned long)ptr;
383#endif
384	return (freeptr_t){.v = encoded};
385}
386
387static inline void *freelist_ptr_decode(const struct kmem_cache *s,
388					freeptr_t ptr, unsigned long ptr_addr)
389{
390	void *decoded;
391
392#ifdef CONFIG_SLAB_FREELIST_HARDENED
393	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
394#else
395	decoded = (void *)ptr.v;
396#endif
397	return decoded;
398}
399
400static inline void *get_freepointer(struct kmem_cache *s, void *object)
401{
402	unsigned long ptr_addr;
403	freeptr_t p;
404
405	object = kasan_reset_tag(object);
406	ptr_addr = (unsigned long)object + s->offset;
407	p = *(freeptr_t *)(ptr_addr);
408	return freelist_ptr_decode(s, p, ptr_addr);
409}
410
411#ifndef CONFIG_SLUB_TINY
412static void prefetch_freepointer(const struct kmem_cache *s, void *object)
413{
414	prefetchw(object + s->offset);
415}
416#endif
417
418/*
419 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
420 * pointer value in the case the current thread loses the race for the next
421 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
422 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
423 * KMSAN will still check all arguments of cmpxchg because of imperfect
424 * handling of inline assembly.
425 * To work around this problem, we apply __no_kmsan_checks to ensure that
426 * get_freepointer_safe() returns initialized memory.
427 */
428__no_kmsan_checks
429static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
430{
431	unsigned long freepointer_addr;
432	freeptr_t p;
433
434	if (!debug_pagealloc_enabled_static())
435		return get_freepointer(s, object);
436
437	object = kasan_reset_tag(object);
438	freepointer_addr = (unsigned long)object + s->offset;
439	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
440	return freelist_ptr_decode(s, p, freepointer_addr);
441}
442
443static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
444{
445	unsigned long freeptr_addr = (unsigned long)object + s->offset;
446
447#ifdef CONFIG_SLAB_FREELIST_HARDENED
448	BUG_ON(object == fp); /* naive detection of double free or corruption */
449#endif
450
451	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
452	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
453}
454
455/* Loop over all objects in a slab */
456#define for_each_object(__p, __s, __addr, __objects) \
457	for (__p = fixup_red_left(__s, __addr); \
458		__p < (__addr) + (__objects) * (__s)->size; \
459		__p += (__s)->size)
460
461static inline unsigned int order_objects(unsigned int order, unsigned int size)
462{
463	return ((unsigned int)PAGE_SIZE << order) / size;
464}
465
466static inline struct kmem_cache_order_objects oo_make(unsigned int order,
467		unsigned int size)
468{
469	struct kmem_cache_order_objects x = {
470		(order << OO_SHIFT) + order_objects(order, size)
471	};
472
473	return x;
474}
475
476static inline unsigned int oo_order(struct kmem_cache_order_objects x)
477{
478	return x.x >> OO_SHIFT;
479}
480
481static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
482{
483	return x.x & OO_MASK;
484}
485
486#ifdef CONFIG_SLUB_CPU_PARTIAL
487static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
488{
489	unsigned int nr_slabs;
490
491	s->cpu_partial = nr_objects;
492
493	/*
494	 * We take the number of objects but actually limit the number of
495	 * slabs on the per cpu partial list, in order to limit excessive
496	 * growth of the list. For simplicity we assume that the slabs will
497	 * be half-full.
498	 */
499	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
500	s->cpu_partial_slabs = nr_slabs;
501}
502#else
503static inline void
504slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
505{
506}
507#endif /* CONFIG_SLUB_CPU_PARTIAL */
508
509/*
510 * Per slab locking using the pagelock
511 */
512static __always_inline void slab_lock(struct slab *slab)
513{
514	struct page *page = slab_page(slab);
515
516	VM_BUG_ON_PAGE(PageTail(page), page);
517	bit_spin_lock(PG_locked, &page->flags);
518}
519
520static __always_inline void slab_unlock(struct slab *slab)
521{
522	struct page *page = slab_page(slab);
523
524	VM_BUG_ON_PAGE(PageTail(page), page);
525	__bit_spin_unlock(PG_locked, &page->flags);
526}
527
528static inline bool
529__update_freelist_fast(struct slab *slab,
530		      void *freelist_old, unsigned long counters_old,
531		      void *freelist_new, unsigned long counters_new)
532{
533#ifdef system_has_freelist_aba
534	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
535	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
536
537	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
538#else
539	return false;
540#endif
541}
542
543static inline bool
544__update_freelist_slow(struct slab *slab,
545		      void *freelist_old, unsigned long counters_old,
546		      void *freelist_new, unsigned long counters_new)
547{
548	bool ret = false;
549
550	slab_lock(slab);
551	if (slab->freelist == freelist_old &&
552	    slab->counters == counters_old) {
553		slab->freelist = freelist_new;
554		slab->counters = counters_new;
555		ret = true;
556	}
557	slab_unlock(slab);
558
559	return ret;
560}
561
562/*
563 * Interrupts must be disabled (for the fallback code to work right), typically
564 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
565 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
566 * allocation/ free operation in hardirq context. Therefore nothing can
567 * interrupt the operation.
568 */
569static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
570		void *freelist_old, unsigned long counters_old,
571		void *freelist_new, unsigned long counters_new,
572		const char *n)
573{
574	bool ret;
575
576	if (USE_LOCKLESS_FAST_PATH())
577		lockdep_assert_irqs_disabled();
578
579	if (s->flags & __CMPXCHG_DOUBLE) {
580		ret = __update_freelist_fast(slab, freelist_old, counters_old,
581				            freelist_new, counters_new);
582	} else {
583		ret = __update_freelist_slow(slab, freelist_old, counters_old,
584				            freelist_new, counters_new);
585	}
586	if (likely(ret))
587		return true;
588
589	cpu_relax();
590	stat(s, CMPXCHG_DOUBLE_FAIL);
591
592#ifdef SLUB_DEBUG_CMPXCHG
593	pr_info("%s %s: cmpxchg double redo ", n, s->name);
594#endif
595
596	return false;
597}
598
599static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
600		void *freelist_old, unsigned long counters_old,
601		void *freelist_new, unsigned long counters_new,
602		const char *n)
603{
604	bool ret;
605
606	if (s->flags & __CMPXCHG_DOUBLE) {
607		ret = __update_freelist_fast(slab, freelist_old, counters_old,
608				            freelist_new, counters_new);
609	} else {
610		unsigned long flags;
611
612		local_irq_save(flags);
613		ret = __update_freelist_slow(slab, freelist_old, counters_old,
614				            freelist_new, counters_new);
615		local_irq_restore(flags);
616	}
617	if (likely(ret))
618		return true;
619
620	cpu_relax();
621	stat(s, CMPXCHG_DOUBLE_FAIL);
622
623#ifdef SLUB_DEBUG_CMPXCHG
624	pr_info("%s %s: cmpxchg double redo ", n, s->name);
625#endif
626
627	return false;
628}
629
630#ifdef CONFIG_SLUB_DEBUG
631static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
632static DEFINE_SPINLOCK(object_map_lock);
633
634static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
635		       struct slab *slab)
636{
637	void *addr = slab_address(slab);
638	void *p;
639
640	bitmap_zero(obj_map, slab->objects);
641
642	for (p = slab->freelist; p; p = get_freepointer(s, p))
643		set_bit(__obj_to_index(s, addr, p), obj_map);
644}
645
646#if IS_ENABLED(CONFIG_KUNIT)
647static bool slab_add_kunit_errors(void)
648{
649	struct kunit_resource *resource;
650
651	if (!kunit_get_current_test())
652		return false;
653
654	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
655	if (!resource)
656		return false;
657
658	(*(int *)resource->data)++;
659	kunit_put_resource(resource);
660	return true;
661}
662#else
663static inline bool slab_add_kunit_errors(void) { return false; }
664#endif
665
666static inline unsigned int size_from_object(struct kmem_cache *s)
667{
668	if (s->flags & SLAB_RED_ZONE)
669		return s->size - s->red_left_pad;
670
671	return s->size;
672}
673
674static inline void *restore_red_left(struct kmem_cache *s, void *p)
675{
676	if (s->flags & SLAB_RED_ZONE)
677		p -= s->red_left_pad;
678
679	return p;
680}
681
682/*
683 * Debug settings:
684 */
685#if defined(CONFIG_SLUB_DEBUG_ON)
686static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
687#else
688static slab_flags_t slub_debug;
689#endif
690
691static char *slub_debug_string;
692static int disable_higher_order_debug;
693
694/*
695 * slub is about to manipulate internal object metadata.  This memory lies
696 * outside the range of the allocated object, so accessing it would normally
697 * be reported by kasan as a bounds error.  metadata_access_enable() is used
698 * to tell kasan that these accesses are OK.
699 */
700static inline void metadata_access_enable(void)
701{
702	kasan_disable_current();
703}
704
705static inline void metadata_access_disable(void)
706{
707	kasan_enable_current();
708}
709
710/*
711 * Object debugging
712 */
713
714/* Verify that a pointer has an address that is valid within a slab page */
715static inline int check_valid_pointer(struct kmem_cache *s,
716				struct slab *slab, void *object)
717{
718	void *base;
719
720	if (!object)
721		return 1;
722
723	base = slab_address(slab);
724	object = kasan_reset_tag(object);
725	object = restore_red_left(s, object);
726	if (object < base || object >= base + slab->objects * s->size ||
727		(object - base) % s->size) {
728		return 0;
729	}
730
731	return 1;
732}
733
734static void print_section(char *level, char *text, u8 *addr,
735			  unsigned int length)
736{
737	metadata_access_enable();
738	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
739			16, 1, kasan_reset_tag((void *)addr), length, 1);
740	metadata_access_disable();
741}
742
743/*
744 * See comment in calculate_sizes().
745 */
746static inline bool freeptr_outside_object(struct kmem_cache *s)
747{
748	return s->offset >= s->inuse;
749}
750
751/*
752 * Return offset of the end of info block which is inuse + free pointer if
753 * not overlapping with object.
754 */
755static inline unsigned int get_info_end(struct kmem_cache *s)
756{
757	if (freeptr_outside_object(s))
758		return s->inuse + sizeof(void *);
759	else
760		return s->inuse;
761}
762
763static struct track *get_track(struct kmem_cache *s, void *object,
764	enum track_item alloc)
765{
766	struct track *p;
767
768	p = object + get_info_end(s);
769
770	return kasan_reset_tag(p + alloc);
771}
772
773#ifdef CONFIG_STACKDEPOT
774static noinline depot_stack_handle_t set_track_prepare(void)
775{
776	depot_stack_handle_t handle;
777	unsigned long entries[TRACK_ADDRS_COUNT];
778	unsigned int nr_entries;
779
780	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
781	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
782
783	return handle;
784}
785#else
786static inline depot_stack_handle_t set_track_prepare(void)
787{
788	return 0;
789}
790#endif
791
792static void set_track_update(struct kmem_cache *s, void *object,
793			     enum track_item alloc, unsigned long addr,
794			     depot_stack_handle_t handle)
795{
796	struct track *p = get_track(s, object, alloc);
797
798#ifdef CONFIG_STACKDEPOT
799	p->handle = handle;
800#endif
801	p->addr = addr;
802	p->cpu = smp_processor_id();
803	p->pid = current->pid;
804	p->when = jiffies;
805}
806
807static __always_inline void set_track(struct kmem_cache *s, void *object,
808				      enum track_item alloc, unsigned long addr)
809{
810	depot_stack_handle_t handle = set_track_prepare();
811
812	set_track_update(s, object, alloc, addr, handle);
813}
814
815static void init_tracking(struct kmem_cache *s, void *object)
816{
817	struct track *p;
818
819	if (!(s->flags & SLAB_STORE_USER))
820		return;
821
822	p = get_track(s, object, TRACK_ALLOC);
823	memset(p, 0, 2*sizeof(struct track));
824}
825
826static void print_track(const char *s, struct track *t, unsigned long pr_time)
827{
828	depot_stack_handle_t handle __maybe_unused;
829
830	if (!t->addr)
831		return;
832
833	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
834	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
835#ifdef CONFIG_STACKDEPOT
836	handle = READ_ONCE(t->handle);
837	if (handle)
838		stack_depot_print(handle);
839	else
840		pr_err("object allocation/free stack trace missing\n");
841#endif
842}
843
844void print_tracking(struct kmem_cache *s, void *object)
845{
846	unsigned long pr_time = jiffies;
847	if (!(s->flags & SLAB_STORE_USER))
848		return;
849
850	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
851	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
852}
853
854static void print_slab_info(const struct slab *slab)
855{
856	struct folio *folio = (struct folio *)slab_folio(slab);
857
858	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
859	       slab, slab->objects, slab->inuse, slab->freelist,
860	       folio_flags(folio, 0));
861}
862
863/*
864 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
865 * family will round up the real request size to these fixed ones, so
866 * there could be an extra area than what is requested. Save the original
867 * request size in the meta data area, for better debug and sanity check.
868 */
869static inline void set_orig_size(struct kmem_cache *s,
870				void *object, unsigned int orig_size)
871{
872	void *p = kasan_reset_tag(object);
873
874	if (!slub_debug_orig_size(s))
875		return;
876
877#ifdef CONFIG_KASAN_GENERIC
878	/*
879	 * KASAN could save its free meta data in object's data area at
880	 * offset 0, if the size is larger than 'orig_size', it will
881	 * overlap the data redzone in [orig_size+1, object_size], and
882	 * the check should be skipped.
883	 */
884	if (kasan_metadata_size(s, true) > orig_size)
885		orig_size = s->object_size;
886#endif
887
888	p += get_info_end(s);
889	p += sizeof(struct track) * 2;
890
891	*(unsigned int *)p = orig_size;
892}
893
894static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
895{
896	void *p = kasan_reset_tag(object);
897
898	if (!slub_debug_orig_size(s))
899		return s->object_size;
900
901	p += get_info_end(s);
902	p += sizeof(struct track) * 2;
903
904	return *(unsigned int *)p;
905}
906
907void skip_orig_size_check(struct kmem_cache *s, const void *object)
908{
909	set_orig_size(s, (void *)object, s->object_size);
910}
911
912static void slab_bug(struct kmem_cache *s, char *fmt, ...)
913{
914	struct va_format vaf;
915	va_list args;
916
917	va_start(args, fmt);
918	vaf.fmt = fmt;
919	vaf.va = &args;
920	pr_err("=============================================================================\n");
921	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
922	pr_err("-----------------------------------------------------------------------------\n\n");
923	va_end(args);
924}
925
926__printf(2, 3)
927static void slab_fix(struct kmem_cache *s, char *fmt, ...)
928{
929	struct va_format vaf;
930	va_list args;
931
932	if (slab_add_kunit_errors())
933		return;
934
935	va_start(args, fmt);
936	vaf.fmt = fmt;
937	vaf.va = &args;
938	pr_err("FIX %s: %pV\n", s->name, &vaf);
939	va_end(args);
940}
941
942static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
943{
944	unsigned int off;	/* Offset of last byte */
945	u8 *addr = slab_address(slab);
946
947	print_tracking(s, p);
948
949	print_slab_info(slab);
950
951	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
952	       p, p - addr, get_freepointer(s, p));
953
954	if (s->flags & SLAB_RED_ZONE)
955		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
956			      s->red_left_pad);
957	else if (p > addr + 16)
958		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
959
960	print_section(KERN_ERR,         "Object   ", p,
961		      min_t(unsigned int, s->object_size, PAGE_SIZE));
962	if (s->flags & SLAB_RED_ZONE)
963		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
964			s->inuse - s->object_size);
965
966	off = get_info_end(s);
967
968	if (s->flags & SLAB_STORE_USER)
969		off += 2 * sizeof(struct track);
970
971	if (slub_debug_orig_size(s))
972		off += sizeof(unsigned int);
973
974	off += kasan_metadata_size(s, false);
975
976	if (off != size_from_object(s))
977		/* Beginning of the filler is the free pointer */
978		print_section(KERN_ERR, "Padding  ", p + off,
979			      size_from_object(s) - off);
980
981	dump_stack();
982}
983
984static void object_err(struct kmem_cache *s, struct slab *slab,
985			u8 *object, char *reason)
986{
987	if (slab_add_kunit_errors())
988		return;
989
990	slab_bug(s, "%s", reason);
991	print_trailer(s, slab, object);
992	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
993}
994
995static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
996			       void **freelist, void *nextfree)
997{
998	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
999	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1000		object_err(s, slab, *freelist, "Freechain corrupt");
1001		*freelist = NULL;
1002		slab_fix(s, "Isolate corrupted freechain");
1003		return true;
1004	}
1005
1006	return false;
1007}
1008
1009static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1010			const char *fmt, ...)
1011{
1012	va_list args;
1013	char buf[100];
1014
1015	if (slab_add_kunit_errors())
1016		return;
1017
1018	va_start(args, fmt);
1019	vsnprintf(buf, sizeof(buf), fmt, args);
1020	va_end(args);
1021	slab_bug(s, "%s", buf);
1022	print_slab_info(slab);
1023	dump_stack();
1024	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1025}
1026
1027static void init_object(struct kmem_cache *s, void *object, u8 val)
1028{
1029	u8 *p = kasan_reset_tag(object);
1030	unsigned int poison_size = s->object_size;
1031
1032	if (s->flags & SLAB_RED_ZONE) {
1033		memset(p - s->red_left_pad, val, s->red_left_pad);
1034
1035		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1036			/*
1037			 * Redzone the extra allocated space by kmalloc than
1038			 * requested, and the poison size will be limited to
1039			 * the original request size accordingly.
1040			 */
1041			poison_size = get_orig_size(s, object);
1042		}
1043	}
1044
1045	if (s->flags & __OBJECT_POISON) {
1046		memset(p, POISON_FREE, poison_size - 1);
1047		p[poison_size - 1] = POISON_END;
1048	}
1049
1050	if (s->flags & SLAB_RED_ZONE)
1051		memset(p + poison_size, val, s->inuse - poison_size);
1052}
1053
1054static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1055						void *from, void *to)
1056{
1057	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1058	memset(from, data, to - from);
1059}
1060
1061static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1062			u8 *object, char *what,
1063			u8 *start, unsigned int value, unsigned int bytes)
1064{
1065	u8 *fault;
1066	u8 *end;
1067	u8 *addr = slab_address(slab);
1068
1069	metadata_access_enable();
1070	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1071	metadata_access_disable();
1072	if (!fault)
1073		return 1;
1074
1075	end = start + bytes;
1076	while (end > fault && end[-1] == value)
1077		end--;
1078
1079	if (slab_add_kunit_errors())
1080		goto skip_bug_print;
1081
1082	slab_bug(s, "%s overwritten", what);
1083	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1084					fault, end - 1, fault - addr,
1085					fault[0], value);
1086	print_trailer(s, slab, object);
1087	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1088
1089skip_bug_print:
1090	restore_bytes(s, what, value, fault, end);
1091	return 0;
1092}
1093
1094/*
1095 * Object layout:
1096 *
1097 * object address
1098 * 	Bytes of the object to be managed.
1099 * 	If the freepointer may overlay the object then the free
1100 *	pointer is at the middle of the object.
1101 *
1102 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1103 * 	0xa5 (POISON_END)
1104 *
1105 * object + s->object_size
1106 * 	Padding to reach word boundary. This is also used for Redzoning.
1107 * 	Padding is extended by another word if Redzoning is enabled and
1108 * 	object_size == inuse.
1109 *
1110 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1111 * 	0xcc (RED_ACTIVE) for objects in use.
1112 *
1113 * object + s->inuse
1114 * 	Meta data starts here.
1115 *
1116 * 	A. Free pointer (if we cannot overwrite object on free)
1117 * 	B. Tracking data for SLAB_STORE_USER
1118 *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1119 *	D. Padding to reach required alignment boundary or at minimum
1120 * 		one word if debugging is on to be able to detect writes
1121 * 		before the word boundary.
1122 *
1123 *	Padding is done using 0x5a (POISON_INUSE)
1124 *
1125 * object + s->size
1126 * 	Nothing is used beyond s->size.
1127 *
1128 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1129 * ignored. And therefore no slab options that rely on these boundaries
1130 * may be used with merged slabcaches.
1131 */
1132
1133static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1134{
1135	unsigned long off = get_info_end(s);	/* The end of info */
1136
1137	if (s->flags & SLAB_STORE_USER) {
1138		/* We also have user information there */
1139		off += 2 * sizeof(struct track);
1140
1141		if (s->flags & SLAB_KMALLOC)
1142			off += sizeof(unsigned int);
1143	}
1144
1145	off += kasan_metadata_size(s, false);
1146
1147	if (size_from_object(s) == off)
1148		return 1;
1149
1150	return check_bytes_and_report(s, slab, p, "Object padding",
1151			p + off, POISON_INUSE, size_from_object(s) - off);
1152}
1153
1154/* Check the pad bytes at the end of a slab page */
1155static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1156{
1157	u8 *start;
1158	u8 *fault;
1159	u8 *end;
1160	u8 *pad;
1161	int length;
1162	int remainder;
1163
1164	if (!(s->flags & SLAB_POISON))
1165		return;
1166
1167	start = slab_address(slab);
1168	length = slab_size(slab);
1169	end = start + length;
1170	remainder = length % s->size;
1171	if (!remainder)
1172		return;
1173
1174	pad = end - remainder;
1175	metadata_access_enable();
1176	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1177	metadata_access_disable();
1178	if (!fault)
1179		return;
1180	while (end > fault && end[-1] == POISON_INUSE)
1181		end--;
1182
1183	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1184			fault, end - 1, fault - start);
1185	print_section(KERN_ERR, "Padding ", pad, remainder);
1186
1187	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1188}
1189
1190static int check_object(struct kmem_cache *s, struct slab *slab,
1191					void *object, u8 val)
1192{
1193	u8 *p = object;
1194	u8 *endobject = object + s->object_size;
1195	unsigned int orig_size;
1196
1197	if (s->flags & SLAB_RED_ZONE) {
1198		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1199			object - s->red_left_pad, val, s->red_left_pad))
1200			return 0;
1201
1202		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1203			endobject, val, s->inuse - s->object_size))
1204			return 0;
1205
1206		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1207			orig_size = get_orig_size(s, object);
1208
1209			if (s->object_size > orig_size  &&
1210				!check_bytes_and_report(s, slab, object,
1211					"kmalloc Redzone", p + orig_size,
1212					val, s->object_size - orig_size)) {
1213				return 0;
1214			}
1215		}
1216	} else {
1217		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1218			check_bytes_and_report(s, slab, p, "Alignment padding",
1219				endobject, POISON_INUSE,
1220				s->inuse - s->object_size);
1221		}
1222	}
1223
1224	if (s->flags & SLAB_POISON) {
1225		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1226			(!check_bytes_and_report(s, slab, p, "Poison", p,
1227					POISON_FREE, s->object_size - 1) ||
1228			 !check_bytes_and_report(s, slab, p, "End Poison",
1229				p + s->object_size - 1, POISON_END, 1)))
1230			return 0;
1231		/*
1232		 * check_pad_bytes cleans up on its own.
1233		 */
1234		check_pad_bytes(s, slab, p);
1235	}
1236
1237	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1238		/*
1239		 * Object and freepointer overlap. Cannot check
1240		 * freepointer while object is allocated.
1241		 */
1242		return 1;
1243
1244	/* Check free pointer validity */
1245	if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1246		object_err(s, slab, p, "Freepointer corrupt");
1247		/*
1248		 * No choice but to zap it and thus lose the remainder
1249		 * of the free objects in this slab. May cause
1250		 * another error because the object count is now wrong.
1251		 */
1252		set_freepointer(s, p, NULL);
1253		return 0;
1254	}
1255	return 1;
1256}
1257
1258static int check_slab(struct kmem_cache *s, struct slab *slab)
1259{
1260	int maxobj;
1261
1262	if (!folio_test_slab(slab_folio(slab))) {
1263		slab_err(s, slab, "Not a valid slab page");
1264		return 0;
1265	}
1266
1267	maxobj = order_objects(slab_order(slab), s->size);
1268	if (slab->objects > maxobj) {
1269		slab_err(s, slab, "objects %u > max %u",
1270			slab->objects, maxobj);
1271		return 0;
1272	}
1273	if (slab->inuse > slab->objects) {
1274		slab_err(s, slab, "inuse %u > max %u",
1275			slab->inuse, slab->objects);
1276		return 0;
1277	}
1278	/* Slab_pad_check fixes things up after itself */
1279	slab_pad_check(s, slab);
1280	return 1;
1281}
1282
1283/*
1284 * Determine if a certain object in a slab is on the freelist. Must hold the
1285 * slab lock to guarantee that the chains are in a consistent state.
1286 */
1287static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1288{
1289	int nr = 0;
1290	void *fp;
1291	void *object = NULL;
1292	int max_objects;
1293
1294	fp = slab->freelist;
1295	while (fp && nr <= slab->objects) {
1296		if (fp == search)
1297			return 1;
1298		if (!check_valid_pointer(s, slab, fp)) {
1299			if (object) {
1300				object_err(s, slab, object,
1301					"Freechain corrupt");
1302				set_freepointer(s, object, NULL);
1303			} else {
1304				slab_err(s, slab, "Freepointer corrupt");
1305				slab->freelist = NULL;
1306				slab->inuse = slab->objects;
1307				slab_fix(s, "Freelist cleared");
1308				return 0;
1309			}
1310			break;
1311		}
1312		object = fp;
1313		fp = get_freepointer(s, object);
1314		nr++;
1315	}
1316
1317	max_objects = order_objects(slab_order(slab), s->size);
1318	if (max_objects > MAX_OBJS_PER_PAGE)
1319		max_objects = MAX_OBJS_PER_PAGE;
1320
1321	if (slab->objects != max_objects) {
1322		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1323			 slab->objects, max_objects);
1324		slab->objects = max_objects;
1325		slab_fix(s, "Number of objects adjusted");
1326	}
1327	if (slab->inuse != slab->objects - nr) {
1328		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1329			 slab->inuse, slab->objects - nr);
1330		slab->inuse = slab->objects - nr;
1331		slab_fix(s, "Object count adjusted");
1332	}
1333	return search == NULL;
1334}
1335
1336static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1337								int alloc)
1338{
1339	if (s->flags & SLAB_TRACE) {
1340		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1341			s->name,
1342			alloc ? "alloc" : "free",
1343			object, slab->inuse,
1344			slab->freelist);
1345
1346		if (!alloc)
1347			print_section(KERN_INFO, "Object ", (void *)object,
1348					s->object_size);
1349
1350		dump_stack();
1351	}
1352}
1353
1354/*
1355 * Tracking of fully allocated slabs for debugging purposes.
1356 */
1357static void add_full(struct kmem_cache *s,
1358	struct kmem_cache_node *n, struct slab *slab)
1359{
1360	if (!(s->flags & SLAB_STORE_USER))
1361		return;
1362
1363	lockdep_assert_held(&n->list_lock);
1364	list_add(&slab->slab_list, &n->full);
1365}
1366
1367static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1368{
1369	if (!(s->flags & SLAB_STORE_USER))
1370		return;
1371
1372	lockdep_assert_held(&n->list_lock);
1373	list_del(&slab->slab_list);
1374}
1375
1376static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1377{
1378	return atomic_long_read(&n->nr_slabs);
1379}
1380
1381static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1382{
1383	struct kmem_cache_node *n = get_node(s, node);
1384
1385	/*
1386	 * May be called early in order to allocate a slab for the
1387	 * kmem_cache_node structure. Solve the chicken-egg
1388	 * dilemma by deferring the increment of the count during
1389	 * bootstrap (see early_kmem_cache_node_alloc).
1390	 */
1391	if (likely(n)) {
1392		atomic_long_inc(&n->nr_slabs);
1393		atomic_long_add(objects, &n->total_objects);
1394	}
1395}
1396static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1397{
1398	struct kmem_cache_node *n = get_node(s, node);
1399
1400	atomic_long_dec(&n->nr_slabs);
1401	atomic_long_sub(objects, &n->total_objects);
1402}
1403
1404/* Object debug checks for alloc/free paths */
1405static void setup_object_debug(struct kmem_cache *s, void *object)
1406{
1407	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1408		return;
1409
1410	init_object(s, object, SLUB_RED_INACTIVE);
1411	init_tracking(s, object);
1412}
1413
1414static
1415void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1416{
1417	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1418		return;
1419
1420	metadata_access_enable();
1421	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1422	metadata_access_disable();
1423}
1424
1425static inline int alloc_consistency_checks(struct kmem_cache *s,
1426					struct slab *slab, void *object)
1427{
1428	if (!check_slab(s, slab))
1429		return 0;
1430
1431	if (!check_valid_pointer(s, slab, object)) {
1432		object_err(s, slab, object, "Freelist Pointer check fails");
1433		return 0;
1434	}
1435
1436	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1437		return 0;
1438
1439	return 1;
1440}
1441
1442static noinline bool alloc_debug_processing(struct kmem_cache *s,
1443			struct slab *slab, void *object, int orig_size)
1444{
1445	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1446		if (!alloc_consistency_checks(s, slab, object))
1447			goto bad;
1448	}
1449
1450	/* Success. Perform special debug activities for allocs */
1451	trace(s, slab, object, 1);
1452	set_orig_size(s, object, orig_size);
1453	init_object(s, object, SLUB_RED_ACTIVE);
1454	return true;
1455
1456bad:
1457	if (folio_test_slab(slab_folio(slab))) {
1458		/*
1459		 * If this is a slab page then lets do the best we can
1460		 * to avoid issues in the future. Marking all objects
1461		 * as used avoids touching the remaining objects.
1462		 */
1463		slab_fix(s, "Marking all objects used");
1464		slab->inuse = slab->objects;
1465		slab->freelist = NULL;
1466	}
1467	return false;
1468}
1469
1470static inline int free_consistency_checks(struct kmem_cache *s,
1471		struct slab *slab, void *object, unsigned long addr)
1472{
1473	if (!check_valid_pointer(s, slab, object)) {
1474		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1475		return 0;
1476	}
1477
1478	if (on_freelist(s, slab, object)) {
1479		object_err(s, slab, object, "Object already free");
1480		return 0;
1481	}
1482
1483	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1484		return 0;
1485
1486	if (unlikely(s != slab->slab_cache)) {
1487		if (!folio_test_slab(slab_folio(slab))) {
1488			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1489				 object);
1490		} else if (!slab->slab_cache) {
1491			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1492			       object);
1493			dump_stack();
1494		} else
1495			object_err(s, slab, object,
1496					"page slab pointer corrupt.");
1497		return 0;
1498	}
1499	return 1;
1500}
1501
1502/*
1503 * Parse a block of slub_debug options. Blocks are delimited by ';'
1504 *
1505 * @str:    start of block
1506 * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1507 * @slabs:  return start of list of slabs, or NULL when there's no list
1508 * @init:   assume this is initial parsing and not per-kmem-create parsing
1509 *
1510 * returns the start of next block if there's any, or NULL
1511 */
1512static char *
1513parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1514{
1515	bool higher_order_disable = false;
1516
1517	/* Skip any completely empty blocks */
1518	while (*str && *str == ';')
1519		str++;
1520
1521	if (*str == ',') {
1522		/*
1523		 * No options but restriction on slabs. This means full
1524		 * debugging for slabs matching a pattern.
1525		 */
1526		*flags = DEBUG_DEFAULT_FLAGS;
1527		goto check_slabs;
1528	}
1529	*flags = 0;
1530
1531	/* Determine which debug features should be switched on */
1532	for (; *str && *str != ',' && *str != ';'; str++) {
1533		switch (tolower(*str)) {
1534		case '-':
1535			*flags = 0;
1536			break;
1537		case 'f':
1538			*flags |= SLAB_CONSISTENCY_CHECKS;
1539			break;
1540		case 'z':
1541			*flags |= SLAB_RED_ZONE;
1542			break;
1543		case 'p':
1544			*flags |= SLAB_POISON;
1545			break;
1546		case 'u':
1547			*flags |= SLAB_STORE_USER;
1548			break;
1549		case 't':
1550			*flags |= SLAB_TRACE;
1551			break;
1552		case 'a':
1553			*flags |= SLAB_FAILSLAB;
1554			break;
1555		case 'o':
1556			/*
1557			 * Avoid enabling debugging on caches if its minimum
1558			 * order would increase as a result.
1559			 */
1560			higher_order_disable = true;
1561			break;
1562		default:
1563			if (init)
1564				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1565		}
1566	}
1567check_slabs:
1568	if (*str == ',')
1569		*slabs = ++str;
1570	else
1571		*slabs = NULL;
1572
1573	/* Skip over the slab list */
1574	while (*str && *str != ';')
1575		str++;
1576
1577	/* Skip any completely empty blocks */
1578	while (*str && *str == ';')
1579		str++;
1580
1581	if (init && higher_order_disable)
1582		disable_higher_order_debug = 1;
1583
1584	if (*str)
1585		return str;
1586	else
1587		return NULL;
1588}
1589
1590static int __init setup_slub_debug(char *str)
1591{
1592	slab_flags_t flags;
1593	slab_flags_t global_flags;
1594	char *saved_str;
1595	char *slab_list;
1596	bool global_slub_debug_changed = false;
1597	bool slab_list_specified = false;
1598
1599	global_flags = DEBUG_DEFAULT_FLAGS;
1600	if (*str++ != '=' || !*str)
1601		/*
1602		 * No options specified. Switch on full debugging.
1603		 */
1604		goto out;
1605
1606	saved_str = str;
1607	while (str) {
1608		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1609
1610		if (!slab_list) {
1611			global_flags = flags;
1612			global_slub_debug_changed = true;
1613		} else {
1614			slab_list_specified = true;
1615			if (flags & SLAB_STORE_USER)
1616				stack_depot_request_early_init();
1617		}
1618	}
1619
1620	/*
1621	 * For backwards compatibility, a single list of flags with list of
1622	 * slabs means debugging is only changed for those slabs, so the global
1623	 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1624	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1625	 * long as there is no option specifying flags without a slab list.
1626	 */
1627	if (slab_list_specified) {
1628		if (!global_slub_debug_changed)
1629			global_flags = slub_debug;
1630		slub_debug_string = saved_str;
1631	}
1632out:
1633	slub_debug = global_flags;
1634	if (slub_debug & SLAB_STORE_USER)
1635		stack_depot_request_early_init();
1636	if (slub_debug != 0 || slub_debug_string)
1637		static_branch_enable(&slub_debug_enabled);
1638	else
1639		static_branch_disable(&slub_debug_enabled);
1640	if ((static_branch_unlikely(&init_on_alloc) ||
1641	     static_branch_unlikely(&init_on_free)) &&
1642	    (slub_debug & SLAB_POISON))
1643		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1644	return 1;
1645}
1646
1647__setup("slub_debug", setup_slub_debug);
1648
1649/*
1650 * kmem_cache_flags - apply debugging options to the cache
1651 * @object_size:	the size of an object without meta data
1652 * @flags:		flags to set
1653 * @name:		name of the cache
1654 *
1655 * Debug option(s) are applied to @flags. In addition to the debug
1656 * option(s), if a slab name (or multiple) is specified i.e.
1657 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1658 * then only the select slabs will receive the debug option(s).
1659 */
1660slab_flags_t kmem_cache_flags(unsigned int object_size,
1661	slab_flags_t flags, const char *name)
1662{
1663	char *iter;
1664	size_t len;
1665	char *next_block;
1666	slab_flags_t block_flags;
1667	slab_flags_t slub_debug_local = slub_debug;
1668
1669	if (flags & SLAB_NO_USER_FLAGS)
1670		return flags;
1671
1672	/*
1673	 * If the slab cache is for debugging (e.g. kmemleak) then
1674	 * don't store user (stack trace) information by default,
1675	 * but let the user enable it via the command line below.
1676	 */
1677	if (flags & SLAB_NOLEAKTRACE)
1678		slub_debug_local &= ~SLAB_STORE_USER;
1679
1680	len = strlen(name);
1681	next_block = slub_debug_string;
1682	/* Go through all blocks of debug options, see if any matches our slab's name */
1683	while (next_block) {
1684		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1685		if (!iter)
1686			continue;
1687		/* Found a block that has a slab list, search it */
1688		while (*iter) {
1689			char *end, *glob;
1690			size_t cmplen;
1691
1692			end = strchrnul(iter, ',');
1693			if (next_block && next_block < end)
1694				end = next_block - 1;
1695
1696			glob = strnchr(iter, end - iter, '*');
1697			if (glob)
1698				cmplen = glob - iter;
1699			else
1700				cmplen = max_t(size_t, len, (end - iter));
1701
1702			if (!strncmp(name, iter, cmplen)) {
1703				flags |= block_flags;
1704				return flags;
1705			}
1706
1707			if (!*end || *end == ';')
1708				break;
1709			iter = end + 1;
1710		}
1711	}
1712
1713	return flags | slub_debug_local;
1714}
1715#else /* !CONFIG_SLUB_DEBUG */
1716static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1717static inline
1718void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1719
1720static inline bool alloc_debug_processing(struct kmem_cache *s,
1721	struct slab *slab, void *object, int orig_size) { return true; }
1722
1723static inline bool free_debug_processing(struct kmem_cache *s,
1724	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1725	unsigned long addr, depot_stack_handle_t handle) { return true; }
1726
1727static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1728static inline int check_object(struct kmem_cache *s, struct slab *slab,
1729			void *object, u8 val) { return 1; }
1730static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1731static inline void set_track(struct kmem_cache *s, void *object,
1732			     enum track_item alloc, unsigned long addr) {}
1733static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1734					struct slab *slab) {}
1735static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1736					struct slab *slab) {}
1737slab_flags_t kmem_cache_flags(unsigned int object_size,
1738	slab_flags_t flags, const char *name)
1739{
1740	return flags;
1741}
1742#define slub_debug 0
1743
1744#define disable_higher_order_debug 0
1745
1746static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1747							{ return 0; }
1748static inline void inc_slabs_node(struct kmem_cache *s, int node,
1749							int objects) {}
1750static inline void dec_slabs_node(struct kmem_cache *s, int node,
1751							int objects) {}
1752
1753#ifndef CONFIG_SLUB_TINY
1754static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1755			       void **freelist, void *nextfree)
1756{
1757	return false;
1758}
1759#endif
1760#endif /* CONFIG_SLUB_DEBUG */
1761
1762/*
1763 * Hooks for other subsystems that check memory allocations. In a typical
1764 * production configuration these hooks all should produce no code at all.
1765 */
1766static __always_inline bool slab_free_hook(struct kmem_cache *s,
1767						void *x, bool init)
1768{
1769	kmemleak_free_recursive(x, s->flags);
1770	kmsan_slab_free(s, x);
1771
1772	debug_check_no_locks_freed(x, s->object_size);
1773
1774	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1775		debug_check_no_obj_freed(x, s->object_size);
1776
1777	/* Use KCSAN to help debug racy use-after-free. */
1778	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1779		__kcsan_check_access(x, s->object_size,
1780				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1781
1782	/*
1783	 * As memory initialization might be integrated into KASAN,
1784	 * kasan_slab_free and initialization memset's must be
1785	 * kept together to avoid discrepancies in behavior.
1786	 *
1787	 * The initialization memset's clear the object and the metadata,
1788	 * but don't touch the SLAB redzone.
1789	 */
1790	if (init) {
1791		int rsize;
1792
1793		if (!kasan_has_integrated_init())
1794			memset(kasan_reset_tag(x), 0, s->object_size);
1795		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1796		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1797		       s->size - s->inuse - rsize);
1798	}
1799	/* KASAN might put x into memory quarantine, delaying its reuse. */
1800	return kasan_slab_free(s, x, init);
1801}
1802
1803static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1804					   void **head, void **tail,
1805					   int *cnt)
1806{
1807
1808	void *object;
1809	void *next = *head;
1810	void *old_tail = *tail ? *tail : *head;
1811
1812	if (is_kfence_address(next)) {
1813		slab_free_hook(s, next, false);
1814		return true;
1815	}
1816
1817	/* Head and tail of the reconstructed freelist */
1818	*head = NULL;
1819	*tail = NULL;
1820
1821	do {
1822		object = next;
1823		next = get_freepointer(s, object);
1824
1825		/* If object's reuse doesn't have to be delayed */
1826		if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1827			/* Move object to the new freelist */
1828			set_freepointer(s, object, *head);
1829			*head = object;
1830			if (!*tail)
1831				*tail = object;
1832		} else {
1833			/*
1834			 * Adjust the reconstructed freelist depth
1835			 * accordingly if object's reuse is delayed.
1836			 */
1837			--(*cnt);
1838		}
1839	} while (object != old_tail);
1840
1841	if (*head == *tail)
1842		*tail = NULL;
1843
1844	return *head != NULL;
1845}
1846
1847static void *setup_object(struct kmem_cache *s, void *object)
1848{
1849	setup_object_debug(s, object);
1850	object = kasan_init_slab_obj(s, object);
1851	if (unlikely(s->ctor)) {
1852		kasan_unpoison_object_data(s, object);
1853		s->ctor(object);
1854		kasan_poison_object_data(s, object);
1855	}
1856	return object;
1857}
1858
1859/*
1860 * Slab allocation and freeing
1861 */
1862static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1863		struct kmem_cache_order_objects oo)
1864{
1865	struct folio *folio;
1866	struct slab *slab;
1867	unsigned int order = oo_order(oo);
1868
1869	if (node == NUMA_NO_NODE)
1870		folio = (struct folio *)alloc_pages(flags, order);
1871	else
1872		folio = (struct folio *)__alloc_pages_node(node, flags, order);
1873
1874	if (!folio)
1875		return NULL;
1876
1877	slab = folio_slab(folio);
1878	__folio_set_slab(folio);
1879	/* Make the flag visible before any changes to folio->mapping */
1880	smp_wmb();
1881	if (folio_is_pfmemalloc(folio))
1882		slab_set_pfmemalloc(slab);
1883
1884	return slab;
1885}
1886
1887#ifdef CONFIG_SLAB_FREELIST_RANDOM
1888/* Pre-initialize the random sequence cache */
1889static int init_cache_random_seq(struct kmem_cache *s)
1890{
1891	unsigned int count = oo_objects(s->oo);
1892	int err;
1893
1894	/* Bailout if already initialised */
1895	if (s->random_seq)
1896		return 0;
1897
1898	err = cache_random_seq_create(s, count, GFP_KERNEL);
1899	if (err) {
1900		pr_err("SLUB: Unable to initialize free list for %s\n",
1901			s->name);
1902		return err;
1903	}
1904
1905	/* Transform to an offset on the set of pages */
1906	if (s->random_seq) {
1907		unsigned int i;
1908
1909		for (i = 0; i < count; i++)
1910			s->random_seq[i] *= s->size;
1911	}
1912	return 0;
1913}
1914
1915/* Initialize each random sequence freelist per cache */
1916static void __init init_freelist_randomization(void)
1917{
1918	struct kmem_cache *s;
1919
1920	mutex_lock(&slab_mutex);
1921
1922	list_for_each_entry(s, &slab_caches, list)
1923		init_cache_random_seq(s);
1924
1925	mutex_unlock(&slab_mutex);
1926}
1927
1928/* Get the next entry on the pre-computed freelist randomized */
1929static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1930				unsigned long *pos, void *start,
1931				unsigned long page_limit,
1932				unsigned long freelist_count)
1933{
1934	unsigned int idx;
1935
1936	/*
1937	 * If the target page allocation failed, the number of objects on the
1938	 * page might be smaller than the usual size defined by the cache.
1939	 */
1940	do {
1941		idx = s->random_seq[*pos];
1942		*pos += 1;
1943		if (*pos >= freelist_count)
1944			*pos = 0;
1945	} while (unlikely(idx >= page_limit));
1946
1947	return (char *)start + idx;
1948}
1949
1950/* Shuffle the single linked freelist based on a random pre-computed sequence */
1951static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1952{
1953	void *start;
1954	void *cur;
1955	void *next;
1956	unsigned long idx, pos, page_limit, freelist_count;
1957
1958	if (slab->objects < 2 || !s->random_seq)
1959		return false;
1960
1961	freelist_count = oo_objects(s->oo);
1962	pos = get_random_u32_below(freelist_count);
1963
1964	page_limit = slab->objects * s->size;
1965	start = fixup_red_left(s, slab_address(slab));
1966
1967	/* First entry is used as the base of the freelist */
1968	cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1969				freelist_count);
1970	cur = setup_object(s, cur);
1971	slab->freelist = cur;
1972
1973	for (idx = 1; idx < slab->objects; idx++) {
1974		next = next_freelist_entry(s, slab, &pos, start, page_limit,
1975			freelist_count);
1976		next = setup_object(s, next);
1977		set_freepointer(s, cur, next);
1978		cur = next;
1979	}
1980	set_freepointer(s, cur, NULL);
1981
1982	return true;
1983}
1984#else
1985static inline int init_cache_random_seq(struct kmem_cache *s)
1986{
1987	return 0;
1988}
1989static inline void init_freelist_randomization(void) { }
1990static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1991{
1992	return false;
1993}
1994#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1995
1996static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1997{
1998	struct slab *slab;
1999	struct kmem_cache_order_objects oo = s->oo;
2000	gfp_t alloc_gfp;
2001	void *start, *p, *next;
2002	int idx;
2003	bool shuffle;
2004
2005	flags &= gfp_allowed_mask;
2006
2007	flags |= s->allocflags;
2008
2009	/*
2010	 * Let the initial higher-order allocation fail under memory pressure
2011	 * so we fall-back to the minimum order allocation.
2012	 */
2013	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2014	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2015		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2016
2017	slab = alloc_slab_page(alloc_gfp, node, oo);
2018	if (unlikely(!slab)) {
2019		oo = s->min;
2020		alloc_gfp = flags;
2021		/*
2022		 * Allocation may have failed due to fragmentation.
2023		 * Try a lower order alloc if possible
2024		 */
2025		slab = alloc_slab_page(alloc_gfp, node, oo);
2026		if (unlikely(!slab))
2027			return NULL;
2028		stat(s, ORDER_FALLBACK);
2029	}
2030
2031	slab->objects = oo_objects(oo);
2032	slab->inuse = 0;
2033	slab->frozen = 0;
2034
2035	account_slab(slab, oo_order(oo), s, flags);
2036
2037	slab->slab_cache = s;
2038
2039	kasan_poison_slab(slab);
2040
2041	start = slab_address(slab);
2042
2043	setup_slab_debug(s, slab, start);
2044
2045	shuffle = shuffle_freelist(s, slab);
2046
2047	if (!shuffle) {
2048		start = fixup_red_left(s, start);
2049		start = setup_object(s, start);
2050		slab->freelist = start;
2051		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2052			next = p + s->size;
2053			next = setup_object(s, next);
2054			set_freepointer(s, p, next);
2055			p = next;
2056		}
2057		set_freepointer(s, p, NULL);
2058	}
2059
2060	return slab;
2061}
2062
2063static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2064{
2065	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2066		flags = kmalloc_fix_flags(flags);
2067
2068	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2069
2070	return allocate_slab(s,
2071		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2072}
2073
2074static void __free_slab(struct kmem_cache *s, struct slab *slab)
2075{
2076	struct folio *folio = slab_folio(slab);
2077	int order = folio_order(folio);
2078	int pages = 1 << order;
2079
2080	__slab_clear_pfmemalloc(slab);
2081	folio->mapping = NULL;
2082	/* Make the mapping reset visible before clearing the flag */
2083	smp_wmb();
2084	__folio_clear_slab(folio);
2085	mm_account_reclaimed_pages(pages);
2086	unaccount_slab(slab, order, s);
2087	__free_pages(&folio->page, order);
2088}
2089
2090static void rcu_free_slab(struct rcu_head *h)
2091{
2092	struct slab *slab = container_of(h, struct slab, rcu_head);
2093
2094	__free_slab(slab->slab_cache, slab);
2095}
2096
2097static void free_slab(struct kmem_cache *s, struct slab *slab)
2098{
2099	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2100		void *p;
2101
2102		slab_pad_check(s, slab);
2103		for_each_object(p, s, slab_address(slab), slab->objects)
2104			check_object(s, slab, p, SLUB_RED_INACTIVE);
2105	}
2106
2107	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2108		call_rcu(&slab->rcu_head, rcu_free_slab);
2109	else
2110		__free_slab(s, slab);
2111}
2112
2113static void discard_slab(struct kmem_cache *s, struct slab *slab)
2114{
2115	dec_slabs_node(s, slab_nid(slab), slab->objects);
2116	free_slab(s, slab);
2117}
2118
2119/*
2120 * Management of partially allocated slabs.
2121 */
2122static inline void
2123__add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2124{
2125	n->nr_partial++;
2126	if (tail == DEACTIVATE_TO_TAIL)
2127		list_add_tail(&slab->slab_list, &n->partial);
2128	else
2129		list_add(&slab->slab_list, &n->partial);
2130}
2131
2132static inline void add_partial(struct kmem_cache_node *n,
2133				struct slab *slab, int tail)
2134{
2135	lockdep_assert_held(&n->list_lock);
2136	__add_partial(n, slab, tail);
2137}
2138
2139static inline void remove_partial(struct kmem_cache_node *n,
2140					struct slab *slab)
2141{
2142	lockdep_assert_held(&n->list_lock);
2143	list_del(&slab->slab_list);
2144	n->nr_partial--;
2145}
2146
2147/*
2148 * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a
2149 * slab from the n->partial list. Remove only a single object from the slab, do
2150 * the alloc_debug_processing() checks and leave the slab on the list, or move
2151 * it to full list if it was the last free object.
2152 */
2153static void *alloc_single_from_partial(struct kmem_cache *s,
2154		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2155{
2156	void *object;
2157
2158	lockdep_assert_held(&n->list_lock);
2159
2160	object = slab->freelist;
2161	slab->freelist = get_freepointer(s, object);
2162	slab->inuse++;
2163
2164	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2165		remove_partial(n, slab);
2166		return NULL;
2167	}
2168
2169	if (slab->inuse == slab->objects) {
2170		remove_partial(n, slab);
2171		add_full(s, n, slab);
2172	}
2173
2174	return object;
2175}
2176
2177/*
2178 * Called only for kmem_cache_debug() caches to allocate from a freshly
2179 * allocated slab. Allocate a single object instead of whole freelist
2180 * and put the slab to the partial (or full) list.
2181 */
2182static void *alloc_single_from_new_slab(struct kmem_cache *s,
2183					struct slab *slab, int orig_size)
2184{
2185	int nid = slab_nid(slab);
2186	struct kmem_cache_node *n = get_node(s, nid);
2187	unsigned long flags;
2188	void *object;
2189
2190
2191	object = slab->freelist;
2192	slab->freelist = get_freepointer(s, object);
2193	slab->inuse = 1;
2194
2195	if (!alloc_debug_processing(s, slab, object, orig_size))
2196		/*
2197		 * It's not really expected that this would fail on a
2198		 * freshly allocated slab, but a concurrent memory
2199		 * corruption in theory could cause that.
2200		 */
2201		return NULL;
2202
2203	spin_lock_irqsave(&n->list_lock, flags);
2204
2205	if (slab->inuse == slab->objects)
2206		add_full(s, n, slab);
2207	else
2208		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2209
2210	inc_slabs_node(s, nid, slab->objects);
2211	spin_unlock_irqrestore(&n->list_lock, flags);
2212
2213	return object;
2214}
2215
2216/*
2217 * Remove slab from the partial list, freeze it and
2218 * return the pointer to the freelist.
2219 *
2220 * Returns a list of objects or NULL if it fails.
2221 */
2222static inline void *acquire_slab(struct kmem_cache *s,
2223		struct kmem_cache_node *n, struct slab *slab,
2224		int mode)
2225{
2226	void *freelist;
2227	unsigned long counters;
2228	struct slab new;
2229
2230	lockdep_assert_held(&n->list_lock);
2231
2232	/*
2233	 * Zap the freelist and set the frozen bit.
2234	 * The old freelist is the list of objects for the
2235	 * per cpu allocation list.
2236	 */
2237	freelist = slab->freelist;
2238	counters = slab->counters;
2239	new.counters = counters;
2240	if (mode) {
2241		new.inuse = slab->objects;
2242		new.freelist = NULL;
2243	} else {
2244		new.freelist = freelist;
2245	}
2246
2247	VM_BUG_ON(new.frozen);
2248	new.frozen = 1;
2249
2250	if (!__slab_update_freelist(s, slab,
2251			freelist, counters,
2252			new.freelist, new.counters,
2253			"acquire_slab"))
2254		return NULL;
2255
2256	remove_partial(n, slab);
2257	WARN_ON(!freelist);
2258	return freelist;
2259}
2260
2261#ifdef CONFIG_SLUB_CPU_PARTIAL
2262static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2263#else
2264static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2265				   int drain) { }
2266#endif
2267static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2268
2269/*
2270 * Try to allocate a partial slab from a specific node.
2271 */
2272static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2273			      struct partial_context *pc)
2274{
2275	struct slab *slab, *slab2;
2276	void *object = NULL;
2277	unsigned long flags;
2278	unsigned int partial_slabs = 0;
2279
2280	/*
2281	 * Racy check. If we mistakenly see no partial slabs then we
2282	 * just allocate an empty slab. If we mistakenly try to get a
2283	 * partial slab and there is none available then get_partial()
2284	 * will return NULL.
2285	 */
2286	if (!n || !n->nr_partial)
2287		return NULL;
2288
2289	spin_lock_irqsave(&n->list_lock, flags);
2290	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2291		void *t;
2292
2293		if (!pfmemalloc_match(slab, pc->flags))
2294			continue;
2295
2296		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2297			object = alloc_single_from_partial(s, n, slab,
2298							pc->orig_size);
2299			if (object)
2300				break;
2301			continue;
2302		}
2303
2304		t = acquire_slab(s, n, slab, object == NULL);
2305		if (!t)
2306			break;
2307
2308		if (!object) {
2309			*pc->slab = slab;
2310			stat(s, ALLOC_FROM_PARTIAL);
2311			object = t;
2312		} else {
2313			put_cpu_partial(s, slab, 0);
2314			stat(s, CPU_PARTIAL_NODE);
2315			partial_slabs++;
2316		}
2317#ifdef CONFIG_SLUB_CPU_PARTIAL
2318		if (!kmem_cache_has_cpu_partial(s)
2319			|| partial_slabs > s->cpu_partial_slabs / 2)
2320			break;
2321#else
2322		break;
2323#endif
2324
2325	}
2326	spin_unlock_irqrestore(&n->list_lock, flags);
2327	return object;
2328}
2329
2330/*
2331 * Get a slab from somewhere. Search in increasing NUMA distances.
2332 */
2333static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc)
2334{
2335#ifdef CONFIG_NUMA
2336	struct zonelist *zonelist;
2337	struct zoneref *z;
2338	struct zone *zone;
2339	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2340	void *object;
2341	unsigned int cpuset_mems_cookie;
2342
2343	/*
2344	 * The defrag ratio allows a configuration of the tradeoffs between
2345	 * inter node defragmentation and node local allocations. A lower
2346	 * defrag_ratio increases the tendency to do local allocations
2347	 * instead of attempting to obtain partial slabs from other nodes.
2348	 *
2349	 * If the defrag_ratio is set to 0 then kmalloc() always
2350	 * returns node local objects. If the ratio is higher then kmalloc()
2351	 * may return off node objects because partial slabs are obtained
2352	 * from other nodes and filled up.
2353	 *
2354	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2355	 * (which makes defrag_ratio = 1000) then every (well almost)
2356	 * allocation will first attempt to defrag slab caches on other nodes.
2357	 * This means scanning over all nodes to look for partial slabs which
2358	 * may be expensive if we do it every time we are trying to find a slab
2359	 * with available objects.
2360	 */
2361	if (!s->remote_node_defrag_ratio ||
2362			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2363		return NULL;
2364
2365	do {
2366		cpuset_mems_cookie = read_mems_allowed_begin();
2367		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2368		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2369			struct kmem_cache_node *n;
2370
2371			n = get_node(s, zone_to_nid(zone));
2372
2373			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2374					n->nr_partial > s->min_partial) {
2375				object = get_partial_node(s, n, pc);
2376				if (object) {
2377					/*
2378					 * Don't check read_mems_allowed_retry()
2379					 * here - if mems_allowed was updated in
2380					 * parallel, that was a harmless race
2381					 * between allocation and the cpuset
2382					 * update
2383					 */
2384					return object;
2385				}
2386			}
2387		}
2388	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2389#endif	/* CONFIG_NUMA */
2390	return NULL;
2391}
2392
2393/*
2394 * Get a partial slab, lock it and return it.
2395 */
2396static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc)
2397{
2398	void *object;
2399	int searchnode = node;
2400
2401	if (node == NUMA_NO_NODE)
2402		searchnode = numa_mem_id();
2403
2404	object = get_partial_node(s, get_node(s, searchnode), pc);
2405	if (object || node != NUMA_NO_NODE)
2406		return object;
2407
2408	return get_any_partial(s, pc);
2409}
2410
2411#ifndef CONFIG_SLUB_TINY
2412
2413#ifdef CONFIG_PREEMPTION
2414/*
2415 * Calculate the next globally unique transaction for disambiguation
2416 * during cmpxchg. The transactions start with the cpu number and are then
2417 * incremented by CONFIG_NR_CPUS.
2418 */
2419#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2420#else
2421/*
2422 * No preemption supported therefore also no need to check for
2423 * different cpus.
2424 */
2425#define TID_STEP 1
2426#endif /* CONFIG_PREEMPTION */
2427
2428static inline unsigned long next_tid(unsigned long tid)
2429{
2430	return tid + TID_STEP;
2431}
2432
2433#ifdef SLUB_DEBUG_CMPXCHG
2434static inline unsigned int tid_to_cpu(unsigned long tid)
2435{
2436	return tid % TID_STEP;
2437}
2438
2439static inline unsigned long tid_to_event(unsigned long tid)
2440{
2441	return tid / TID_STEP;
2442}
2443#endif
2444
2445static inline unsigned int init_tid(int cpu)
2446{
2447	return cpu;
2448}
2449
2450static inline void note_cmpxchg_failure(const char *n,
2451		const struct kmem_cache *s, unsigned long tid)
2452{
2453#ifdef SLUB_DEBUG_CMPXCHG
2454	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2455
2456	pr_info("%s %s: cmpxchg redo ", n, s->name);
2457
2458#ifdef CONFIG_PREEMPTION
2459	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2460		pr_warn("due to cpu change %d -> %d\n",
2461			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2462	else
2463#endif
2464	if (tid_to_event(tid) != tid_to_event(actual_tid))
2465		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2466			tid_to_event(tid), tid_to_event(actual_tid));
2467	else
2468		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2469			actual_tid, tid, next_tid(tid));
2470#endif
2471	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2472}
2473
2474static void init_kmem_cache_cpus(struct kmem_cache *s)
2475{
2476	int cpu;
2477	struct kmem_cache_cpu *c;
2478
2479	for_each_possible_cpu(cpu) {
2480		c = per_cpu_ptr(s->cpu_slab, cpu);
2481		local_lock_init(&c->lock);
2482		c->tid = init_tid(cpu);
2483	}
2484}
2485
2486/*
2487 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2488 * unfreezes the slabs and puts it on the proper list.
2489 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2490 * by the caller.
2491 */
2492static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2493			    void *freelist)
2494{
2495	enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST };
2496	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2497	int free_delta = 0;
2498	enum slab_modes mode = M_NONE;
2499	void *nextfree, *freelist_iter, *freelist_tail;
2500	int tail = DEACTIVATE_TO_HEAD;
2501	unsigned long flags = 0;
2502	struct slab new;
2503	struct slab old;
2504
2505	if (slab->freelist) {
2506		stat(s, DEACTIVATE_REMOTE_FREES);
2507		tail = DEACTIVATE_TO_TAIL;
2508	}
2509
2510	/*
2511	 * Stage one: Count the objects on cpu's freelist as free_delta and
2512	 * remember the last object in freelist_tail for later splicing.
2513	 */
2514	freelist_tail = NULL;
2515	freelist_iter = freelist;
2516	while (freelist_iter) {
2517		nextfree = get_freepointer(s, freelist_iter);
2518
2519		/*
2520		 * If 'nextfree' is invalid, it is possible that the object at
2521		 * 'freelist_iter' is already corrupted.  So isolate all objects
2522		 * starting at 'freelist_iter' by skipping them.
2523		 */
2524		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2525			break;
2526
2527		freelist_tail = freelist_iter;
2528		free_delta++;
2529
2530		freelist_iter = nextfree;
2531	}
2532
2533	/*
2534	 * Stage two: Unfreeze the slab while splicing the per-cpu
2535	 * freelist to the head of slab's freelist.
2536	 *
2537	 * Ensure that the slab is unfrozen while the list presence
2538	 * reflects the actual number of objects during unfreeze.
2539	 *
2540	 * We first perform cmpxchg holding lock and insert to list
2541	 * when it succeed. If there is mismatch then the slab is not
2542	 * unfrozen and number of objects in the slab may have changed.
2543	 * Then release lock and retry cmpxchg again.
2544	 */
2545redo:
2546
2547	old.freelist = READ_ONCE(slab->freelist);
2548	old.counters = READ_ONCE(slab->counters);
2549	VM_BUG_ON(!old.frozen);
2550
2551	/* Determine target state of the slab */
2552	new.counters = old.counters;
2553	if (freelist_tail) {
2554		new.inuse -= free_delta;
2555		set_freepointer(s, freelist_tail, old.freelist);
2556		new.freelist = freelist;
2557	} else
2558		new.freelist = old.freelist;
2559
2560	new.frozen = 0;
2561
2562	if (!new.inuse && n->nr_partial >= s->min_partial) {
2563		mode = M_FREE;
2564	} else if (new.freelist) {
2565		mode = M_PARTIAL;
2566		/*
2567		 * Taking the spinlock removes the possibility that
2568		 * acquire_slab() will see a slab that is frozen
2569		 */
2570		spin_lock_irqsave(&n->list_lock, flags);
2571	} else {
2572		mode = M_FULL_NOLIST;
2573	}
2574
2575
2576	if (!slab_update_freelist(s, slab,
2577				old.freelist, old.counters,
2578				new.freelist, new.counters,
2579				"unfreezing slab")) {
2580		if (mode == M_PARTIAL)
2581			spin_unlock_irqrestore(&n->list_lock, flags);
2582		goto redo;
2583	}
2584
2585
2586	if (mode == M_PARTIAL) {
2587		add_partial(n, slab, tail);
2588		spin_unlock_irqrestore(&n->list_lock, flags);
2589		stat(s, tail);
2590	} else if (mode == M_FREE) {
2591		stat(s, DEACTIVATE_EMPTY);
2592		discard_slab(s, slab);
2593		stat(s, FREE_SLAB);
2594	} else if (mode == M_FULL_NOLIST) {
2595		stat(s, DEACTIVATE_FULL);
2596	}
2597}
2598
2599#ifdef CONFIG_SLUB_CPU_PARTIAL
2600static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2601{
2602	struct kmem_cache_node *n = NULL, *n2 = NULL;
2603	struct slab *slab, *slab_to_discard = NULL;
2604	unsigned long flags = 0;
2605
2606	while (partial_slab) {
2607		struct slab new;
2608		struct slab old;
2609
2610		slab = partial_slab;
2611		partial_slab = slab->next;
2612
2613		n2 = get_node(s, slab_nid(slab));
2614		if (n != n2) {
2615			if (n)
2616				spin_unlock_irqrestore(&n->list_lock, flags);
2617
2618			n = n2;
2619			spin_lock_irqsave(&n->list_lock, flags);
2620		}
2621
2622		do {
2623
2624			old.freelist = slab->freelist;
2625			old.counters = slab->counters;
2626			VM_BUG_ON(!old.frozen);
2627
2628			new.counters = old.counters;
2629			new.freelist = old.freelist;
2630
2631			new.frozen = 0;
2632
2633		} while (!__slab_update_freelist(s, slab,
2634				old.freelist, old.counters,
2635				new.freelist, new.counters,
2636				"unfreezing slab"));
2637
2638		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2639			slab->next = slab_to_discard;
2640			slab_to_discard = slab;
2641		} else {
2642			add_partial(n, slab, DEACTIVATE_TO_TAIL);
2643			stat(s, FREE_ADD_PARTIAL);
2644		}
2645	}
2646
2647	if (n)
2648		spin_unlock_irqrestore(&n->list_lock, flags);
2649
2650	while (slab_to_discard) {
2651		slab = slab_to_discard;
2652		slab_to_discard = slab_to_discard->next;
2653
2654		stat(s, DEACTIVATE_EMPTY);
2655		discard_slab(s, slab);
2656		stat(s, FREE_SLAB);
2657	}
2658}
2659
2660/*
2661 * Unfreeze all the cpu partial slabs.
2662 */
2663static void unfreeze_partials(struct kmem_cache *s)
2664{
2665	struct slab *partial_slab;
2666	unsigned long flags;
2667
2668	local_lock_irqsave(&s->cpu_slab->lock, flags);
2669	partial_slab = this_cpu_read(s->cpu_slab->partial);
2670	this_cpu_write(s->cpu_slab->partial, NULL);
2671	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2672
2673	if (partial_slab)
2674		__unfreeze_partials(s, partial_slab);
2675}
2676
2677static void unfreeze_partials_cpu(struct kmem_cache *s,
2678				  struct kmem_cache_cpu *c)
2679{
2680	struct slab *partial_slab;
2681
2682	partial_slab = slub_percpu_partial(c);
2683	c->partial = NULL;
2684
2685	if (partial_slab)
2686		__unfreeze_partials(s, partial_slab);
2687}
2688
2689/*
2690 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2691 * partial slab slot if available.
2692 *
2693 * If we did not find a slot then simply move all the partials to the
2694 * per node partial list.
2695 */
2696static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2697{
2698	struct slab *oldslab;
2699	struct slab *slab_to_unfreeze = NULL;
2700	unsigned long flags;
2701	int slabs = 0;
2702
2703	local_lock_irqsave(&s->cpu_slab->lock, flags);
2704
2705	oldslab = this_cpu_read(s->cpu_slab->partial);
2706
2707	if (oldslab) {
2708		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2709			/*
2710			 * Partial array is full. Move the existing set to the
2711			 * per node partial list. Postpone the actual unfreezing
2712			 * outside of the critical section.
2713			 */
2714			slab_to_unfreeze = oldslab;
2715			oldslab = NULL;
2716		} else {
2717			slabs = oldslab->slabs;
2718		}
2719	}
2720
2721	slabs++;
2722
2723	slab->slabs = slabs;
2724	slab->next = oldslab;
2725
2726	this_cpu_write(s->cpu_slab->partial, slab);
2727
2728	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2729
2730	if (slab_to_unfreeze) {
2731		__unfreeze_partials(s, slab_to_unfreeze);
2732		stat(s, CPU_PARTIAL_DRAIN);
2733	}
2734}
2735
2736#else	/* CONFIG_SLUB_CPU_PARTIAL */
2737
2738static inline void unfreeze_partials(struct kmem_cache *s) { }
2739static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2740				  struct kmem_cache_cpu *c) { }
2741
2742#endif	/* CONFIG_SLUB_CPU_PARTIAL */
2743
2744static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2745{
2746	unsigned long flags;
2747	struct slab *slab;
2748	void *freelist;
2749
2750	local_lock_irqsave(&s->cpu_slab->lock, flags);
2751
2752	slab = c->slab;
2753	freelist = c->freelist;
2754
2755	c->slab = NULL;
2756	c->freelist = NULL;
2757	c->tid = next_tid(c->tid);
2758
2759	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2760
2761	if (slab) {
2762		deactivate_slab(s, slab, freelist);
2763		stat(s, CPUSLAB_FLUSH);
2764	}
2765}
2766
2767static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2768{
2769	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2770	void *freelist = c->freelist;
2771	struct slab *slab = c->slab;
2772
2773	c->slab = NULL;
2774	c->freelist = NULL;
2775	c->tid = next_tid(c->tid);
2776
2777	if (slab) {
2778		deactivate_slab(s, slab, freelist);
2779		stat(s, CPUSLAB_FLUSH);
2780	}
2781
2782	unfreeze_partials_cpu(s, c);
2783}
2784
2785struct slub_flush_work {
2786	struct work_struct work;
2787	struct kmem_cache *s;
2788	bool skip;
2789};
2790
2791/*
2792 * Flush cpu slab.
2793 *
2794 * Called from CPU work handler with migration disabled.
2795 */
2796static void flush_cpu_slab(struct work_struct *w)
2797{
2798	struct kmem_cache *s;
2799	struct kmem_cache_cpu *c;
2800	struct slub_flush_work *sfw;
2801
2802	sfw = container_of(w, struct slub_flush_work, work);
2803
2804	s = sfw->s;
2805	c = this_cpu_ptr(s->cpu_slab);
2806
2807	if (c->slab)
2808		flush_slab(s, c);
2809
2810	unfreeze_partials(s);
2811}
2812
2813static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2814{
2815	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2816
2817	return c->slab || slub_percpu_partial(c);
2818}
2819
2820static DEFINE_MUTEX(flush_lock);
2821static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2822
2823static void flush_all_cpus_locked(struct kmem_cache *s)
2824{
2825	struct slub_flush_work *sfw;
2826	unsigned int cpu;
2827
2828	lockdep_assert_cpus_held();
2829	mutex_lock(&flush_lock);
2830
2831	for_each_online_cpu(cpu) {
2832		sfw = &per_cpu(slub_flush, cpu);
2833		if (!has_cpu_slab(cpu, s)) {
2834			sfw->skip = true;
2835			continue;
2836		}
2837		INIT_WORK(&sfw->work, flush_cpu_slab);
2838		sfw->skip = false;
2839		sfw->s = s;
2840		queue_work_on(cpu, flushwq, &sfw->work);
2841	}
2842
2843	for_each_online_cpu(cpu) {
2844		sfw = &per_cpu(slub_flush, cpu);
2845		if (sfw->skip)
2846			continue;
2847		flush_work(&sfw->work);
2848	}
2849
2850	mutex_unlock(&flush_lock);
2851}
2852
2853static void flush_all(struct kmem_cache *s)
2854{
2855	cpus_read_lock();
2856	flush_all_cpus_locked(s);
2857	cpus_read_unlock();
2858}
2859
2860/*
2861 * Use the cpu notifier to insure that the cpu slabs are flushed when
2862 * necessary.
2863 */
2864static int slub_cpu_dead(unsigned int cpu)
2865{
2866	struct kmem_cache *s;
2867
2868	mutex_lock(&slab_mutex);
2869	list_for_each_entry(s, &slab_caches, list)
2870		__flush_cpu_slab(s, cpu);
2871	mutex_unlock(&slab_mutex);
2872	return 0;
2873}
2874
2875#else /* CONFIG_SLUB_TINY */
2876static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
2877static inline void flush_all(struct kmem_cache *s) { }
2878static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
2879static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
2880#endif /* CONFIG_SLUB_TINY */
2881
2882/*
2883 * Check if the objects in a per cpu structure fit numa
2884 * locality expectations.
2885 */
2886static inline int node_match(struct slab *slab, int node)
2887{
2888#ifdef CONFIG_NUMA
2889	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2890		return 0;
2891#endif
2892	return 1;
2893}
2894
2895#ifdef CONFIG_SLUB_DEBUG
2896static int count_free(struct slab *slab)
2897{
2898	return slab->objects - slab->inuse;
2899}
2900
2901static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2902{
2903	return atomic_long_read(&n->total_objects);
2904}
2905
2906/* Supports checking bulk free of a constructed freelist */
2907static inline bool free_debug_processing(struct kmem_cache *s,
2908	struct slab *slab, void *head, void *tail, int *bulk_cnt,
2909	unsigned long addr, depot_stack_handle_t handle)
2910{
2911	bool checks_ok = false;
2912	void *object = head;
2913	int cnt = 0;
2914
2915	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2916		if (!check_slab(s, slab))
2917			goto out;
2918	}
2919
2920	if (slab->inuse < *bulk_cnt) {
2921		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
2922			 slab->inuse, *bulk_cnt);
2923		goto out;
2924	}
2925
2926next_object:
2927
2928	if (++cnt > *bulk_cnt)
2929		goto out_cnt;
2930
2931	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2932		if (!free_consistency_checks(s, slab, object, addr))
2933			goto out;
2934	}
2935
2936	if (s->flags & SLAB_STORE_USER)
2937		set_track_update(s, object, TRACK_FREE, addr, handle);
2938	trace(s, slab, object, 0);
2939	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
2940	init_object(s, object, SLUB_RED_INACTIVE);
2941
2942	/* Reached end of constructed freelist yet? */
2943	if (object != tail) {
2944		object = get_freepointer(s, object);
2945		goto next_object;
2946	}
2947	checks_ok = true;
2948
2949out_cnt:
2950	if (cnt != *bulk_cnt) {
2951		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
2952			 *bulk_cnt, cnt);
2953		*bulk_cnt = cnt;
2954	}
2955
2956out:
2957
2958	if (!checks_ok)
2959		slab_fix(s, "Object at 0x%p not freed", object);
2960
2961	return checks_ok;
2962}
2963#endif /* CONFIG_SLUB_DEBUG */
2964
2965#if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
2966static unsigned long count_partial(struct kmem_cache_node *n,
2967					int (*get_count)(struct slab *))
2968{
2969	unsigned long flags;
2970	unsigned long x = 0;
2971	struct slab *slab;
2972
2973	spin_lock_irqsave(&n->list_lock, flags);
2974	list_for_each_entry(slab, &n->partial, slab_list)
2975		x += get_count(slab);
2976	spin_unlock_irqrestore(&n->list_lock, flags);
2977	return x;
2978}
2979#endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
2980
2981#ifdef CONFIG_SLUB_DEBUG
2982static noinline void
2983slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2984{
2985	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2986				      DEFAULT_RATELIMIT_BURST);
2987	int node;
2988	struct kmem_cache_node *n;
2989
2990	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2991		return;
2992
2993	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2994		nid, gfpflags, &gfpflags);
2995	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2996		s->name, s->object_size, s->size, oo_order(s->oo),
2997		oo_order(s->min));
2998
2999	if (oo_order(s->min) > get_order(s->object_size))
3000		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
3001			s->name);
3002
3003	for_each_kmem_cache_node(s, node, n) {
3004		unsigned long nr_slabs;
3005		unsigned long nr_objs;
3006		unsigned long nr_free;
3007
3008		nr_free  = count_partial(n, count_free);
3009		nr_slabs = node_nr_slabs(n);
3010		nr_objs  = node_nr_objs(n);
3011
3012		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
3013			node, nr_slabs, nr_objs, nr_free);
3014	}
3015}
3016#else /* CONFIG_SLUB_DEBUG */
3017static inline void
3018slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3019#endif
3020
3021static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3022{
3023	if (unlikely(slab_test_pfmemalloc(slab)))
3024		return gfp_pfmemalloc_allowed(gfpflags);
3025
3026	return true;
3027}
3028
3029#ifndef CONFIG_SLUB_TINY
3030static inline bool
3031__update_cpu_freelist_fast(struct kmem_cache *s,
3032			   void *freelist_old, void *freelist_new,
3033			   unsigned long tid)
3034{
3035	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3036	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3037
3038	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3039					     &old.full, new.full);
3040}
3041
3042/*
3043 * Check the slab->freelist and either transfer the freelist to the
3044 * per cpu freelist or deactivate the slab.
3045 *
3046 * The slab is still frozen if the return value is not NULL.
3047 *
3048 * If this function returns NULL then the slab has been unfrozen.
3049 */
3050static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3051{
3052	struct slab new;
3053	unsigned long counters;
3054	void *freelist;
3055
3056	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3057
3058	do {
3059		freelist = slab->freelist;
3060		counters = slab->counters;
3061
3062		new.counters = counters;
3063		VM_BUG_ON(!new.frozen);
3064
3065		new.inuse = slab->objects;
3066		new.frozen = freelist != NULL;
3067
3068	} while (!__slab_update_freelist(s, slab,
3069		freelist, counters,
3070		NULL, new.counters,
3071		"get_freelist"));
3072
3073	return freelist;
3074}
3075
3076/*
3077 * Slow path. The lockless freelist is empty or we need to perform
3078 * debugging duties.
3079 *
3080 * Processing is still very fast if new objects have been freed to the
3081 * regular freelist. In that case we simply take over the regular freelist
3082 * as the lockless freelist and zap the regular freelist.
3083 *
3084 * If that is not working then we fall back to the partial lists. We take the
3085 * first element of the freelist as the object to allocate now and move the
3086 * rest of the freelist to the lockless freelist.
3087 *
3088 * And if we were unable to get a new slab from the partial slab lists then
3089 * we need to allocate a new slab. This is the slowest path since it involves
3090 * a call to the page allocator and the setup of a new slab.
3091 *
3092 * Version of __slab_alloc to use when we know that preemption is
3093 * already disabled (which is the case for bulk allocation).
3094 */
3095static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3096			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3097{
3098	void *freelist;
3099	struct slab *slab;
3100	unsigned long flags;
3101	struct partial_context pc;
3102
3103	stat(s, ALLOC_SLOWPATH);
3104
3105reread_slab:
3106
3107	slab = READ_ONCE(c->slab);
3108	if (!slab) {
3109		/*
3110		 * if the node is not online or has no normal memory, just
3111		 * ignore the node constraint
3112		 */
3113		if (unlikely(node != NUMA_NO_NODE &&
3114			     !node_isset(node, slab_nodes)))
3115			node = NUMA_NO_NODE;
3116		goto new_slab;
3117	}
3118redo:
3119
3120	if (unlikely(!node_match(slab, node))) {
3121		/*
3122		 * same as above but node_match() being false already
3123		 * implies node != NUMA_NO_NODE
3124		 */
3125		if (!node_isset(node, slab_nodes)) {
3126			node = NUMA_NO_NODE;
3127		} else {
3128			stat(s, ALLOC_NODE_MISMATCH);
3129			goto deactivate_slab;
3130		}
3131	}
3132
3133	/*
3134	 * By rights, we should be searching for a slab page that was
3135	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3136	 * information when the page leaves the per-cpu allocator
3137	 */
3138	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3139		goto deactivate_slab;
3140
3141	/* must check again c->slab in case we got preempted and it changed */
3142	local_lock_irqsave(&s->cpu_slab->lock, flags);
3143	if (unlikely(slab != c->slab)) {
3144		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3145		goto reread_slab;
3146	}
3147	freelist = c->freelist;
3148	if (freelist)
3149		goto load_freelist;
3150
3151	freelist = get_freelist(s, slab);
3152
3153	if (!freelist) {
3154		c->slab = NULL;
3155		c->tid = next_tid(c->tid);
3156		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3157		stat(s, DEACTIVATE_BYPASS);
3158		goto new_slab;
3159	}
3160
3161	stat(s, ALLOC_REFILL);
3162
3163load_freelist:
3164
3165	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3166
3167	/*
3168	 * freelist is pointing to the list of objects to be used.
3169	 * slab is pointing to the slab from which the objects are obtained.
3170	 * That slab must be frozen for per cpu allocations to work.
3171	 */
3172	VM_BUG_ON(!c->slab->frozen);
3173	c->freelist = get_freepointer(s, freelist);
3174	c->tid = next_tid(c->tid);
3175	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3176	return freelist;
3177
3178deactivate_slab:
3179
3180	local_lock_irqsave(&s->cpu_slab->lock, flags);
3181	if (slab != c->slab) {
3182		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3183		goto reread_slab;
3184	}
3185	freelist = c->freelist;
3186	c->slab = NULL;
3187	c->freelist = NULL;
3188	c->tid = next_tid(c->tid);
3189	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3190	deactivate_slab(s, slab, freelist);
3191
3192new_slab:
3193
3194	if (slub_percpu_partial(c)) {
3195		local_lock_irqsave(&s->cpu_slab->lock, flags);
3196		if (unlikely(c->slab)) {
3197			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3198			goto reread_slab;
3199		}
3200		if (unlikely(!slub_percpu_partial(c))) {
3201			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3202			/* we were preempted and partial list got empty */
3203			goto new_objects;
3204		}
3205
3206		slab = c->slab = slub_percpu_partial(c);
3207		slub_set_percpu_partial(c, slab);
3208		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3209		stat(s, CPU_PARTIAL_ALLOC);
3210		goto redo;
3211	}
3212
3213new_objects:
3214
3215	pc.flags = gfpflags;
3216	pc.slab = &slab;
3217	pc.orig_size = orig_size;
3218	freelist = get_partial(s, node, &pc);
3219	if (freelist)
3220		goto check_new_slab;
3221
3222	slub_put_cpu_ptr(s->cpu_slab);
3223	slab = new_slab(s, gfpflags, node);
3224	c = slub_get_cpu_ptr(s->cpu_slab);
3225
3226	if (unlikely(!slab)) {
3227		slab_out_of_memory(s, gfpflags, node);
3228		return NULL;
3229	}
3230
3231	stat(s, ALLOC_SLAB);
3232
3233	if (kmem_cache_debug(s)) {
3234		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3235
3236		if (unlikely(!freelist))
3237			goto new_objects;
3238
3239		if (s->flags & SLAB_STORE_USER)
3240			set_track(s, freelist, TRACK_ALLOC, addr);
3241
3242		return freelist;
3243	}
3244
3245	/*
3246	 * No other reference to the slab yet so we can
3247	 * muck around with it freely without cmpxchg
3248	 */
3249	freelist = slab->freelist;
3250	slab->freelist = NULL;
3251	slab->inuse = slab->objects;
3252	slab->frozen = 1;
3253
3254	inc_slabs_node(s, slab_nid(slab), slab->objects);
3255
3256check_new_slab:
3257
3258	if (kmem_cache_debug(s)) {
3259		/*
3260		 * For debug caches here we had to go through
3261		 * alloc_single_from_partial() so just store the tracking info
3262		 * and return the object
3263		 */
3264		if (s->flags & SLAB_STORE_USER)
3265			set_track(s, freelist, TRACK_ALLOC, addr);
3266
3267		return freelist;
3268	}
3269
3270	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3271		/*
3272		 * For !pfmemalloc_match() case we don't load freelist so that
3273		 * we don't make further mismatched allocations easier.
3274		 */
3275		deactivate_slab(s, slab, get_freepointer(s, freelist));
3276		return freelist;
3277	}
3278
3279retry_load_slab:
3280
3281	local_lock_irqsave(&s->cpu_slab->lock, flags);
3282	if (unlikely(c->slab)) {
3283		void *flush_freelist = c->freelist;
3284		struct slab *flush_slab = c->slab;
3285
3286		c->slab = NULL;
3287		c->freelist = NULL;
3288		c->tid = next_tid(c->tid);
3289
3290		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3291
3292		deactivate_slab(s, flush_slab, flush_freelist);
3293
3294		stat(s, CPUSLAB_FLUSH);
3295
3296		goto retry_load_slab;
3297	}
3298	c->slab = slab;
3299
3300	goto load_freelist;
3301}
3302
3303/*
3304 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3305 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3306 * pointer.
3307 */
3308static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3309			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3310{
3311	void *p;
3312
3313#ifdef CONFIG_PREEMPT_COUNT
3314	/*
3315	 * We may have been preempted and rescheduled on a different
3316	 * cpu before disabling preemption. Need to reload cpu area
3317	 * pointer.
3318	 */
3319	c = slub_get_cpu_ptr(s->cpu_slab);
3320#endif
3321
3322	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3323#ifdef CONFIG_PREEMPT_COUNT
3324	slub_put_cpu_ptr(s->cpu_slab);
3325#endif
3326	return p;
3327}
3328
3329static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3330		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3331{
3332	struct kmem_cache_cpu *c;
3333	struct slab *slab;
3334	unsigned long tid;
3335	void *object;
3336
3337redo:
3338	/*
3339	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3340	 * enabled. We may switch back and forth between cpus while
3341	 * reading from one cpu area. That does not matter as long
3342	 * as we end up on the original cpu again when doing the cmpxchg.
3343	 *
3344	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3345	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3346	 * the tid. If we are preempted and switched to another cpu between the
3347	 * two reads, it's OK as the two are still associated with the same cpu
3348	 * and cmpxchg later will validate the cpu.
3349	 */
3350	c = raw_cpu_ptr(s->cpu_slab);
3351	tid = READ_ONCE(c->tid);
3352
3353	/*
3354	 * Irqless object alloc/free algorithm used here depends on sequence
3355	 * of fetching cpu_slab's data. tid should be fetched before anything
3356	 * on c to guarantee that object and slab associated with previous tid
3357	 * won't be used with current tid. If we fetch tid first, object and
3358	 * slab could be one associated with next tid and our alloc/free
3359	 * request will be failed. In this case, we will retry. So, no problem.
3360	 */
3361	barrier();
3362
3363	/*
3364	 * The transaction ids are globally unique per cpu and per operation on
3365	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3366	 * occurs on the right processor and that there was no operation on the
3367	 * linked list in between.
3368	 */
3369
3370	object = c->freelist;
3371	slab = c->slab;
3372
3373	if (!USE_LOCKLESS_FAST_PATH() ||
3374	    unlikely(!object || !slab || !node_match(slab, node))) {
3375		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3376	} else {
3377		void *next_object = get_freepointer_safe(s, object);
3378
3379		/*
3380		 * The cmpxchg will only match if there was no additional
3381		 * operation and if we are on the right processor.
3382		 *
3383		 * The cmpxchg does the following atomically (without lock
3384		 * semantics!)
3385		 * 1. Relocate first pointer to the current per cpu area.
3386		 * 2. Verify that tid and freelist have not been changed
3387		 * 3. If they were not changed replace tid and freelist
3388		 *
3389		 * Since this is without lock semantics the protection is only
3390		 * against code executing on this cpu *not* from access by
3391		 * other cpus.
3392		 */
3393		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3394			note_cmpxchg_failure("slab_alloc", s, tid);
3395			goto redo;
3396		}
3397		prefetch_freepointer(s, next_object);
3398		stat(s, ALLOC_FASTPATH);
3399	}
3400
3401	return object;
3402}
3403#else /* CONFIG_SLUB_TINY */
3404static void *__slab_alloc_node(struct kmem_cache *s,
3405		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3406{
3407	struct partial_context pc;
3408	struct slab *slab;
3409	void *object;
3410
3411	pc.flags = gfpflags;
3412	pc.slab = &slab;
3413	pc.orig_size = orig_size;
3414	object = get_partial(s, node, &pc);
3415
3416	if (object)
3417		return object;
3418
3419	slab = new_slab(s, gfpflags, node);
3420	if (unlikely(!slab)) {
3421		slab_out_of_memory(s, gfpflags, node);
3422		return NULL;
3423	}
3424
3425	object = alloc_single_from_new_slab(s, slab, orig_size);
3426
3427	return object;
3428}
3429#endif /* CONFIG_SLUB_TINY */
3430
3431/*
3432 * If the object has been wiped upon free, make sure it's fully initialized by
3433 * zeroing out freelist pointer.
3434 */
3435static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3436						   void *obj)
3437{
3438	if (unlikely(slab_want_init_on_free(s)) && obj)
3439		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3440			0, sizeof(void *));
3441}
3442
3443/*
3444 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3445 * have the fastpath folded into their functions. So no function call
3446 * overhead for requests that can be satisfied on the fastpath.
3447 *
3448 * The fastpath works by first checking if the lockless freelist can be used.
3449 * If not then __slab_alloc is called for slow processing.
3450 *
3451 * Otherwise we can simply pick the next object from the lockless free list.
3452 */
3453static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3454		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3455{
3456	void *object;
3457	struct obj_cgroup *objcg = NULL;
3458	bool init = false;
3459
3460	s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3461	if (!s)
3462		return NULL;
3463
3464	object = kfence_alloc(s, orig_size, gfpflags);
3465	if (unlikely(object))
3466		goto out;
3467
3468	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3469
3470	maybe_wipe_obj_freeptr(s, object);
3471	init = slab_want_init_on_alloc(gfpflags, s);
3472
3473out:
3474	/*
3475	 * When init equals 'true', like for kzalloc() family, only
3476	 * @orig_size bytes might be zeroed instead of s->object_size
3477	 */
3478	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
3479
3480	return object;
3481}
3482
3483static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3484		gfp_t gfpflags, unsigned long addr, size_t orig_size)
3485{
3486	return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3487}
3488
3489static __fastpath_inline
3490void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3491			     gfp_t gfpflags)
3492{
3493	void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3494
3495	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3496
3497	return ret;
3498}
3499
3500void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3501{
3502	return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3503}
3504EXPORT_SYMBOL(kmem_cache_alloc);
3505
3506void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3507			   gfp_t gfpflags)
3508{
3509	return __kmem_cache_alloc_lru(s, lru, gfpflags);
3510}
3511EXPORT_SYMBOL(kmem_cache_alloc_lru);
3512
3513void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
3514			      int node, size_t orig_size,
3515			      unsigned long caller)
3516{
3517	return slab_alloc_node(s, NULL, gfpflags, node,
3518			       caller, orig_size);
3519}
3520
3521void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3522{
3523	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3524
3525	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
3526
3527	return ret;
3528}
3529EXPORT_SYMBOL(kmem_cache_alloc_node);
3530
3531static noinline void free_to_partial_list(
3532	struct kmem_cache *s, struct slab *slab,
3533	void *head, void *tail, int bulk_cnt,
3534	unsigned long addr)
3535{
3536	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3537	struct slab *slab_free = NULL;
3538	int cnt = bulk_cnt;
3539	unsigned long flags;
3540	depot_stack_handle_t handle = 0;
3541
3542	if (s->flags & SLAB_STORE_USER)
3543		handle = set_track_prepare();
3544
3545	spin_lock_irqsave(&n->list_lock, flags);
3546
3547	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
3548		void *prior = slab->freelist;
3549
3550		/* Perform the actual freeing while we still hold the locks */
3551		slab->inuse -= cnt;
3552		set_freepointer(s, tail, prior);
3553		slab->freelist = head;
3554
3555		/*
3556		 * If the slab is empty, and node's partial list is full,
3557		 * it should be discarded anyway no matter it's on full or
3558		 * partial list.
3559		 */
3560		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
3561			slab_free = slab;
3562
3563		if (!prior) {
3564			/* was on full list */
3565			remove_full(s, n, slab);
3566			if (!slab_free) {
3567				add_partial(n, slab, DEACTIVATE_TO_TAIL);
3568				stat(s, FREE_ADD_PARTIAL);
3569			}
3570		} else if (slab_free) {
3571			remove_partial(n, slab);
3572			stat(s, FREE_REMOVE_PARTIAL);
3573		}
3574	}
3575
3576	if (slab_free) {
3577		/*
3578		 * Update the counters while still holding n->list_lock to
3579		 * prevent spurious validation warnings
3580		 */
3581		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
3582	}
3583
3584	spin_unlock_irqrestore(&n->list_lock, flags);
3585
3586	if (slab_free) {
3587		stat(s, FREE_SLAB);
3588		free_slab(s, slab_free);
3589	}
3590}
3591
3592/*
3593 * Slow path handling. This may still be called frequently since objects
3594 * have a longer lifetime than the cpu slabs in most processing loads.
3595 *
3596 * So we still attempt to reduce cache line usage. Just take the slab
3597 * lock and free the item. If there is no additional partial slab
3598 * handling required then we can return immediately.
3599 */
3600static void __slab_free(struct kmem_cache *s, struct slab *slab,
3601			void *head, void *tail, int cnt,
3602			unsigned long addr)
3603
3604{
3605	void *prior;
3606	int was_frozen;
3607	struct slab new;
3608	unsigned long counters;
3609	struct kmem_cache_node *n = NULL;
3610	unsigned long flags;
3611
3612	stat(s, FREE_SLOWPATH);
3613
3614	if (kfence_free(head))
3615		return;
3616
3617	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
3618		free_to_partial_list(s, slab, head, tail, cnt, addr);
3619		return;
3620	}
3621
3622	do {
3623		if (unlikely(n)) {
3624			spin_unlock_irqrestore(&n->list_lock, flags);
3625			n = NULL;
3626		}
3627		prior = slab->freelist;
3628		counters = slab->counters;
3629		set_freepointer(s, tail, prior);
3630		new.counters = counters;
3631		was_frozen = new.frozen;
3632		new.inuse -= cnt;
3633		if ((!new.inuse || !prior) && !was_frozen) {
3634
3635			if (kmem_cache_has_cpu_partial(s) && !prior) {
3636
3637				/*
3638				 * Slab was on no list before and will be
3639				 * partially empty
3640				 * We can defer the list move and instead
3641				 * freeze it.
3642				 */
3643				new.frozen = 1;
3644
3645			} else { /* Needs to be taken off a list */
3646
3647				n = get_node(s, slab_nid(slab));
3648				/*
3649				 * Speculatively acquire the list_lock.
3650				 * If the cmpxchg does not succeed then we may
3651				 * drop the list_lock without any processing.
3652				 *
3653				 * Otherwise the list_lock will synchronize with
3654				 * other processors updating the list of slabs.
3655				 */
3656				spin_lock_irqsave(&n->list_lock, flags);
3657
3658			}
3659		}
3660
3661	} while (!slab_update_freelist(s, slab,
3662		prior, counters,
3663		head, new.counters,
3664		"__slab_free"));
3665
3666	if (likely(!n)) {
3667
3668		if (likely(was_frozen)) {
3669			/*
3670			 * The list lock was not taken therefore no list
3671			 * activity can be necessary.
3672			 */
3673			stat(s, FREE_FROZEN);
3674		} else if (new.frozen) {
3675			/*
3676			 * If we just froze the slab then put it onto the
3677			 * per cpu partial list.
3678			 */
3679			put_cpu_partial(s, slab, 1);
3680			stat(s, CPU_PARTIAL_FREE);
3681		}
3682
3683		return;
3684	}
3685
3686	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3687		goto slab_empty;
3688
3689	/*
3690	 * Objects left in the slab. If it was not on the partial list before
3691	 * then add it.
3692	 */
3693	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3694		remove_full(s, n, slab);
3695		add_partial(n, slab, DEACTIVATE_TO_TAIL);
3696		stat(s, FREE_ADD_PARTIAL);
3697	}
3698	spin_unlock_irqrestore(&n->list_lock, flags);
3699	return;
3700
3701slab_empty:
3702	if (prior) {
3703		/*
3704		 * Slab on the partial list.
3705		 */
3706		remove_partial(n, slab);
3707		stat(s, FREE_REMOVE_PARTIAL);
3708	} else {
3709		/* Slab must be on the full list */
3710		remove_full(s, n, slab);
3711	}
3712
3713	spin_unlock_irqrestore(&n->list_lock, flags);
3714	stat(s, FREE_SLAB);
3715	discard_slab(s, slab);
3716}
3717
3718#ifndef CONFIG_SLUB_TINY
3719/*
3720 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3721 * can perform fastpath freeing without additional function calls.
3722 *
3723 * The fastpath is only possible if we are freeing to the current cpu slab
3724 * of this processor. This typically the case if we have just allocated
3725 * the item before.
3726 *
3727 * If fastpath is not possible then fall back to __slab_free where we deal
3728 * with all sorts of special processing.
3729 *
3730 * Bulk free of a freelist with several objects (all pointing to the
3731 * same slab) possible by specifying head and tail ptr, plus objects
3732 * count (cnt). Bulk free indicated by tail pointer being set.
3733 */
3734static __always_inline void do_slab_free(struct kmem_cache *s,
3735				struct slab *slab, void *head, void *tail,
3736				int cnt, unsigned long addr)
3737{
3738	void *tail_obj = tail ? : head;
3739	struct kmem_cache_cpu *c;
3740	unsigned long tid;
3741	void **freelist;
3742
3743redo:
3744	/*
3745	 * Determine the currently cpus per cpu slab.
3746	 * The cpu may change afterward. However that does not matter since
3747	 * data is retrieved via this pointer. If we are on the same cpu
3748	 * during the cmpxchg then the free will succeed.
3749	 */
3750	c = raw_cpu_ptr(s->cpu_slab);
3751	tid = READ_ONCE(c->tid);
3752
3753	/* Same with comment on barrier() in slab_alloc_node() */
3754	barrier();
3755
3756	if (unlikely(slab != c->slab)) {
3757		__slab_free(s, slab, head, tail_obj, cnt, addr);
3758		return;
3759	}
3760
3761	if (USE_LOCKLESS_FAST_PATH()) {
3762		freelist = READ_ONCE(c->freelist);
3763
3764		set_freepointer(s, tail_obj, freelist);
3765
3766		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
3767			note_cmpxchg_failure("slab_free", s, tid);
3768			goto redo;
3769		}
3770	} else {
3771		/* Update the free list under the local lock */
3772		local_lock(&s->cpu_slab->lock);
3773		c = this_cpu_ptr(s->cpu_slab);
3774		if (unlikely(slab != c->slab)) {
3775			local_unlock(&s->cpu_slab->lock);
3776			goto redo;
3777		}
3778		tid = c->tid;
3779		freelist = c->freelist;
3780
3781		set_freepointer(s, tail_obj, freelist);
3782		c->freelist = head;
3783		c->tid = next_tid(tid);
3784
3785		local_unlock(&s->cpu_slab->lock);
3786	}
3787	stat(s, FREE_FASTPATH);
3788}
3789#else /* CONFIG_SLUB_TINY */
3790static void do_slab_free(struct kmem_cache *s,
3791				struct slab *slab, void *head, void *tail,
3792				int cnt, unsigned long addr)
3793{
3794	void *tail_obj = tail ? : head;
3795
3796	__slab_free(s, slab, head, tail_obj, cnt, addr);
3797}
3798#endif /* CONFIG_SLUB_TINY */
3799
3800static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3801				      void *head, void *tail, void **p, int cnt,
3802				      unsigned long addr)
3803{
3804	memcg_slab_free_hook(s, slab, p, cnt);
3805	/*
3806	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3807	 * to remove objects, whose reuse must be delayed.
3808	 */
3809	if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3810		do_slab_free(s, slab, head, tail, cnt, addr);
3811}
3812
3813#ifdef CONFIG_KASAN_GENERIC
3814void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3815{
3816	do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3817}
3818#endif
3819
3820void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller)
3821{
3822	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller);
3823}
3824
3825void kmem_cache_free(struct kmem_cache *s, void *x)
3826{
3827	s = cache_from_obj(s, x);
3828	if (!s)
3829		return;
3830	trace_kmem_cache_free(_RET_IP_, x, s);
3831	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
3832}
3833EXPORT_SYMBOL(kmem_cache_free);
3834
3835struct detached_freelist {
3836	struct slab *slab;
3837	void *tail;
3838	void *freelist;
3839	int cnt;
3840	struct kmem_cache *s;
3841};
3842
3843/*
3844 * This function progressively scans the array with free objects (with
3845 * a limited look ahead) and extract objects belonging to the same
3846 * slab.  It builds a detached freelist directly within the given
3847 * slab/objects.  This can happen without any need for
3848 * synchronization, because the objects are owned by running process.
3849 * The freelist is build up as a single linked list in the objects.
3850 * The idea is, that this detached freelist can then be bulk
3851 * transferred to the real freelist(s), but only requiring a single
3852 * synchronization primitive.  Look ahead in the array is limited due
3853 * to performance reasons.
3854 */
3855static inline
3856int build_detached_freelist(struct kmem_cache *s, size_t size,
3857			    void **p, struct detached_freelist *df)
3858{
3859	int lookahead = 3;
3860	void *object;
3861	struct folio *folio;
3862	size_t same;
3863
3864	object = p[--size];
3865	folio = virt_to_folio(object);
3866	if (!s) {
3867		/* Handle kalloc'ed objects */
3868		if (unlikely(!folio_test_slab(folio))) {
3869			free_large_kmalloc(folio, object);
3870			df->slab = NULL;
3871			return size;
3872		}
3873		/* Derive kmem_cache from object */
3874		df->slab = folio_slab(folio);
3875		df->s = df->slab->slab_cache;
3876	} else {
3877		df->slab = folio_slab(folio);
3878		df->s = cache_from_obj(s, object); /* Support for memcg */
3879	}
3880
3881	/* Start new detached freelist */
3882	df->tail = object;
3883	df->freelist = object;
3884	df->cnt = 1;
3885
3886	if (is_kfence_address(object))
3887		return size;
3888
3889	set_freepointer(df->s, object, NULL);
3890
3891	same = size;
3892	while (size) {
3893		object = p[--size];
3894		/* df->slab is always set at this point */
3895		if (df->slab == virt_to_slab(object)) {
3896			/* Opportunity build freelist */
3897			set_freepointer(df->s, object, df->freelist);
3898			df->freelist = object;
3899			df->cnt++;
3900			same--;
3901			if (size != same)
3902				swap(p[size], p[same]);
3903			continue;
3904		}
3905
3906		/* Limit look ahead search */
3907		if (!--lookahead)
3908			break;
3909	}
3910
3911	return same;
3912}
3913
3914/* Note that interrupts must be enabled when calling this function. */
3915void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3916{
3917	if (!size)
3918		return;
3919
3920	do {
3921		struct detached_freelist df;
3922
3923		size = build_detached_freelist(s, size, p, &df);
3924		if (!df.slab)
3925			continue;
3926
3927		slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3928			  _RET_IP_);
3929	} while (likely(size));
3930}
3931EXPORT_SYMBOL(kmem_cache_free_bulk);
3932
3933#ifndef CONFIG_SLUB_TINY
3934static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3935			size_t size, void **p, struct obj_cgroup *objcg)
3936{
3937	struct kmem_cache_cpu *c;
3938	unsigned long irqflags;
3939	int i;
3940
3941	/*
3942	 * Drain objects in the per cpu slab, while disabling local
3943	 * IRQs, which protects against PREEMPT and interrupts
3944	 * handlers invoking normal fastpath.
3945	 */
3946	c = slub_get_cpu_ptr(s->cpu_slab);
3947	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3948
3949	for (i = 0; i < size; i++) {
3950		void *object = kfence_alloc(s, s->object_size, flags);
3951
3952		if (unlikely(object)) {
3953			p[i] = object;
3954			continue;
3955		}
3956
3957		object = c->freelist;
3958		if (unlikely(!object)) {
3959			/*
3960			 * We may have removed an object from c->freelist using
3961			 * the fastpath in the previous iteration; in that case,
3962			 * c->tid has not been bumped yet.
3963			 * Since ___slab_alloc() may reenable interrupts while
3964			 * allocating memory, we should bump c->tid now.
3965			 */
3966			c->tid = next_tid(c->tid);
3967
3968			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3969
3970			/*
3971			 * Invoking slow path likely have side-effect
3972			 * of re-populating per CPU c->freelist
3973			 */
3974			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3975					    _RET_IP_, c, s->object_size);
3976			if (unlikely(!p[i]))
3977				goto error;
3978
3979			c = this_cpu_ptr(s->cpu_slab);
3980			maybe_wipe_obj_freeptr(s, p[i]);
3981
3982			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3983
3984			continue; /* goto for-loop */
3985		}
3986		c->freelist = get_freepointer(s, object);
3987		p[i] = object;
3988		maybe_wipe_obj_freeptr(s, p[i]);
3989	}
3990	c->tid = next_tid(c->tid);
3991	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3992	slub_put_cpu_ptr(s->cpu_slab);
3993
3994	return i;
3995
3996error:
3997	slub_put_cpu_ptr(s->cpu_slab);
3998	slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
3999	kmem_cache_free_bulk(s, i, p);
4000	return 0;
4001
4002}
4003#else /* CONFIG_SLUB_TINY */
4004static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4005			size_t size, void **p, struct obj_cgroup *objcg)
4006{
4007	int i;
4008
4009	for (i = 0; i < size; i++) {
4010		void *object = kfence_alloc(s, s->object_size, flags);
4011
4012		if (unlikely(object)) {
4013			p[i] = object;
4014			continue;
4015		}
4016
4017		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4018					 _RET_IP_, s->object_size);
4019		if (unlikely(!p[i]))
4020			goto error;
4021
4022		maybe_wipe_obj_freeptr(s, p[i]);
4023	}
4024
4025	return i;
4026
4027error:
4028	slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
4029	kmem_cache_free_bulk(s, i, p);
4030	return 0;
4031}
4032#endif /* CONFIG_SLUB_TINY */
4033
4034/* Note that interrupts must be enabled when calling this function. */
4035int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4036			  void **p)
4037{
4038	int i;
4039	struct obj_cgroup *objcg = NULL;
4040
4041	if (!size)
4042		return 0;
4043
4044	/* memcg and kmem_cache debug support */
4045	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4046	if (unlikely(!s))
4047		return 0;
4048
4049	i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg);
4050
4051	/*
4052	 * memcg and kmem_cache debug support and memory initialization.
4053	 * Done outside of the IRQ disabled fastpath loop.
4054	 */
4055	if (i != 0)
4056		slab_post_alloc_hook(s, objcg, flags, size, p,
4057			slab_want_init_on_alloc(flags, s), s->object_size);
4058	return i;
4059}
4060EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4061
4062
4063/*
4064 * Object placement in a slab is made very easy because we always start at
4065 * offset 0. If we tune the size of the object to the alignment then we can
4066 * get the required alignment by putting one properly sized object after
4067 * another.
4068 *
4069 * Notice that the allocation order determines the sizes of the per cpu
4070 * caches. Each processor has always one slab available for allocations.
4071 * Increasing the allocation order reduces the number of times that slabs
4072 * must be moved on and off the partial lists and is therefore a factor in
4073 * locking overhead.
4074 */
4075
4076/*
4077 * Minimum / Maximum order of slab pages. This influences locking overhead
4078 * and slab fragmentation. A higher order reduces the number of partial slabs
4079 * and increases the number of allocations possible without having to
4080 * take the list_lock.
4081 */
4082static unsigned int slub_min_order;
4083static unsigned int slub_max_order =
4084	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4085static unsigned int slub_min_objects;
4086
4087/*
4088 * Calculate the order of allocation given an slab object size.
4089 *
4090 * The order of allocation has significant impact on performance and other
4091 * system components. Generally order 0 allocations should be preferred since
4092 * order 0 does not cause fragmentation in the page allocator. Larger objects
4093 * be problematic to put into order 0 slabs because there may be too much
4094 * unused space left. We go to a higher order if more than 1/16th of the slab
4095 * would be wasted.
4096 *
4097 * In order to reach satisfactory performance we must ensure that a minimum
4098 * number of objects is in one slab. Otherwise we may generate too much
4099 * activity on the partial lists which requires taking the list_lock. This is
4100 * less a concern for large slabs though which are rarely used.
4101 *
4102 * slub_max_order specifies the order where we begin to stop considering the
4103 * number of objects in a slab as critical. If we reach slub_max_order then
4104 * we try to keep the page order as low as possible. So we accept more waste
4105 * of space in favor of a small page order.
4106 *
4107 * Higher order allocations also allow the placement of more objects in a
4108 * slab and thereby reduce object handling overhead. If the user has
4109 * requested a higher minimum order then we start with that one instead of
4110 * the smallest order which will fit the object.
4111 */
4112static inline unsigned int calc_slab_order(unsigned int size,
4113		unsigned int min_objects, unsigned int max_order,
4114		unsigned int fract_leftover)
4115{
4116	unsigned int min_order = slub_min_order;
4117	unsigned int order;
4118
4119	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4120		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4121
4122	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
4123			order <= max_order; order++) {
4124
4125		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4126		unsigned int rem;
4127
4128		rem = slab_size % size;
4129
4130		if (rem <= slab_size / fract_leftover)
4131			break;
4132	}
4133
4134	return order;
4135}
4136
4137static inline int calculate_order(unsigned int size)
4138{
4139	unsigned int order;
4140	unsigned int min_objects;
4141	unsigned int max_objects;
4142	unsigned int nr_cpus;
4143
4144	/*
4145	 * Attempt to find best configuration for a slab. This
4146	 * works by first attempting to generate a layout with
4147	 * the best configuration and backing off gradually.
4148	 *
4149	 * First we increase the acceptable waste in a slab. Then
4150	 * we reduce the minimum objects required in a slab.
4151	 */
4152	min_objects = slub_min_objects;
4153	if (!min_objects) {
4154		/*
4155		 * Some architectures will only update present cpus when
4156		 * onlining them, so don't trust the number if it's just 1. But
4157		 * we also don't want to use nr_cpu_ids always, as on some other
4158		 * architectures, there can be many possible cpus, but never
4159		 * onlined. Here we compromise between trying to avoid too high
4160		 * order on systems that appear larger than they are, and too
4161		 * low order on systems that appear smaller than they are.
4162		 */
4163		nr_cpus = num_present_cpus();
4164		if (nr_cpus <= 1)
4165			nr_cpus = nr_cpu_ids;
4166		min_objects = 4 * (fls(nr_cpus) + 1);
4167	}
4168	max_objects = order_objects(slub_max_order, size);
4169	min_objects = min(min_objects, max_objects);
4170
4171	while (min_objects > 1) {
4172		unsigned int fraction;
4173
4174		fraction = 16;
4175		while (fraction >= 4) {
4176			order = calc_slab_order(size, min_objects,
4177					slub_max_order, fraction);
4178			if (order <= slub_max_order)
4179				return order;
4180			fraction /= 2;
4181		}
4182		min_objects--;
4183	}
4184
4185	/*
4186	 * We were unable to place multiple objects in a slab. Now
4187	 * lets see if we can place a single object there.
4188	 */
4189	order = calc_slab_order(size, 1, slub_max_order, 1);
4190	if (order <= slub_max_order)
4191		return order;
4192
4193	/*
4194	 * Doh this slab cannot be placed using slub_max_order.
4195	 */
4196	order = calc_slab_order(size, 1, MAX_ORDER, 1);
4197	if (order <= MAX_ORDER)
4198		return order;
4199	return -ENOSYS;
4200}
4201
4202static void
4203init_kmem_cache_node(struct kmem_cache_node *n)
4204{
4205	n->nr_partial = 0;
4206	spin_lock_init(&n->list_lock);
4207	INIT_LIST_HEAD(&n->partial);
4208#ifdef CONFIG_SLUB_DEBUG
4209	atomic_long_set(&n->nr_slabs, 0);
4210	atomic_long_set(&n->total_objects, 0);
4211	INIT_LIST_HEAD(&n->full);
4212#endif
4213}
4214
4215#ifndef CONFIG_SLUB_TINY
4216static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4217{
4218	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4219			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4220			sizeof(struct kmem_cache_cpu));
4221
4222	/*
4223	 * Must align to double word boundary for the double cmpxchg
4224	 * instructions to work; see __pcpu_double_call_return_bool().
4225	 */
4226	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4227				     2 * sizeof(void *));
4228
4229	if (!s->cpu_slab)
4230		return 0;
4231
4232	init_kmem_cache_cpus(s);
4233
4234	return 1;
4235}
4236#else
4237static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4238{
4239	return 1;
4240}
4241#endif /* CONFIG_SLUB_TINY */
4242
4243static struct kmem_cache *kmem_cache_node;
4244
4245/*
4246 * No kmalloc_node yet so do it by hand. We know that this is the first
4247 * slab on the node for this slabcache. There are no concurrent accesses
4248 * possible.
4249 *
4250 * Note that this function only works on the kmem_cache_node
4251 * when allocating for the kmem_cache_node. This is used for bootstrapping
4252 * memory on a fresh node that has no slab structures yet.
4253 */
4254static void early_kmem_cache_node_alloc(int node)
4255{
4256	struct slab *slab;
4257	struct kmem_cache_node *n;
4258
4259	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4260
4261	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4262
4263	BUG_ON(!slab);
4264	inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
4265	if (slab_nid(slab) != node) {
4266		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4267		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
4268	}
4269
4270	n = slab->freelist;
4271	BUG_ON(!n);
4272#ifdef CONFIG_SLUB_DEBUG
4273	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4274	init_tracking(kmem_cache_node, n);
4275#endif
4276	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4277	slab->freelist = get_freepointer(kmem_cache_node, n);
4278	slab->inuse = 1;
4279	kmem_cache_node->node[node] = n;
4280	init_kmem_cache_node(n);
4281	inc_slabs_node(kmem_cache_node, node, slab->objects);
4282
4283	/*
4284	 * No locks need to be taken here as it has just been
4285	 * initialized and there is no concurrent access.
4286	 */
4287	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
4288}
4289
4290static void free_kmem_cache_nodes(struct kmem_cache *s)
4291{
4292	int node;
4293	struct kmem_cache_node *n;
4294
4295	for_each_kmem_cache_node(s, node, n) {
4296		s->node[node] = NULL;
4297		kmem_cache_free(kmem_cache_node, n);
4298	}
4299}
4300
4301void __kmem_cache_release(struct kmem_cache *s)
4302{
4303	cache_random_seq_destroy(s);
4304#ifndef CONFIG_SLUB_TINY
4305	free_percpu(s->cpu_slab);
4306#endif
4307	free_kmem_cache_nodes(s);
4308}
4309
4310static int init_kmem_cache_nodes(struct kmem_cache *s)
4311{
4312	int node;
4313
4314	for_each_node_mask(node, slab_nodes) {
4315		struct kmem_cache_node *n;
4316
4317		if (slab_state == DOWN) {
4318			early_kmem_cache_node_alloc(node);
4319			continue;
4320		}
4321		n = kmem_cache_alloc_node(kmem_cache_node,
4322						GFP_KERNEL, node);
4323
4324		if (!n) {
4325			free_kmem_cache_nodes(s);
4326			return 0;
4327		}
4328
4329		init_kmem_cache_node(n);
4330		s->node[node] = n;
4331	}
4332	return 1;
4333}
4334
4335static void set_cpu_partial(struct kmem_cache *s)
4336{
4337#ifdef CONFIG_SLUB_CPU_PARTIAL
4338	unsigned int nr_objects;
4339
4340	/*
4341	 * cpu_partial determined the maximum number of objects kept in the
4342	 * per cpu partial lists of a processor.
4343	 *
4344	 * Per cpu partial lists mainly contain slabs that just have one
4345	 * object freed. If they are used for allocation then they can be
4346	 * filled up again with minimal effort. The slab will never hit the
4347	 * per node partial lists and therefore no locking will be required.
4348	 *
4349	 * For backwards compatibility reasons, this is determined as number
4350	 * of objects, even though we now limit maximum number of pages, see
4351	 * slub_set_cpu_partial()
4352	 */
4353	if (!kmem_cache_has_cpu_partial(s))
4354		nr_objects = 0;
4355	else if (s->size >= PAGE_SIZE)
4356		nr_objects = 6;
4357	else if (s->size >= 1024)
4358		nr_objects = 24;
4359	else if (s->size >= 256)
4360		nr_objects = 52;
4361	else
4362		nr_objects = 120;
4363
4364	slub_set_cpu_partial(s, nr_objects);
4365#endif
4366}
4367
4368/*
4369 * calculate_sizes() determines the order and the distribution of data within
4370 * a slab object.
4371 */
4372static int calculate_sizes(struct kmem_cache *s)
4373{
4374	slab_flags_t flags = s->flags;
4375	unsigned int size = s->object_size;
4376	unsigned int order;
4377
4378	/*
4379	 * Round up object size to the next word boundary. We can only
4380	 * place the free pointer at word boundaries and this determines
4381	 * the possible location of the free pointer.
4382	 */
4383	size = ALIGN(size, sizeof(void *));
4384
4385#ifdef CONFIG_SLUB_DEBUG
4386	/*
4387	 * Determine if we can poison the object itself. If the user of
4388	 * the slab may touch the object after free or before allocation
4389	 * then we should never poison the object itself.
4390	 */
4391	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4392			!s->ctor)
4393		s->flags |= __OBJECT_POISON;
4394	else
4395		s->flags &= ~__OBJECT_POISON;
4396
4397
4398	/*
4399	 * If we are Redzoning then check if there is some space between the
4400	 * end of the object and the free pointer. If not then add an
4401	 * additional word to have some bytes to store Redzone information.
4402	 */
4403	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4404		size += sizeof(void *);
4405#endif
4406
4407	/*
4408	 * With that we have determined the number of bytes in actual use
4409	 * by the object and redzoning.
4410	 */
4411	s->inuse = size;
4412
4413	if (slub_debug_orig_size(s) ||
4414	    (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4415	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4416	    s->ctor) {
4417		/*
4418		 * Relocate free pointer after the object if it is not
4419		 * permitted to overwrite the first word of the object on
4420		 * kmem_cache_free.
4421		 *
4422		 * This is the case if we do RCU, have a constructor or
4423		 * destructor, are poisoning the objects, or are
4424		 * redzoning an object smaller than sizeof(void *).
4425		 *
4426		 * The assumption that s->offset >= s->inuse means free
4427		 * pointer is outside of the object is used in the
4428		 * freeptr_outside_object() function. If that is no
4429		 * longer true, the function needs to be modified.
4430		 */
4431		s->offset = size;
4432		size += sizeof(void *);
4433	} else {
4434		/*
4435		 * Store freelist pointer near middle of object to keep
4436		 * it away from the edges of the object to avoid small
4437		 * sized over/underflows from neighboring allocations.
4438		 */
4439		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4440	}
4441
4442#ifdef CONFIG_SLUB_DEBUG
4443	if (flags & SLAB_STORE_USER) {
4444		/*
4445		 * Need to store information about allocs and frees after
4446		 * the object.
4447		 */
4448		size += 2 * sizeof(struct track);
4449
4450		/* Save the original kmalloc request size */
4451		if (flags & SLAB_KMALLOC)
4452			size += sizeof(unsigned int);
4453	}
4454#endif
4455
4456	kasan_cache_create(s, &size, &s->flags);
4457#ifdef CONFIG_SLUB_DEBUG
4458	if (flags & SLAB_RED_ZONE) {
4459		/*
4460		 * Add some empty padding so that we can catch
4461		 * overwrites from earlier objects rather than let
4462		 * tracking information or the free pointer be
4463		 * corrupted if a user writes before the start
4464		 * of the object.
4465		 */
4466		size += sizeof(void *);
4467
4468		s->red_left_pad = sizeof(void *);
4469		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4470		size += s->red_left_pad;
4471	}
4472#endif
4473
4474	/*
4475	 * SLUB stores one object immediately after another beginning from
4476	 * offset 0. In order to align the objects we have to simply size
4477	 * each object to conform to the alignment.
4478	 */
4479	size = ALIGN(size, s->align);
4480	s->size = size;
4481	s->reciprocal_size = reciprocal_value(size);
4482	order = calculate_order(size);
4483
4484	if ((int)order < 0)
4485		return 0;
4486
4487	s->allocflags = 0;
4488	if (order)
4489		s->allocflags |= __GFP_COMP;
4490
4491	if (s->flags & SLAB_CACHE_DMA)
4492		s->allocflags |= GFP_DMA;
4493
4494	if (s->flags & SLAB_CACHE_DMA32)
4495		s->allocflags |= GFP_DMA32;
4496
4497	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4498		s->allocflags |= __GFP_RECLAIMABLE;
4499
4500	/*
4501	 * Determine the number of objects per slab
4502	 */
4503	s->oo = oo_make(order, size);
4504	s->min = oo_make(get_order(size), size);
4505
4506	return !!oo_objects(s->oo);
4507}
4508
4509static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4510{
4511	s->flags = kmem_cache_flags(s->size, flags, s->name);
4512#ifdef CONFIG_SLAB_FREELIST_HARDENED
4513	s->random = get_random_long();
4514#endif
4515
4516	if (!calculate_sizes(s))
4517		goto error;
4518	if (disable_higher_order_debug) {
4519		/*
4520		 * Disable debugging flags that store metadata if the min slab
4521		 * order increased.
4522		 */
4523		if (get_order(s->size) > get_order(s->object_size)) {
4524			s->flags &= ~DEBUG_METADATA_FLAGS;
4525			s->offset = 0;
4526			if (!calculate_sizes(s))
4527				goto error;
4528		}
4529	}
4530
4531#ifdef system_has_freelist_aba
4532	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
4533		/* Enable fast mode */
4534		s->flags |= __CMPXCHG_DOUBLE;
4535	}
4536#endif
4537
4538	/*
4539	 * The larger the object size is, the more slabs we want on the partial
4540	 * list to avoid pounding the page allocator excessively.
4541	 */
4542	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4543	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4544
4545	set_cpu_partial(s);
4546
4547#ifdef CONFIG_NUMA
4548	s->remote_node_defrag_ratio = 1000;
4549#endif
4550
4551	/* Initialize the pre-computed randomized freelist if slab is up */
4552	if (slab_state >= UP) {
4553		if (init_cache_random_seq(s))
4554			goto error;
4555	}
4556
4557	if (!init_kmem_cache_nodes(s))
4558		goto error;
4559
4560	if (alloc_kmem_cache_cpus(s))
4561		return 0;
4562
4563error:
4564	__kmem_cache_release(s);
4565	return -EINVAL;
4566}
4567
4568static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4569			      const char *text)
4570{
4571#ifdef CONFIG_SLUB_DEBUG
4572	void *addr = slab_address(slab);
4573	void *p;
4574
4575	slab_err(s, slab, text, s->name);
4576
4577	spin_lock(&object_map_lock);
4578	__fill_map(object_map, s, slab);
4579
4580	for_each_object(p, s, addr, slab->objects) {
4581
4582		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
4583			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4584			print_tracking(s, p);
4585		}
4586	}
4587	spin_unlock(&object_map_lock);
4588#endif
4589}
4590
4591/*
4592 * Attempt to free all partial slabs on a node.
4593 * This is called from __kmem_cache_shutdown(). We must take list_lock
4594 * because sysfs file might still access partial list after the shutdowning.
4595 */
4596static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4597{
4598	LIST_HEAD(discard);
4599	struct slab *slab, *h;
4600
4601	BUG_ON(irqs_disabled());
4602	spin_lock_irq(&n->list_lock);
4603	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4604		if (!slab->inuse) {
4605			remove_partial(n, slab);
4606			list_add(&slab->slab_list, &discard);
4607		} else {
4608			list_slab_objects(s, slab,
4609			  "Objects remaining in %s on __kmem_cache_shutdown()");
4610		}
4611	}
4612	spin_unlock_irq(&n->list_lock);
4613
4614	list_for_each_entry_safe(slab, h, &discard, slab_list)
4615		discard_slab(s, slab);
4616}
4617
4618bool __kmem_cache_empty(struct kmem_cache *s)
4619{
4620	int node;
4621	struct kmem_cache_node *n;
4622
4623	for_each_kmem_cache_node(s, node, n)
4624		if (n->nr_partial || node_nr_slabs(n))
4625			return false;
4626	return true;
4627}
4628
4629/*
4630 * Release all resources used by a slab cache.
4631 */
4632int __kmem_cache_shutdown(struct kmem_cache *s)
4633{
4634	int node;
4635	struct kmem_cache_node *n;
4636
4637	flush_all_cpus_locked(s);
4638	/* Attempt to free all objects */
4639	for_each_kmem_cache_node(s, node, n) {
4640		free_partial(s, n);
4641		if (n->nr_partial || node_nr_slabs(n))
4642			return 1;
4643	}
4644	return 0;
4645}
4646
4647#ifdef CONFIG_PRINTK
4648void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4649{
4650	void *base;
4651	int __maybe_unused i;
4652	unsigned int objnr;
4653	void *objp;
4654	void *objp0;
4655	struct kmem_cache *s = slab->slab_cache;
4656	struct track __maybe_unused *trackp;
4657
4658	kpp->kp_ptr = object;
4659	kpp->kp_slab = slab;
4660	kpp->kp_slab_cache = s;
4661	base = slab_address(slab);
4662	objp0 = kasan_reset_tag(object);
4663#ifdef CONFIG_SLUB_DEBUG
4664	objp = restore_red_left(s, objp0);
4665#else
4666	objp = objp0;
4667#endif
4668	objnr = obj_to_index(s, slab, objp);
4669	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4670	objp = base + s->size * objnr;
4671	kpp->kp_objp = objp;
4672	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4673			 || (objp - base) % s->size) ||
4674	    !(s->flags & SLAB_STORE_USER))
4675		return;
4676#ifdef CONFIG_SLUB_DEBUG
4677	objp = fixup_red_left(s, objp);
4678	trackp = get_track(s, objp, TRACK_ALLOC);
4679	kpp->kp_ret = (void *)trackp->addr;
4680#ifdef CONFIG_STACKDEPOT
4681	{
4682		depot_stack_handle_t handle;
4683		unsigned long *entries;
4684		unsigned int nr_entries;
4685
4686		handle = READ_ONCE(trackp->handle);
4687		if (handle) {
4688			nr_entries = stack_depot_fetch(handle, &entries);
4689			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4690				kpp->kp_stack[i] = (void *)entries[i];
4691		}
4692
4693		trackp = get_track(s, objp, TRACK_FREE);
4694		handle = READ_ONCE(trackp->handle);
4695		if (handle) {
4696			nr_entries = stack_depot_fetch(handle, &entries);
4697			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4698				kpp->kp_free_stack[i] = (void *)entries[i];
4699		}
4700	}
4701#endif
4702#endif
4703}
4704#endif
4705
4706/********************************************************************
4707 *		Kmalloc subsystem
4708 *******************************************************************/
4709
4710static int __init setup_slub_min_order(char *str)
4711{
4712	get_option(&str, (int *)&slub_min_order);
4713
4714	return 1;
4715}
4716
4717__setup("slub_min_order=", setup_slub_min_order);
4718
4719static int __init setup_slub_max_order(char *str)
4720{
4721	get_option(&str, (int *)&slub_max_order);
4722	slub_max_order = min_t(unsigned int, slub_max_order, MAX_ORDER);
4723
4724	return 1;
4725}
4726
4727__setup("slub_max_order=", setup_slub_max_order);
4728
4729static int __init setup_slub_min_objects(char *str)
4730{
4731	get_option(&str, (int *)&slub_min_objects);
4732
4733	return 1;
4734}
4735
4736__setup("slub_min_objects=", setup_slub_min_objects);
4737
4738#ifdef CONFIG_HARDENED_USERCOPY
4739/*
4740 * Rejects incorrectly sized objects and objects that are to be copied
4741 * to/from userspace but do not fall entirely within the containing slab
4742 * cache's usercopy region.
4743 *
4744 * Returns NULL if check passes, otherwise const char * to name of cache
4745 * to indicate an error.
4746 */
4747void __check_heap_object(const void *ptr, unsigned long n,
4748			 const struct slab *slab, bool to_user)
4749{
4750	struct kmem_cache *s;
4751	unsigned int offset;
4752	bool is_kfence = is_kfence_address(ptr);
4753
4754	ptr = kasan_reset_tag(ptr);
4755
4756	/* Find object and usable object size. */
4757	s = slab->slab_cache;
4758
4759	/* Reject impossible pointers. */
4760	if (ptr < slab_address(slab))
4761		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4762			       to_user, 0, n);
4763
4764	/* Find offset within object. */
4765	if (is_kfence)
4766		offset = ptr - kfence_object_start(ptr);
4767	else
4768		offset = (ptr - slab_address(slab)) % s->size;
4769
4770	/* Adjust for redzone and reject if within the redzone. */
4771	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4772		if (offset < s->red_left_pad)
4773			usercopy_abort("SLUB object in left red zone",
4774				       s->name, to_user, offset, n);
4775		offset -= s->red_left_pad;
4776	}
4777
4778	/* Allow address range falling entirely within usercopy region. */
4779	if (offset >= s->useroffset &&
4780	    offset - s->useroffset <= s->usersize &&
4781	    n <= s->useroffset - offset + s->usersize)
4782		return;
4783
4784	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4785}
4786#endif /* CONFIG_HARDENED_USERCOPY */
4787
4788#define SHRINK_PROMOTE_MAX 32
4789
4790/*
4791 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4792 * up most to the head of the partial lists. New allocations will then
4793 * fill those up and thus they can be removed from the partial lists.
4794 *
4795 * The slabs with the least items are placed last. This results in them
4796 * being allocated from last increasing the chance that the last objects
4797 * are freed in them.
4798 */
4799static int __kmem_cache_do_shrink(struct kmem_cache *s)
4800{
4801	int node;
4802	int i;
4803	struct kmem_cache_node *n;
4804	struct slab *slab;
4805	struct slab *t;
4806	struct list_head discard;
4807	struct list_head promote[SHRINK_PROMOTE_MAX];
4808	unsigned long flags;
4809	int ret = 0;
4810
4811	for_each_kmem_cache_node(s, node, n) {
4812		INIT_LIST_HEAD(&discard);
4813		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4814			INIT_LIST_HEAD(promote + i);
4815
4816		spin_lock_irqsave(&n->list_lock, flags);
4817
4818		/*
4819		 * Build lists of slabs to discard or promote.
4820		 *
4821		 * Note that concurrent frees may occur while we hold the
4822		 * list_lock. slab->inuse here is the upper limit.
4823		 */
4824		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4825			int free = slab->objects - slab->inuse;
4826
4827			/* Do not reread slab->inuse */
4828			barrier();
4829
4830			/* We do not keep full slabs on the list */
4831			BUG_ON(free <= 0);
4832
4833			if (free == slab->objects) {
4834				list_move(&slab->slab_list, &discard);
4835				n->nr_partial--;
4836				dec_slabs_node(s, node, slab->objects);
4837			} else if (free <= SHRINK_PROMOTE_MAX)
4838				list_move(&slab->slab_list, promote + free - 1);
4839		}
4840
4841		/*
4842		 * Promote the slabs filled up most to the head of the
4843		 * partial list.
4844		 */
4845		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4846			list_splice(promote + i, &n->partial);
4847
4848		spin_unlock_irqrestore(&n->list_lock, flags);
4849
4850		/* Release empty slabs */
4851		list_for_each_entry_safe(slab, t, &discard, slab_list)
4852			free_slab(s, slab);
4853
4854		if (node_nr_slabs(n))
4855			ret = 1;
4856	}
4857
4858	return ret;
4859}
4860
4861int __kmem_cache_shrink(struct kmem_cache *s)
4862{
4863	flush_all(s);
4864	return __kmem_cache_do_shrink(s);
4865}
4866
4867static int slab_mem_going_offline_callback(void *arg)
4868{
4869	struct kmem_cache *s;
4870
4871	mutex_lock(&slab_mutex);
4872	list_for_each_entry(s, &slab_caches, list) {
4873		flush_all_cpus_locked(s);
4874		__kmem_cache_do_shrink(s);
4875	}
4876	mutex_unlock(&slab_mutex);
4877
4878	return 0;
4879}
4880
4881static void slab_mem_offline_callback(void *arg)
4882{
4883	struct memory_notify *marg = arg;
4884	int offline_node;
4885
4886	offline_node = marg->status_change_nid_normal;
4887
4888	/*
4889	 * If the node still has available memory. we need kmem_cache_node
4890	 * for it yet.
4891	 */
4892	if (offline_node < 0)
4893		return;
4894
4895	mutex_lock(&slab_mutex);
4896	node_clear(offline_node, slab_nodes);
4897	/*
4898	 * We no longer free kmem_cache_node structures here, as it would be
4899	 * racy with all get_node() users, and infeasible to protect them with
4900	 * slab_mutex.
4901	 */
4902	mutex_unlock(&slab_mutex);
4903}
4904
4905static int slab_mem_going_online_callback(void *arg)
4906{
4907	struct kmem_cache_node *n;
4908	struct kmem_cache *s;
4909	struct memory_notify *marg = arg;
4910	int nid = marg->status_change_nid_normal;
4911	int ret = 0;
4912
4913	/*
4914	 * If the node's memory is already available, then kmem_cache_node is
4915	 * already created. Nothing to do.
4916	 */
4917	if (nid < 0)
4918		return 0;
4919
4920	/*
4921	 * We are bringing a node online. No memory is available yet. We must
4922	 * allocate a kmem_cache_node structure in order to bring the node
4923	 * online.
4924	 */
4925	mutex_lock(&slab_mutex);
4926	list_for_each_entry(s, &slab_caches, list) {
4927		/*
4928		 * The structure may already exist if the node was previously
4929		 * onlined and offlined.
4930		 */
4931		if (get_node(s, nid))
4932			continue;
4933		/*
4934		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4935		 *      since memory is not yet available from the node that
4936		 *      is brought up.
4937		 */
4938		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4939		if (!n) {
4940			ret = -ENOMEM;
4941			goto out;
4942		}
4943		init_kmem_cache_node(n);
4944		s->node[nid] = n;
4945	}
4946	/*
4947	 * Any cache created after this point will also have kmem_cache_node
4948	 * initialized for the new node.
4949	 */
4950	node_set(nid, slab_nodes);
4951out:
4952	mutex_unlock(&slab_mutex);
4953	return ret;
4954}
4955
4956static int slab_memory_callback(struct notifier_block *self,
4957				unsigned long action, void *arg)
4958{
4959	int ret = 0;
4960
4961	switch (action) {
4962	case MEM_GOING_ONLINE:
4963		ret = slab_mem_going_online_callback(arg);
4964		break;
4965	case MEM_GOING_OFFLINE:
4966		ret = slab_mem_going_offline_callback(arg);
4967		break;
4968	case MEM_OFFLINE:
4969	case MEM_CANCEL_ONLINE:
4970		slab_mem_offline_callback(arg);
4971		break;
4972	case MEM_ONLINE:
4973	case MEM_CANCEL_OFFLINE:
4974		break;
4975	}
4976	if (ret)
4977		ret = notifier_from_errno(ret);
4978	else
4979		ret = NOTIFY_OK;
4980	return ret;
4981}
4982
4983/********************************************************************
4984 *			Basic setup of slabs
4985 *******************************************************************/
4986
4987/*
4988 * Used for early kmem_cache structures that were allocated using
4989 * the page allocator. Allocate them properly then fix up the pointers
4990 * that may be pointing to the wrong kmem_cache structure.
4991 */
4992
4993static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4994{
4995	int node;
4996	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4997	struct kmem_cache_node *n;
4998
4999	memcpy(s, static_cache, kmem_cache->object_size);
5000
5001	/*
5002	 * This runs very early, and only the boot processor is supposed to be
5003	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
5004	 * IPIs around.
5005	 */
5006	__flush_cpu_slab(s, smp_processor_id());
5007	for_each_kmem_cache_node(s, node, n) {
5008		struct slab *p;
5009
5010		list_for_each_entry(p, &n->partial, slab_list)
5011			p->slab_cache = s;
5012
5013#ifdef CONFIG_SLUB_DEBUG
5014		list_for_each_entry(p, &n->full, slab_list)
5015			p->slab_cache = s;
5016#endif
5017	}
5018	list_add(&s->list, &slab_caches);
5019	return s;
5020}
5021
5022void __init kmem_cache_init(void)
5023{
5024	static __initdata struct kmem_cache boot_kmem_cache,
5025		boot_kmem_cache_node;
5026	int node;
5027
5028	if (debug_guardpage_minorder())
5029		slub_max_order = 0;
5030
5031	/* Print slub debugging pointers without hashing */
5032	if (__slub_debug_enabled())
5033		no_hash_pointers_enable(NULL);
5034
5035	kmem_cache_node = &boot_kmem_cache_node;
5036	kmem_cache = &boot_kmem_cache;
5037
5038	/*
5039	 * Initialize the nodemask for which we will allocate per node
5040	 * structures. Here we don't need taking slab_mutex yet.
5041	 */
5042	for_each_node_state(node, N_NORMAL_MEMORY)
5043		node_set(node, slab_nodes);
5044
5045	create_boot_cache(kmem_cache_node, "kmem_cache_node",
5046		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
5047
5048	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5049
5050	/* Able to allocate the per node structures */
5051	slab_state = PARTIAL;
5052
5053	create_boot_cache(kmem_cache, "kmem_cache",
5054			offsetof(struct kmem_cache, node) +
5055				nr_node_ids * sizeof(struct kmem_cache_node *),
5056		       SLAB_HWCACHE_ALIGN, 0, 0);
5057
5058	kmem_cache = bootstrap(&boot_kmem_cache);
5059	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5060
5061	/* Now we can use the kmem_cache to allocate kmalloc slabs */
5062	setup_kmalloc_cache_index_table();
5063	create_kmalloc_caches(0);
5064
5065	/* Setup random freelists for each cache */
5066	init_freelist_randomization();
5067
5068	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5069				  slub_cpu_dead);
5070
5071	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5072		cache_line_size(),
5073		slub_min_order, slub_max_order, slub_min_objects,
5074		nr_cpu_ids, nr_node_ids);
5075}
5076
5077void __init kmem_cache_init_late(void)
5078{
5079#ifndef CONFIG_SLUB_TINY
5080	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5081	WARN_ON(!flushwq);
5082#endif
5083}
5084
5085struct kmem_cache *
5086__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5087		   slab_flags_t flags, void (*ctor)(void *))
5088{
5089	struct kmem_cache *s;
5090
5091	s = find_mergeable(size, align, flags, name, ctor);
5092	if (s) {
5093		if (sysfs_slab_alias(s, name))
5094			return NULL;
5095
5096		s->refcount++;
5097
5098		/*
5099		 * Adjust the object sizes so that we clear
5100		 * the complete object on kzalloc.
5101		 */
5102		s->object_size = max(s->object_size, size);
5103		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5104	}
5105
5106	return s;
5107}
5108
5109int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5110{
5111	int err;
5112
5113	err = kmem_cache_open(s, flags);
5114	if (err)
5115		return err;
5116
5117	/* Mutex is not taken during early boot */
5118	if (slab_state <= UP)
5119		return 0;
5120
5121	err = sysfs_slab_add(s);
5122	if (err) {
5123		__kmem_cache_release(s);
5124		return err;
5125	}
5126
5127	if (s->flags & SLAB_STORE_USER)
5128		debugfs_slab_add(s);
5129
5130	return 0;
5131}
5132
5133#ifdef SLAB_SUPPORTS_SYSFS
5134static int count_inuse(struct slab *slab)
5135{
5136	return slab->inuse;
5137}
5138
5139static int count_total(struct slab *slab)
5140{
5141	return slab->objects;
5142}
5143#endif
5144
5145#ifdef CONFIG_SLUB_DEBUG
5146static void validate_slab(struct kmem_cache *s, struct slab *slab,
5147			  unsigned long *obj_map)
5148{
5149	void *p;
5150	void *addr = slab_address(slab);
5151
5152	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5153		return;
5154
5155	/* Now we know that a valid freelist exists */
5156	__fill_map(obj_map, s, slab);
5157	for_each_object(p, s, addr, slab->objects) {
5158		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5159			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5160
5161		if (!check_object(s, slab, p, val))
5162			break;
5163	}
5164}
5165
5166static int validate_slab_node(struct kmem_cache *s,
5167		struct kmem_cache_node *n, unsigned long *obj_map)
5168{
5169	unsigned long count = 0;
5170	struct slab *slab;
5171	unsigned long flags;
5172
5173	spin_lock_irqsave(&n->list_lock, flags);
5174
5175	list_for_each_entry(slab, &n->partial, slab_list) {
5176		validate_slab(s, slab, obj_map);
5177		count++;
5178	}
5179	if (count != n->nr_partial) {
5180		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5181		       s->name, count, n->nr_partial);
5182		slab_add_kunit_errors();
5183	}
5184
5185	if (!(s->flags & SLAB_STORE_USER))
5186		goto out;
5187
5188	list_for_each_entry(slab, &n->full, slab_list) {
5189		validate_slab(s, slab, obj_map);
5190		count++;
5191	}
5192	if (count != node_nr_slabs(n)) {
5193		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5194		       s->name, count, node_nr_slabs(n));
5195		slab_add_kunit_errors();
5196	}
5197
5198out:
5199	spin_unlock_irqrestore(&n->list_lock, flags);
5200	return count;
5201}
5202
5203long validate_slab_cache(struct kmem_cache *s)
5204{
5205	int node;
5206	unsigned long count = 0;
5207	struct kmem_cache_node *n;
5208	unsigned long *obj_map;
5209
5210	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5211	if (!obj_map)
5212		return -ENOMEM;
5213
5214	flush_all(s);
5215	for_each_kmem_cache_node(s, node, n)
5216		count += validate_slab_node(s, n, obj_map);
5217
5218	bitmap_free(obj_map);
5219
5220	return count;
5221}
5222EXPORT_SYMBOL(validate_slab_cache);
5223
5224#ifdef CONFIG_DEBUG_FS
5225/*
5226 * Generate lists of code addresses where slabcache objects are allocated
5227 * and freed.
5228 */
5229
5230struct location {
5231	depot_stack_handle_t handle;
5232	unsigned long count;
5233	unsigned long addr;
5234	unsigned long waste;
5235	long long sum_time;
5236	long min_time;
5237	long max_time;
5238	long min_pid;
5239	long max_pid;
5240	DECLARE_BITMAP(cpus, NR_CPUS);
5241	nodemask_t nodes;
5242};
5243
5244struct loc_track {
5245	unsigned long max;
5246	unsigned long count;
5247	struct location *loc;
5248	loff_t idx;
5249};
5250
5251static struct dentry *slab_debugfs_root;
5252
5253static void free_loc_track(struct loc_track *t)
5254{
5255	if (t->max)
5256		free_pages((unsigned long)t->loc,
5257			get_order(sizeof(struct location) * t->max));
5258}
5259
5260static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5261{
5262	struct location *l;
5263	int order;
5264
5265	order = get_order(sizeof(struct location) * max);
5266
5267	l = (void *)__get_free_pages(flags, order);
5268	if (!l)
5269		return 0;
5270
5271	if (t->count) {
5272		memcpy(l, t->loc, sizeof(struct location) * t->count);
5273		free_loc_track(t);
5274	}
5275	t->max = max;
5276	t->loc = l;
5277	return 1;
5278}
5279
5280static int add_location(struct loc_track *t, struct kmem_cache *s,
5281				const struct track *track,
5282				unsigned int orig_size)
5283{
5284	long start, end, pos;
5285	struct location *l;
5286	unsigned long caddr, chandle, cwaste;
5287	unsigned long age = jiffies - track->when;
5288	depot_stack_handle_t handle = 0;
5289	unsigned int waste = s->object_size - orig_size;
5290
5291#ifdef CONFIG_STACKDEPOT
5292	handle = READ_ONCE(track->handle);
5293#endif
5294	start = -1;
5295	end = t->count;
5296
5297	for ( ; ; ) {
5298		pos = start + (end - start + 1) / 2;
5299
5300		/*
5301		 * There is nothing at "end". If we end up there
5302		 * we need to add something to before end.
5303		 */
5304		if (pos == end)
5305			break;
5306
5307		l = &t->loc[pos];
5308		caddr = l->addr;
5309		chandle = l->handle;
5310		cwaste = l->waste;
5311		if ((track->addr == caddr) && (handle == chandle) &&
5312			(waste == cwaste)) {
5313
5314			l->count++;
5315			if (track->when) {
5316				l->sum_time += age;
5317				if (age < l->min_time)
5318					l->min_time = age;
5319				if (age > l->max_time)
5320					l->max_time = age;
5321
5322				if (track->pid < l->min_pid)
5323					l->min_pid = track->pid;
5324				if (track->pid > l->max_pid)
5325					l->max_pid = track->pid;
5326
5327				cpumask_set_cpu(track->cpu,
5328						to_cpumask(l->cpus));
5329			}
5330			node_set(page_to_nid(virt_to_page(track)), l->nodes);
5331			return 1;
5332		}
5333
5334		if (track->addr < caddr)
5335			end = pos;
5336		else if (track->addr == caddr && handle < chandle)
5337			end = pos;
5338		else if (track->addr == caddr && handle == chandle &&
5339				waste < cwaste)
5340			end = pos;
5341		else
5342			start = pos;
5343	}
5344
5345	/*
5346	 * Not found. Insert new tracking element.
5347	 */
5348	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5349		return 0;
5350
5351	l = t->loc + pos;
5352	if (pos < t->count)
5353		memmove(l + 1, l,
5354			(t->count - pos) * sizeof(struct location));
5355	t->count++;
5356	l->count = 1;
5357	l->addr = track->addr;
5358	l->sum_time = age;
5359	l->min_time = age;
5360	l->max_time = age;
5361	l->min_pid = track->pid;
5362	l->max_pid = track->pid;
5363	l->handle = handle;
5364	l->waste = waste;
5365	cpumask_clear(to_cpumask(l->cpus));
5366	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5367	nodes_clear(l->nodes);
5368	node_set(page_to_nid(virt_to_page(track)), l->nodes);
5369	return 1;
5370}
5371
5372static void process_slab(struct loc_track *t, struct kmem_cache *s,
5373		struct slab *slab, enum track_item alloc,
5374		unsigned long *obj_map)
5375{
5376	void *addr = slab_address(slab);
5377	bool is_alloc = (alloc == TRACK_ALLOC);
5378	void *p;
5379
5380	__fill_map(obj_map, s, slab);
5381
5382	for_each_object(p, s, addr, slab->objects)
5383		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5384			add_location(t, s, get_track(s, p, alloc),
5385				     is_alloc ? get_orig_size(s, p) :
5386						s->object_size);
5387}
5388#endif  /* CONFIG_DEBUG_FS   */
5389#endif	/* CONFIG_SLUB_DEBUG */
5390
5391#ifdef SLAB_SUPPORTS_SYSFS
5392enum slab_stat_type {
5393	SL_ALL,			/* All slabs */
5394	SL_PARTIAL,		/* Only partially allocated slabs */
5395	SL_CPU,			/* Only slabs used for cpu caches */
5396	SL_OBJECTS,		/* Determine allocated objects not slabs */
5397	SL_TOTAL		/* Determine object capacity not slabs */
5398};
5399
5400#define SO_ALL		(1 << SL_ALL)
5401#define SO_PARTIAL	(1 << SL_PARTIAL)
5402#define SO_CPU		(1 << SL_CPU)
5403#define SO_OBJECTS	(1 << SL_OBJECTS)
5404#define SO_TOTAL	(1 << SL_TOTAL)
5405
5406static ssize_t show_slab_objects(struct kmem_cache *s,
5407				 char *buf, unsigned long flags)
5408{
5409	unsigned long total = 0;
5410	int node;
5411	int x;
5412	unsigned long *nodes;
5413	int len = 0;
5414
5415	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5416	if (!nodes)
5417		return -ENOMEM;
5418
5419	if (flags & SO_CPU) {
5420		int cpu;
5421
5422		for_each_possible_cpu(cpu) {
5423			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5424							       cpu);
5425			int node;
5426			struct slab *slab;
5427
5428			slab = READ_ONCE(c->slab);
5429			if (!slab)
5430				continue;
5431
5432			node = slab_nid(slab);
5433			if (flags & SO_TOTAL)
5434				x = slab->objects;
5435			else if (flags & SO_OBJECTS)
5436				x = slab->inuse;
5437			else
5438				x = 1;
5439
5440			total += x;
5441			nodes[node] += x;
5442
5443#ifdef CONFIG_SLUB_CPU_PARTIAL
5444			slab = slub_percpu_partial_read_once(c);
5445			if (slab) {
5446				node = slab_nid(slab);
5447				if (flags & SO_TOTAL)
5448					WARN_ON_ONCE(1);
5449				else if (flags & SO_OBJECTS)
5450					WARN_ON_ONCE(1);
5451				else
5452					x = slab->slabs;
5453				total += x;
5454				nodes[node] += x;
5455			}
5456#endif
5457		}
5458	}
5459
5460	/*
5461	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5462	 * already held which will conflict with an existing lock order:
5463	 *
5464	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5465	 *
5466	 * We don't really need mem_hotplug_lock (to hold off
5467	 * slab_mem_going_offline_callback) here because slab's memory hot
5468	 * unplug code doesn't destroy the kmem_cache->node[] data.
5469	 */
5470
5471#ifdef CONFIG_SLUB_DEBUG
5472	if (flags & SO_ALL) {
5473		struct kmem_cache_node *n;
5474
5475		for_each_kmem_cache_node(s, node, n) {
5476
5477			if (flags & SO_TOTAL)
5478				x = node_nr_objs(n);
5479			else if (flags & SO_OBJECTS)
5480				x = node_nr_objs(n) - count_partial(n, count_free);
5481			else
5482				x = node_nr_slabs(n);
5483			total += x;
5484			nodes[node] += x;
5485		}
5486
5487	} else
5488#endif
5489	if (flags & SO_PARTIAL) {
5490		struct kmem_cache_node *n;
5491
5492		for_each_kmem_cache_node(s, node, n) {
5493			if (flags & SO_TOTAL)
5494				x = count_partial(n, count_total);
5495			else if (flags & SO_OBJECTS)
5496				x = count_partial(n, count_inuse);
5497			else
5498				x = n->nr_partial;
5499			total += x;
5500			nodes[node] += x;
5501		}
5502	}
5503
5504	len += sysfs_emit_at(buf, len, "%lu", total);
5505#ifdef CONFIG_NUMA
5506	for (node = 0; node < nr_node_ids; node++) {
5507		if (nodes[node])
5508			len += sysfs_emit_at(buf, len, " N%d=%lu",
5509					     node, nodes[node]);
5510	}
5511#endif
5512	len += sysfs_emit_at(buf, len, "\n");
5513	kfree(nodes);
5514
5515	return len;
5516}
5517
5518#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5519#define to_slab(n) container_of(n, struct kmem_cache, kobj)
5520
5521struct slab_attribute {
5522	struct attribute attr;
5523	ssize_t (*show)(struct kmem_cache *s, char *buf);
5524	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5525};
5526
5527#define SLAB_ATTR_RO(_name) \
5528	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
5529
5530#define SLAB_ATTR(_name) \
5531	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
5532
5533static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5534{
5535	return sysfs_emit(buf, "%u\n", s->size);
5536}
5537SLAB_ATTR_RO(slab_size);
5538
5539static ssize_t align_show(struct kmem_cache *s, char *buf)
5540{
5541	return sysfs_emit(buf, "%u\n", s->align);
5542}
5543SLAB_ATTR_RO(align);
5544
5545static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5546{
5547	return sysfs_emit(buf, "%u\n", s->object_size);
5548}
5549SLAB_ATTR_RO(object_size);
5550
5551static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5552{
5553	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5554}
5555SLAB_ATTR_RO(objs_per_slab);
5556
5557static ssize_t order_show(struct kmem_cache *s, char *buf)
5558{
5559	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5560}
5561SLAB_ATTR_RO(order);
5562
5563static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5564{
5565	return sysfs_emit(buf, "%lu\n", s->min_partial);
5566}
5567
5568static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5569				 size_t length)
5570{
5571	unsigned long min;
5572	int err;
5573
5574	err = kstrtoul(buf, 10, &min);
5575	if (err)
5576		return err;
5577
5578	s->min_partial = min;
5579	return length;
5580}
5581SLAB_ATTR(min_partial);
5582
5583static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5584{
5585	unsigned int nr_partial = 0;
5586#ifdef CONFIG_SLUB_CPU_PARTIAL
5587	nr_partial = s->cpu_partial;
5588#endif
5589
5590	return sysfs_emit(buf, "%u\n", nr_partial);
5591}
5592
5593static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5594				 size_t length)
5595{
5596	unsigned int objects;
5597	int err;
5598
5599	err = kstrtouint(buf, 10, &objects);
5600	if (err)
5601		return err;
5602	if (objects && !kmem_cache_has_cpu_partial(s))
5603		return -EINVAL;
5604
5605	slub_set_cpu_partial(s, objects);
5606	flush_all(s);
5607	return length;
5608}
5609SLAB_ATTR(cpu_partial);
5610
5611static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5612{
5613	if (!s->ctor)
5614		return 0;
5615	return sysfs_emit(buf, "%pS\n", s->ctor);
5616}
5617SLAB_ATTR_RO(ctor);
5618
5619static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5620{
5621	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5622}
5623SLAB_ATTR_RO(aliases);
5624
5625static ssize_t partial_show(struct kmem_cache *s, char *buf)
5626{
5627	return show_slab_objects(s, buf, SO_PARTIAL);
5628}
5629SLAB_ATTR_RO(partial);
5630
5631static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5632{
5633	return show_slab_objects(s, buf, SO_CPU);
5634}
5635SLAB_ATTR_RO(cpu_slabs);
5636
5637static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5638{
5639	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5640}
5641SLAB_ATTR_RO(objects_partial);
5642
5643static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5644{
5645	int objects = 0;
5646	int slabs = 0;
5647	int cpu __maybe_unused;
5648	int len = 0;
5649
5650#ifdef CONFIG_SLUB_CPU_PARTIAL
5651	for_each_online_cpu(cpu) {
5652		struct slab *slab;
5653
5654		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5655
5656		if (slab)
5657			slabs += slab->slabs;
5658	}
5659#endif
5660
5661	/* Approximate half-full slabs, see slub_set_cpu_partial() */
5662	objects = (slabs * oo_objects(s->oo)) / 2;
5663	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5664
5665#ifdef CONFIG_SLUB_CPU_PARTIAL
5666	for_each_online_cpu(cpu) {
5667		struct slab *slab;
5668
5669		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5670		if (slab) {
5671			slabs = READ_ONCE(slab->slabs);
5672			objects = (slabs * oo_objects(s->oo)) / 2;
5673			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5674					     cpu, objects, slabs);
5675		}
5676	}
5677#endif
5678	len += sysfs_emit_at(buf, len, "\n");
5679
5680	return len;
5681}
5682SLAB_ATTR_RO(slabs_cpu_partial);
5683
5684static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5685{
5686	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5687}
5688SLAB_ATTR_RO(reclaim_account);
5689
5690static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5691{
5692	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5693}
5694SLAB_ATTR_RO(hwcache_align);
5695
5696#ifdef CONFIG_ZONE_DMA
5697static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5698{
5699	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5700}
5701SLAB_ATTR_RO(cache_dma);
5702#endif
5703
5704#ifdef CONFIG_HARDENED_USERCOPY
5705static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5706{
5707	return sysfs_emit(buf, "%u\n", s->usersize);
5708}
5709SLAB_ATTR_RO(usersize);
5710#endif
5711
5712static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5713{
5714	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5715}
5716SLAB_ATTR_RO(destroy_by_rcu);
5717
5718#ifdef CONFIG_SLUB_DEBUG
5719static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5720{
5721	return show_slab_objects(s, buf, SO_ALL);
5722}
5723SLAB_ATTR_RO(slabs);
5724
5725static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5726{
5727	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5728}
5729SLAB_ATTR_RO(total_objects);
5730
5731static ssize_t objects_show(struct kmem_cache *s, char *buf)
5732{
5733	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5734}
5735SLAB_ATTR_RO(objects);
5736
5737static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5738{
5739	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5740}
5741SLAB_ATTR_RO(sanity_checks);
5742
5743static ssize_t trace_show(struct kmem_cache *s, char *buf)
5744{
5745	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5746}
5747SLAB_ATTR_RO(trace);
5748
5749static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5750{
5751	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5752}
5753
5754SLAB_ATTR_RO(red_zone);
5755
5756static ssize_t poison_show(struct kmem_cache *s, char *buf)
5757{
5758	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5759}
5760
5761SLAB_ATTR_RO(poison);
5762
5763static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5764{
5765	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5766}
5767
5768SLAB_ATTR_RO(store_user);
5769
5770static ssize_t validate_show(struct kmem_cache *s, char *buf)
5771{
5772	return 0;
5773}
5774
5775static ssize_t validate_store(struct kmem_cache *s,
5776			const char *buf, size_t length)
5777{
5778	int ret = -EINVAL;
5779
5780	if (buf[0] == '1' && kmem_cache_debug(s)) {
5781		ret = validate_slab_cache(s);
5782		if (ret >= 0)
5783			ret = length;
5784	}
5785	return ret;
5786}
5787SLAB_ATTR(validate);
5788
5789#endif /* CONFIG_SLUB_DEBUG */
5790
5791#ifdef CONFIG_FAILSLAB
5792static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5793{
5794	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5795}
5796
5797static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5798				size_t length)
5799{
5800	if (s->refcount > 1)
5801		return -EINVAL;
5802
5803	if (buf[0] == '1')
5804		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
5805	else
5806		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
5807
5808	return length;
5809}
5810SLAB_ATTR(failslab);
5811#endif
5812
5813static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5814{
5815	return 0;
5816}
5817
5818static ssize_t shrink_store(struct kmem_cache *s,
5819			const char *buf, size_t length)
5820{
5821	if (buf[0] == '1')
5822		kmem_cache_shrink(s);
5823	else
5824		return -EINVAL;
5825	return length;
5826}
5827SLAB_ATTR(shrink);
5828
5829#ifdef CONFIG_NUMA
5830static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5831{
5832	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5833}
5834
5835static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5836				const char *buf, size_t length)
5837{
5838	unsigned int ratio;
5839	int err;
5840
5841	err = kstrtouint(buf, 10, &ratio);
5842	if (err)
5843		return err;
5844	if (ratio > 100)
5845		return -ERANGE;
5846
5847	s->remote_node_defrag_ratio = ratio * 10;
5848
5849	return length;
5850}
5851SLAB_ATTR(remote_node_defrag_ratio);
5852#endif
5853
5854#ifdef CONFIG_SLUB_STATS
5855static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5856{
5857	unsigned long sum  = 0;
5858	int cpu;
5859	int len = 0;
5860	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5861
5862	if (!data)
5863		return -ENOMEM;
5864
5865	for_each_online_cpu(cpu) {
5866		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5867
5868		data[cpu] = x;
5869		sum += x;
5870	}
5871
5872	len += sysfs_emit_at(buf, len, "%lu", sum);
5873
5874#ifdef CONFIG_SMP
5875	for_each_online_cpu(cpu) {
5876		if (data[cpu])
5877			len += sysfs_emit_at(buf, len, " C%d=%u",
5878					     cpu, data[cpu]);
5879	}
5880#endif
5881	kfree(data);
5882	len += sysfs_emit_at(buf, len, "\n");
5883
5884	return len;
5885}
5886
5887static void clear_stat(struct kmem_cache *s, enum stat_item si)
5888{
5889	int cpu;
5890
5891	for_each_online_cpu(cpu)
5892		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5893}
5894
5895#define STAT_ATTR(si, text) 					\
5896static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5897{								\
5898	return show_stat(s, buf, si);				\
5899}								\
5900static ssize_t text##_store(struct kmem_cache *s,		\
5901				const char *buf, size_t length)	\
5902{								\
5903	if (buf[0] != '0')					\
5904		return -EINVAL;					\
5905	clear_stat(s, si);					\
5906	return length;						\
5907}								\
5908SLAB_ATTR(text);						\
5909
5910STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5911STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5912STAT_ATTR(FREE_FASTPATH, free_fastpath);
5913STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5914STAT_ATTR(FREE_FROZEN, free_frozen);
5915STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5916STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5917STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5918STAT_ATTR(ALLOC_SLAB, alloc_slab);
5919STAT_ATTR(ALLOC_REFILL, alloc_refill);
5920STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5921STAT_ATTR(FREE_SLAB, free_slab);
5922STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5923STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5924STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5925STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5926STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5927STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5928STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5929STAT_ATTR(ORDER_FALLBACK, order_fallback);
5930STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5931STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5932STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5933STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5934STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5935STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5936#endif	/* CONFIG_SLUB_STATS */
5937
5938#ifdef CONFIG_KFENCE
5939static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
5940{
5941	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
5942}
5943
5944static ssize_t skip_kfence_store(struct kmem_cache *s,
5945			const char *buf, size_t length)
5946{
5947	int ret = length;
5948
5949	if (buf[0] == '0')
5950		s->flags &= ~SLAB_SKIP_KFENCE;
5951	else if (buf[0] == '1')
5952		s->flags |= SLAB_SKIP_KFENCE;
5953	else
5954		ret = -EINVAL;
5955
5956	return ret;
5957}
5958SLAB_ATTR(skip_kfence);
5959#endif
5960
5961static struct attribute *slab_attrs[] = {
5962	&slab_size_attr.attr,
5963	&object_size_attr.attr,
5964	&objs_per_slab_attr.attr,
5965	&order_attr.attr,
5966	&min_partial_attr.attr,
5967	&cpu_partial_attr.attr,
5968	&objects_partial_attr.attr,
5969	&partial_attr.attr,
5970	&cpu_slabs_attr.attr,
5971	&ctor_attr.attr,
5972	&aliases_attr.attr,
5973	&align_attr.attr,
5974	&hwcache_align_attr.attr,
5975	&reclaim_account_attr.attr,
5976	&destroy_by_rcu_attr.attr,
5977	&shrink_attr.attr,
5978	&slabs_cpu_partial_attr.attr,
5979#ifdef CONFIG_SLUB_DEBUG
5980	&total_objects_attr.attr,
5981	&objects_attr.attr,
5982	&slabs_attr.attr,
5983	&sanity_checks_attr.attr,
5984	&trace_attr.attr,
5985	&red_zone_attr.attr,
5986	&poison_attr.attr,
5987	&store_user_attr.attr,
5988	&validate_attr.attr,
5989#endif
5990#ifdef CONFIG_ZONE_DMA
5991	&cache_dma_attr.attr,
5992#endif
5993#ifdef CONFIG_NUMA
5994	&remote_node_defrag_ratio_attr.attr,
5995#endif
5996#ifdef CONFIG_SLUB_STATS
5997	&alloc_fastpath_attr.attr,
5998	&alloc_slowpath_attr.attr,
5999	&free_fastpath_attr.attr,
6000	&free_slowpath_attr.attr,
6001	&free_frozen_attr.attr,
6002	&free_add_partial_attr.attr,
6003	&free_remove_partial_attr.attr,
6004	&alloc_from_partial_attr.attr,
6005	&alloc_slab_attr.attr,
6006	&alloc_refill_attr.attr,
6007	&alloc_node_mismatch_attr.attr,
6008	&free_slab_attr.attr,
6009	&cpuslab_flush_attr.attr,
6010	&deactivate_full_attr.attr,
6011	&deactivate_empty_attr.attr,
6012	&deactivate_to_head_attr.attr,
6013	&deactivate_to_tail_attr.attr,
6014	&deactivate_remote_frees_attr.attr,
6015	&deactivate_bypass_attr.attr,
6016	&order_fallback_attr.attr,
6017	&cmpxchg_double_fail_attr.attr,
6018	&cmpxchg_double_cpu_fail_attr.attr,
6019	&cpu_partial_alloc_attr.attr,
6020	&cpu_partial_free_attr.attr,
6021	&cpu_partial_node_attr.attr,
6022	&cpu_partial_drain_attr.attr,
6023#endif
6024#ifdef CONFIG_FAILSLAB
6025	&failslab_attr.attr,
6026#endif
6027#ifdef CONFIG_HARDENED_USERCOPY
6028	&usersize_attr.attr,
6029#endif
6030#ifdef CONFIG_KFENCE
6031	&skip_kfence_attr.attr,
6032#endif
6033
6034	NULL
6035};
6036
6037static const struct attribute_group slab_attr_group = {
6038	.attrs = slab_attrs,
6039};
6040
6041static ssize_t slab_attr_show(struct kobject *kobj,
6042				struct attribute *attr,
6043				char *buf)
6044{
6045	struct slab_attribute *attribute;
6046	struct kmem_cache *s;
6047
6048	attribute = to_slab_attr(attr);
6049	s = to_slab(kobj);
6050
6051	if (!attribute->show)
6052		return -EIO;
6053
6054	return attribute->show(s, buf);
6055}
6056
6057static ssize_t slab_attr_store(struct kobject *kobj,
6058				struct attribute *attr,
6059				const char *buf, size_t len)
6060{
6061	struct slab_attribute *attribute;
6062	struct kmem_cache *s;
6063
6064	attribute = to_slab_attr(attr);
6065	s = to_slab(kobj);
6066
6067	if (!attribute->store)
6068		return -EIO;
6069
6070	return attribute->store(s, buf, len);
6071}
6072
6073static void kmem_cache_release(struct kobject *k)
6074{
6075	slab_kmem_cache_release(to_slab(k));
6076}
6077
6078static const struct sysfs_ops slab_sysfs_ops = {
6079	.show = slab_attr_show,
6080	.store = slab_attr_store,
6081};
6082
6083static const struct kobj_type slab_ktype = {
6084	.sysfs_ops = &slab_sysfs_ops,
6085	.release = kmem_cache_release,
6086};
6087
6088static struct kset *slab_kset;
6089
6090static inline struct kset *cache_kset(struct kmem_cache *s)
6091{
6092	return slab_kset;
6093}
6094
6095#define ID_STR_LENGTH 32
6096
6097/* Create a unique string id for a slab cache:
6098 *
6099 * Format	:[flags-]size
6100 */
6101static char *create_unique_id(struct kmem_cache *s)
6102{
6103	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6104	char *p = name;
6105
6106	if (!name)
6107		return ERR_PTR(-ENOMEM);
6108
6109	*p++ = ':';
6110	/*
6111	 * First flags affecting slabcache operations. We will only
6112	 * get here for aliasable slabs so we do not need to support
6113	 * too many flags. The flags here must cover all flags that
6114	 * are matched during merging to guarantee that the id is
6115	 * unique.
6116	 */
6117	if (s->flags & SLAB_CACHE_DMA)
6118		*p++ = 'd';
6119	if (s->flags & SLAB_CACHE_DMA32)
6120		*p++ = 'D';
6121	if (s->flags & SLAB_RECLAIM_ACCOUNT)
6122		*p++ = 'a';
6123	if (s->flags & SLAB_CONSISTENCY_CHECKS)
6124		*p++ = 'F';
6125	if (s->flags & SLAB_ACCOUNT)
6126		*p++ = 'A';
6127	if (p != name + 1)
6128		*p++ = '-';
6129	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6130
6131	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6132		kfree(name);
6133		return ERR_PTR(-EINVAL);
6134	}
6135	kmsan_unpoison_memory(name, p - name);
6136	return name;
6137}
6138
6139static int sysfs_slab_add(struct kmem_cache *s)
6140{
6141	int err;
6142	const char *name;
6143	struct kset *kset = cache_kset(s);
6144	int unmergeable = slab_unmergeable(s);
6145
6146	if (!unmergeable && disable_higher_order_debug &&
6147			(slub_debug & DEBUG_METADATA_FLAGS))
6148		unmergeable = 1;
6149
6150	if (unmergeable) {
6151		/*
6152		 * Slabcache can never be merged so we can use the name proper.
6153		 * This is typically the case for debug situations. In that
6154		 * case we can catch duplicate names easily.
6155		 */
6156		sysfs_remove_link(&slab_kset->kobj, s->name);
6157		name = s->name;
6158	} else {
6159		/*
6160		 * Create a unique name for the slab as a target
6161		 * for the symlinks.
6162		 */
6163		name = create_unique_id(s);
6164		if (IS_ERR(name))
6165			return PTR_ERR(name);
6166	}
6167
6168	s->kobj.kset = kset;
6169	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6170	if (err)
6171		goto out;
6172
6173	err = sysfs_create_group(&s->kobj, &slab_attr_group);
6174	if (err)
6175		goto out_del_kobj;
6176
6177	if (!unmergeable) {
6178		/* Setup first alias */
6179		sysfs_slab_alias(s, s->name);
6180	}
6181out:
6182	if (!unmergeable)
6183		kfree(name);
6184	return err;
6185out_del_kobj:
6186	kobject_del(&s->kobj);
6187	goto out;
6188}
6189
6190void sysfs_slab_unlink(struct kmem_cache *s)
6191{
6192	if (slab_state >= FULL)
6193		kobject_del(&s->kobj);
6194}
6195
6196void sysfs_slab_release(struct kmem_cache *s)
6197{
6198	if (slab_state >= FULL)
6199		kobject_put(&s->kobj);
6200}
6201
6202/*
6203 * Need to buffer aliases during bootup until sysfs becomes
6204 * available lest we lose that information.
6205 */
6206struct saved_alias {
6207	struct kmem_cache *s;
6208	const char *name;
6209	struct saved_alias *next;
6210};
6211
6212static struct saved_alias *alias_list;
6213
6214static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6215{
6216	struct saved_alias *al;
6217
6218	if (slab_state == FULL) {
6219		/*
6220		 * If we have a leftover link then remove it.
6221		 */
6222		sysfs_remove_link(&slab_kset->kobj, name);
6223		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6224	}
6225
6226	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6227	if (!al)
6228		return -ENOMEM;
6229
6230	al->s = s;
6231	al->name = name;
6232	al->next = alias_list;
6233	alias_list = al;
6234	kmsan_unpoison_memory(al, sizeof(*al));
6235	return 0;
6236}
6237
6238static int __init slab_sysfs_init(void)
6239{
6240	struct kmem_cache *s;
6241	int err;
6242
6243	mutex_lock(&slab_mutex);
6244
6245	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6246	if (!slab_kset) {
6247		mutex_unlock(&slab_mutex);
6248		pr_err("Cannot register slab subsystem.\n");
6249		return -ENOMEM;
6250	}
6251
6252	slab_state = FULL;
6253
6254	list_for_each_entry(s, &slab_caches, list) {
6255		err = sysfs_slab_add(s);
6256		if (err)
6257			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6258			       s->name);
6259	}
6260
6261	while (alias_list) {
6262		struct saved_alias *al = alias_list;
6263
6264		alias_list = alias_list->next;
6265		err = sysfs_slab_alias(al->s, al->name);
6266		if (err)
6267			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6268			       al->name);
6269		kfree(al);
6270	}
6271
6272	mutex_unlock(&slab_mutex);
6273	return 0;
6274}
6275late_initcall(slab_sysfs_init);
6276#endif /* SLAB_SUPPORTS_SYSFS */
6277
6278#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6279static int slab_debugfs_show(struct seq_file *seq, void *v)
6280{
6281	struct loc_track *t = seq->private;
6282	struct location *l;
6283	unsigned long idx;
6284
6285	idx = (unsigned long) t->idx;
6286	if (idx < t->count) {
6287		l = &t->loc[idx];
6288
6289		seq_printf(seq, "%7ld ", l->count);
6290
6291		if (l->addr)
6292			seq_printf(seq, "%pS", (void *)l->addr);
6293		else
6294			seq_puts(seq, "<not-available>");
6295
6296		if (l->waste)
6297			seq_printf(seq, " waste=%lu/%lu",
6298				l->count * l->waste, l->waste);
6299
6300		if (l->sum_time != l->min_time) {
6301			seq_printf(seq, " age=%ld/%llu/%ld",
6302				l->min_time, div_u64(l->sum_time, l->count),
6303				l->max_time);
6304		} else
6305			seq_printf(seq, " age=%ld", l->min_time);
6306
6307		if (l->min_pid != l->max_pid)
6308			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6309		else
6310			seq_printf(seq, " pid=%ld",
6311				l->min_pid);
6312
6313		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6314			seq_printf(seq, " cpus=%*pbl",
6315				 cpumask_pr_args(to_cpumask(l->cpus)));
6316
6317		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6318			seq_printf(seq, " nodes=%*pbl",
6319				 nodemask_pr_args(&l->nodes));
6320
6321#ifdef CONFIG_STACKDEPOT
6322		{
6323			depot_stack_handle_t handle;
6324			unsigned long *entries;
6325			unsigned int nr_entries, j;
6326
6327			handle = READ_ONCE(l->handle);
6328			if (handle) {
6329				nr_entries = stack_depot_fetch(handle, &entries);
6330				seq_puts(seq, "\n");
6331				for (j = 0; j < nr_entries; j++)
6332					seq_printf(seq, "        %pS\n", (void *)entries[j]);
6333			}
6334		}
6335#endif
6336		seq_puts(seq, "\n");
6337	}
6338
6339	if (!idx && !t->count)
6340		seq_puts(seq, "No data\n");
6341
6342	return 0;
6343}
6344
6345static void slab_debugfs_stop(struct seq_file *seq, void *v)
6346{
6347}
6348
6349static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6350{
6351	struct loc_track *t = seq->private;
6352
6353	t->idx = ++(*ppos);
6354	if (*ppos <= t->count)
6355		return ppos;
6356
6357	return NULL;
6358}
6359
6360static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6361{
6362	struct location *loc1 = (struct location *)a;
6363	struct location *loc2 = (struct location *)b;
6364
6365	if (loc1->count > loc2->count)
6366		return -1;
6367	else
6368		return 1;
6369}
6370
6371static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6372{
6373	struct loc_track *t = seq->private;
6374
6375	t->idx = *ppos;
6376	return ppos;
6377}
6378
6379static const struct seq_operations slab_debugfs_sops = {
6380	.start  = slab_debugfs_start,
6381	.next   = slab_debugfs_next,
6382	.stop   = slab_debugfs_stop,
6383	.show   = slab_debugfs_show,
6384};
6385
6386static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6387{
6388
6389	struct kmem_cache_node *n;
6390	enum track_item alloc;
6391	int node;
6392	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6393						sizeof(struct loc_track));
6394	struct kmem_cache *s = file_inode(filep)->i_private;
6395	unsigned long *obj_map;
6396
6397	if (!t)
6398		return -ENOMEM;
6399
6400	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6401	if (!obj_map) {
6402		seq_release_private(inode, filep);
6403		return -ENOMEM;
6404	}
6405
6406	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6407		alloc = TRACK_ALLOC;
6408	else
6409		alloc = TRACK_FREE;
6410
6411	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6412		bitmap_free(obj_map);
6413		seq_release_private(inode, filep);
6414		return -ENOMEM;
6415	}
6416
6417	for_each_kmem_cache_node(s, node, n) {
6418		unsigned long flags;
6419		struct slab *slab;
6420
6421		if (!node_nr_slabs(n))
6422			continue;
6423
6424		spin_lock_irqsave(&n->list_lock, flags);
6425		list_for_each_entry(slab, &n->partial, slab_list)
6426			process_slab(t, s, slab, alloc, obj_map);
6427		list_for_each_entry(slab, &n->full, slab_list)
6428			process_slab(t, s, slab, alloc, obj_map);
6429		spin_unlock_irqrestore(&n->list_lock, flags);
6430	}
6431
6432	/* Sort locations by count */
6433	sort_r(t->loc, t->count, sizeof(struct location),
6434		cmp_loc_by_count, NULL, NULL);
6435
6436	bitmap_free(obj_map);
6437	return 0;
6438}
6439
6440static int slab_debug_trace_release(struct inode *inode, struct file *file)
6441{
6442	struct seq_file *seq = file->private_data;
6443	struct loc_track *t = seq->private;
6444
6445	free_loc_track(t);
6446	return seq_release_private(inode, file);
6447}
6448
6449static const struct file_operations slab_debugfs_fops = {
6450	.open    = slab_debug_trace_open,
6451	.read    = seq_read,
6452	.llseek  = seq_lseek,
6453	.release = slab_debug_trace_release,
6454};
6455
6456static void debugfs_slab_add(struct kmem_cache *s)
6457{
6458	struct dentry *slab_cache_dir;
6459
6460	if (unlikely(!slab_debugfs_root))
6461		return;
6462
6463	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6464
6465	debugfs_create_file("alloc_traces", 0400,
6466		slab_cache_dir, s, &slab_debugfs_fops);
6467
6468	debugfs_create_file("free_traces", 0400,
6469		slab_cache_dir, s, &slab_debugfs_fops);
6470}
6471
6472void debugfs_slab_release(struct kmem_cache *s)
6473{
6474	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
6475}
6476
6477static int __init slab_debugfs_init(void)
6478{
6479	struct kmem_cache *s;
6480
6481	slab_debugfs_root = debugfs_create_dir("slab", NULL);
6482
6483	list_for_each_entry(s, &slab_caches, list)
6484		if (s->flags & SLAB_STORE_USER)
6485			debugfs_slab_add(s);
6486
6487	return 0;
6488
6489}
6490__initcall(slab_debugfs_init);
6491#endif
6492/*
6493 * The /proc/slabinfo ABI
6494 */
6495#ifdef CONFIG_SLUB_DEBUG
6496void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6497{
6498	unsigned long nr_slabs = 0;
6499	unsigned long nr_objs = 0;
6500	unsigned long nr_free = 0;
6501	int node;
6502	struct kmem_cache_node *n;
6503
6504	for_each_kmem_cache_node(s, node, n) {
6505		nr_slabs += node_nr_slabs(n);
6506		nr_objs += node_nr_objs(n);
6507		nr_free += count_partial(n, count_free);
6508	}
6509
6510	sinfo->active_objs = nr_objs - nr_free;
6511	sinfo->num_objs = nr_objs;
6512	sinfo->active_slabs = nr_slabs;
6513	sinfo->num_slabs = nr_slabs;
6514	sinfo->objects_per_slab = oo_objects(s->oo);
6515	sinfo->cache_order = oo_order(s->oo);
6516}
6517
6518void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6519{
6520}
6521
6522ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6523		       size_t count, loff_t *ppos)
6524{
6525	return -EIO;
6526}
6527#endif /* CONFIG_SLUB_DEBUG */
6528