1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef MM_SLAB_H
3#define MM_SLAB_H
4
5#include <linux/reciprocal_div.h>
6#include <linux/list_lru.h>
7#include <linux/local_lock.h>
8#include <linux/random.h>
9#include <linux/kobject.h>
10#include <linux/sched/mm.h>
11#include <linux/memcontrol.h>
12#include <linux/kfence.h>
13#include <linux/kasan.h>
14
15/*
16 * Internal slab definitions
17 */
18
19#ifdef CONFIG_64BIT
20# ifdef system_has_cmpxchg128
21# define system_has_freelist_aba()	system_has_cmpxchg128()
22# define try_cmpxchg_freelist		try_cmpxchg128
23# endif
24#define this_cpu_try_cmpxchg_freelist	this_cpu_try_cmpxchg128
25typedef u128 freelist_full_t;
26#else /* CONFIG_64BIT */
27# ifdef system_has_cmpxchg64
28# define system_has_freelist_aba()	system_has_cmpxchg64()
29# define try_cmpxchg_freelist		try_cmpxchg64
30# endif
31#define this_cpu_try_cmpxchg_freelist	this_cpu_try_cmpxchg64
32typedef u64 freelist_full_t;
33#endif /* CONFIG_64BIT */
34
35#if defined(system_has_freelist_aba) && !defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
36#undef system_has_freelist_aba
37#endif
38
39/*
40 * Freelist pointer and counter to cmpxchg together, avoids the typical ABA
41 * problems with cmpxchg of just a pointer.
42 */
43typedef union {
44	struct {
45		void *freelist;
46		unsigned long counter;
47	};
48	freelist_full_t full;
49} freelist_aba_t;
50
51/* Reuses the bits in struct page */
52struct slab {
53	unsigned long __page_flags;
54
55	struct kmem_cache *slab_cache;
56	union {
57		struct {
58			union {
59				struct list_head slab_list;
60#ifdef CONFIG_SLUB_CPU_PARTIAL
61				struct {
62					struct slab *next;
63					int slabs;	/* Nr of slabs left */
64				};
65#endif
66			};
67			/* Double-word boundary */
68			union {
69				struct {
70					void *freelist;		/* first free object */
71					union {
72						unsigned long counters;
73						struct {
74							unsigned inuse:16;
75							unsigned objects:15;
76							unsigned frozen:1;
77						};
78					};
79				};
80#ifdef system_has_freelist_aba
81				freelist_aba_t freelist_counter;
82#endif
83			};
84		};
85		struct rcu_head rcu_head;
86	};
87	unsigned int __unused;
88
89	atomic_t __page_refcount;
90#ifdef CONFIG_MEMCG
91	unsigned long memcg_data;
92#endif
93};
94
95#define SLAB_MATCH(pg, sl)						\
96	static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
97SLAB_MATCH(flags, __page_flags);
98SLAB_MATCH(compound_head, slab_cache);	/* Ensure bit 0 is clear */
99SLAB_MATCH(_refcount, __page_refcount);
100#ifdef CONFIG_MEMCG
101SLAB_MATCH(memcg_data, memcg_data);
102#endif
103#undef SLAB_MATCH
104static_assert(sizeof(struct slab) <= sizeof(struct page));
105#if defined(system_has_freelist_aba)
106static_assert(IS_ALIGNED(offsetof(struct slab, freelist), sizeof(freelist_aba_t)));
107#endif
108
109/**
110 * folio_slab - Converts from folio to slab.
111 * @folio: The folio.
112 *
113 * Currently struct slab is a different representation of a folio where
114 * folio_test_slab() is true.
115 *
116 * Return: The slab which contains this folio.
117 */
118#define folio_slab(folio)	(_Generic((folio),			\
119	const struct folio *:	(const struct slab *)(folio),		\
120	struct folio *:		(struct slab *)(folio)))
121
122/**
123 * slab_folio - The folio allocated for a slab
124 * @slab: The slab.
125 *
126 * Slabs are allocated as folios that contain the individual objects and are
127 * using some fields in the first struct page of the folio - those fields are
128 * now accessed by struct slab. It is occasionally necessary to convert back to
129 * a folio in order to communicate with the rest of the mm.  Please use this
130 * helper function instead of casting yourself, as the implementation may change
131 * in the future.
132 */
133#define slab_folio(s)		(_Generic((s),				\
134	const struct slab *:	(const struct folio *)s,		\
135	struct slab *:		(struct folio *)s))
136
137/**
138 * page_slab - Converts from first struct page to slab.
139 * @p: The first (either head of compound or single) page of slab.
140 *
141 * A temporary wrapper to convert struct page to struct slab in situations where
142 * we know the page is the compound head, or single order-0 page.
143 *
144 * Long-term ideally everything would work with struct slab directly or go
145 * through folio to struct slab.
146 *
147 * Return: The slab which contains this page
148 */
149#define page_slab(p)		(_Generic((p),				\
150	const struct page *:	(const struct slab *)(p),		\
151	struct page *:		(struct slab *)(p)))
152
153/**
154 * slab_page - The first struct page allocated for a slab
155 * @slab: The slab.
156 *
157 * A convenience wrapper for converting slab to the first struct page of the
158 * underlying folio, to communicate with code not yet converted to folio or
159 * struct slab.
160 */
161#define slab_page(s) folio_page(slab_folio(s), 0)
162
163/*
164 * If network-based swap is enabled, sl*b must keep track of whether pages
165 * were allocated from pfmemalloc reserves.
166 */
167static inline bool slab_test_pfmemalloc(const struct slab *slab)
168{
169	return folio_test_active((struct folio *)slab_folio(slab));
170}
171
172static inline void slab_set_pfmemalloc(struct slab *slab)
173{
174	folio_set_active(slab_folio(slab));
175}
176
177static inline void slab_clear_pfmemalloc(struct slab *slab)
178{
179	folio_clear_active(slab_folio(slab));
180}
181
182static inline void __slab_clear_pfmemalloc(struct slab *slab)
183{
184	__folio_clear_active(slab_folio(slab));
185}
186
187static inline void *slab_address(const struct slab *slab)
188{
189	return folio_address(slab_folio(slab));
190}
191
192static inline int slab_nid(const struct slab *slab)
193{
194	return folio_nid(slab_folio(slab));
195}
196
197static inline pg_data_t *slab_pgdat(const struct slab *slab)
198{
199	return folio_pgdat(slab_folio(slab));
200}
201
202static inline struct slab *virt_to_slab(const void *addr)
203{
204	struct folio *folio = virt_to_folio(addr);
205
206	if (!folio_test_slab(folio))
207		return NULL;
208
209	return folio_slab(folio);
210}
211
212static inline int slab_order(const struct slab *slab)
213{
214	return folio_order((struct folio *)slab_folio(slab));
215}
216
217static inline size_t slab_size(const struct slab *slab)
218{
219	return PAGE_SIZE << slab_order(slab);
220}
221
222#ifdef CONFIG_SLUB_CPU_PARTIAL
223#define slub_percpu_partial(c)			((c)->partial)
224
225#define slub_set_percpu_partial(c, p)		\
226({						\
227	slub_percpu_partial(c) = (p)->next;	\
228})
229
230#define slub_percpu_partial_read_once(c)	READ_ONCE(slub_percpu_partial(c))
231#else
232#define slub_percpu_partial(c)			NULL
233
234#define slub_set_percpu_partial(c, p)
235
236#define slub_percpu_partial_read_once(c)	NULL
237#endif // CONFIG_SLUB_CPU_PARTIAL
238
239/*
240 * Word size structure that can be atomically updated or read and that
241 * contains both the order and the number of objects that a slab of the
242 * given order would contain.
243 */
244struct kmem_cache_order_objects {
245	unsigned int x;
246};
247
248/*
249 * Slab cache management.
250 */
251struct kmem_cache {
252#ifndef CONFIG_SLUB_TINY
253	struct kmem_cache_cpu __percpu *cpu_slab;
254#endif
255	/* Used for retrieving partial slabs, etc. */
256	slab_flags_t flags;
257	unsigned long min_partial;
258	unsigned int size;		/* Object size including metadata */
259	unsigned int object_size;	/* Object size without metadata */
260	struct reciprocal_value reciprocal_size;
261	unsigned int offset;		/* Free pointer offset */
262#ifdef CONFIG_SLUB_CPU_PARTIAL
263	/* Number of per cpu partial objects to keep around */
264	unsigned int cpu_partial;
265	/* Number of per cpu partial slabs to keep around */
266	unsigned int cpu_partial_slabs;
267#endif
268	struct kmem_cache_order_objects oo;
269
270	/* Allocation and freeing of slabs */
271	struct kmem_cache_order_objects min;
272	gfp_t allocflags;		/* gfp flags to use on each alloc */
273	int refcount;			/* Refcount for slab cache destroy */
274	void (*ctor)(void *object);	/* Object constructor */
275	unsigned int inuse;		/* Offset to metadata */
276	unsigned int align;		/* Alignment */
277	unsigned int red_left_pad;	/* Left redzone padding size */
278	const char *name;		/* Name (only for display!) */
279	struct list_head list;		/* List of slab caches */
280#ifdef CONFIG_SYSFS
281	struct kobject kobj;		/* For sysfs */
282#endif
283#ifdef CONFIG_SLAB_FREELIST_HARDENED
284	unsigned long random;
285#endif
286
287#ifdef CONFIG_NUMA
288	/*
289	 * Defragmentation by allocating from a remote node.
290	 */
291	unsigned int remote_node_defrag_ratio;
292#endif
293
294#ifdef CONFIG_SLAB_FREELIST_RANDOM
295	unsigned int *random_seq;
296#endif
297
298#ifdef CONFIG_KASAN_GENERIC
299	struct kasan_cache kasan_info;
300#endif
301
302#ifdef CONFIG_HARDENED_USERCOPY
303	unsigned int useroffset;	/* Usercopy region offset */
304	unsigned int usersize;		/* Usercopy region size */
305#endif
306
307	struct kmem_cache_node *node[MAX_NUMNODES];
308};
309
310#if defined(CONFIG_SYSFS) && !defined(CONFIG_SLUB_TINY)
311#define SLAB_SUPPORTS_SYSFS
312void sysfs_slab_unlink(struct kmem_cache *s);
313void sysfs_slab_release(struct kmem_cache *s);
314#else
315static inline void sysfs_slab_unlink(struct kmem_cache *s) { }
316static inline void sysfs_slab_release(struct kmem_cache *s) { }
317#endif
318
319void *fixup_red_left(struct kmem_cache *s, void *p);
320
321static inline void *nearest_obj(struct kmem_cache *cache,
322				const struct slab *slab, void *x)
323{
324	void *object = x - (x - slab_address(slab)) % cache->size;
325	void *last_object = slab_address(slab) +
326		(slab->objects - 1) * cache->size;
327	void *result = (unlikely(object > last_object)) ? last_object : object;
328
329	result = fixup_red_left(cache, result);
330	return result;
331}
332
333/* Determine object index from a given position */
334static inline unsigned int __obj_to_index(const struct kmem_cache *cache,
335					  void *addr, void *obj)
336{
337	return reciprocal_divide(kasan_reset_tag(obj) - addr,
338				 cache->reciprocal_size);
339}
340
341static inline unsigned int obj_to_index(const struct kmem_cache *cache,
342					const struct slab *slab, void *obj)
343{
344	if (is_kfence_address(obj))
345		return 0;
346	return __obj_to_index(cache, slab_address(slab), obj);
347}
348
349static inline int objs_per_slab(const struct kmem_cache *cache,
350				const struct slab *slab)
351{
352	return slab->objects;
353}
354
355/*
356 * State of the slab allocator.
357 *
358 * This is used to describe the states of the allocator during bootup.
359 * Allocators use this to gradually bootstrap themselves. Most allocators
360 * have the problem that the structures used for managing slab caches are
361 * allocated from slab caches themselves.
362 */
363enum slab_state {
364	DOWN,			/* No slab functionality yet */
365	PARTIAL,		/* SLUB: kmem_cache_node available */
366	UP,			/* Slab caches usable but not all extras yet */
367	FULL			/* Everything is working */
368};
369
370extern enum slab_state slab_state;
371
372/* The slab cache mutex protects the management structures during changes */
373extern struct mutex slab_mutex;
374
375/* The list of all slab caches on the system */
376extern struct list_head slab_caches;
377
378/* The slab cache that manages slab cache information */
379extern struct kmem_cache *kmem_cache;
380
381/* A table of kmalloc cache names and sizes */
382extern const struct kmalloc_info_struct {
383	const char *name[NR_KMALLOC_TYPES];
384	unsigned int size;
385} kmalloc_info[];
386
387/* Kmalloc array related functions */
388void setup_kmalloc_cache_index_table(void);
389void create_kmalloc_caches(void);
390
391extern u8 kmalloc_size_index[24];
392
393static inline unsigned int size_index_elem(unsigned int bytes)
394{
395	return (bytes - 1) / 8;
396}
397
398/*
399 * Find the kmem_cache structure that serves a given size of
400 * allocation
401 *
402 * This assumes size is larger than zero and not larger than
403 * KMALLOC_MAX_CACHE_SIZE and the caller must check that.
404 */
405static inline struct kmem_cache *
406kmalloc_slab(size_t size, gfp_t flags, unsigned long caller)
407{
408	unsigned int index;
409
410	if (size <= 192)
411		index = kmalloc_size_index[size_index_elem(size)];
412	else
413		index = fls(size - 1);
414
415	return kmalloc_caches[kmalloc_type(flags, caller)][index];
416}
417
418gfp_t kmalloc_fix_flags(gfp_t flags);
419
420/* Functions provided by the slab allocators */
421int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
422
423void __init kmem_cache_init(void);
424extern void create_boot_cache(struct kmem_cache *, const char *name,
425			unsigned int size, slab_flags_t flags,
426			unsigned int useroffset, unsigned int usersize);
427
428int slab_unmergeable(struct kmem_cache *s);
429struct kmem_cache *find_mergeable(unsigned size, unsigned align,
430		slab_flags_t flags, const char *name, void (*ctor)(void *));
431struct kmem_cache *
432__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
433		   slab_flags_t flags, void (*ctor)(void *));
434
435slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name);
436
437static inline bool is_kmalloc_cache(struct kmem_cache *s)
438{
439	return (s->flags & SLAB_KMALLOC);
440}
441
442/* Legal flag mask for kmem_cache_create(), for various configurations */
443#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
444			 SLAB_CACHE_DMA32 | SLAB_PANIC | \
445			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
446
447#ifdef CONFIG_SLUB_DEBUG
448#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
449			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
450#else
451#define SLAB_DEBUG_FLAGS (0)
452#endif
453
454#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
455			  SLAB_TEMPORARY | SLAB_ACCOUNT | \
456			  SLAB_NO_USER_FLAGS | SLAB_KMALLOC | SLAB_NO_MERGE)
457
458/* Common flags available with current configuration */
459#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
460
461/* Common flags permitted for kmem_cache_create */
462#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
463			      SLAB_RED_ZONE | \
464			      SLAB_POISON | \
465			      SLAB_STORE_USER | \
466			      SLAB_TRACE | \
467			      SLAB_CONSISTENCY_CHECKS | \
468			      SLAB_NOLEAKTRACE | \
469			      SLAB_RECLAIM_ACCOUNT | \
470			      SLAB_TEMPORARY | \
471			      SLAB_ACCOUNT | \
472			      SLAB_KMALLOC | \
473			      SLAB_NO_MERGE | \
474			      SLAB_NO_USER_FLAGS)
475
476bool __kmem_cache_empty(struct kmem_cache *);
477int __kmem_cache_shutdown(struct kmem_cache *);
478void __kmem_cache_release(struct kmem_cache *);
479int __kmem_cache_shrink(struct kmem_cache *);
480void slab_kmem_cache_release(struct kmem_cache *);
481
482struct seq_file;
483struct file;
484
485struct slabinfo {
486	unsigned long active_objs;
487	unsigned long num_objs;
488	unsigned long active_slabs;
489	unsigned long num_slabs;
490	unsigned long shared_avail;
491	unsigned int limit;
492	unsigned int batchcount;
493	unsigned int shared;
494	unsigned int objects_per_slab;
495	unsigned int cache_order;
496};
497
498void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
499void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
500ssize_t slabinfo_write(struct file *file, const char __user *buffer,
501		       size_t count, loff_t *ppos);
502
503#ifdef CONFIG_SLUB_DEBUG
504#ifdef CONFIG_SLUB_DEBUG_ON
505DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
506#else
507DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
508#endif
509extern void print_tracking(struct kmem_cache *s, void *object);
510long validate_slab_cache(struct kmem_cache *s);
511static inline bool __slub_debug_enabled(void)
512{
513	return static_branch_unlikely(&slub_debug_enabled);
514}
515#else
516static inline void print_tracking(struct kmem_cache *s, void *object)
517{
518}
519static inline bool __slub_debug_enabled(void)
520{
521	return false;
522}
523#endif
524
525/*
526 * Returns true if any of the specified slab_debug flags is enabled for the
527 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
528 * the static key.
529 */
530static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
531{
532	if (IS_ENABLED(CONFIG_SLUB_DEBUG))
533		VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
534	if (__slub_debug_enabled())
535		return s->flags & flags;
536	return false;
537}
538
539#ifdef CONFIG_MEMCG_KMEM
540/*
541 * slab_objcgs - get the object cgroups vector associated with a slab
542 * @slab: a pointer to the slab struct
543 *
544 * Returns a pointer to the object cgroups vector associated with the slab,
545 * or NULL if no such vector has been associated yet.
546 */
547static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
548{
549	unsigned long memcg_data = READ_ONCE(slab->memcg_data);
550
551	VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS),
552							slab_page(slab));
553	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, slab_page(slab));
554
555	return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
556}
557
558int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
559				 gfp_t gfp, bool new_slab);
560void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
561		     enum node_stat_item idx, int nr);
562#else /* CONFIG_MEMCG_KMEM */
563static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
564{
565	return NULL;
566}
567
568static inline int memcg_alloc_slab_cgroups(struct slab *slab,
569					       struct kmem_cache *s, gfp_t gfp,
570					       bool new_slab)
571{
572	return 0;
573}
574#endif /* CONFIG_MEMCG_KMEM */
575
576size_t __ksize(const void *objp);
577
578static inline size_t slab_ksize(const struct kmem_cache *s)
579{
580#ifdef CONFIG_SLUB_DEBUG
581	/*
582	 * Debugging requires use of the padding between object
583	 * and whatever may come after it.
584	 */
585	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
586		return s->object_size;
587#endif
588	if (s->flags & SLAB_KASAN)
589		return s->object_size;
590	/*
591	 * If we have the need to store the freelist pointer
592	 * back there or track user information then we can
593	 * only use the space before that information.
594	 */
595	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
596		return s->inuse;
597	/*
598	 * Else we can use all the padding etc for the allocation
599	 */
600	return s->size;
601}
602
603#ifdef CONFIG_SLUB_DEBUG
604void dump_unreclaimable_slab(void);
605#else
606static inline void dump_unreclaimable_slab(void)
607{
608}
609#endif
610
611void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
612
613#ifdef CONFIG_SLAB_FREELIST_RANDOM
614int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
615			gfp_t gfp);
616void cache_random_seq_destroy(struct kmem_cache *cachep);
617#else
618static inline int cache_random_seq_create(struct kmem_cache *cachep,
619					unsigned int count, gfp_t gfp)
620{
621	return 0;
622}
623static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
624#endif /* CONFIG_SLAB_FREELIST_RANDOM */
625
626static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
627{
628	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
629				&init_on_alloc)) {
630		if (c->ctor)
631			return false;
632		if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
633			return flags & __GFP_ZERO;
634		return true;
635	}
636	return flags & __GFP_ZERO;
637}
638
639static inline bool slab_want_init_on_free(struct kmem_cache *c)
640{
641	if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
642				&init_on_free))
643		return !(c->ctor ||
644			 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
645	return false;
646}
647
648#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
649void debugfs_slab_release(struct kmem_cache *);
650#else
651static inline void debugfs_slab_release(struct kmem_cache *s) { }
652#endif
653
654#ifdef CONFIG_PRINTK
655#define KS_ADDRS_COUNT 16
656struct kmem_obj_info {
657	void *kp_ptr;
658	struct slab *kp_slab;
659	void *kp_objp;
660	unsigned long kp_data_offset;
661	struct kmem_cache *kp_slab_cache;
662	void *kp_ret;
663	void *kp_stack[KS_ADDRS_COUNT];
664	void *kp_free_stack[KS_ADDRS_COUNT];
665};
666void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
667#endif
668
669void __check_heap_object(const void *ptr, unsigned long n,
670			 const struct slab *slab, bool to_user);
671
672#ifdef CONFIG_SLUB_DEBUG
673void skip_orig_size_check(struct kmem_cache *s, const void *object);
674#endif
675
676#endif /* MM_SLAB_H */
677