1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/ramfs.h>
29#include <linux/pagemap.h>
30#include <linux/file.h>
31#include <linux/fileattr.h>
32#include <linux/mm.h>
33#include <linux/random.h>
34#include <linux/sched/signal.h>
35#include <linux/export.h>
36#include <linux/shmem_fs.h>
37#include <linux/swap.h>
38#include <linux/uio.h>
39#include <linux/hugetlb.h>
40#include <linux/fs_parser.h>
41#include <linux/swapfile.h>
42#include <linux/iversion.h>
43#include "swap.h"
44
45static struct vfsmount *shm_mnt __ro_after_init;
46
47#ifdef CONFIG_SHMEM
48/*
49 * This virtual memory filesystem is heavily based on the ramfs. It
50 * extends ramfs by the ability to use swap and honor resource limits
51 * which makes it a completely usable filesystem.
52 */
53
54#include <linux/xattr.h>
55#include <linux/exportfs.h>
56#include <linux/posix_acl.h>
57#include <linux/posix_acl_xattr.h>
58#include <linux/mman.h>
59#include <linux/string.h>
60#include <linux/slab.h>
61#include <linux/backing-dev.h>
62#include <linux/writeback.h>
63#include <linux/pagevec.h>
64#include <linux/percpu_counter.h>
65#include <linux/falloc.h>
66#include <linux/splice.h>
67#include <linux/security.h>
68#include <linux/swapops.h>
69#include <linux/mempolicy.h>
70#include <linux/namei.h>
71#include <linux/ctype.h>
72#include <linux/migrate.h>
73#include <linux/highmem.h>
74#include <linux/seq_file.h>
75#include <linux/magic.h>
76#include <linux/syscalls.h>
77#include <linux/fcntl.h>
78#include <uapi/linux/memfd.h>
79#include <linux/rmap.h>
80#include <linux/uuid.h>
81#include <linux/quotaops.h>
82#include <linux/rcupdate_wait.h>
83
84#include <linux/uaccess.h>
85
86#include "internal.h"
87
88#define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89#define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91/* Pretend that each entry is of this size in directory's i_size */
92#define BOGO_DIRENT_SIZE 20
93
94/* Pretend that one inode + its dentry occupy this much memory */
95#define BOGO_INODE_SIZE 1024
96
97/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
98#define SHORT_SYMLINK_LEN 128
99
100/*
101 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
102 * inode->i_private (with i_rwsem making sure that it has only one user at
103 * a time): we would prefer not to enlarge the shmem inode just for that.
104 */
105struct shmem_falloc {
106	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
107	pgoff_t start;		/* start of range currently being fallocated */
108	pgoff_t next;		/* the next page offset to be fallocated */
109	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
110	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
111};
112
113struct shmem_options {
114	unsigned long long blocks;
115	unsigned long long inodes;
116	struct mempolicy *mpol;
117	kuid_t uid;
118	kgid_t gid;
119	umode_t mode;
120	bool full_inums;
121	int huge;
122	int seen;
123	bool noswap;
124	unsigned short quota_types;
125	struct shmem_quota_limits qlimits;
126#define SHMEM_SEEN_BLOCKS 1
127#define SHMEM_SEEN_INODES 2
128#define SHMEM_SEEN_HUGE 4
129#define SHMEM_SEEN_INUMS 8
130#define SHMEM_SEEN_NOSWAP 16
131#define SHMEM_SEEN_QUOTA 32
132};
133
134#ifdef CONFIG_TMPFS
135static unsigned long shmem_default_max_blocks(void)
136{
137	return totalram_pages() / 2;
138}
139
140static unsigned long shmem_default_max_inodes(void)
141{
142	unsigned long nr_pages = totalram_pages();
143
144	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
145			ULONG_MAX / BOGO_INODE_SIZE);
146}
147#endif
148
149static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
150			struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
151			struct mm_struct *fault_mm, vm_fault_t *fault_type);
152
153static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154{
155	return sb->s_fs_info;
156}
157
158/*
159 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160 * for shared memory and for shared anonymous (/dev/zero) mappings
161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162 * consistent with the pre-accounting of private mappings ...
163 */
164static inline int shmem_acct_size(unsigned long flags, loff_t size)
165{
166	return (flags & VM_NORESERVE) ?
167		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
168}
169
170static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171{
172	if (!(flags & VM_NORESERVE))
173		vm_unacct_memory(VM_ACCT(size));
174}
175
176static inline int shmem_reacct_size(unsigned long flags,
177		loff_t oldsize, loff_t newsize)
178{
179	if (!(flags & VM_NORESERVE)) {
180		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181			return security_vm_enough_memory_mm(current->mm,
182					VM_ACCT(newsize) - VM_ACCT(oldsize));
183		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185	}
186	return 0;
187}
188
189/*
190 * ... whereas tmpfs objects are accounted incrementally as
191 * pages are allocated, in order to allow large sparse files.
192 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194 */
195static inline int shmem_acct_blocks(unsigned long flags, long pages)
196{
197	if (!(flags & VM_NORESERVE))
198		return 0;
199
200	return security_vm_enough_memory_mm(current->mm,
201			pages * VM_ACCT(PAGE_SIZE));
202}
203
204static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205{
206	if (flags & VM_NORESERVE)
207		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
208}
209
210static int shmem_inode_acct_blocks(struct inode *inode, long pages)
211{
212	struct shmem_inode_info *info = SHMEM_I(inode);
213	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214	int err = -ENOSPC;
215
216	if (shmem_acct_blocks(info->flags, pages))
217		return err;
218
219	might_sleep();	/* when quotas */
220	if (sbinfo->max_blocks) {
221		if (!percpu_counter_limited_add(&sbinfo->used_blocks,
222						sbinfo->max_blocks, pages))
223			goto unacct;
224
225		err = dquot_alloc_block_nodirty(inode, pages);
226		if (err) {
227			percpu_counter_sub(&sbinfo->used_blocks, pages);
228			goto unacct;
229		}
230	} else {
231		err = dquot_alloc_block_nodirty(inode, pages);
232		if (err)
233			goto unacct;
234	}
235
236	return 0;
237
238unacct:
239	shmem_unacct_blocks(info->flags, pages);
240	return err;
241}
242
243static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
244{
245	struct shmem_inode_info *info = SHMEM_I(inode);
246	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
247
248	might_sleep();	/* when quotas */
249	dquot_free_block_nodirty(inode, pages);
250
251	if (sbinfo->max_blocks)
252		percpu_counter_sub(&sbinfo->used_blocks, pages);
253	shmem_unacct_blocks(info->flags, pages);
254}
255
256static const struct super_operations shmem_ops;
257static const struct address_space_operations shmem_aops;
258static const struct file_operations shmem_file_operations;
259static const struct inode_operations shmem_inode_operations;
260static const struct inode_operations shmem_dir_inode_operations;
261static const struct inode_operations shmem_special_inode_operations;
262static const struct vm_operations_struct shmem_vm_ops;
263static const struct vm_operations_struct shmem_anon_vm_ops;
264static struct file_system_type shmem_fs_type;
265
266bool shmem_mapping(struct address_space *mapping)
267{
268	return mapping->a_ops == &shmem_aops;
269}
270EXPORT_SYMBOL_GPL(shmem_mapping);
271
272bool vma_is_anon_shmem(struct vm_area_struct *vma)
273{
274	return vma->vm_ops == &shmem_anon_vm_ops;
275}
276
277bool vma_is_shmem(struct vm_area_struct *vma)
278{
279	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
280}
281
282static LIST_HEAD(shmem_swaplist);
283static DEFINE_MUTEX(shmem_swaplist_mutex);
284
285#ifdef CONFIG_TMPFS_QUOTA
286
287static int shmem_enable_quotas(struct super_block *sb,
288			       unsigned short quota_types)
289{
290	int type, err = 0;
291
292	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
293	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
294		if (!(quota_types & (1 << type)))
295			continue;
296		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
297					  DQUOT_USAGE_ENABLED |
298					  DQUOT_LIMITS_ENABLED);
299		if (err)
300			goto out_err;
301	}
302	return 0;
303
304out_err:
305	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
306		type, err);
307	for (type--; type >= 0; type--)
308		dquot_quota_off(sb, type);
309	return err;
310}
311
312static void shmem_disable_quotas(struct super_block *sb)
313{
314	int type;
315
316	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
317		dquot_quota_off(sb, type);
318}
319
320static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
321{
322	return SHMEM_I(inode)->i_dquot;
323}
324#endif /* CONFIG_TMPFS_QUOTA */
325
326/*
327 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
328 * produces a novel ino for the newly allocated inode.
329 *
330 * It may also be called when making a hard link to permit the space needed by
331 * each dentry. However, in that case, no new inode number is needed since that
332 * internally draws from another pool of inode numbers (currently global
333 * get_next_ino()). This case is indicated by passing NULL as inop.
334 */
335#define SHMEM_INO_BATCH 1024
336static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
337{
338	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
339	ino_t ino;
340
341	if (!(sb->s_flags & SB_KERNMOUNT)) {
342		raw_spin_lock(&sbinfo->stat_lock);
343		if (sbinfo->max_inodes) {
344			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
345				raw_spin_unlock(&sbinfo->stat_lock);
346				return -ENOSPC;
347			}
348			sbinfo->free_ispace -= BOGO_INODE_SIZE;
349		}
350		if (inop) {
351			ino = sbinfo->next_ino++;
352			if (unlikely(is_zero_ino(ino)))
353				ino = sbinfo->next_ino++;
354			if (unlikely(!sbinfo->full_inums &&
355				     ino > UINT_MAX)) {
356				/*
357				 * Emulate get_next_ino uint wraparound for
358				 * compatibility
359				 */
360				if (IS_ENABLED(CONFIG_64BIT))
361					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
362						__func__, MINOR(sb->s_dev));
363				sbinfo->next_ino = 1;
364				ino = sbinfo->next_ino++;
365			}
366			*inop = ino;
367		}
368		raw_spin_unlock(&sbinfo->stat_lock);
369	} else if (inop) {
370		/*
371		 * __shmem_file_setup, one of our callers, is lock-free: it
372		 * doesn't hold stat_lock in shmem_reserve_inode since
373		 * max_inodes is always 0, and is called from potentially
374		 * unknown contexts. As such, use a per-cpu batched allocator
375		 * which doesn't require the per-sb stat_lock unless we are at
376		 * the batch boundary.
377		 *
378		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
379		 * shmem mounts are not exposed to userspace, so we don't need
380		 * to worry about things like glibc compatibility.
381		 */
382		ino_t *next_ino;
383
384		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
385		ino = *next_ino;
386		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
387			raw_spin_lock(&sbinfo->stat_lock);
388			ino = sbinfo->next_ino;
389			sbinfo->next_ino += SHMEM_INO_BATCH;
390			raw_spin_unlock(&sbinfo->stat_lock);
391			if (unlikely(is_zero_ino(ino)))
392				ino++;
393		}
394		*inop = ino;
395		*next_ino = ++ino;
396		put_cpu();
397	}
398
399	return 0;
400}
401
402static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
403{
404	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
405	if (sbinfo->max_inodes) {
406		raw_spin_lock(&sbinfo->stat_lock);
407		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
408		raw_spin_unlock(&sbinfo->stat_lock);
409	}
410}
411
412/**
413 * shmem_recalc_inode - recalculate the block usage of an inode
414 * @inode: inode to recalc
415 * @alloced: the change in number of pages allocated to inode
416 * @swapped: the change in number of pages swapped from inode
417 *
418 * We have to calculate the free blocks since the mm can drop
419 * undirtied hole pages behind our back.
420 *
421 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
422 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
423 */
424static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
425{
426	struct shmem_inode_info *info = SHMEM_I(inode);
427	long freed;
428
429	spin_lock(&info->lock);
430	info->alloced += alloced;
431	info->swapped += swapped;
432	freed = info->alloced - info->swapped -
433		READ_ONCE(inode->i_mapping->nrpages);
434	/*
435	 * Special case: whereas normally shmem_recalc_inode() is called
436	 * after i_mapping->nrpages has already been adjusted (up or down),
437	 * shmem_writepage() has to raise swapped before nrpages is lowered -
438	 * to stop a racing shmem_recalc_inode() from thinking that a page has
439	 * been freed.  Compensate here, to avoid the need for a followup call.
440	 */
441	if (swapped > 0)
442		freed += swapped;
443	if (freed > 0)
444		info->alloced -= freed;
445	spin_unlock(&info->lock);
446
447	/* The quota case may block */
448	if (freed > 0)
449		shmem_inode_unacct_blocks(inode, freed);
450}
451
452bool shmem_charge(struct inode *inode, long pages)
453{
454	struct address_space *mapping = inode->i_mapping;
455
456	if (shmem_inode_acct_blocks(inode, pages))
457		return false;
458
459	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
460	xa_lock_irq(&mapping->i_pages);
461	mapping->nrpages += pages;
462	xa_unlock_irq(&mapping->i_pages);
463
464	shmem_recalc_inode(inode, pages, 0);
465	return true;
466}
467
468void shmem_uncharge(struct inode *inode, long pages)
469{
470	/* pages argument is currently unused: keep it to help debugging */
471	/* nrpages adjustment done by __filemap_remove_folio() or caller */
472
473	shmem_recalc_inode(inode, 0, 0);
474}
475
476/*
477 * Replace item expected in xarray by a new item, while holding xa_lock.
478 */
479static int shmem_replace_entry(struct address_space *mapping,
480			pgoff_t index, void *expected, void *replacement)
481{
482	XA_STATE(xas, &mapping->i_pages, index);
483	void *item;
484
485	VM_BUG_ON(!expected);
486	VM_BUG_ON(!replacement);
487	item = xas_load(&xas);
488	if (item != expected)
489		return -ENOENT;
490	xas_store(&xas, replacement);
491	return 0;
492}
493
494/*
495 * Sometimes, before we decide whether to proceed or to fail, we must check
496 * that an entry was not already brought back from swap by a racing thread.
497 *
498 * Checking page is not enough: by the time a SwapCache page is locked, it
499 * might be reused, and again be SwapCache, using the same swap as before.
500 */
501static bool shmem_confirm_swap(struct address_space *mapping,
502			       pgoff_t index, swp_entry_t swap)
503{
504	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
505}
506
507/*
508 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
509 *
510 * SHMEM_HUGE_NEVER:
511 *	disables huge pages for the mount;
512 * SHMEM_HUGE_ALWAYS:
513 *	enables huge pages for the mount;
514 * SHMEM_HUGE_WITHIN_SIZE:
515 *	only allocate huge pages if the page will be fully within i_size,
516 *	also respect fadvise()/madvise() hints;
517 * SHMEM_HUGE_ADVISE:
518 *	only allocate huge pages if requested with fadvise()/madvise();
519 */
520
521#define SHMEM_HUGE_NEVER	0
522#define SHMEM_HUGE_ALWAYS	1
523#define SHMEM_HUGE_WITHIN_SIZE	2
524#define SHMEM_HUGE_ADVISE	3
525
526/*
527 * Special values.
528 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
529 *
530 * SHMEM_HUGE_DENY:
531 *	disables huge on shm_mnt and all mounts, for emergency use;
532 * SHMEM_HUGE_FORCE:
533 *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
534 *
535 */
536#define SHMEM_HUGE_DENY		(-1)
537#define SHMEM_HUGE_FORCE	(-2)
538
539#ifdef CONFIG_TRANSPARENT_HUGEPAGE
540/* ifdef here to avoid bloating shmem.o when not necessary */
541
542static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
543
544bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
545		   struct mm_struct *mm, unsigned long vm_flags)
546{
547	loff_t i_size;
548
549	if (!S_ISREG(inode->i_mode))
550		return false;
551	if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
552		return false;
553	if (shmem_huge == SHMEM_HUGE_DENY)
554		return false;
555	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
556		return true;
557
558	switch (SHMEM_SB(inode->i_sb)->huge) {
559	case SHMEM_HUGE_ALWAYS:
560		return true;
561	case SHMEM_HUGE_WITHIN_SIZE:
562		index = round_up(index + 1, HPAGE_PMD_NR);
563		i_size = round_up(i_size_read(inode), PAGE_SIZE);
564		if (i_size >> PAGE_SHIFT >= index)
565			return true;
566		fallthrough;
567	case SHMEM_HUGE_ADVISE:
568		if (mm && (vm_flags & VM_HUGEPAGE))
569			return true;
570		fallthrough;
571	default:
572		return false;
573	}
574}
575
576#if defined(CONFIG_SYSFS)
577static int shmem_parse_huge(const char *str)
578{
579	if (!strcmp(str, "never"))
580		return SHMEM_HUGE_NEVER;
581	if (!strcmp(str, "always"))
582		return SHMEM_HUGE_ALWAYS;
583	if (!strcmp(str, "within_size"))
584		return SHMEM_HUGE_WITHIN_SIZE;
585	if (!strcmp(str, "advise"))
586		return SHMEM_HUGE_ADVISE;
587	if (!strcmp(str, "deny"))
588		return SHMEM_HUGE_DENY;
589	if (!strcmp(str, "force"))
590		return SHMEM_HUGE_FORCE;
591	return -EINVAL;
592}
593#endif
594
595#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
596static const char *shmem_format_huge(int huge)
597{
598	switch (huge) {
599	case SHMEM_HUGE_NEVER:
600		return "never";
601	case SHMEM_HUGE_ALWAYS:
602		return "always";
603	case SHMEM_HUGE_WITHIN_SIZE:
604		return "within_size";
605	case SHMEM_HUGE_ADVISE:
606		return "advise";
607	case SHMEM_HUGE_DENY:
608		return "deny";
609	case SHMEM_HUGE_FORCE:
610		return "force";
611	default:
612		VM_BUG_ON(1);
613		return "bad_val";
614	}
615}
616#endif
617
618static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
619		struct shrink_control *sc, unsigned long nr_to_split)
620{
621	LIST_HEAD(list), *pos, *next;
622	LIST_HEAD(to_remove);
623	struct inode *inode;
624	struct shmem_inode_info *info;
625	struct folio *folio;
626	unsigned long batch = sc ? sc->nr_to_scan : 128;
627	int split = 0;
628
629	if (list_empty(&sbinfo->shrinklist))
630		return SHRINK_STOP;
631
632	spin_lock(&sbinfo->shrinklist_lock);
633	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
634		info = list_entry(pos, struct shmem_inode_info, shrinklist);
635
636		/* pin the inode */
637		inode = igrab(&info->vfs_inode);
638
639		/* inode is about to be evicted */
640		if (!inode) {
641			list_del_init(&info->shrinklist);
642			goto next;
643		}
644
645		/* Check if there's anything to gain */
646		if (round_up(inode->i_size, PAGE_SIZE) ==
647				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
648			list_move(&info->shrinklist, &to_remove);
649			goto next;
650		}
651
652		list_move(&info->shrinklist, &list);
653next:
654		sbinfo->shrinklist_len--;
655		if (!--batch)
656			break;
657	}
658	spin_unlock(&sbinfo->shrinklist_lock);
659
660	list_for_each_safe(pos, next, &to_remove) {
661		info = list_entry(pos, struct shmem_inode_info, shrinklist);
662		inode = &info->vfs_inode;
663		list_del_init(&info->shrinklist);
664		iput(inode);
665	}
666
667	list_for_each_safe(pos, next, &list) {
668		int ret;
669		pgoff_t index;
670
671		info = list_entry(pos, struct shmem_inode_info, shrinklist);
672		inode = &info->vfs_inode;
673
674		if (nr_to_split && split >= nr_to_split)
675			goto move_back;
676
677		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
678		folio = filemap_get_folio(inode->i_mapping, index);
679		if (IS_ERR(folio))
680			goto drop;
681
682		/* No huge page at the end of the file: nothing to split */
683		if (!folio_test_large(folio)) {
684			folio_put(folio);
685			goto drop;
686		}
687
688		/*
689		 * Move the inode on the list back to shrinklist if we failed
690		 * to lock the page at this time.
691		 *
692		 * Waiting for the lock may lead to deadlock in the
693		 * reclaim path.
694		 */
695		if (!folio_trylock(folio)) {
696			folio_put(folio);
697			goto move_back;
698		}
699
700		ret = split_folio(folio);
701		folio_unlock(folio);
702		folio_put(folio);
703
704		/* If split failed move the inode on the list back to shrinklist */
705		if (ret)
706			goto move_back;
707
708		split++;
709drop:
710		list_del_init(&info->shrinklist);
711		goto put;
712move_back:
713		/*
714		 * Make sure the inode is either on the global list or deleted
715		 * from any local list before iput() since it could be deleted
716		 * in another thread once we put the inode (then the local list
717		 * is corrupted).
718		 */
719		spin_lock(&sbinfo->shrinklist_lock);
720		list_move(&info->shrinklist, &sbinfo->shrinklist);
721		sbinfo->shrinklist_len++;
722		spin_unlock(&sbinfo->shrinklist_lock);
723put:
724		iput(inode);
725	}
726
727	return split;
728}
729
730static long shmem_unused_huge_scan(struct super_block *sb,
731		struct shrink_control *sc)
732{
733	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
734
735	if (!READ_ONCE(sbinfo->shrinklist_len))
736		return SHRINK_STOP;
737
738	return shmem_unused_huge_shrink(sbinfo, sc, 0);
739}
740
741static long shmem_unused_huge_count(struct super_block *sb,
742		struct shrink_control *sc)
743{
744	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
745	return READ_ONCE(sbinfo->shrinklist_len);
746}
747#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
748
749#define shmem_huge SHMEM_HUGE_DENY
750
751bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
752		   struct mm_struct *mm, unsigned long vm_flags)
753{
754	return false;
755}
756
757static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
758		struct shrink_control *sc, unsigned long nr_to_split)
759{
760	return 0;
761}
762#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
763
764/*
765 * Somewhat like filemap_add_folio, but error if expected item has gone.
766 */
767static int shmem_add_to_page_cache(struct folio *folio,
768				   struct address_space *mapping,
769				   pgoff_t index, void *expected, gfp_t gfp)
770{
771	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
772	long nr = folio_nr_pages(folio);
773
774	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
775	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
776	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
777	VM_BUG_ON(expected && folio_test_large(folio));
778
779	folio_ref_add(folio, nr);
780	folio->mapping = mapping;
781	folio->index = index;
782
783	gfp &= GFP_RECLAIM_MASK;
784	folio_throttle_swaprate(folio, gfp);
785
786	do {
787		xas_lock_irq(&xas);
788		if (expected != xas_find_conflict(&xas)) {
789			xas_set_err(&xas, -EEXIST);
790			goto unlock;
791		}
792		if (expected && xas_find_conflict(&xas)) {
793			xas_set_err(&xas, -EEXIST);
794			goto unlock;
795		}
796		xas_store(&xas, folio);
797		if (xas_error(&xas))
798			goto unlock;
799		if (folio_test_pmd_mappable(folio))
800			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
801		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
802		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
803		mapping->nrpages += nr;
804unlock:
805		xas_unlock_irq(&xas);
806	} while (xas_nomem(&xas, gfp));
807
808	if (xas_error(&xas)) {
809		folio->mapping = NULL;
810		folio_ref_sub(folio, nr);
811		return xas_error(&xas);
812	}
813
814	return 0;
815}
816
817/*
818 * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
819 */
820static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
821{
822	struct address_space *mapping = folio->mapping;
823	long nr = folio_nr_pages(folio);
824	int error;
825
826	xa_lock_irq(&mapping->i_pages);
827	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
828	folio->mapping = NULL;
829	mapping->nrpages -= nr;
830	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
831	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
832	xa_unlock_irq(&mapping->i_pages);
833	folio_put(folio);
834	BUG_ON(error);
835}
836
837/*
838 * Remove swap entry from page cache, free the swap and its page cache.
839 */
840static int shmem_free_swap(struct address_space *mapping,
841			   pgoff_t index, void *radswap)
842{
843	void *old;
844
845	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
846	if (old != radswap)
847		return -ENOENT;
848	free_swap_and_cache(radix_to_swp_entry(radswap));
849	return 0;
850}
851
852/*
853 * Determine (in bytes) how many of the shmem object's pages mapped by the
854 * given offsets are swapped out.
855 *
856 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
857 * as long as the inode doesn't go away and racy results are not a problem.
858 */
859unsigned long shmem_partial_swap_usage(struct address_space *mapping,
860						pgoff_t start, pgoff_t end)
861{
862	XA_STATE(xas, &mapping->i_pages, start);
863	struct page *page;
864	unsigned long swapped = 0;
865	unsigned long max = end - 1;
866
867	rcu_read_lock();
868	xas_for_each(&xas, page, max) {
869		if (xas_retry(&xas, page))
870			continue;
871		if (xa_is_value(page))
872			swapped++;
873		if (xas.xa_index == max)
874			break;
875		if (need_resched()) {
876			xas_pause(&xas);
877			cond_resched_rcu();
878		}
879	}
880	rcu_read_unlock();
881
882	return swapped << PAGE_SHIFT;
883}
884
885/*
886 * Determine (in bytes) how many of the shmem object's pages mapped by the
887 * given vma is swapped out.
888 *
889 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
890 * as long as the inode doesn't go away and racy results are not a problem.
891 */
892unsigned long shmem_swap_usage(struct vm_area_struct *vma)
893{
894	struct inode *inode = file_inode(vma->vm_file);
895	struct shmem_inode_info *info = SHMEM_I(inode);
896	struct address_space *mapping = inode->i_mapping;
897	unsigned long swapped;
898
899	/* Be careful as we don't hold info->lock */
900	swapped = READ_ONCE(info->swapped);
901
902	/*
903	 * The easier cases are when the shmem object has nothing in swap, or
904	 * the vma maps it whole. Then we can simply use the stats that we
905	 * already track.
906	 */
907	if (!swapped)
908		return 0;
909
910	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
911		return swapped << PAGE_SHIFT;
912
913	/* Here comes the more involved part */
914	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
915					vma->vm_pgoff + vma_pages(vma));
916}
917
918/*
919 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
920 */
921void shmem_unlock_mapping(struct address_space *mapping)
922{
923	struct folio_batch fbatch;
924	pgoff_t index = 0;
925
926	folio_batch_init(&fbatch);
927	/*
928	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
929	 */
930	while (!mapping_unevictable(mapping) &&
931	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
932		check_move_unevictable_folios(&fbatch);
933		folio_batch_release(&fbatch);
934		cond_resched();
935	}
936}
937
938static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
939{
940	struct folio *folio;
941
942	/*
943	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
944	 * beyond i_size, and reports fallocated folios as holes.
945	 */
946	folio = filemap_get_entry(inode->i_mapping, index);
947	if (!folio)
948		return folio;
949	if (!xa_is_value(folio)) {
950		folio_lock(folio);
951		if (folio->mapping == inode->i_mapping)
952			return folio;
953		/* The folio has been swapped out */
954		folio_unlock(folio);
955		folio_put(folio);
956	}
957	/*
958	 * But read a folio back from swap if any of it is within i_size
959	 * (although in some cases this is just a waste of time).
960	 */
961	folio = NULL;
962	shmem_get_folio(inode, index, &folio, SGP_READ);
963	return folio;
964}
965
966/*
967 * Remove range of pages and swap entries from page cache, and free them.
968 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
969 */
970static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
971								 bool unfalloc)
972{
973	struct address_space *mapping = inode->i_mapping;
974	struct shmem_inode_info *info = SHMEM_I(inode);
975	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
976	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
977	struct folio_batch fbatch;
978	pgoff_t indices[PAGEVEC_SIZE];
979	struct folio *folio;
980	bool same_folio;
981	long nr_swaps_freed = 0;
982	pgoff_t index;
983	int i;
984
985	if (lend == -1)
986		end = -1;	/* unsigned, so actually very big */
987
988	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
989		info->fallocend = start;
990
991	folio_batch_init(&fbatch);
992	index = start;
993	while (index < end && find_lock_entries(mapping, &index, end - 1,
994			&fbatch, indices)) {
995		for (i = 0; i < folio_batch_count(&fbatch); i++) {
996			folio = fbatch.folios[i];
997
998			if (xa_is_value(folio)) {
999				if (unfalloc)
1000					continue;
1001				nr_swaps_freed += !shmem_free_swap(mapping,
1002							indices[i], folio);
1003				continue;
1004			}
1005
1006			if (!unfalloc || !folio_test_uptodate(folio))
1007				truncate_inode_folio(mapping, folio);
1008			folio_unlock(folio);
1009		}
1010		folio_batch_remove_exceptionals(&fbatch);
1011		folio_batch_release(&fbatch);
1012		cond_resched();
1013	}
1014
1015	/*
1016	 * When undoing a failed fallocate, we want none of the partial folio
1017	 * zeroing and splitting below, but shall want to truncate the whole
1018	 * folio when !uptodate indicates that it was added by this fallocate,
1019	 * even when [lstart, lend] covers only a part of the folio.
1020	 */
1021	if (unfalloc)
1022		goto whole_folios;
1023
1024	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1025	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1026	if (folio) {
1027		same_folio = lend < folio_pos(folio) + folio_size(folio);
1028		folio_mark_dirty(folio);
1029		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1030			start = folio_next_index(folio);
1031			if (same_folio)
1032				end = folio->index;
1033		}
1034		folio_unlock(folio);
1035		folio_put(folio);
1036		folio = NULL;
1037	}
1038
1039	if (!same_folio)
1040		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1041	if (folio) {
1042		folio_mark_dirty(folio);
1043		if (!truncate_inode_partial_folio(folio, lstart, lend))
1044			end = folio->index;
1045		folio_unlock(folio);
1046		folio_put(folio);
1047	}
1048
1049whole_folios:
1050
1051	index = start;
1052	while (index < end) {
1053		cond_resched();
1054
1055		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1056				indices)) {
1057			/* If all gone or hole-punch or unfalloc, we're done */
1058			if (index == start || end != -1)
1059				break;
1060			/* But if truncating, restart to make sure all gone */
1061			index = start;
1062			continue;
1063		}
1064		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1065			folio = fbatch.folios[i];
1066
1067			if (xa_is_value(folio)) {
1068				if (unfalloc)
1069					continue;
1070				if (shmem_free_swap(mapping, indices[i], folio)) {
1071					/* Swap was replaced by page: retry */
1072					index = indices[i];
1073					break;
1074				}
1075				nr_swaps_freed++;
1076				continue;
1077			}
1078
1079			folio_lock(folio);
1080
1081			if (!unfalloc || !folio_test_uptodate(folio)) {
1082				if (folio_mapping(folio) != mapping) {
1083					/* Page was replaced by swap: retry */
1084					folio_unlock(folio);
1085					index = indices[i];
1086					break;
1087				}
1088				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1089						folio);
1090
1091				if (!folio_test_large(folio)) {
1092					truncate_inode_folio(mapping, folio);
1093				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1094					/*
1095					 * If we split a page, reset the loop so
1096					 * that we pick up the new sub pages.
1097					 * Otherwise the THP was entirely
1098					 * dropped or the target range was
1099					 * zeroed, so just continue the loop as
1100					 * is.
1101					 */
1102					if (!folio_test_large(folio)) {
1103						folio_unlock(folio);
1104						index = start;
1105						break;
1106					}
1107				}
1108			}
1109			folio_unlock(folio);
1110		}
1111		folio_batch_remove_exceptionals(&fbatch);
1112		folio_batch_release(&fbatch);
1113	}
1114
1115	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1116}
1117
1118void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1119{
1120	shmem_undo_range(inode, lstart, lend, false);
1121	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1122	inode_inc_iversion(inode);
1123}
1124EXPORT_SYMBOL_GPL(shmem_truncate_range);
1125
1126static int shmem_getattr(struct mnt_idmap *idmap,
1127			 const struct path *path, struct kstat *stat,
1128			 u32 request_mask, unsigned int query_flags)
1129{
1130	struct inode *inode = path->dentry->d_inode;
1131	struct shmem_inode_info *info = SHMEM_I(inode);
1132
1133	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1134		shmem_recalc_inode(inode, 0, 0);
1135
1136	if (info->fsflags & FS_APPEND_FL)
1137		stat->attributes |= STATX_ATTR_APPEND;
1138	if (info->fsflags & FS_IMMUTABLE_FL)
1139		stat->attributes |= STATX_ATTR_IMMUTABLE;
1140	if (info->fsflags & FS_NODUMP_FL)
1141		stat->attributes |= STATX_ATTR_NODUMP;
1142	stat->attributes_mask |= (STATX_ATTR_APPEND |
1143			STATX_ATTR_IMMUTABLE |
1144			STATX_ATTR_NODUMP);
1145	generic_fillattr(idmap, request_mask, inode, stat);
1146
1147	if (shmem_is_huge(inode, 0, false, NULL, 0))
1148		stat->blksize = HPAGE_PMD_SIZE;
1149
1150	if (request_mask & STATX_BTIME) {
1151		stat->result_mask |= STATX_BTIME;
1152		stat->btime.tv_sec = info->i_crtime.tv_sec;
1153		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1154	}
1155
1156	return 0;
1157}
1158
1159static int shmem_setattr(struct mnt_idmap *idmap,
1160			 struct dentry *dentry, struct iattr *attr)
1161{
1162	struct inode *inode = d_inode(dentry);
1163	struct shmem_inode_info *info = SHMEM_I(inode);
1164	int error;
1165	bool update_mtime = false;
1166	bool update_ctime = true;
1167
1168	error = setattr_prepare(idmap, dentry, attr);
1169	if (error)
1170		return error;
1171
1172	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1173		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1174			return -EPERM;
1175		}
1176	}
1177
1178	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1179		loff_t oldsize = inode->i_size;
1180		loff_t newsize = attr->ia_size;
1181
1182		/* protected by i_rwsem */
1183		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1184		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1185			return -EPERM;
1186
1187		if (newsize != oldsize) {
1188			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1189					oldsize, newsize);
1190			if (error)
1191				return error;
1192			i_size_write(inode, newsize);
1193			update_mtime = true;
1194		} else {
1195			update_ctime = false;
1196		}
1197		if (newsize <= oldsize) {
1198			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1199			if (oldsize > holebegin)
1200				unmap_mapping_range(inode->i_mapping,
1201							holebegin, 0, 1);
1202			if (info->alloced)
1203				shmem_truncate_range(inode,
1204							newsize, (loff_t)-1);
1205			/* unmap again to remove racily COWed private pages */
1206			if (oldsize > holebegin)
1207				unmap_mapping_range(inode->i_mapping,
1208							holebegin, 0, 1);
1209		}
1210	}
1211
1212	if (is_quota_modification(idmap, inode, attr)) {
1213		error = dquot_initialize(inode);
1214		if (error)
1215			return error;
1216	}
1217
1218	/* Transfer quota accounting */
1219	if (i_uid_needs_update(idmap, attr, inode) ||
1220	    i_gid_needs_update(idmap, attr, inode)) {
1221		error = dquot_transfer(idmap, inode, attr);
1222		if (error)
1223			return error;
1224	}
1225
1226	setattr_copy(idmap, inode, attr);
1227	if (attr->ia_valid & ATTR_MODE)
1228		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1229	if (!error && update_ctime) {
1230		inode_set_ctime_current(inode);
1231		if (update_mtime)
1232			inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1233		inode_inc_iversion(inode);
1234	}
1235	return error;
1236}
1237
1238static void shmem_evict_inode(struct inode *inode)
1239{
1240	struct shmem_inode_info *info = SHMEM_I(inode);
1241	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1242	size_t freed = 0;
1243
1244	if (shmem_mapping(inode->i_mapping)) {
1245		shmem_unacct_size(info->flags, inode->i_size);
1246		inode->i_size = 0;
1247		mapping_set_exiting(inode->i_mapping);
1248		shmem_truncate_range(inode, 0, (loff_t)-1);
1249		if (!list_empty(&info->shrinklist)) {
1250			spin_lock(&sbinfo->shrinklist_lock);
1251			if (!list_empty(&info->shrinklist)) {
1252				list_del_init(&info->shrinklist);
1253				sbinfo->shrinklist_len--;
1254			}
1255			spin_unlock(&sbinfo->shrinklist_lock);
1256		}
1257		while (!list_empty(&info->swaplist)) {
1258			/* Wait while shmem_unuse() is scanning this inode... */
1259			wait_var_event(&info->stop_eviction,
1260				       !atomic_read(&info->stop_eviction));
1261			mutex_lock(&shmem_swaplist_mutex);
1262			/* ...but beware of the race if we peeked too early */
1263			if (!atomic_read(&info->stop_eviction))
1264				list_del_init(&info->swaplist);
1265			mutex_unlock(&shmem_swaplist_mutex);
1266		}
1267	}
1268
1269	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1270	shmem_free_inode(inode->i_sb, freed);
1271	WARN_ON(inode->i_blocks);
1272	clear_inode(inode);
1273#ifdef CONFIG_TMPFS_QUOTA
1274	dquot_free_inode(inode);
1275	dquot_drop(inode);
1276#endif
1277}
1278
1279static int shmem_find_swap_entries(struct address_space *mapping,
1280				   pgoff_t start, struct folio_batch *fbatch,
1281				   pgoff_t *indices, unsigned int type)
1282{
1283	XA_STATE(xas, &mapping->i_pages, start);
1284	struct folio *folio;
1285	swp_entry_t entry;
1286
1287	rcu_read_lock();
1288	xas_for_each(&xas, folio, ULONG_MAX) {
1289		if (xas_retry(&xas, folio))
1290			continue;
1291
1292		if (!xa_is_value(folio))
1293			continue;
1294
1295		entry = radix_to_swp_entry(folio);
1296		/*
1297		 * swapin error entries can be found in the mapping. But they're
1298		 * deliberately ignored here as we've done everything we can do.
1299		 */
1300		if (swp_type(entry) != type)
1301			continue;
1302
1303		indices[folio_batch_count(fbatch)] = xas.xa_index;
1304		if (!folio_batch_add(fbatch, folio))
1305			break;
1306
1307		if (need_resched()) {
1308			xas_pause(&xas);
1309			cond_resched_rcu();
1310		}
1311	}
1312	rcu_read_unlock();
1313
1314	return xas.xa_index;
1315}
1316
1317/*
1318 * Move the swapped pages for an inode to page cache. Returns the count
1319 * of pages swapped in, or the error in case of failure.
1320 */
1321static int shmem_unuse_swap_entries(struct inode *inode,
1322		struct folio_batch *fbatch, pgoff_t *indices)
1323{
1324	int i = 0;
1325	int ret = 0;
1326	int error = 0;
1327	struct address_space *mapping = inode->i_mapping;
1328
1329	for (i = 0; i < folio_batch_count(fbatch); i++) {
1330		struct folio *folio = fbatch->folios[i];
1331
1332		if (!xa_is_value(folio))
1333			continue;
1334		error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1335					mapping_gfp_mask(mapping), NULL, NULL);
1336		if (error == 0) {
1337			folio_unlock(folio);
1338			folio_put(folio);
1339			ret++;
1340		}
1341		if (error == -ENOMEM)
1342			break;
1343		error = 0;
1344	}
1345	return error ? error : ret;
1346}
1347
1348/*
1349 * If swap found in inode, free it and move page from swapcache to filecache.
1350 */
1351static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1352{
1353	struct address_space *mapping = inode->i_mapping;
1354	pgoff_t start = 0;
1355	struct folio_batch fbatch;
1356	pgoff_t indices[PAGEVEC_SIZE];
1357	int ret = 0;
1358
1359	do {
1360		folio_batch_init(&fbatch);
1361		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1362		if (folio_batch_count(&fbatch) == 0) {
1363			ret = 0;
1364			break;
1365		}
1366
1367		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1368		if (ret < 0)
1369			break;
1370
1371		start = indices[folio_batch_count(&fbatch) - 1];
1372	} while (true);
1373
1374	return ret;
1375}
1376
1377/*
1378 * Read all the shared memory data that resides in the swap
1379 * device 'type' back into memory, so the swap device can be
1380 * unused.
1381 */
1382int shmem_unuse(unsigned int type)
1383{
1384	struct shmem_inode_info *info, *next;
1385	int error = 0;
1386
1387	if (list_empty(&shmem_swaplist))
1388		return 0;
1389
1390	mutex_lock(&shmem_swaplist_mutex);
1391	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1392		if (!info->swapped) {
1393			list_del_init(&info->swaplist);
1394			continue;
1395		}
1396		/*
1397		 * Drop the swaplist mutex while searching the inode for swap;
1398		 * but before doing so, make sure shmem_evict_inode() will not
1399		 * remove placeholder inode from swaplist, nor let it be freed
1400		 * (igrab() would protect from unlink, but not from unmount).
1401		 */
1402		atomic_inc(&info->stop_eviction);
1403		mutex_unlock(&shmem_swaplist_mutex);
1404
1405		error = shmem_unuse_inode(&info->vfs_inode, type);
1406		cond_resched();
1407
1408		mutex_lock(&shmem_swaplist_mutex);
1409		next = list_next_entry(info, swaplist);
1410		if (!info->swapped)
1411			list_del_init(&info->swaplist);
1412		if (atomic_dec_and_test(&info->stop_eviction))
1413			wake_up_var(&info->stop_eviction);
1414		if (error)
1415			break;
1416	}
1417	mutex_unlock(&shmem_swaplist_mutex);
1418
1419	return error;
1420}
1421
1422/*
1423 * Move the page from the page cache to the swap cache.
1424 */
1425static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1426{
1427	struct folio *folio = page_folio(page);
1428	struct address_space *mapping = folio->mapping;
1429	struct inode *inode = mapping->host;
1430	struct shmem_inode_info *info = SHMEM_I(inode);
1431	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1432	swp_entry_t swap;
1433	pgoff_t index;
1434
1435	/*
1436	 * Our capabilities prevent regular writeback or sync from ever calling
1437	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1438	 * its underlying filesystem, in which case tmpfs should write out to
1439	 * swap only in response to memory pressure, and not for the writeback
1440	 * threads or sync.
1441	 */
1442	if (WARN_ON_ONCE(!wbc->for_reclaim))
1443		goto redirty;
1444
1445	if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1446		goto redirty;
1447
1448	if (!total_swap_pages)
1449		goto redirty;
1450
1451	/*
1452	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1453	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1454	 * and its shmem_writeback() needs them to be split when swapping.
1455	 */
1456	if (folio_test_large(folio)) {
1457		/* Ensure the subpages are still dirty */
1458		folio_test_set_dirty(folio);
1459		if (split_huge_page(page) < 0)
1460			goto redirty;
1461		folio = page_folio(page);
1462		folio_clear_dirty(folio);
1463	}
1464
1465	index = folio->index;
1466
1467	/*
1468	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1469	 * value into swapfile.c, the only way we can correctly account for a
1470	 * fallocated folio arriving here is now to initialize it and write it.
1471	 *
1472	 * That's okay for a folio already fallocated earlier, but if we have
1473	 * not yet completed the fallocation, then (a) we want to keep track
1474	 * of this folio in case we have to undo it, and (b) it may not be a
1475	 * good idea to continue anyway, once we're pushing into swap.  So
1476	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1477	 */
1478	if (!folio_test_uptodate(folio)) {
1479		if (inode->i_private) {
1480			struct shmem_falloc *shmem_falloc;
1481			spin_lock(&inode->i_lock);
1482			shmem_falloc = inode->i_private;
1483			if (shmem_falloc &&
1484			    !shmem_falloc->waitq &&
1485			    index >= shmem_falloc->start &&
1486			    index < shmem_falloc->next)
1487				shmem_falloc->nr_unswapped++;
1488			else
1489				shmem_falloc = NULL;
1490			spin_unlock(&inode->i_lock);
1491			if (shmem_falloc)
1492				goto redirty;
1493		}
1494		folio_zero_range(folio, 0, folio_size(folio));
1495		flush_dcache_folio(folio);
1496		folio_mark_uptodate(folio);
1497	}
1498
1499	swap = folio_alloc_swap(folio);
1500	if (!swap.val)
1501		goto redirty;
1502
1503	/*
1504	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1505	 * if it's not already there.  Do it now before the folio is
1506	 * moved to swap cache, when its pagelock no longer protects
1507	 * the inode from eviction.  But don't unlock the mutex until
1508	 * we've incremented swapped, because shmem_unuse_inode() will
1509	 * prune a !swapped inode from the swaplist under this mutex.
1510	 */
1511	mutex_lock(&shmem_swaplist_mutex);
1512	if (list_empty(&info->swaplist))
1513		list_add(&info->swaplist, &shmem_swaplist);
1514
1515	if (add_to_swap_cache(folio, swap,
1516			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1517			NULL) == 0) {
1518		shmem_recalc_inode(inode, 0, 1);
1519		swap_shmem_alloc(swap);
1520		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1521
1522		mutex_unlock(&shmem_swaplist_mutex);
1523		BUG_ON(folio_mapped(folio));
1524		return swap_writepage(&folio->page, wbc);
1525	}
1526
1527	mutex_unlock(&shmem_swaplist_mutex);
1528	put_swap_folio(folio, swap);
1529redirty:
1530	folio_mark_dirty(folio);
1531	if (wbc->for_reclaim)
1532		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1533	folio_unlock(folio);
1534	return 0;
1535}
1536
1537#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1538static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1539{
1540	char buffer[64];
1541
1542	if (!mpol || mpol->mode == MPOL_DEFAULT)
1543		return;		/* show nothing */
1544
1545	mpol_to_str(buffer, sizeof(buffer), mpol);
1546
1547	seq_printf(seq, ",mpol=%s", buffer);
1548}
1549
1550static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1551{
1552	struct mempolicy *mpol = NULL;
1553	if (sbinfo->mpol) {
1554		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1555		mpol = sbinfo->mpol;
1556		mpol_get(mpol);
1557		raw_spin_unlock(&sbinfo->stat_lock);
1558	}
1559	return mpol;
1560}
1561#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1562static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1563{
1564}
1565static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1566{
1567	return NULL;
1568}
1569#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1570
1571static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1572			pgoff_t index, unsigned int order, pgoff_t *ilx);
1573
1574static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1575			struct shmem_inode_info *info, pgoff_t index)
1576{
1577	struct mempolicy *mpol;
1578	pgoff_t ilx;
1579	struct folio *folio;
1580
1581	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1582	folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1583	mpol_cond_put(mpol);
1584
1585	return folio;
1586}
1587
1588/*
1589 * Make sure huge_gfp is always more limited than limit_gfp.
1590 * Some of the flags set permissions, while others set limitations.
1591 */
1592static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1593{
1594	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1595	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1596	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1597	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1598
1599	/* Allow allocations only from the originally specified zones. */
1600	result |= zoneflags;
1601
1602	/*
1603	 * Minimize the result gfp by taking the union with the deny flags,
1604	 * and the intersection of the allow flags.
1605	 */
1606	result |= (limit_gfp & denyflags);
1607	result |= (huge_gfp & limit_gfp) & allowflags;
1608
1609	return result;
1610}
1611
1612static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1613		struct shmem_inode_info *info, pgoff_t index)
1614{
1615	struct mempolicy *mpol;
1616	pgoff_t ilx;
1617	struct page *page;
1618
1619	mpol = shmem_get_pgoff_policy(info, index, HPAGE_PMD_ORDER, &ilx);
1620	page = alloc_pages_mpol(gfp, HPAGE_PMD_ORDER, mpol, ilx, numa_node_id());
1621	mpol_cond_put(mpol);
1622
1623	return page_rmappable_folio(page);
1624}
1625
1626static struct folio *shmem_alloc_folio(gfp_t gfp,
1627		struct shmem_inode_info *info, pgoff_t index)
1628{
1629	struct mempolicy *mpol;
1630	pgoff_t ilx;
1631	struct page *page;
1632
1633	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1634	page = alloc_pages_mpol(gfp, 0, mpol, ilx, numa_node_id());
1635	mpol_cond_put(mpol);
1636
1637	return (struct folio *)page;
1638}
1639
1640static struct folio *shmem_alloc_and_add_folio(gfp_t gfp,
1641		struct inode *inode, pgoff_t index,
1642		struct mm_struct *fault_mm, bool huge)
1643{
1644	struct address_space *mapping = inode->i_mapping;
1645	struct shmem_inode_info *info = SHMEM_I(inode);
1646	struct folio *folio;
1647	long pages;
1648	int error;
1649
1650	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1651		huge = false;
1652
1653	if (huge) {
1654		pages = HPAGE_PMD_NR;
1655		index = round_down(index, HPAGE_PMD_NR);
1656
1657		/*
1658		 * Check for conflict before waiting on a huge allocation.
1659		 * Conflict might be that a huge page has just been allocated
1660		 * and added to page cache by a racing thread, or that there
1661		 * is already at least one small page in the huge extent.
1662		 * Be careful to retry when appropriate, but not forever!
1663		 * Elsewhere -EEXIST would be the right code, but not here.
1664		 */
1665		if (xa_find(&mapping->i_pages, &index,
1666				index + HPAGE_PMD_NR - 1, XA_PRESENT))
1667			return ERR_PTR(-E2BIG);
1668
1669		folio = shmem_alloc_hugefolio(gfp, info, index);
1670		if (!folio)
1671			count_vm_event(THP_FILE_FALLBACK);
1672	} else {
1673		pages = 1;
1674		folio = shmem_alloc_folio(gfp, info, index);
1675	}
1676	if (!folio)
1677		return ERR_PTR(-ENOMEM);
1678
1679	__folio_set_locked(folio);
1680	__folio_set_swapbacked(folio);
1681
1682	gfp &= GFP_RECLAIM_MASK;
1683	error = mem_cgroup_charge(folio, fault_mm, gfp);
1684	if (error) {
1685		if (xa_find(&mapping->i_pages, &index,
1686				index + pages - 1, XA_PRESENT)) {
1687			error = -EEXIST;
1688		} else if (huge) {
1689			count_vm_event(THP_FILE_FALLBACK);
1690			count_vm_event(THP_FILE_FALLBACK_CHARGE);
1691		}
1692		goto unlock;
1693	}
1694
1695	error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1696	if (error)
1697		goto unlock;
1698
1699	error = shmem_inode_acct_blocks(inode, pages);
1700	if (error) {
1701		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1702		long freed;
1703		/*
1704		 * Try to reclaim some space by splitting a few
1705		 * large folios beyond i_size on the filesystem.
1706		 */
1707		shmem_unused_huge_shrink(sbinfo, NULL, 2);
1708		/*
1709		 * And do a shmem_recalc_inode() to account for freed pages:
1710		 * except our folio is there in cache, so not quite balanced.
1711		 */
1712		spin_lock(&info->lock);
1713		freed = pages + info->alloced - info->swapped -
1714			READ_ONCE(mapping->nrpages);
1715		if (freed > 0)
1716			info->alloced -= freed;
1717		spin_unlock(&info->lock);
1718		if (freed > 0)
1719			shmem_inode_unacct_blocks(inode, freed);
1720		error = shmem_inode_acct_blocks(inode, pages);
1721		if (error) {
1722			filemap_remove_folio(folio);
1723			goto unlock;
1724		}
1725	}
1726
1727	shmem_recalc_inode(inode, pages, 0);
1728	folio_add_lru(folio);
1729	return folio;
1730
1731unlock:
1732	folio_unlock(folio);
1733	folio_put(folio);
1734	return ERR_PTR(error);
1735}
1736
1737/*
1738 * When a page is moved from swapcache to shmem filecache (either by the
1739 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1740 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1741 * ignorance of the mapping it belongs to.  If that mapping has special
1742 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1743 * we may need to copy to a suitable page before moving to filecache.
1744 *
1745 * In a future release, this may well be extended to respect cpuset and
1746 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1747 * but for now it is a simple matter of zone.
1748 */
1749static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1750{
1751	return folio_zonenum(folio) > gfp_zone(gfp);
1752}
1753
1754static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1755				struct shmem_inode_info *info, pgoff_t index)
1756{
1757	struct folio *old, *new;
1758	struct address_space *swap_mapping;
1759	swp_entry_t entry;
1760	pgoff_t swap_index;
1761	int error;
1762
1763	old = *foliop;
1764	entry = old->swap;
1765	swap_index = swp_offset(entry);
1766	swap_mapping = swap_address_space(entry);
1767
1768	/*
1769	 * We have arrived here because our zones are constrained, so don't
1770	 * limit chance of success by further cpuset and node constraints.
1771	 */
1772	gfp &= ~GFP_CONSTRAINT_MASK;
1773	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1774	new = shmem_alloc_folio(gfp, info, index);
1775	if (!new)
1776		return -ENOMEM;
1777
1778	folio_get(new);
1779	folio_copy(new, old);
1780	flush_dcache_folio(new);
1781
1782	__folio_set_locked(new);
1783	__folio_set_swapbacked(new);
1784	folio_mark_uptodate(new);
1785	new->swap = entry;
1786	folio_set_swapcache(new);
1787
1788	/*
1789	 * Our caller will very soon move newpage out of swapcache, but it's
1790	 * a nice clean interface for us to replace oldpage by newpage there.
1791	 */
1792	xa_lock_irq(&swap_mapping->i_pages);
1793	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1794	if (!error) {
1795		mem_cgroup_migrate(old, new);
1796		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1797		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1798		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1799		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1800	}
1801	xa_unlock_irq(&swap_mapping->i_pages);
1802
1803	if (unlikely(error)) {
1804		/*
1805		 * Is this possible?  I think not, now that our callers check
1806		 * both PageSwapCache and page_private after getting page lock;
1807		 * but be defensive.  Reverse old to newpage for clear and free.
1808		 */
1809		old = new;
1810	} else {
1811		folio_add_lru(new);
1812		*foliop = new;
1813	}
1814
1815	folio_clear_swapcache(old);
1816	old->private = NULL;
1817
1818	folio_unlock(old);
1819	folio_put_refs(old, 2);
1820	return error;
1821}
1822
1823static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1824					 struct folio *folio, swp_entry_t swap)
1825{
1826	struct address_space *mapping = inode->i_mapping;
1827	swp_entry_t swapin_error;
1828	void *old;
1829
1830	swapin_error = make_poisoned_swp_entry();
1831	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1832			     swp_to_radix_entry(swap),
1833			     swp_to_radix_entry(swapin_error), 0);
1834	if (old != swp_to_radix_entry(swap))
1835		return;
1836
1837	folio_wait_writeback(folio);
1838	delete_from_swap_cache(folio);
1839	/*
1840	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
1841	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
1842	 * in shmem_evict_inode().
1843	 */
1844	shmem_recalc_inode(inode, -1, -1);
1845	swap_free(swap);
1846}
1847
1848/*
1849 * Swap in the folio pointed to by *foliop.
1850 * Caller has to make sure that *foliop contains a valid swapped folio.
1851 * Returns 0 and the folio in foliop if success. On failure, returns the
1852 * error code and NULL in *foliop.
1853 */
1854static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1855			     struct folio **foliop, enum sgp_type sgp,
1856			     gfp_t gfp, struct mm_struct *fault_mm,
1857			     vm_fault_t *fault_type)
1858{
1859	struct address_space *mapping = inode->i_mapping;
1860	struct shmem_inode_info *info = SHMEM_I(inode);
1861	struct swap_info_struct *si;
1862	struct folio *folio = NULL;
1863	swp_entry_t swap;
1864	int error;
1865
1866	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1867	swap = radix_to_swp_entry(*foliop);
1868	*foliop = NULL;
1869
1870	if (is_poisoned_swp_entry(swap))
1871		return -EIO;
1872
1873	si = get_swap_device(swap);
1874	if (!si) {
1875		if (!shmem_confirm_swap(mapping, index, swap))
1876			return -EEXIST;
1877		else
1878			return -EINVAL;
1879	}
1880
1881	/* Look it up and read it in.. */
1882	folio = swap_cache_get_folio(swap, NULL, 0);
1883	if (!folio) {
1884		/* Or update major stats only when swapin succeeds?? */
1885		if (fault_type) {
1886			*fault_type |= VM_FAULT_MAJOR;
1887			count_vm_event(PGMAJFAULT);
1888			count_memcg_event_mm(fault_mm, PGMAJFAULT);
1889		}
1890		/* Here we actually start the io */
1891		folio = shmem_swapin_cluster(swap, gfp, info, index);
1892		if (!folio) {
1893			error = -ENOMEM;
1894			goto failed;
1895		}
1896	}
1897
1898	/* We have to do this with folio locked to prevent races */
1899	folio_lock(folio);
1900	if (!folio_test_swapcache(folio) ||
1901	    folio->swap.val != swap.val ||
1902	    !shmem_confirm_swap(mapping, index, swap)) {
1903		error = -EEXIST;
1904		goto unlock;
1905	}
1906	if (!folio_test_uptodate(folio)) {
1907		error = -EIO;
1908		goto failed;
1909	}
1910	folio_wait_writeback(folio);
1911
1912	/*
1913	 * Some architectures may have to restore extra metadata to the
1914	 * folio after reading from swap.
1915	 */
1916	arch_swap_restore(swap, folio);
1917
1918	if (shmem_should_replace_folio(folio, gfp)) {
1919		error = shmem_replace_folio(&folio, gfp, info, index);
1920		if (error)
1921			goto failed;
1922	}
1923
1924	error = shmem_add_to_page_cache(folio, mapping, index,
1925					swp_to_radix_entry(swap), gfp);
1926	if (error)
1927		goto failed;
1928
1929	shmem_recalc_inode(inode, 0, -1);
1930
1931	if (sgp == SGP_WRITE)
1932		folio_mark_accessed(folio);
1933
1934	delete_from_swap_cache(folio);
1935	folio_mark_dirty(folio);
1936	swap_free(swap);
1937	put_swap_device(si);
1938
1939	*foliop = folio;
1940	return 0;
1941failed:
1942	if (!shmem_confirm_swap(mapping, index, swap))
1943		error = -EEXIST;
1944	if (error == -EIO)
1945		shmem_set_folio_swapin_error(inode, index, folio, swap);
1946unlock:
1947	if (folio) {
1948		folio_unlock(folio);
1949		folio_put(folio);
1950	}
1951	put_swap_device(si);
1952
1953	return error;
1954}
1955
1956/*
1957 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1958 *
1959 * If we allocate a new one we do not mark it dirty. That's up to the
1960 * vm. If we swap it in we mark it dirty since we also free the swap
1961 * entry since a page cannot live in both the swap and page cache.
1962 *
1963 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
1964 */
1965static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1966		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1967		struct vm_fault *vmf, vm_fault_t *fault_type)
1968{
1969	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1970	struct mm_struct *fault_mm;
1971	struct folio *folio;
1972	int error;
1973	bool alloced;
1974
1975	if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
1976		return -EINVAL;
1977
1978	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1979		return -EFBIG;
1980repeat:
1981	if (sgp <= SGP_CACHE &&
1982	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
1983		return -EINVAL;
1984
1985	alloced = false;
1986	fault_mm = vma ? vma->vm_mm : NULL;
1987
1988	folio = filemap_get_entry(inode->i_mapping, index);
1989	if (folio && vma && userfaultfd_minor(vma)) {
1990		if (!xa_is_value(folio))
1991			folio_put(folio);
1992		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1993		return 0;
1994	}
1995
1996	if (xa_is_value(folio)) {
1997		error = shmem_swapin_folio(inode, index, &folio,
1998					   sgp, gfp, fault_mm, fault_type);
1999		if (error == -EEXIST)
2000			goto repeat;
2001
2002		*foliop = folio;
2003		return error;
2004	}
2005
2006	if (folio) {
2007		folio_lock(folio);
2008
2009		/* Has the folio been truncated or swapped out? */
2010		if (unlikely(folio->mapping != inode->i_mapping)) {
2011			folio_unlock(folio);
2012			folio_put(folio);
2013			goto repeat;
2014		}
2015		if (sgp == SGP_WRITE)
2016			folio_mark_accessed(folio);
2017		if (folio_test_uptodate(folio))
2018			goto out;
2019		/* fallocated folio */
2020		if (sgp != SGP_READ)
2021			goto clear;
2022		folio_unlock(folio);
2023		folio_put(folio);
2024	}
2025
2026	/*
2027	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2028	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2029	 */
2030	*foliop = NULL;
2031	if (sgp == SGP_READ)
2032		return 0;
2033	if (sgp == SGP_NOALLOC)
2034		return -ENOENT;
2035
2036	/*
2037	 * Fast cache lookup and swap lookup did not find it: allocate.
2038	 */
2039
2040	if (vma && userfaultfd_missing(vma)) {
2041		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2042		return 0;
2043	}
2044
2045	if (shmem_is_huge(inode, index, false, fault_mm,
2046			  vma ? vma->vm_flags : 0)) {
2047		gfp_t huge_gfp;
2048
2049		huge_gfp = vma_thp_gfp_mask(vma);
2050		huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2051		folio = shmem_alloc_and_add_folio(huge_gfp,
2052				inode, index, fault_mm, true);
2053		if (!IS_ERR(folio)) {
2054			count_vm_event(THP_FILE_ALLOC);
2055			goto alloced;
2056		}
2057		if (PTR_ERR(folio) == -EEXIST)
2058			goto repeat;
2059	}
2060
2061	folio = shmem_alloc_and_add_folio(gfp, inode, index, fault_mm, false);
2062	if (IS_ERR(folio)) {
2063		error = PTR_ERR(folio);
2064		if (error == -EEXIST)
2065			goto repeat;
2066		folio = NULL;
2067		goto unlock;
2068	}
2069
2070alloced:
2071	alloced = true;
2072	if (folio_test_pmd_mappable(folio) &&
2073	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2074					folio_next_index(folio) - 1) {
2075		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2076		struct shmem_inode_info *info = SHMEM_I(inode);
2077		/*
2078		 * Part of the large folio is beyond i_size: subject
2079		 * to shrink under memory pressure.
2080		 */
2081		spin_lock(&sbinfo->shrinklist_lock);
2082		/*
2083		 * _careful to defend against unlocked access to
2084		 * ->shrink_list in shmem_unused_huge_shrink()
2085		 */
2086		if (list_empty_careful(&info->shrinklist)) {
2087			list_add_tail(&info->shrinklist,
2088				      &sbinfo->shrinklist);
2089			sbinfo->shrinklist_len++;
2090		}
2091		spin_unlock(&sbinfo->shrinklist_lock);
2092	}
2093
2094	if (sgp == SGP_WRITE)
2095		folio_set_referenced(folio);
2096	/*
2097	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2098	 */
2099	if (sgp == SGP_FALLOC)
2100		sgp = SGP_WRITE;
2101clear:
2102	/*
2103	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2104	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2105	 * it now, lest undo on failure cancel our earlier guarantee.
2106	 */
2107	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2108		long i, n = folio_nr_pages(folio);
2109
2110		for (i = 0; i < n; i++)
2111			clear_highpage(folio_page(folio, i));
2112		flush_dcache_folio(folio);
2113		folio_mark_uptodate(folio);
2114	}
2115
2116	/* Perhaps the file has been truncated since we checked */
2117	if (sgp <= SGP_CACHE &&
2118	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2119		error = -EINVAL;
2120		goto unlock;
2121	}
2122out:
2123	*foliop = folio;
2124	return 0;
2125
2126	/*
2127	 * Error recovery.
2128	 */
2129unlock:
2130	if (alloced)
2131		filemap_remove_folio(folio);
2132	shmem_recalc_inode(inode, 0, 0);
2133	if (folio) {
2134		folio_unlock(folio);
2135		folio_put(folio);
2136	}
2137	return error;
2138}
2139
2140/**
2141 * shmem_get_folio - find, and lock a shmem folio.
2142 * @inode:	inode to search
2143 * @index:	the page index.
2144 * @foliop:	pointer to the folio if found
2145 * @sgp:	SGP_* flags to control behavior
2146 *
2147 * Looks up the page cache entry at @inode & @index.  If a folio is
2148 * present, it is returned locked with an increased refcount.
2149 *
2150 * If the caller modifies data in the folio, it must call folio_mark_dirty()
2151 * before unlocking the folio to ensure that the folio is not reclaimed.
2152 * There is no need to reserve space before calling folio_mark_dirty().
2153 *
2154 * When no folio is found, the behavior depends on @sgp:
2155 *  - for SGP_READ, *@foliop is %NULL and 0 is returned
2156 *  - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2157 *  - for all other flags a new folio is allocated, inserted into the
2158 *    page cache and returned locked in @foliop.
2159 *
2160 * Context: May sleep.
2161 * Return: 0 if successful, else a negative error code.
2162 */
2163int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2164		enum sgp_type sgp)
2165{
2166	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2167			mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2168}
2169EXPORT_SYMBOL_GPL(shmem_get_folio);
2170
2171/*
2172 * This is like autoremove_wake_function, but it removes the wait queue
2173 * entry unconditionally - even if something else had already woken the
2174 * target.
2175 */
2176static int synchronous_wake_function(wait_queue_entry_t *wait,
2177			unsigned int mode, int sync, void *key)
2178{
2179	int ret = default_wake_function(wait, mode, sync, key);
2180	list_del_init(&wait->entry);
2181	return ret;
2182}
2183
2184/*
2185 * Trinity finds that probing a hole which tmpfs is punching can
2186 * prevent the hole-punch from ever completing: which in turn
2187 * locks writers out with its hold on i_rwsem.  So refrain from
2188 * faulting pages into the hole while it's being punched.  Although
2189 * shmem_undo_range() does remove the additions, it may be unable to
2190 * keep up, as each new page needs its own unmap_mapping_range() call,
2191 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2192 *
2193 * It does not matter if we sometimes reach this check just before the
2194 * hole-punch begins, so that one fault then races with the punch:
2195 * we just need to make racing faults a rare case.
2196 *
2197 * The implementation below would be much simpler if we just used a
2198 * standard mutex or completion: but we cannot take i_rwsem in fault,
2199 * and bloating every shmem inode for this unlikely case would be sad.
2200 */
2201static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2202{
2203	struct shmem_falloc *shmem_falloc;
2204	struct file *fpin = NULL;
2205	vm_fault_t ret = 0;
2206
2207	spin_lock(&inode->i_lock);
2208	shmem_falloc = inode->i_private;
2209	if (shmem_falloc &&
2210	    shmem_falloc->waitq &&
2211	    vmf->pgoff >= shmem_falloc->start &&
2212	    vmf->pgoff < shmem_falloc->next) {
2213		wait_queue_head_t *shmem_falloc_waitq;
2214		DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2215
2216		ret = VM_FAULT_NOPAGE;
2217		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2218		shmem_falloc_waitq = shmem_falloc->waitq;
2219		prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2220				TASK_UNINTERRUPTIBLE);
2221		spin_unlock(&inode->i_lock);
2222		schedule();
2223
2224		/*
2225		 * shmem_falloc_waitq points into the shmem_fallocate()
2226		 * stack of the hole-punching task: shmem_falloc_waitq
2227		 * is usually invalid by the time we reach here, but
2228		 * finish_wait() does not dereference it in that case;
2229		 * though i_lock needed lest racing with wake_up_all().
2230		 */
2231		spin_lock(&inode->i_lock);
2232		finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2233	}
2234	spin_unlock(&inode->i_lock);
2235	if (fpin) {
2236		fput(fpin);
2237		ret = VM_FAULT_RETRY;
2238	}
2239	return ret;
2240}
2241
2242static vm_fault_t shmem_fault(struct vm_fault *vmf)
2243{
2244	struct inode *inode = file_inode(vmf->vma->vm_file);
2245	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2246	struct folio *folio = NULL;
2247	vm_fault_t ret = 0;
2248	int err;
2249
2250	/*
2251	 * Trinity finds that probing a hole which tmpfs is punching can
2252	 * prevent the hole-punch from ever completing: noted in i_private.
2253	 */
2254	if (unlikely(inode->i_private)) {
2255		ret = shmem_falloc_wait(vmf, inode);
2256		if (ret)
2257			return ret;
2258	}
2259
2260	WARN_ON_ONCE(vmf->page != NULL);
2261	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2262				  gfp, vmf, &ret);
2263	if (err)
2264		return vmf_error(err);
2265	if (folio) {
2266		vmf->page = folio_file_page(folio, vmf->pgoff);
2267		ret |= VM_FAULT_LOCKED;
2268	}
2269	return ret;
2270}
2271
2272unsigned long shmem_get_unmapped_area(struct file *file,
2273				      unsigned long uaddr, unsigned long len,
2274				      unsigned long pgoff, unsigned long flags)
2275{
2276	unsigned long (*get_area)(struct file *,
2277		unsigned long, unsigned long, unsigned long, unsigned long);
2278	unsigned long addr;
2279	unsigned long offset;
2280	unsigned long inflated_len;
2281	unsigned long inflated_addr;
2282	unsigned long inflated_offset;
2283
2284	if (len > TASK_SIZE)
2285		return -ENOMEM;
2286
2287	get_area = current->mm->get_unmapped_area;
2288	addr = get_area(file, uaddr, len, pgoff, flags);
2289
2290	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2291		return addr;
2292	if (IS_ERR_VALUE(addr))
2293		return addr;
2294	if (addr & ~PAGE_MASK)
2295		return addr;
2296	if (addr > TASK_SIZE - len)
2297		return addr;
2298
2299	if (shmem_huge == SHMEM_HUGE_DENY)
2300		return addr;
2301	if (len < HPAGE_PMD_SIZE)
2302		return addr;
2303	if (flags & MAP_FIXED)
2304		return addr;
2305	/*
2306	 * Our priority is to support MAP_SHARED mapped hugely;
2307	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2308	 * But if caller specified an address hint and we allocated area there
2309	 * successfully, respect that as before.
2310	 */
2311	if (uaddr == addr)
2312		return addr;
2313
2314	if (shmem_huge != SHMEM_HUGE_FORCE) {
2315		struct super_block *sb;
2316
2317		if (file) {
2318			VM_BUG_ON(file->f_op != &shmem_file_operations);
2319			sb = file_inode(file)->i_sb;
2320		} else {
2321			/*
2322			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2323			 * for "/dev/zero", to create a shared anonymous object.
2324			 */
2325			if (IS_ERR(shm_mnt))
2326				return addr;
2327			sb = shm_mnt->mnt_sb;
2328		}
2329		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2330			return addr;
2331	}
2332
2333	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2334	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2335		return addr;
2336	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2337		return addr;
2338
2339	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2340	if (inflated_len > TASK_SIZE)
2341		return addr;
2342	if (inflated_len < len)
2343		return addr;
2344
2345	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2346	if (IS_ERR_VALUE(inflated_addr))
2347		return addr;
2348	if (inflated_addr & ~PAGE_MASK)
2349		return addr;
2350
2351	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2352	inflated_addr += offset - inflated_offset;
2353	if (inflated_offset > offset)
2354		inflated_addr += HPAGE_PMD_SIZE;
2355
2356	if (inflated_addr > TASK_SIZE - len)
2357		return addr;
2358	return inflated_addr;
2359}
2360
2361#ifdef CONFIG_NUMA
2362static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2363{
2364	struct inode *inode = file_inode(vma->vm_file);
2365	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2366}
2367
2368static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2369					  unsigned long addr, pgoff_t *ilx)
2370{
2371	struct inode *inode = file_inode(vma->vm_file);
2372	pgoff_t index;
2373
2374	/*
2375	 * Bias interleave by inode number to distribute better across nodes;
2376	 * but this interface is independent of which page order is used, so
2377	 * supplies only that bias, letting caller apply the offset (adjusted
2378	 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2379	 */
2380	*ilx = inode->i_ino;
2381	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2382	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2383}
2384
2385static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2386			pgoff_t index, unsigned int order, pgoff_t *ilx)
2387{
2388	struct mempolicy *mpol;
2389
2390	/* Bias interleave by inode number to distribute better across nodes */
2391	*ilx = info->vfs_inode.i_ino + (index >> order);
2392
2393	mpol = mpol_shared_policy_lookup(&info->policy, index);
2394	return mpol ? mpol : get_task_policy(current);
2395}
2396#else
2397static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2398			pgoff_t index, unsigned int order, pgoff_t *ilx)
2399{
2400	*ilx = 0;
2401	return NULL;
2402}
2403#endif /* CONFIG_NUMA */
2404
2405int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2406{
2407	struct inode *inode = file_inode(file);
2408	struct shmem_inode_info *info = SHMEM_I(inode);
2409	int retval = -ENOMEM;
2410
2411	/*
2412	 * What serializes the accesses to info->flags?
2413	 * ipc_lock_object() when called from shmctl_do_lock(),
2414	 * no serialization needed when called from shm_destroy().
2415	 */
2416	if (lock && !(info->flags & VM_LOCKED)) {
2417		if (!user_shm_lock(inode->i_size, ucounts))
2418			goto out_nomem;
2419		info->flags |= VM_LOCKED;
2420		mapping_set_unevictable(file->f_mapping);
2421	}
2422	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2423		user_shm_unlock(inode->i_size, ucounts);
2424		info->flags &= ~VM_LOCKED;
2425		mapping_clear_unevictable(file->f_mapping);
2426	}
2427	retval = 0;
2428
2429out_nomem:
2430	return retval;
2431}
2432
2433static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2434{
2435	struct inode *inode = file_inode(file);
2436	struct shmem_inode_info *info = SHMEM_I(inode);
2437	int ret;
2438
2439	ret = seal_check_write(info->seals, vma);
2440	if (ret)
2441		return ret;
2442
2443	/* arm64 - allow memory tagging on RAM-based files */
2444	vm_flags_set(vma, VM_MTE_ALLOWED);
2445
2446	file_accessed(file);
2447	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2448	if (inode->i_nlink)
2449		vma->vm_ops = &shmem_vm_ops;
2450	else
2451		vma->vm_ops = &shmem_anon_vm_ops;
2452	return 0;
2453}
2454
2455static int shmem_file_open(struct inode *inode, struct file *file)
2456{
2457	file->f_mode |= FMODE_CAN_ODIRECT;
2458	return generic_file_open(inode, file);
2459}
2460
2461#ifdef CONFIG_TMPFS_XATTR
2462static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2463
2464/*
2465 * chattr's fsflags are unrelated to extended attributes,
2466 * but tmpfs has chosen to enable them under the same config option.
2467 */
2468static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2469{
2470	unsigned int i_flags = 0;
2471
2472	if (fsflags & FS_NOATIME_FL)
2473		i_flags |= S_NOATIME;
2474	if (fsflags & FS_APPEND_FL)
2475		i_flags |= S_APPEND;
2476	if (fsflags & FS_IMMUTABLE_FL)
2477		i_flags |= S_IMMUTABLE;
2478	/*
2479	 * But FS_NODUMP_FL does not require any action in i_flags.
2480	 */
2481	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2482}
2483#else
2484static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2485{
2486}
2487#define shmem_initxattrs NULL
2488#endif
2489
2490static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2491{
2492	return &SHMEM_I(inode)->dir_offsets;
2493}
2494
2495static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2496					     struct super_block *sb,
2497					     struct inode *dir, umode_t mode,
2498					     dev_t dev, unsigned long flags)
2499{
2500	struct inode *inode;
2501	struct shmem_inode_info *info;
2502	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2503	ino_t ino;
2504	int err;
2505
2506	err = shmem_reserve_inode(sb, &ino);
2507	if (err)
2508		return ERR_PTR(err);
2509
2510	inode = new_inode(sb);
2511	if (!inode) {
2512		shmem_free_inode(sb, 0);
2513		return ERR_PTR(-ENOSPC);
2514	}
2515
2516	inode->i_ino = ino;
2517	inode_init_owner(idmap, inode, dir, mode);
2518	inode->i_blocks = 0;
2519	simple_inode_init_ts(inode);
2520	inode->i_generation = get_random_u32();
2521	info = SHMEM_I(inode);
2522	memset(info, 0, (char *)inode - (char *)info);
2523	spin_lock_init(&info->lock);
2524	atomic_set(&info->stop_eviction, 0);
2525	info->seals = F_SEAL_SEAL;
2526	info->flags = flags & VM_NORESERVE;
2527	info->i_crtime = inode_get_mtime(inode);
2528	info->fsflags = (dir == NULL) ? 0 :
2529		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2530	if (info->fsflags)
2531		shmem_set_inode_flags(inode, info->fsflags);
2532	INIT_LIST_HEAD(&info->shrinklist);
2533	INIT_LIST_HEAD(&info->swaplist);
2534	simple_xattrs_init(&info->xattrs);
2535	cache_no_acl(inode);
2536	if (sbinfo->noswap)
2537		mapping_set_unevictable(inode->i_mapping);
2538	mapping_set_large_folios(inode->i_mapping);
2539
2540	switch (mode & S_IFMT) {
2541	default:
2542		inode->i_op = &shmem_special_inode_operations;
2543		init_special_inode(inode, mode, dev);
2544		break;
2545	case S_IFREG:
2546		inode->i_mapping->a_ops = &shmem_aops;
2547		inode->i_op = &shmem_inode_operations;
2548		inode->i_fop = &shmem_file_operations;
2549		mpol_shared_policy_init(&info->policy,
2550					 shmem_get_sbmpol(sbinfo));
2551		break;
2552	case S_IFDIR:
2553		inc_nlink(inode);
2554		/* Some things misbehave if size == 0 on a directory */
2555		inode->i_size = 2 * BOGO_DIRENT_SIZE;
2556		inode->i_op = &shmem_dir_inode_operations;
2557		inode->i_fop = &simple_offset_dir_operations;
2558		simple_offset_init(shmem_get_offset_ctx(inode));
2559		break;
2560	case S_IFLNK:
2561		/*
2562		 * Must not load anything in the rbtree,
2563		 * mpol_free_shared_policy will not be called.
2564		 */
2565		mpol_shared_policy_init(&info->policy, NULL);
2566		break;
2567	}
2568
2569	lockdep_annotate_inode_mutex_key(inode);
2570	return inode;
2571}
2572
2573#ifdef CONFIG_TMPFS_QUOTA
2574static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2575				     struct super_block *sb, struct inode *dir,
2576				     umode_t mode, dev_t dev, unsigned long flags)
2577{
2578	int err;
2579	struct inode *inode;
2580
2581	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2582	if (IS_ERR(inode))
2583		return inode;
2584
2585	err = dquot_initialize(inode);
2586	if (err)
2587		goto errout;
2588
2589	err = dquot_alloc_inode(inode);
2590	if (err) {
2591		dquot_drop(inode);
2592		goto errout;
2593	}
2594	return inode;
2595
2596errout:
2597	inode->i_flags |= S_NOQUOTA;
2598	iput(inode);
2599	return ERR_PTR(err);
2600}
2601#else
2602static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2603				     struct super_block *sb, struct inode *dir,
2604				     umode_t mode, dev_t dev, unsigned long flags)
2605{
2606	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2607}
2608#endif /* CONFIG_TMPFS_QUOTA */
2609
2610#ifdef CONFIG_USERFAULTFD
2611int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2612			   struct vm_area_struct *dst_vma,
2613			   unsigned long dst_addr,
2614			   unsigned long src_addr,
2615			   uffd_flags_t flags,
2616			   struct folio **foliop)
2617{
2618	struct inode *inode = file_inode(dst_vma->vm_file);
2619	struct shmem_inode_info *info = SHMEM_I(inode);
2620	struct address_space *mapping = inode->i_mapping;
2621	gfp_t gfp = mapping_gfp_mask(mapping);
2622	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2623	void *page_kaddr;
2624	struct folio *folio;
2625	int ret;
2626	pgoff_t max_off;
2627
2628	if (shmem_inode_acct_blocks(inode, 1)) {
2629		/*
2630		 * We may have got a page, returned -ENOENT triggering a retry,
2631		 * and now we find ourselves with -ENOMEM. Release the page, to
2632		 * avoid a BUG_ON in our caller.
2633		 */
2634		if (unlikely(*foliop)) {
2635			folio_put(*foliop);
2636			*foliop = NULL;
2637		}
2638		return -ENOMEM;
2639	}
2640
2641	if (!*foliop) {
2642		ret = -ENOMEM;
2643		folio = shmem_alloc_folio(gfp, info, pgoff);
2644		if (!folio)
2645			goto out_unacct_blocks;
2646
2647		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2648			page_kaddr = kmap_local_folio(folio, 0);
2649			/*
2650			 * The read mmap_lock is held here.  Despite the
2651			 * mmap_lock being read recursive a deadlock is still
2652			 * possible if a writer has taken a lock.  For example:
2653			 *
2654			 * process A thread 1 takes read lock on own mmap_lock
2655			 * process A thread 2 calls mmap, blocks taking write lock
2656			 * process B thread 1 takes page fault, read lock on own mmap lock
2657			 * process B thread 2 calls mmap, blocks taking write lock
2658			 * process A thread 1 blocks taking read lock on process B
2659			 * process B thread 1 blocks taking read lock on process A
2660			 *
2661			 * Disable page faults to prevent potential deadlock
2662			 * and retry the copy outside the mmap_lock.
2663			 */
2664			pagefault_disable();
2665			ret = copy_from_user(page_kaddr,
2666					     (const void __user *)src_addr,
2667					     PAGE_SIZE);
2668			pagefault_enable();
2669			kunmap_local(page_kaddr);
2670
2671			/* fallback to copy_from_user outside mmap_lock */
2672			if (unlikely(ret)) {
2673				*foliop = folio;
2674				ret = -ENOENT;
2675				/* don't free the page */
2676				goto out_unacct_blocks;
2677			}
2678
2679			flush_dcache_folio(folio);
2680		} else {		/* ZEROPAGE */
2681			clear_user_highpage(&folio->page, dst_addr);
2682		}
2683	} else {
2684		folio = *foliop;
2685		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2686		*foliop = NULL;
2687	}
2688
2689	VM_BUG_ON(folio_test_locked(folio));
2690	VM_BUG_ON(folio_test_swapbacked(folio));
2691	__folio_set_locked(folio);
2692	__folio_set_swapbacked(folio);
2693	__folio_mark_uptodate(folio);
2694
2695	ret = -EFAULT;
2696	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2697	if (unlikely(pgoff >= max_off))
2698		goto out_release;
2699
2700	ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
2701	if (ret)
2702		goto out_release;
2703	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
2704	if (ret)
2705		goto out_release;
2706
2707	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
2708				       &folio->page, true, flags);
2709	if (ret)
2710		goto out_delete_from_cache;
2711
2712	shmem_recalc_inode(inode, 1, 0);
2713	folio_unlock(folio);
2714	return 0;
2715out_delete_from_cache:
2716	filemap_remove_folio(folio);
2717out_release:
2718	folio_unlock(folio);
2719	folio_put(folio);
2720out_unacct_blocks:
2721	shmem_inode_unacct_blocks(inode, 1);
2722	return ret;
2723}
2724#endif /* CONFIG_USERFAULTFD */
2725
2726#ifdef CONFIG_TMPFS
2727static const struct inode_operations shmem_symlink_inode_operations;
2728static const struct inode_operations shmem_short_symlink_operations;
2729
2730static int
2731shmem_write_begin(struct file *file, struct address_space *mapping,
2732			loff_t pos, unsigned len,
2733			struct page **pagep, void **fsdata)
2734{
2735	struct inode *inode = mapping->host;
2736	struct shmem_inode_info *info = SHMEM_I(inode);
2737	pgoff_t index = pos >> PAGE_SHIFT;
2738	struct folio *folio;
2739	int ret = 0;
2740
2741	/* i_rwsem is held by caller */
2742	if (unlikely(info->seals & (F_SEAL_GROW |
2743				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2744		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2745			return -EPERM;
2746		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2747			return -EPERM;
2748	}
2749
2750	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2751	if (ret)
2752		return ret;
2753
2754	*pagep = folio_file_page(folio, index);
2755	if (PageHWPoison(*pagep)) {
2756		folio_unlock(folio);
2757		folio_put(folio);
2758		*pagep = NULL;
2759		return -EIO;
2760	}
2761
2762	return 0;
2763}
2764
2765static int
2766shmem_write_end(struct file *file, struct address_space *mapping,
2767			loff_t pos, unsigned len, unsigned copied,
2768			struct page *page, void *fsdata)
2769{
2770	struct folio *folio = page_folio(page);
2771	struct inode *inode = mapping->host;
2772
2773	if (pos + copied > inode->i_size)
2774		i_size_write(inode, pos + copied);
2775
2776	if (!folio_test_uptodate(folio)) {
2777		if (copied < folio_size(folio)) {
2778			size_t from = offset_in_folio(folio, pos);
2779			folio_zero_segments(folio, 0, from,
2780					from + copied, folio_size(folio));
2781		}
2782		folio_mark_uptodate(folio);
2783	}
2784	folio_mark_dirty(folio);
2785	folio_unlock(folio);
2786	folio_put(folio);
2787
2788	return copied;
2789}
2790
2791static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2792{
2793	struct file *file = iocb->ki_filp;
2794	struct inode *inode = file_inode(file);
2795	struct address_space *mapping = inode->i_mapping;
2796	pgoff_t index;
2797	unsigned long offset;
2798	int error = 0;
2799	ssize_t retval = 0;
2800	loff_t *ppos = &iocb->ki_pos;
2801
2802	index = *ppos >> PAGE_SHIFT;
2803	offset = *ppos & ~PAGE_MASK;
2804
2805	for (;;) {
2806		struct folio *folio = NULL;
2807		struct page *page = NULL;
2808		pgoff_t end_index;
2809		unsigned long nr, ret;
2810		loff_t i_size = i_size_read(inode);
2811
2812		end_index = i_size >> PAGE_SHIFT;
2813		if (index > end_index)
2814			break;
2815		if (index == end_index) {
2816			nr = i_size & ~PAGE_MASK;
2817			if (nr <= offset)
2818				break;
2819		}
2820
2821		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2822		if (error) {
2823			if (error == -EINVAL)
2824				error = 0;
2825			break;
2826		}
2827		if (folio) {
2828			folio_unlock(folio);
2829
2830			page = folio_file_page(folio, index);
2831			if (PageHWPoison(page)) {
2832				folio_put(folio);
2833				error = -EIO;
2834				break;
2835			}
2836		}
2837
2838		/*
2839		 * We must evaluate after, since reads (unlike writes)
2840		 * are called without i_rwsem protection against truncate
2841		 */
2842		nr = PAGE_SIZE;
2843		i_size = i_size_read(inode);
2844		end_index = i_size >> PAGE_SHIFT;
2845		if (index == end_index) {
2846			nr = i_size & ~PAGE_MASK;
2847			if (nr <= offset) {
2848				if (folio)
2849					folio_put(folio);
2850				break;
2851			}
2852		}
2853		nr -= offset;
2854
2855		if (folio) {
2856			/*
2857			 * If users can be writing to this page using arbitrary
2858			 * virtual addresses, take care about potential aliasing
2859			 * before reading the page on the kernel side.
2860			 */
2861			if (mapping_writably_mapped(mapping))
2862				flush_dcache_page(page);
2863			/*
2864			 * Mark the page accessed if we read the beginning.
2865			 */
2866			if (!offset)
2867				folio_mark_accessed(folio);
2868			/*
2869			 * Ok, we have the page, and it's up-to-date, so
2870			 * now we can copy it to user space...
2871			 */
2872			ret = copy_page_to_iter(page, offset, nr, to);
2873			folio_put(folio);
2874
2875		} else if (user_backed_iter(to)) {
2876			/*
2877			 * Copy to user tends to be so well optimized, but
2878			 * clear_user() not so much, that it is noticeably
2879			 * faster to copy the zero page instead of clearing.
2880			 */
2881			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2882		} else {
2883			/*
2884			 * But submitting the same page twice in a row to
2885			 * splice() - or others? - can result in confusion:
2886			 * so don't attempt that optimization on pipes etc.
2887			 */
2888			ret = iov_iter_zero(nr, to);
2889		}
2890
2891		retval += ret;
2892		offset += ret;
2893		index += offset >> PAGE_SHIFT;
2894		offset &= ~PAGE_MASK;
2895
2896		if (!iov_iter_count(to))
2897			break;
2898		if (ret < nr) {
2899			error = -EFAULT;
2900			break;
2901		}
2902		cond_resched();
2903	}
2904
2905	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2906	file_accessed(file);
2907	return retval ? retval : error;
2908}
2909
2910static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2911{
2912	struct file *file = iocb->ki_filp;
2913	struct inode *inode = file->f_mapping->host;
2914	ssize_t ret;
2915
2916	inode_lock(inode);
2917	ret = generic_write_checks(iocb, from);
2918	if (ret <= 0)
2919		goto unlock;
2920	ret = file_remove_privs(file);
2921	if (ret)
2922		goto unlock;
2923	ret = file_update_time(file);
2924	if (ret)
2925		goto unlock;
2926	ret = generic_perform_write(iocb, from);
2927unlock:
2928	inode_unlock(inode);
2929	return ret;
2930}
2931
2932static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
2933			      struct pipe_buffer *buf)
2934{
2935	return true;
2936}
2937
2938static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
2939				  struct pipe_buffer *buf)
2940{
2941}
2942
2943static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
2944				    struct pipe_buffer *buf)
2945{
2946	return false;
2947}
2948
2949static const struct pipe_buf_operations zero_pipe_buf_ops = {
2950	.release	= zero_pipe_buf_release,
2951	.try_steal	= zero_pipe_buf_try_steal,
2952	.get		= zero_pipe_buf_get,
2953};
2954
2955static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
2956					loff_t fpos, size_t size)
2957{
2958	size_t offset = fpos & ~PAGE_MASK;
2959
2960	size = min_t(size_t, size, PAGE_SIZE - offset);
2961
2962	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2963		struct pipe_buffer *buf = pipe_head_buf(pipe);
2964
2965		*buf = (struct pipe_buffer) {
2966			.ops	= &zero_pipe_buf_ops,
2967			.page	= ZERO_PAGE(0),
2968			.offset	= offset,
2969			.len	= size,
2970		};
2971		pipe->head++;
2972	}
2973
2974	return size;
2975}
2976
2977static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2978				      struct pipe_inode_info *pipe,
2979				      size_t len, unsigned int flags)
2980{
2981	struct inode *inode = file_inode(in);
2982	struct address_space *mapping = inode->i_mapping;
2983	struct folio *folio = NULL;
2984	size_t total_spliced = 0, used, npages, n, part;
2985	loff_t isize;
2986	int error = 0;
2987
2988	/* Work out how much data we can actually add into the pipe */
2989	used = pipe_occupancy(pipe->head, pipe->tail);
2990	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2991	len = min_t(size_t, len, npages * PAGE_SIZE);
2992
2993	do {
2994		if (*ppos >= i_size_read(inode))
2995			break;
2996
2997		error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio,
2998					SGP_READ);
2999		if (error) {
3000			if (error == -EINVAL)
3001				error = 0;
3002			break;
3003		}
3004		if (folio) {
3005			folio_unlock(folio);
3006
3007			if (folio_test_hwpoison(folio) ||
3008			    (folio_test_large(folio) &&
3009			     folio_test_has_hwpoisoned(folio))) {
3010				error = -EIO;
3011				break;
3012			}
3013		}
3014
3015		/*
3016		 * i_size must be checked after we know the pages are Uptodate.
3017		 *
3018		 * Checking i_size after the check allows us to calculate
3019		 * the correct value for "nr", which means the zero-filled
3020		 * part of the page is not copied back to userspace (unless
3021		 * another truncate extends the file - this is desired though).
3022		 */
3023		isize = i_size_read(inode);
3024		if (unlikely(*ppos >= isize))
3025			break;
3026		part = min_t(loff_t, isize - *ppos, len);
3027
3028		if (folio) {
3029			/*
3030			 * If users can be writing to this page using arbitrary
3031			 * virtual addresses, take care about potential aliasing
3032			 * before reading the page on the kernel side.
3033			 */
3034			if (mapping_writably_mapped(mapping))
3035				flush_dcache_folio(folio);
3036			folio_mark_accessed(folio);
3037			/*
3038			 * Ok, we have the page, and it's up-to-date, so we can
3039			 * now splice it into the pipe.
3040			 */
3041			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3042			folio_put(folio);
3043			folio = NULL;
3044		} else {
3045			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3046		}
3047
3048		if (!n)
3049			break;
3050		len -= n;
3051		total_spliced += n;
3052		*ppos += n;
3053		in->f_ra.prev_pos = *ppos;
3054		if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3055			break;
3056
3057		cond_resched();
3058	} while (len);
3059
3060	if (folio)
3061		folio_put(folio);
3062
3063	file_accessed(in);
3064	return total_spliced ? total_spliced : error;
3065}
3066
3067static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3068{
3069	struct address_space *mapping = file->f_mapping;
3070	struct inode *inode = mapping->host;
3071
3072	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3073		return generic_file_llseek_size(file, offset, whence,
3074					MAX_LFS_FILESIZE, i_size_read(inode));
3075	if (offset < 0)
3076		return -ENXIO;
3077
3078	inode_lock(inode);
3079	/* We're holding i_rwsem so we can access i_size directly */
3080	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3081	if (offset >= 0)
3082		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3083	inode_unlock(inode);
3084	return offset;
3085}
3086
3087static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3088							 loff_t len)
3089{
3090	struct inode *inode = file_inode(file);
3091	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3092	struct shmem_inode_info *info = SHMEM_I(inode);
3093	struct shmem_falloc shmem_falloc;
3094	pgoff_t start, index, end, undo_fallocend;
3095	int error;
3096
3097	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3098		return -EOPNOTSUPP;
3099
3100	inode_lock(inode);
3101
3102	if (mode & FALLOC_FL_PUNCH_HOLE) {
3103		struct address_space *mapping = file->f_mapping;
3104		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3105		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3106		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3107
3108		/* protected by i_rwsem */
3109		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3110			error = -EPERM;
3111			goto out;
3112		}
3113
3114		shmem_falloc.waitq = &shmem_falloc_waitq;
3115		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3116		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3117		spin_lock(&inode->i_lock);
3118		inode->i_private = &shmem_falloc;
3119		spin_unlock(&inode->i_lock);
3120
3121		if ((u64)unmap_end > (u64)unmap_start)
3122			unmap_mapping_range(mapping, unmap_start,
3123					    1 + unmap_end - unmap_start, 0);
3124		shmem_truncate_range(inode, offset, offset + len - 1);
3125		/* No need to unmap again: hole-punching leaves COWed pages */
3126
3127		spin_lock(&inode->i_lock);
3128		inode->i_private = NULL;
3129		wake_up_all(&shmem_falloc_waitq);
3130		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3131		spin_unlock(&inode->i_lock);
3132		error = 0;
3133		goto out;
3134	}
3135
3136	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3137	error = inode_newsize_ok(inode, offset + len);
3138	if (error)
3139		goto out;
3140
3141	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3142		error = -EPERM;
3143		goto out;
3144	}
3145
3146	start = offset >> PAGE_SHIFT;
3147	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3148	/* Try to avoid a swapstorm if len is impossible to satisfy */
3149	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3150		error = -ENOSPC;
3151		goto out;
3152	}
3153
3154	shmem_falloc.waitq = NULL;
3155	shmem_falloc.start = start;
3156	shmem_falloc.next  = start;
3157	shmem_falloc.nr_falloced = 0;
3158	shmem_falloc.nr_unswapped = 0;
3159	spin_lock(&inode->i_lock);
3160	inode->i_private = &shmem_falloc;
3161	spin_unlock(&inode->i_lock);
3162
3163	/*
3164	 * info->fallocend is only relevant when huge pages might be
3165	 * involved: to prevent split_huge_page() freeing fallocated
3166	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3167	 */
3168	undo_fallocend = info->fallocend;
3169	if (info->fallocend < end)
3170		info->fallocend = end;
3171
3172	for (index = start; index < end; ) {
3173		struct folio *folio;
3174
3175		/*
3176		 * Good, the fallocate(2) manpage permits EINTR: we may have
3177		 * been interrupted because we are using up too much memory.
3178		 */
3179		if (signal_pending(current))
3180			error = -EINTR;
3181		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3182			error = -ENOMEM;
3183		else
3184			error = shmem_get_folio(inode, index, &folio,
3185						SGP_FALLOC);
3186		if (error) {
3187			info->fallocend = undo_fallocend;
3188			/* Remove the !uptodate folios we added */
3189			if (index > start) {
3190				shmem_undo_range(inode,
3191				    (loff_t)start << PAGE_SHIFT,
3192				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3193			}
3194			goto undone;
3195		}
3196
3197		/*
3198		 * Here is a more important optimization than it appears:
3199		 * a second SGP_FALLOC on the same large folio will clear it,
3200		 * making it uptodate and un-undoable if we fail later.
3201		 */
3202		index = folio_next_index(folio);
3203		/* Beware 32-bit wraparound */
3204		if (!index)
3205			index--;
3206
3207		/*
3208		 * Inform shmem_writepage() how far we have reached.
3209		 * No need for lock or barrier: we have the page lock.
3210		 */
3211		if (!folio_test_uptodate(folio))
3212			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3213		shmem_falloc.next = index;
3214
3215		/*
3216		 * If !uptodate, leave it that way so that freeable folios
3217		 * can be recognized if we need to rollback on error later.
3218		 * But mark it dirty so that memory pressure will swap rather
3219		 * than free the folios we are allocating (and SGP_CACHE folios
3220		 * might still be clean: we now need to mark those dirty too).
3221		 */
3222		folio_mark_dirty(folio);
3223		folio_unlock(folio);
3224		folio_put(folio);
3225		cond_resched();
3226	}
3227
3228	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3229		i_size_write(inode, offset + len);
3230undone:
3231	spin_lock(&inode->i_lock);
3232	inode->i_private = NULL;
3233	spin_unlock(&inode->i_lock);
3234out:
3235	if (!error)
3236		file_modified(file);
3237	inode_unlock(inode);
3238	return error;
3239}
3240
3241static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3242{
3243	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3244
3245	buf->f_type = TMPFS_MAGIC;
3246	buf->f_bsize = PAGE_SIZE;
3247	buf->f_namelen = NAME_MAX;
3248	if (sbinfo->max_blocks) {
3249		buf->f_blocks = sbinfo->max_blocks;
3250		buf->f_bavail =
3251		buf->f_bfree  = sbinfo->max_blocks -
3252				percpu_counter_sum(&sbinfo->used_blocks);
3253	}
3254	if (sbinfo->max_inodes) {
3255		buf->f_files = sbinfo->max_inodes;
3256		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3257	}
3258	/* else leave those fields 0 like simple_statfs */
3259
3260	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3261
3262	return 0;
3263}
3264
3265/*
3266 * File creation. Allocate an inode, and we're done..
3267 */
3268static int
3269shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3270	    struct dentry *dentry, umode_t mode, dev_t dev)
3271{
3272	struct inode *inode;
3273	int error;
3274
3275	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3276	if (IS_ERR(inode))
3277		return PTR_ERR(inode);
3278
3279	error = simple_acl_create(dir, inode);
3280	if (error)
3281		goto out_iput;
3282	error = security_inode_init_security(inode, dir, &dentry->d_name,
3283					     shmem_initxattrs, NULL);
3284	if (error && error != -EOPNOTSUPP)
3285		goto out_iput;
3286
3287	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3288	if (error)
3289		goto out_iput;
3290
3291	dir->i_size += BOGO_DIRENT_SIZE;
3292	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3293	inode_inc_iversion(dir);
3294	d_instantiate(dentry, inode);
3295	dget(dentry); /* Extra count - pin the dentry in core */
3296	return error;
3297
3298out_iput:
3299	iput(inode);
3300	return error;
3301}
3302
3303static int
3304shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3305	      struct file *file, umode_t mode)
3306{
3307	struct inode *inode;
3308	int error;
3309
3310	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3311	if (IS_ERR(inode)) {
3312		error = PTR_ERR(inode);
3313		goto err_out;
3314	}
3315	error = security_inode_init_security(inode, dir, NULL,
3316					     shmem_initxattrs, NULL);
3317	if (error && error != -EOPNOTSUPP)
3318		goto out_iput;
3319	error = simple_acl_create(dir, inode);
3320	if (error)
3321		goto out_iput;
3322	d_tmpfile(file, inode);
3323
3324err_out:
3325	return finish_open_simple(file, error);
3326out_iput:
3327	iput(inode);
3328	return error;
3329}
3330
3331static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3332		       struct dentry *dentry, umode_t mode)
3333{
3334	int error;
3335
3336	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3337	if (error)
3338		return error;
3339	inc_nlink(dir);
3340	return 0;
3341}
3342
3343static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3344			struct dentry *dentry, umode_t mode, bool excl)
3345{
3346	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3347}
3348
3349/*
3350 * Link a file..
3351 */
3352static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3353		      struct dentry *dentry)
3354{
3355	struct inode *inode = d_inode(old_dentry);
3356	int ret = 0;
3357
3358	/*
3359	 * No ordinary (disk based) filesystem counts links as inodes;
3360	 * but each new link needs a new dentry, pinning lowmem, and
3361	 * tmpfs dentries cannot be pruned until they are unlinked.
3362	 * But if an O_TMPFILE file is linked into the tmpfs, the
3363	 * first link must skip that, to get the accounting right.
3364	 */
3365	if (inode->i_nlink) {
3366		ret = shmem_reserve_inode(inode->i_sb, NULL);
3367		if (ret)
3368			goto out;
3369	}
3370
3371	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3372	if (ret) {
3373		if (inode->i_nlink)
3374			shmem_free_inode(inode->i_sb, 0);
3375		goto out;
3376	}
3377
3378	dir->i_size += BOGO_DIRENT_SIZE;
3379	inode_set_mtime_to_ts(dir,
3380			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3381	inode_inc_iversion(dir);
3382	inc_nlink(inode);
3383	ihold(inode);	/* New dentry reference */
3384	dget(dentry);	/* Extra pinning count for the created dentry */
3385	d_instantiate(dentry, inode);
3386out:
3387	return ret;
3388}
3389
3390static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3391{
3392	struct inode *inode = d_inode(dentry);
3393
3394	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3395		shmem_free_inode(inode->i_sb, 0);
3396
3397	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3398
3399	dir->i_size -= BOGO_DIRENT_SIZE;
3400	inode_set_mtime_to_ts(dir,
3401			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3402	inode_inc_iversion(dir);
3403	drop_nlink(inode);
3404	dput(dentry);	/* Undo the count from "create" - does all the work */
3405	return 0;
3406}
3407
3408static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3409{
3410	if (!simple_offset_empty(dentry))
3411		return -ENOTEMPTY;
3412
3413	drop_nlink(d_inode(dentry));
3414	drop_nlink(dir);
3415	return shmem_unlink(dir, dentry);
3416}
3417
3418static int shmem_whiteout(struct mnt_idmap *idmap,
3419			  struct inode *old_dir, struct dentry *old_dentry)
3420{
3421	struct dentry *whiteout;
3422	int error;
3423
3424	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3425	if (!whiteout)
3426		return -ENOMEM;
3427
3428	error = shmem_mknod(idmap, old_dir, whiteout,
3429			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3430	dput(whiteout);
3431	if (error)
3432		return error;
3433
3434	/*
3435	 * Cheat and hash the whiteout while the old dentry is still in
3436	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3437	 *
3438	 * d_lookup() will consistently find one of them at this point,
3439	 * not sure which one, but that isn't even important.
3440	 */
3441	d_rehash(whiteout);
3442	return 0;
3443}
3444
3445/*
3446 * The VFS layer already does all the dentry stuff for rename,
3447 * we just have to decrement the usage count for the target if
3448 * it exists so that the VFS layer correctly free's it when it
3449 * gets overwritten.
3450 */
3451static int shmem_rename2(struct mnt_idmap *idmap,
3452			 struct inode *old_dir, struct dentry *old_dentry,
3453			 struct inode *new_dir, struct dentry *new_dentry,
3454			 unsigned int flags)
3455{
3456	struct inode *inode = d_inode(old_dentry);
3457	int they_are_dirs = S_ISDIR(inode->i_mode);
3458	int error;
3459
3460	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3461		return -EINVAL;
3462
3463	if (flags & RENAME_EXCHANGE)
3464		return simple_offset_rename_exchange(old_dir, old_dentry,
3465						     new_dir, new_dentry);
3466
3467	if (!simple_offset_empty(new_dentry))
3468		return -ENOTEMPTY;
3469
3470	if (flags & RENAME_WHITEOUT) {
3471		error = shmem_whiteout(idmap, old_dir, old_dentry);
3472		if (error)
3473			return error;
3474	}
3475
3476	simple_offset_remove(shmem_get_offset_ctx(old_dir), old_dentry);
3477	error = simple_offset_add(shmem_get_offset_ctx(new_dir), old_dentry);
3478	if (error)
3479		return error;
3480
3481	if (d_really_is_positive(new_dentry)) {
3482		(void) shmem_unlink(new_dir, new_dentry);
3483		if (they_are_dirs) {
3484			drop_nlink(d_inode(new_dentry));
3485			drop_nlink(old_dir);
3486		}
3487	} else if (they_are_dirs) {
3488		drop_nlink(old_dir);
3489		inc_nlink(new_dir);
3490	}
3491
3492	old_dir->i_size -= BOGO_DIRENT_SIZE;
3493	new_dir->i_size += BOGO_DIRENT_SIZE;
3494	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3495	inode_inc_iversion(old_dir);
3496	inode_inc_iversion(new_dir);
3497	return 0;
3498}
3499
3500static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3501			 struct dentry *dentry, const char *symname)
3502{
3503	int error;
3504	int len;
3505	struct inode *inode;
3506	struct folio *folio;
3507
3508	len = strlen(symname) + 1;
3509	if (len > PAGE_SIZE)
3510		return -ENAMETOOLONG;
3511
3512	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3513				VM_NORESERVE);
3514	if (IS_ERR(inode))
3515		return PTR_ERR(inode);
3516
3517	error = security_inode_init_security(inode, dir, &dentry->d_name,
3518					     shmem_initxattrs, NULL);
3519	if (error && error != -EOPNOTSUPP)
3520		goto out_iput;
3521
3522	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3523	if (error)
3524		goto out_iput;
3525
3526	inode->i_size = len-1;
3527	if (len <= SHORT_SYMLINK_LEN) {
3528		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3529		if (!inode->i_link) {
3530			error = -ENOMEM;
3531			goto out_remove_offset;
3532		}
3533		inode->i_op = &shmem_short_symlink_operations;
3534	} else {
3535		inode_nohighmem(inode);
3536		inode->i_mapping->a_ops = &shmem_aops;
3537		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3538		if (error)
3539			goto out_remove_offset;
3540		inode->i_op = &shmem_symlink_inode_operations;
3541		memcpy(folio_address(folio), symname, len);
3542		folio_mark_uptodate(folio);
3543		folio_mark_dirty(folio);
3544		folio_unlock(folio);
3545		folio_put(folio);
3546	}
3547	dir->i_size += BOGO_DIRENT_SIZE;
3548	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3549	inode_inc_iversion(dir);
3550	d_instantiate(dentry, inode);
3551	dget(dentry);
3552	return 0;
3553
3554out_remove_offset:
3555	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3556out_iput:
3557	iput(inode);
3558	return error;
3559}
3560
3561static void shmem_put_link(void *arg)
3562{
3563	folio_mark_accessed(arg);
3564	folio_put(arg);
3565}
3566
3567static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
3568				  struct delayed_call *done)
3569{
3570	struct folio *folio = NULL;
3571	int error;
3572
3573	if (!dentry) {
3574		folio = filemap_get_folio(inode->i_mapping, 0);
3575		if (IS_ERR(folio))
3576			return ERR_PTR(-ECHILD);
3577		if (PageHWPoison(folio_page(folio, 0)) ||
3578		    !folio_test_uptodate(folio)) {
3579			folio_put(folio);
3580			return ERR_PTR(-ECHILD);
3581		}
3582	} else {
3583		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3584		if (error)
3585			return ERR_PTR(error);
3586		if (!folio)
3587			return ERR_PTR(-ECHILD);
3588		if (PageHWPoison(folio_page(folio, 0))) {
3589			folio_unlock(folio);
3590			folio_put(folio);
3591			return ERR_PTR(-ECHILD);
3592		}
3593		folio_unlock(folio);
3594	}
3595	set_delayed_call(done, shmem_put_link, folio);
3596	return folio_address(folio);
3597}
3598
3599#ifdef CONFIG_TMPFS_XATTR
3600
3601static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3602{
3603	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3604
3605	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3606
3607	return 0;
3608}
3609
3610static int shmem_fileattr_set(struct mnt_idmap *idmap,
3611			      struct dentry *dentry, struct fileattr *fa)
3612{
3613	struct inode *inode = d_inode(dentry);
3614	struct shmem_inode_info *info = SHMEM_I(inode);
3615
3616	if (fileattr_has_fsx(fa))
3617		return -EOPNOTSUPP;
3618	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3619		return -EOPNOTSUPP;
3620
3621	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3622		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3623
3624	shmem_set_inode_flags(inode, info->fsflags);
3625	inode_set_ctime_current(inode);
3626	inode_inc_iversion(inode);
3627	return 0;
3628}
3629
3630/*
3631 * Superblocks without xattr inode operations may get some security.* xattr
3632 * support from the LSM "for free". As soon as we have any other xattrs
3633 * like ACLs, we also need to implement the security.* handlers at
3634 * filesystem level, though.
3635 */
3636
3637/*
3638 * Callback for security_inode_init_security() for acquiring xattrs.
3639 */
3640static int shmem_initxattrs(struct inode *inode,
3641			    const struct xattr *xattr_array, void *fs_info)
3642{
3643	struct shmem_inode_info *info = SHMEM_I(inode);
3644	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3645	const struct xattr *xattr;
3646	struct simple_xattr *new_xattr;
3647	size_t ispace = 0;
3648	size_t len;
3649
3650	if (sbinfo->max_inodes) {
3651		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3652			ispace += simple_xattr_space(xattr->name,
3653				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
3654		}
3655		if (ispace) {
3656			raw_spin_lock(&sbinfo->stat_lock);
3657			if (sbinfo->free_ispace < ispace)
3658				ispace = 0;
3659			else
3660				sbinfo->free_ispace -= ispace;
3661			raw_spin_unlock(&sbinfo->stat_lock);
3662			if (!ispace)
3663				return -ENOSPC;
3664		}
3665	}
3666
3667	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3668		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3669		if (!new_xattr)
3670			break;
3671
3672		len = strlen(xattr->name) + 1;
3673		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3674					  GFP_KERNEL_ACCOUNT);
3675		if (!new_xattr->name) {
3676			kvfree(new_xattr);
3677			break;
3678		}
3679
3680		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3681		       XATTR_SECURITY_PREFIX_LEN);
3682		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3683		       xattr->name, len);
3684
3685		simple_xattr_add(&info->xattrs, new_xattr);
3686	}
3687
3688	if (xattr->name != NULL) {
3689		if (ispace) {
3690			raw_spin_lock(&sbinfo->stat_lock);
3691			sbinfo->free_ispace += ispace;
3692			raw_spin_unlock(&sbinfo->stat_lock);
3693		}
3694		simple_xattrs_free(&info->xattrs, NULL);
3695		return -ENOMEM;
3696	}
3697
3698	return 0;
3699}
3700
3701static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3702				   struct dentry *unused, struct inode *inode,
3703				   const char *name, void *buffer, size_t size)
3704{
3705	struct shmem_inode_info *info = SHMEM_I(inode);
3706
3707	name = xattr_full_name(handler, name);
3708	return simple_xattr_get(&info->xattrs, name, buffer, size);
3709}
3710
3711static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3712				   struct mnt_idmap *idmap,
3713				   struct dentry *unused, struct inode *inode,
3714				   const char *name, const void *value,
3715				   size_t size, int flags)
3716{
3717	struct shmem_inode_info *info = SHMEM_I(inode);
3718	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3719	struct simple_xattr *old_xattr;
3720	size_t ispace = 0;
3721
3722	name = xattr_full_name(handler, name);
3723	if (value && sbinfo->max_inodes) {
3724		ispace = simple_xattr_space(name, size);
3725		raw_spin_lock(&sbinfo->stat_lock);
3726		if (sbinfo->free_ispace < ispace)
3727			ispace = 0;
3728		else
3729			sbinfo->free_ispace -= ispace;
3730		raw_spin_unlock(&sbinfo->stat_lock);
3731		if (!ispace)
3732			return -ENOSPC;
3733	}
3734
3735	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
3736	if (!IS_ERR(old_xattr)) {
3737		ispace = 0;
3738		if (old_xattr && sbinfo->max_inodes)
3739			ispace = simple_xattr_space(old_xattr->name,
3740						    old_xattr->size);
3741		simple_xattr_free(old_xattr);
3742		old_xattr = NULL;
3743		inode_set_ctime_current(inode);
3744		inode_inc_iversion(inode);
3745	}
3746	if (ispace) {
3747		raw_spin_lock(&sbinfo->stat_lock);
3748		sbinfo->free_ispace += ispace;
3749		raw_spin_unlock(&sbinfo->stat_lock);
3750	}
3751	return PTR_ERR(old_xattr);
3752}
3753
3754static const struct xattr_handler shmem_security_xattr_handler = {
3755	.prefix = XATTR_SECURITY_PREFIX,
3756	.get = shmem_xattr_handler_get,
3757	.set = shmem_xattr_handler_set,
3758};
3759
3760static const struct xattr_handler shmem_trusted_xattr_handler = {
3761	.prefix = XATTR_TRUSTED_PREFIX,
3762	.get = shmem_xattr_handler_get,
3763	.set = shmem_xattr_handler_set,
3764};
3765
3766static const struct xattr_handler shmem_user_xattr_handler = {
3767	.prefix = XATTR_USER_PREFIX,
3768	.get = shmem_xattr_handler_get,
3769	.set = shmem_xattr_handler_set,
3770};
3771
3772static const struct xattr_handler * const shmem_xattr_handlers[] = {
3773	&shmem_security_xattr_handler,
3774	&shmem_trusted_xattr_handler,
3775	&shmem_user_xattr_handler,
3776	NULL
3777};
3778
3779static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3780{
3781	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3782	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3783}
3784#endif /* CONFIG_TMPFS_XATTR */
3785
3786static const struct inode_operations shmem_short_symlink_operations = {
3787	.getattr	= shmem_getattr,
3788	.setattr	= shmem_setattr,
3789	.get_link	= simple_get_link,
3790#ifdef CONFIG_TMPFS_XATTR
3791	.listxattr	= shmem_listxattr,
3792#endif
3793};
3794
3795static const struct inode_operations shmem_symlink_inode_operations = {
3796	.getattr	= shmem_getattr,
3797	.setattr	= shmem_setattr,
3798	.get_link	= shmem_get_link,
3799#ifdef CONFIG_TMPFS_XATTR
3800	.listxattr	= shmem_listxattr,
3801#endif
3802};
3803
3804static struct dentry *shmem_get_parent(struct dentry *child)
3805{
3806	return ERR_PTR(-ESTALE);
3807}
3808
3809static int shmem_match(struct inode *ino, void *vfh)
3810{
3811	__u32 *fh = vfh;
3812	__u64 inum = fh[2];
3813	inum = (inum << 32) | fh[1];
3814	return ino->i_ino == inum && fh[0] == ino->i_generation;
3815}
3816
3817/* Find any alias of inode, but prefer a hashed alias */
3818static struct dentry *shmem_find_alias(struct inode *inode)
3819{
3820	struct dentry *alias = d_find_alias(inode);
3821
3822	return alias ?: d_find_any_alias(inode);
3823}
3824
3825static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3826		struct fid *fid, int fh_len, int fh_type)
3827{
3828	struct inode *inode;
3829	struct dentry *dentry = NULL;
3830	u64 inum;
3831
3832	if (fh_len < 3)
3833		return NULL;
3834
3835	inum = fid->raw[2];
3836	inum = (inum << 32) | fid->raw[1];
3837
3838	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3839			shmem_match, fid->raw);
3840	if (inode) {
3841		dentry = shmem_find_alias(inode);
3842		iput(inode);
3843	}
3844
3845	return dentry;
3846}
3847
3848static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3849				struct inode *parent)
3850{
3851	if (*len < 3) {
3852		*len = 3;
3853		return FILEID_INVALID;
3854	}
3855
3856	if (inode_unhashed(inode)) {
3857		/* Unfortunately insert_inode_hash is not idempotent,
3858		 * so as we hash inodes here rather than at creation
3859		 * time, we need a lock to ensure we only try
3860		 * to do it once
3861		 */
3862		static DEFINE_SPINLOCK(lock);
3863		spin_lock(&lock);
3864		if (inode_unhashed(inode))
3865			__insert_inode_hash(inode,
3866					    inode->i_ino + inode->i_generation);
3867		spin_unlock(&lock);
3868	}
3869
3870	fh[0] = inode->i_generation;
3871	fh[1] = inode->i_ino;
3872	fh[2] = ((__u64)inode->i_ino) >> 32;
3873
3874	*len = 3;
3875	return 1;
3876}
3877
3878static const struct export_operations shmem_export_ops = {
3879	.get_parent     = shmem_get_parent,
3880	.encode_fh      = shmem_encode_fh,
3881	.fh_to_dentry	= shmem_fh_to_dentry,
3882};
3883
3884enum shmem_param {
3885	Opt_gid,
3886	Opt_huge,
3887	Opt_mode,
3888	Opt_mpol,
3889	Opt_nr_blocks,
3890	Opt_nr_inodes,
3891	Opt_size,
3892	Opt_uid,
3893	Opt_inode32,
3894	Opt_inode64,
3895	Opt_noswap,
3896	Opt_quota,
3897	Opt_usrquota,
3898	Opt_grpquota,
3899	Opt_usrquota_block_hardlimit,
3900	Opt_usrquota_inode_hardlimit,
3901	Opt_grpquota_block_hardlimit,
3902	Opt_grpquota_inode_hardlimit,
3903};
3904
3905static const struct constant_table shmem_param_enums_huge[] = {
3906	{"never",	SHMEM_HUGE_NEVER },
3907	{"always",	SHMEM_HUGE_ALWAYS },
3908	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3909	{"advise",	SHMEM_HUGE_ADVISE },
3910	{}
3911};
3912
3913const struct fs_parameter_spec shmem_fs_parameters[] = {
3914	fsparam_u32   ("gid",		Opt_gid),
3915	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3916	fsparam_u32oct("mode",		Opt_mode),
3917	fsparam_string("mpol",		Opt_mpol),
3918	fsparam_string("nr_blocks",	Opt_nr_blocks),
3919	fsparam_string("nr_inodes",	Opt_nr_inodes),
3920	fsparam_string("size",		Opt_size),
3921	fsparam_u32   ("uid",		Opt_uid),
3922	fsparam_flag  ("inode32",	Opt_inode32),
3923	fsparam_flag  ("inode64",	Opt_inode64),
3924	fsparam_flag  ("noswap",	Opt_noswap),
3925#ifdef CONFIG_TMPFS_QUOTA
3926	fsparam_flag  ("quota",		Opt_quota),
3927	fsparam_flag  ("usrquota",	Opt_usrquota),
3928	fsparam_flag  ("grpquota",	Opt_grpquota),
3929	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
3930	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
3931	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
3932	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
3933#endif
3934	{}
3935};
3936
3937static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3938{
3939	struct shmem_options *ctx = fc->fs_private;
3940	struct fs_parse_result result;
3941	unsigned long long size;
3942	char *rest;
3943	int opt;
3944	kuid_t kuid;
3945	kgid_t kgid;
3946
3947	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3948	if (opt < 0)
3949		return opt;
3950
3951	switch (opt) {
3952	case Opt_size:
3953		size = memparse(param->string, &rest);
3954		if (*rest == '%') {
3955			size <<= PAGE_SHIFT;
3956			size *= totalram_pages();
3957			do_div(size, 100);
3958			rest++;
3959		}
3960		if (*rest)
3961			goto bad_value;
3962		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3963		ctx->seen |= SHMEM_SEEN_BLOCKS;
3964		break;
3965	case Opt_nr_blocks:
3966		ctx->blocks = memparse(param->string, &rest);
3967		if (*rest || ctx->blocks > LONG_MAX)
3968			goto bad_value;
3969		ctx->seen |= SHMEM_SEEN_BLOCKS;
3970		break;
3971	case Opt_nr_inodes:
3972		ctx->inodes = memparse(param->string, &rest);
3973		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
3974			goto bad_value;
3975		ctx->seen |= SHMEM_SEEN_INODES;
3976		break;
3977	case Opt_mode:
3978		ctx->mode = result.uint_32 & 07777;
3979		break;
3980	case Opt_uid:
3981		kuid = make_kuid(current_user_ns(), result.uint_32);
3982		if (!uid_valid(kuid))
3983			goto bad_value;
3984
3985		/*
3986		 * The requested uid must be representable in the
3987		 * filesystem's idmapping.
3988		 */
3989		if (!kuid_has_mapping(fc->user_ns, kuid))
3990			goto bad_value;
3991
3992		ctx->uid = kuid;
3993		break;
3994	case Opt_gid:
3995		kgid = make_kgid(current_user_ns(), result.uint_32);
3996		if (!gid_valid(kgid))
3997			goto bad_value;
3998
3999		/*
4000		 * The requested gid must be representable in the
4001		 * filesystem's idmapping.
4002		 */
4003		if (!kgid_has_mapping(fc->user_ns, kgid))
4004			goto bad_value;
4005
4006		ctx->gid = kgid;
4007		break;
4008	case Opt_huge:
4009		ctx->huge = result.uint_32;
4010		if (ctx->huge != SHMEM_HUGE_NEVER &&
4011		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4012		      has_transparent_hugepage()))
4013			goto unsupported_parameter;
4014		ctx->seen |= SHMEM_SEEN_HUGE;
4015		break;
4016	case Opt_mpol:
4017		if (IS_ENABLED(CONFIG_NUMA)) {
4018			mpol_put(ctx->mpol);
4019			ctx->mpol = NULL;
4020			if (mpol_parse_str(param->string, &ctx->mpol))
4021				goto bad_value;
4022			break;
4023		}
4024		goto unsupported_parameter;
4025	case Opt_inode32:
4026		ctx->full_inums = false;
4027		ctx->seen |= SHMEM_SEEN_INUMS;
4028		break;
4029	case Opt_inode64:
4030		if (sizeof(ino_t) < 8) {
4031			return invalfc(fc,
4032				       "Cannot use inode64 with <64bit inums in kernel\n");
4033		}
4034		ctx->full_inums = true;
4035		ctx->seen |= SHMEM_SEEN_INUMS;
4036		break;
4037	case Opt_noswap:
4038		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4039			return invalfc(fc,
4040				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4041		}
4042		ctx->noswap = true;
4043		ctx->seen |= SHMEM_SEEN_NOSWAP;
4044		break;
4045	case Opt_quota:
4046		if (fc->user_ns != &init_user_ns)
4047			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4048		ctx->seen |= SHMEM_SEEN_QUOTA;
4049		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4050		break;
4051	case Opt_usrquota:
4052		if (fc->user_ns != &init_user_ns)
4053			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4054		ctx->seen |= SHMEM_SEEN_QUOTA;
4055		ctx->quota_types |= QTYPE_MASK_USR;
4056		break;
4057	case Opt_grpquota:
4058		if (fc->user_ns != &init_user_ns)
4059			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4060		ctx->seen |= SHMEM_SEEN_QUOTA;
4061		ctx->quota_types |= QTYPE_MASK_GRP;
4062		break;
4063	case Opt_usrquota_block_hardlimit:
4064		size = memparse(param->string, &rest);
4065		if (*rest || !size)
4066			goto bad_value;
4067		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4068			return invalfc(fc,
4069				       "User quota block hardlimit too large.");
4070		ctx->qlimits.usrquota_bhardlimit = size;
4071		break;
4072	case Opt_grpquota_block_hardlimit:
4073		size = memparse(param->string, &rest);
4074		if (*rest || !size)
4075			goto bad_value;
4076		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4077			return invalfc(fc,
4078				       "Group quota block hardlimit too large.");
4079		ctx->qlimits.grpquota_bhardlimit = size;
4080		break;
4081	case Opt_usrquota_inode_hardlimit:
4082		size = memparse(param->string, &rest);
4083		if (*rest || !size)
4084			goto bad_value;
4085		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4086			return invalfc(fc,
4087				       "User quota inode hardlimit too large.");
4088		ctx->qlimits.usrquota_ihardlimit = size;
4089		break;
4090	case Opt_grpquota_inode_hardlimit:
4091		size = memparse(param->string, &rest);
4092		if (*rest || !size)
4093			goto bad_value;
4094		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4095			return invalfc(fc,
4096				       "Group quota inode hardlimit too large.");
4097		ctx->qlimits.grpquota_ihardlimit = size;
4098		break;
4099	}
4100	return 0;
4101
4102unsupported_parameter:
4103	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4104bad_value:
4105	return invalfc(fc, "Bad value for '%s'", param->key);
4106}
4107
4108static int shmem_parse_options(struct fs_context *fc, void *data)
4109{
4110	char *options = data;
4111
4112	if (options) {
4113		int err = security_sb_eat_lsm_opts(options, &fc->security);
4114		if (err)
4115			return err;
4116	}
4117
4118	while (options != NULL) {
4119		char *this_char = options;
4120		for (;;) {
4121			/*
4122			 * NUL-terminate this option: unfortunately,
4123			 * mount options form a comma-separated list,
4124			 * but mpol's nodelist may also contain commas.
4125			 */
4126			options = strchr(options, ',');
4127			if (options == NULL)
4128				break;
4129			options++;
4130			if (!isdigit(*options)) {
4131				options[-1] = '\0';
4132				break;
4133			}
4134		}
4135		if (*this_char) {
4136			char *value = strchr(this_char, '=');
4137			size_t len = 0;
4138			int err;
4139
4140			if (value) {
4141				*value++ = '\0';
4142				len = strlen(value);
4143			}
4144			err = vfs_parse_fs_string(fc, this_char, value, len);
4145			if (err < 0)
4146				return err;
4147		}
4148	}
4149	return 0;
4150}
4151
4152/*
4153 * Reconfigure a shmem filesystem.
4154 */
4155static int shmem_reconfigure(struct fs_context *fc)
4156{
4157	struct shmem_options *ctx = fc->fs_private;
4158	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4159	unsigned long used_isp;
4160	struct mempolicy *mpol = NULL;
4161	const char *err;
4162
4163	raw_spin_lock(&sbinfo->stat_lock);
4164	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4165
4166	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4167		if (!sbinfo->max_blocks) {
4168			err = "Cannot retroactively limit size";
4169			goto out;
4170		}
4171		if (percpu_counter_compare(&sbinfo->used_blocks,
4172					   ctx->blocks) > 0) {
4173			err = "Too small a size for current use";
4174			goto out;
4175		}
4176	}
4177	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4178		if (!sbinfo->max_inodes) {
4179			err = "Cannot retroactively limit inodes";
4180			goto out;
4181		}
4182		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4183			err = "Too few inodes for current use";
4184			goto out;
4185		}
4186	}
4187
4188	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4189	    sbinfo->next_ino > UINT_MAX) {
4190		err = "Current inum too high to switch to 32-bit inums";
4191		goto out;
4192	}
4193	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4194		err = "Cannot disable swap on remount";
4195		goto out;
4196	}
4197	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4198		err = "Cannot enable swap on remount if it was disabled on first mount";
4199		goto out;
4200	}
4201
4202	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4203	    !sb_any_quota_loaded(fc->root->d_sb)) {
4204		err = "Cannot enable quota on remount";
4205		goto out;
4206	}
4207
4208#ifdef CONFIG_TMPFS_QUOTA
4209#define CHANGED_LIMIT(name)						\
4210	(ctx->qlimits.name## hardlimit &&				\
4211	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4212
4213	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4214	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4215		err = "Cannot change global quota limit on remount";
4216		goto out;
4217	}
4218#endif /* CONFIG_TMPFS_QUOTA */
4219
4220	if (ctx->seen & SHMEM_SEEN_HUGE)
4221		sbinfo->huge = ctx->huge;
4222	if (ctx->seen & SHMEM_SEEN_INUMS)
4223		sbinfo->full_inums = ctx->full_inums;
4224	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4225		sbinfo->max_blocks  = ctx->blocks;
4226	if (ctx->seen & SHMEM_SEEN_INODES) {
4227		sbinfo->max_inodes  = ctx->inodes;
4228		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4229	}
4230
4231	/*
4232	 * Preserve previous mempolicy unless mpol remount option was specified.
4233	 */
4234	if (ctx->mpol) {
4235		mpol = sbinfo->mpol;
4236		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4237		ctx->mpol = NULL;
4238	}
4239
4240	if (ctx->noswap)
4241		sbinfo->noswap = true;
4242
4243	raw_spin_unlock(&sbinfo->stat_lock);
4244	mpol_put(mpol);
4245	return 0;
4246out:
4247	raw_spin_unlock(&sbinfo->stat_lock);
4248	return invalfc(fc, "%s", err);
4249}
4250
4251static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4252{
4253	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4254	struct mempolicy *mpol;
4255
4256	if (sbinfo->max_blocks != shmem_default_max_blocks())
4257		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4258	if (sbinfo->max_inodes != shmem_default_max_inodes())
4259		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4260	if (sbinfo->mode != (0777 | S_ISVTX))
4261		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4262	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4263		seq_printf(seq, ",uid=%u",
4264				from_kuid_munged(&init_user_ns, sbinfo->uid));
4265	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4266		seq_printf(seq, ",gid=%u",
4267				from_kgid_munged(&init_user_ns, sbinfo->gid));
4268
4269	/*
4270	 * Showing inode{64,32} might be useful even if it's the system default,
4271	 * since then people don't have to resort to checking both here and
4272	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4273	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4274	 *
4275	 * We hide it when inode64 isn't the default and we are using 32-bit
4276	 * inodes, since that probably just means the feature isn't even under
4277	 * consideration.
4278	 *
4279	 * As such:
4280	 *
4281	 *                     +-----------------+-----------------+
4282	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4283	 *  +------------------+-----------------+-----------------+
4284	 *  | full_inums=true  | show            | show            |
4285	 *  | full_inums=false | show            | hide            |
4286	 *  +------------------+-----------------+-----------------+
4287	 *
4288	 */
4289	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4290		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4291#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4292	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4293	if (sbinfo->huge)
4294		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4295#endif
4296	mpol = shmem_get_sbmpol(sbinfo);
4297	shmem_show_mpol(seq, mpol);
4298	mpol_put(mpol);
4299	if (sbinfo->noswap)
4300		seq_printf(seq, ",noswap");
4301#ifdef CONFIG_TMPFS_QUOTA
4302	if (sb_has_quota_active(root->d_sb, USRQUOTA))
4303		seq_printf(seq, ",usrquota");
4304	if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4305		seq_printf(seq, ",grpquota");
4306	if (sbinfo->qlimits.usrquota_bhardlimit)
4307		seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4308			   sbinfo->qlimits.usrquota_bhardlimit);
4309	if (sbinfo->qlimits.grpquota_bhardlimit)
4310		seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4311			   sbinfo->qlimits.grpquota_bhardlimit);
4312	if (sbinfo->qlimits.usrquota_ihardlimit)
4313		seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4314			   sbinfo->qlimits.usrquota_ihardlimit);
4315	if (sbinfo->qlimits.grpquota_ihardlimit)
4316		seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4317			   sbinfo->qlimits.grpquota_ihardlimit);
4318#endif
4319	return 0;
4320}
4321
4322#endif /* CONFIG_TMPFS */
4323
4324static void shmem_put_super(struct super_block *sb)
4325{
4326	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4327
4328#ifdef CONFIG_TMPFS_QUOTA
4329	shmem_disable_quotas(sb);
4330#endif
4331	free_percpu(sbinfo->ino_batch);
4332	percpu_counter_destroy(&sbinfo->used_blocks);
4333	mpol_put(sbinfo->mpol);
4334	kfree(sbinfo);
4335	sb->s_fs_info = NULL;
4336}
4337
4338static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4339{
4340	struct shmem_options *ctx = fc->fs_private;
4341	struct inode *inode;
4342	struct shmem_sb_info *sbinfo;
4343	int error = -ENOMEM;
4344
4345	/* Round up to L1_CACHE_BYTES to resist false sharing */
4346	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4347				L1_CACHE_BYTES), GFP_KERNEL);
4348	if (!sbinfo)
4349		return error;
4350
4351	sb->s_fs_info = sbinfo;
4352
4353#ifdef CONFIG_TMPFS
4354	/*
4355	 * Per default we only allow half of the physical ram per
4356	 * tmpfs instance, limiting inodes to one per page of lowmem;
4357	 * but the internal instance is left unlimited.
4358	 */
4359	if (!(sb->s_flags & SB_KERNMOUNT)) {
4360		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4361			ctx->blocks = shmem_default_max_blocks();
4362		if (!(ctx->seen & SHMEM_SEEN_INODES))
4363			ctx->inodes = shmem_default_max_inodes();
4364		if (!(ctx->seen & SHMEM_SEEN_INUMS))
4365			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4366		sbinfo->noswap = ctx->noswap;
4367	} else {
4368		sb->s_flags |= SB_NOUSER;
4369	}
4370	sb->s_export_op = &shmem_export_ops;
4371	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4372#else
4373	sb->s_flags |= SB_NOUSER;
4374#endif
4375	sbinfo->max_blocks = ctx->blocks;
4376	sbinfo->max_inodes = ctx->inodes;
4377	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4378	if (sb->s_flags & SB_KERNMOUNT) {
4379		sbinfo->ino_batch = alloc_percpu(ino_t);
4380		if (!sbinfo->ino_batch)
4381			goto failed;
4382	}
4383	sbinfo->uid = ctx->uid;
4384	sbinfo->gid = ctx->gid;
4385	sbinfo->full_inums = ctx->full_inums;
4386	sbinfo->mode = ctx->mode;
4387	sbinfo->huge = ctx->huge;
4388	sbinfo->mpol = ctx->mpol;
4389	ctx->mpol = NULL;
4390
4391	raw_spin_lock_init(&sbinfo->stat_lock);
4392	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4393		goto failed;
4394	spin_lock_init(&sbinfo->shrinklist_lock);
4395	INIT_LIST_HEAD(&sbinfo->shrinklist);
4396
4397	sb->s_maxbytes = MAX_LFS_FILESIZE;
4398	sb->s_blocksize = PAGE_SIZE;
4399	sb->s_blocksize_bits = PAGE_SHIFT;
4400	sb->s_magic = TMPFS_MAGIC;
4401	sb->s_op = &shmem_ops;
4402	sb->s_time_gran = 1;
4403#ifdef CONFIG_TMPFS_XATTR
4404	sb->s_xattr = shmem_xattr_handlers;
4405#endif
4406#ifdef CONFIG_TMPFS_POSIX_ACL
4407	sb->s_flags |= SB_POSIXACL;
4408#endif
4409	uuid_t uuid;
4410	uuid_gen(&uuid);
4411	super_set_uuid(sb, uuid.b, sizeof(uuid));
4412
4413#ifdef CONFIG_TMPFS_QUOTA
4414	if (ctx->seen & SHMEM_SEEN_QUOTA) {
4415		sb->dq_op = &shmem_quota_operations;
4416		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4417		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4418
4419		/* Copy the default limits from ctx into sbinfo */
4420		memcpy(&sbinfo->qlimits, &ctx->qlimits,
4421		       sizeof(struct shmem_quota_limits));
4422
4423		if (shmem_enable_quotas(sb, ctx->quota_types))
4424			goto failed;
4425	}
4426#endif /* CONFIG_TMPFS_QUOTA */
4427
4428	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
4429				S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
4430	if (IS_ERR(inode)) {
4431		error = PTR_ERR(inode);
4432		goto failed;
4433	}
4434	inode->i_uid = sbinfo->uid;
4435	inode->i_gid = sbinfo->gid;
4436	sb->s_root = d_make_root(inode);
4437	if (!sb->s_root)
4438		goto failed;
4439	return 0;
4440
4441failed:
4442	shmem_put_super(sb);
4443	return error;
4444}
4445
4446static int shmem_get_tree(struct fs_context *fc)
4447{
4448	return get_tree_nodev(fc, shmem_fill_super);
4449}
4450
4451static void shmem_free_fc(struct fs_context *fc)
4452{
4453	struct shmem_options *ctx = fc->fs_private;
4454
4455	if (ctx) {
4456		mpol_put(ctx->mpol);
4457		kfree(ctx);
4458	}
4459}
4460
4461static const struct fs_context_operations shmem_fs_context_ops = {
4462	.free			= shmem_free_fc,
4463	.get_tree		= shmem_get_tree,
4464#ifdef CONFIG_TMPFS
4465	.parse_monolithic	= shmem_parse_options,
4466	.parse_param		= shmem_parse_one,
4467	.reconfigure		= shmem_reconfigure,
4468#endif
4469};
4470
4471static struct kmem_cache *shmem_inode_cachep __ro_after_init;
4472
4473static struct inode *shmem_alloc_inode(struct super_block *sb)
4474{
4475	struct shmem_inode_info *info;
4476	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4477	if (!info)
4478		return NULL;
4479	return &info->vfs_inode;
4480}
4481
4482static void shmem_free_in_core_inode(struct inode *inode)
4483{
4484	if (S_ISLNK(inode->i_mode))
4485		kfree(inode->i_link);
4486	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4487}
4488
4489static void shmem_destroy_inode(struct inode *inode)
4490{
4491	if (S_ISREG(inode->i_mode))
4492		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4493	if (S_ISDIR(inode->i_mode))
4494		simple_offset_destroy(shmem_get_offset_ctx(inode));
4495}
4496
4497static void shmem_init_inode(void *foo)
4498{
4499	struct shmem_inode_info *info = foo;
4500	inode_init_once(&info->vfs_inode);
4501}
4502
4503static void __init shmem_init_inodecache(void)
4504{
4505	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4506				sizeof(struct shmem_inode_info),
4507				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4508}
4509
4510static void __init shmem_destroy_inodecache(void)
4511{
4512	kmem_cache_destroy(shmem_inode_cachep);
4513}
4514
4515/* Keep the page in page cache instead of truncating it */
4516static int shmem_error_remove_folio(struct address_space *mapping,
4517				   struct folio *folio)
4518{
4519	return 0;
4520}
4521
4522static const struct address_space_operations shmem_aops = {
4523	.writepage	= shmem_writepage,
4524	.dirty_folio	= noop_dirty_folio,
4525#ifdef CONFIG_TMPFS
4526	.write_begin	= shmem_write_begin,
4527	.write_end	= shmem_write_end,
4528#endif
4529#ifdef CONFIG_MIGRATION
4530	.migrate_folio	= migrate_folio,
4531#endif
4532	.error_remove_folio = shmem_error_remove_folio,
4533};
4534
4535static const struct file_operations shmem_file_operations = {
4536	.mmap		= shmem_mmap,
4537	.open		= shmem_file_open,
4538	.get_unmapped_area = shmem_get_unmapped_area,
4539#ifdef CONFIG_TMPFS
4540	.llseek		= shmem_file_llseek,
4541	.read_iter	= shmem_file_read_iter,
4542	.write_iter	= shmem_file_write_iter,
4543	.fsync		= noop_fsync,
4544	.splice_read	= shmem_file_splice_read,
4545	.splice_write	= iter_file_splice_write,
4546	.fallocate	= shmem_fallocate,
4547#endif
4548};
4549
4550static const struct inode_operations shmem_inode_operations = {
4551	.getattr	= shmem_getattr,
4552	.setattr	= shmem_setattr,
4553#ifdef CONFIG_TMPFS_XATTR
4554	.listxattr	= shmem_listxattr,
4555	.set_acl	= simple_set_acl,
4556	.fileattr_get	= shmem_fileattr_get,
4557	.fileattr_set	= shmem_fileattr_set,
4558#endif
4559};
4560
4561static const struct inode_operations shmem_dir_inode_operations = {
4562#ifdef CONFIG_TMPFS
4563	.getattr	= shmem_getattr,
4564	.create		= shmem_create,
4565	.lookup		= simple_lookup,
4566	.link		= shmem_link,
4567	.unlink		= shmem_unlink,
4568	.symlink	= shmem_symlink,
4569	.mkdir		= shmem_mkdir,
4570	.rmdir		= shmem_rmdir,
4571	.mknod		= shmem_mknod,
4572	.rename		= shmem_rename2,
4573	.tmpfile	= shmem_tmpfile,
4574	.get_offset_ctx	= shmem_get_offset_ctx,
4575#endif
4576#ifdef CONFIG_TMPFS_XATTR
4577	.listxattr	= shmem_listxattr,
4578	.fileattr_get	= shmem_fileattr_get,
4579	.fileattr_set	= shmem_fileattr_set,
4580#endif
4581#ifdef CONFIG_TMPFS_POSIX_ACL
4582	.setattr	= shmem_setattr,
4583	.set_acl	= simple_set_acl,
4584#endif
4585};
4586
4587static const struct inode_operations shmem_special_inode_operations = {
4588	.getattr	= shmem_getattr,
4589#ifdef CONFIG_TMPFS_XATTR
4590	.listxattr	= shmem_listxattr,
4591#endif
4592#ifdef CONFIG_TMPFS_POSIX_ACL
4593	.setattr	= shmem_setattr,
4594	.set_acl	= simple_set_acl,
4595#endif
4596};
4597
4598static const struct super_operations shmem_ops = {
4599	.alloc_inode	= shmem_alloc_inode,
4600	.free_inode	= shmem_free_in_core_inode,
4601	.destroy_inode	= shmem_destroy_inode,
4602#ifdef CONFIG_TMPFS
4603	.statfs		= shmem_statfs,
4604	.show_options	= shmem_show_options,
4605#endif
4606#ifdef CONFIG_TMPFS_QUOTA
4607	.get_dquots	= shmem_get_dquots,
4608#endif
4609	.evict_inode	= shmem_evict_inode,
4610	.drop_inode	= generic_delete_inode,
4611	.put_super	= shmem_put_super,
4612#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4613	.nr_cached_objects	= shmem_unused_huge_count,
4614	.free_cached_objects	= shmem_unused_huge_scan,
4615#endif
4616};
4617
4618static const struct vm_operations_struct shmem_vm_ops = {
4619	.fault		= shmem_fault,
4620	.map_pages	= filemap_map_pages,
4621#ifdef CONFIG_NUMA
4622	.set_policy     = shmem_set_policy,
4623	.get_policy     = shmem_get_policy,
4624#endif
4625};
4626
4627static const struct vm_operations_struct shmem_anon_vm_ops = {
4628	.fault		= shmem_fault,
4629	.map_pages	= filemap_map_pages,
4630#ifdef CONFIG_NUMA
4631	.set_policy     = shmem_set_policy,
4632	.get_policy     = shmem_get_policy,
4633#endif
4634};
4635
4636int shmem_init_fs_context(struct fs_context *fc)
4637{
4638	struct shmem_options *ctx;
4639
4640	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4641	if (!ctx)
4642		return -ENOMEM;
4643
4644	ctx->mode = 0777 | S_ISVTX;
4645	ctx->uid = current_fsuid();
4646	ctx->gid = current_fsgid();
4647
4648	fc->fs_private = ctx;
4649	fc->ops = &shmem_fs_context_ops;
4650	return 0;
4651}
4652
4653static struct file_system_type shmem_fs_type = {
4654	.owner		= THIS_MODULE,
4655	.name		= "tmpfs",
4656	.init_fs_context = shmem_init_fs_context,
4657#ifdef CONFIG_TMPFS
4658	.parameters	= shmem_fs_parameters,
4659#endif
4660	.kill_sb	= kill_litter_super,
4661	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4662};
4663
4664void __init shmem_init(void)
4665{
4666	int error;
4667
4668	shmem_init_inodecache();
4669
4670#ifdef CONFIG_TMPFS_QUOTA
4671	error = register_quota_format(&shmem_quota_format);
4672	if (error < 0) {
4673		pr_err("Could not register quota format\n");
4674		goto out3;
4675	}
4676#endif
4677
4678	error = register_filesystem(&shmem_fs_type);
4679	if (error) {
4680		pr_err("Could not register tmpfs\n");
4681		goto out2;
4682	}
4683
4684	shm_mnt = kern_mount(&shmem_fs_type);
4685	if (IS_ERR(shm_mnt)) {
4686		error = PTR_ERR(shm_mnt);
4687		pr_err("Could not kern_mount tmpfs\n");
4688		goto out1;
4689	}
4690
4691#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4692	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4693		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4694	else
4695		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4696#endif
4697	return;
4698
4699out1:
4700	unregister_filesystem(&shmem_fs_type);
4701out2:
4702#ifdef CONFIG_TMPFS_QUOTA
4703	unregister_quota_format(&shmem_quota_format);
4704out3:
4705#endif
4706	shmem_destroy_inodecache();
4707	shm_mnt = ERR_PTR(error);
4708}
4709
4710#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4711static ssize_t shmem_enabled_show(struct kobject *kobj,
4712				  struct kobj_attribute *attr, char *buf)
4713{
4714	static const int values[] = {
4715		SHMEM_HUGE_ALWAYS,
4716		SHMEM_HUGE_WITHIN_SIZE,
4717		SHMEM_HUGE_ADVISE,
4718		SHMEM_HUGE_NEVER,
4719		SHMEM_HUGE_DENY,
4720		SHMEM_HUGE_FORCE,
4721	};
4722	int len = 0;
4723	int i;
4724
4725	for (i = 0; i < ARRAY_SIZE(values); i++) {
4726		len += sysfs_emit_at(buf, len,
4727				shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4728				i ? " " : "", shmem_format_huge(values[i]));
4729	}
4730	len += sysfs_emit_at(buf, len, "\n");
4731
4732	return len;
4733}
4734
4735static ssize_t shmem_enabled_store(struct kobject *kobj,
4736		struct kobj_attribute *attr, const char *buf, size_t count)
4737{
4738	char tmp[16];
4739	int huge;
4740
4741	if (count + 1 > sizeof(tmp))
4742		return -EINVAL;
4743	memcpy(tmp, buf, count);
4744	tmp[count] = '\0';
4745	if (count && tmp[count - 1] == '\n')
4746		tmp[count - 1] = '\0';
4747
4748	huge = shmem_parse_huge(tmp);
4749	if (huge == -EINVAL)
4750		return -EINVAL;
4751	if (!has_transparent_hugepage() &&
4752			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4753		return -EINVAL;
4754
4755	shmem_huge = huge;
4756	if (shmem_huge > SHMEM_HUGE_DENY)
4757		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4758	return count;
4759}
4760
4761struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4762#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4763
4764#else /* !CONFIG_SHMEM */
4765
4766/*
4767 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4768 *
4769 * This is intended for small system where the benefits of the full
4770 * shmem code (swap-backed and resource-limited) are outweighed by
4771 * their complexity. On systems without swap this code should be
4772 * effectively equivalent, but much lighter weight.
4773 */
4774
4775static struct file_system_type shmem_fs_type = {
4776	.name		= "tmpfs",
4777	.init_fs_context = ramfs_init_fs_context,
4778	.parameters	= ramfs_fs_parameters,
4779	.kill_sb	= ramfs_kill_sb,
4780	.fs_flags	= FS_USERNS_MOUNT,
4781};
4782
4783void __init shmem_init(void)
4784{
4785	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4786
4787	shm_mnt = kern_mount(&shmem_fs_type);
4788	BUG_ON(IS_ERR(shm_mnt));
4789}
4790
4791int shmem_unuse(unsigned int type)
4792{
4793	return 0;
4794}
4795
4796int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4797{
4798	return 0;
4799}
4800
4801void shmem_unlock_mapping(struct address_space *mapping)
4802{
4803}
4804
4805#ifdef CONFIG_MMU
4806unsigned long shmem_get_unmapped_area(struct file *file,
4807				      unsigned long addr, unsigned long len,
4808				      unsigned long pgoff, unsigned long flags)
4809{
4810	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4811}
4812#endif
4813
4814void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4815{
4816	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4817}
4818EXPORT_SYMBOL_GPL(shmem_truncate_range);
4819
4820#define shmem_vm_ops				generic_file_vm_ops
4821#define shmem_anon_vm_ops			generic_file_vm_ops
4822#define shmem_file_operations			ramfs_file_operations
4823#define shmem_acct_size(flags, size)		0
4824#define shmem_unacct_size(flags, size)		do {} while (0)
4825
4826static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
4827				struct super_block *sb, struct inode *dir,
4828				umode_t mode, dev_t dev, unsigned long flags)
4829{
4830	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
4831	return inode ? inode : ERR_PTR(-ENOSPC);
4832}
4833
4834#endif /* CONFIG_SHMEM */
4835
4836/* common code */
4837
4838static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
4839			loff_t size, unsigned long flags, unsigned int i_flags)
4840{
4841	struct inode *inode;
4842	struct file *res;
4843
4844	if (IS_ERR(mnt))
4845		return ERR_CAST(mnt);
4846
4847	if (size < 0 || size > MAX_LFS_FILESIZE)
4848		return ERR_PTR(-EINVAL);
4849
4850	if (shmem_acct_size(flags, size))
4851		return ERR_PTR(-ENOMEM);
4852
4853	if (is_idmapped_mnt(mnt))
4854		return ERR_PTR(-EINVAL);
4855
4856	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
4857				S_IFREG | S_IRWXUGO, 0, flags);
4858	if (IS_ERR(inode)) {
4859		shmem_unacct_size(flags, size);
4860		return ERR_CAST(inode);
4861	}
4862	inode->i_flags |= i_flags;
4863	inode->i_size = size;
4864	clear_nlink(inode);	/* It is unlinked */
4865	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4866	if (!IS_ERR(res))
4867		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4868				&shmem_file_operations);
4869	if (IS_ERR(res))
4870		iput(inode);
4871	return res;
4872}
4873
4874/**
4875 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4876 * 	kernel internal.  There will be NO LSM permission checks against the
4877 * 	underlying inode.  So users of this interface must do LSM checks at a
4878 *	higher layer.  The users are the big_key and shm implementations.  LSM
4879 *	checks are provided at the key or shm level rather than the inode.
4880 * @name: name for dentry (to be seen in /proc/<pid>/maps
4881 * @size: size to be set for the file
4882 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4883 */
4884struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4885{
4886	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4887}
4888EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
4889
4890/**
4891 * shmem_file_setup - get an unlinked file living in tmpfs
4892 * @name: name for dentry (to be seen in /proc/<pid>/maps
4893 * @size: size to be set for the file
4894 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4895 */
4896struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4897{
4898	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4899}
4900EXPORT_SYMBOL_GPL(shmem_file_setup);
4901
4902/**
4903 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4904 * @mnt: the tmpfs mount where the file will be created
4905 * @name: name for dentry (to be seen in /proc/<pid>/maps
4906 * @size: size to be set for the file
4907 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4908 */
4909struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4910				       loff_t size, unsigned long flags)
4911{
4912	return __shmem_file_setup(mnt, name, size, flags, 0);
4913}
4914EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4915
4916/**
4917 * shmem_zero_setup - setup a shared anonymous mapping
4918 * @vma: the vma to be mmapped is prepared by do_mmap
4919 */
4920int shmem_zero_setup(struct vm_area_struct *vma)
4921{
4922	struct file *file;
4923	loff_t size = vma->vm_end - vma->vm_start;
4924
4925	/*
4926	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4927	 * between XFS directory reading and selinux: since this file is only
4928	 * accessible to the user through its mapping, use S_PRIVATE flag to
4929	 * bypass file security, in the same way as shmem_kernel_file_setup().
4930	 */
4931	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4932	if (IS_ERR(file))
4933		return PTR_ERR(file);
4934
4935	if (vma->vm_file)
4936		fput(vma->vm_file);
4937	vma->vm_file = file;
4938	vma->vm_ops = &shmem_anon_vm_ops;
4939
4940	return 0;
4941}
4942
4943/**
4944 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
4945 * @mapping:	the folio's address_space
4946 * @index:	the folio index
4947 * @gfp:	the page allocator flags to use if allocating
4948 *
4949 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4950 * with any new page allocations done using the specified allocation flags.
4951 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4952 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4953 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4954 *
4955 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4956 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4957 */
4958struct folio *shmem_read_folio_gfp(struct address_space *mapping,
4959		pgoff_t index, gfp_t gfp)
4960{
4961#ifdef CONFIG_SHMEM
4962	struct inode *inode = mapping->host;
4963	struct folio *folio;
4964	int error;
4965
4966	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4967				    gfp, NULL, NULL);
4968	if (error)
4969		return ERR_PTR(error);
4970
4971	folio_unlock(folio);
4972	return folio;
4973#else
4974	/*
4975	 * The tiny !SHMEM case uses ramfs without swap
4976	 */
4977	return mapping_read_folio_gfp(mapping, index, gfp);
4978#endif
4979}
4980EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
4981
4982struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4983					 pgoff_t index, gfp_t gfp)
4984{
4985	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
4986	struct page *page;
4987
4988	if (IS_ERR(folio))
4989		return &folio->page;
4990
4991	page = folio_file_page(folio, index);
4992	if (PageHWPoison(page)) {
4993		folio_put(folio);
4994		return ERR_PTR(-EIO);
4995	}
4996
4997	return page;
4998}
4999EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
5000