1// SPDX-License-Identifier: GPL-2.0
2#include <linux/pagewalk.h>
3#include <linux/highmem.h>
4#include <linux/sched.h>
5#include <linux/hugetlb.h>
6
7/*
8 * We want to know the real level where a entry is located ignoring any
9 * folding of levels which may be happening. For example if p4d is folded then
10 * a missing entry found at level 1 (p4d) is actually at level 0 (pgd).
11 */
12static int real_depth(int depth)
13{
14	if (depth == 3 && PTRS_PER_PMD == 1)
15		depth = 2;
16	if (depth == 2 && PTRS_PER_PUD == 1)
17		depth = 1;
18	if (depth == 1 && PTRS_PER_P4D == 1)
19		depth = 0;
20	return depth;
21}
22
23static int walk_pte_range_inner(pte_t *pte, unsigned long addr,
24				unsigned long end, struct mm_walk *walk)
25{
26	const struct mm_walk_ops *ops = walk->ops;
27	int err = 0;
28
29	for (;;) {
30		err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
31		if (err)
32		       break;
33		if (addr >= end - PAGE_SIZE)
34			break;
35		addr += PAGE_SIZE;
36		pte++;
37	}
38	return err;
39}
40
41static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
42			  struct mm_walk *walk)
43{
44	pte_t *pte;
45	int err = 0;
46	spinlock_t *ptl;
47
48	if (walk->no_vma) {
49		/*
50		 * pte_offset_map() might apply user-specific validation.
51		 * Indeed, on x86_64 the pmd entries set up by init_espfix_ap()
52		 * fit its pmd_bad() check (_PAGE_NX set and _PAGE_RW clear),
53		 * and CONFIG_EFI_PGT_DUMP efi_mm goes so far as to walk them.
54		 */
55		if (walk->mm == &init_mm || addr >= TASK_SIZE)
56			pte = pte_offset_kernel(pmd, addr);
57		else
58			pte = pte_offset_map(pmd, addr);
59		if (pte) {
60			err = walk_pte_range_inner(pte, addr, end, walk);
61			if (walk->mm != &init_mm && addr < TASK_SIZE)
62				pte_unmap(pte);
63		}
64	} else {
65		pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
66		if (pte) {
67			err = walk_pte_range_inner(pte, addr, end, walk);
68			pte_unmap_unlock(pte, ptl);
69		}
70	}
71	if (!pte)
72		walk->action = ACTION_AGAIN;
73	return err;
74}
75
76#ifdef CONFIG_ARCH_HAS_HUGEPD
77static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr,
78			     unsigned long end, struct mm_walk *walk, int pdshift)
79{
80	int err = 0;
81	const struct mm_walk_ops *ops = walk->ops;
82	int shift = hugepd_shift(*phpd);
83	int page_size = 1 << shift;
84
85	if (!ops->pte_entry)
86		return 0;
87
88	if (addr & (page_size - 1))
89		return 0;
90
91	for (;;) {
92		pte_t *pte;
93
94		spin_lock(&walk->mm->page_table_lock);
95		pte = hugepte_offset(*phpd, addr, pdshift);
96		err = ops->pte_entry(pte, addr, addr + page_size, walk);
97		spin_unlock(&walk->mm->page_table_lock);
98
99		if (err)
100			break;
101		if (addr >= end - page_size)
102			break;
103		addr += page_size;
104	}
105	return err;
106}
107#else
108static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr,
109			     unsigned long end, struct mm_walk *walk, int pdshift)
110{
111	return 0;
112}
113#endif
114
115static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
116			  struct mm_walk *walk)
117{
118	pmd_t *pmd;
119	unsigned long next;
120	const struct mm_walk_ops *ops = walk->ops;
121	int err = 0;
122	int depth = real_depth(3);
123
124	pmd = pmd_offset(pud, addr);
125	do {
126again:
127		next = pmd_addr_end(addr, end);
128		if (pmd_none(*pmd)) {
129			if (ops->pte_hole)
130				err = ops->pte_hole(addr, next, depth, walk);
131			if (err)
132				break;
133			continue;
134		}
135
136		walk->action = ACTION_SUBTREE;
137
138		/*
139		 * This implies that each ->pmd_entry() handler
140		 * needs to know about pmd_trans_huge() pmds
141		 */
142		if (ops->pmd_entry)
143			err = ops->pmd_entry(pmd, addr, next, walk);
144		if (err)
145			break;
146
147		if (walk->action == ACTION_AGAIN)
148			goto again;
149
150		/*
151		 * Check this here so we only break down trans_huge
152		 * pages when we _need_ to
153		 */
154		if ((!walk->vma && (pmd_leaf(*pmd) || !pmd_present(*pmd))) ||
155		    walk->action == ACTION_CONTINUE ||
156		    !(ops->pte_entry))
157			continue;
158
159		if (walk->vma)
160			split_huge_pmd(walk->vma, pmd, addr);
161
162		if (is_hugepd(__hugepd(pmd_val(*pmd))))
163			err = walk_hugepd_range((hugepd_t *)pmd, addr, next, walk, PMD_SHIFT);
164		else
165			err = walk_pte_range(pmd, addr, next, walk);
166		if (err)
167			break;
168
169		if (walk->action == ACTION_AGAIN)
170			goto again;
171
172	} while (pmd++, addr = next, addr != end);
173
174	return err;
175}
176
177static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
178			  struct mm_walk *walk)
179{
180	pud_t *pud;
181	unsigned long next;
182	const struct mm_walk_ops *ops = walk->ops;
183	int err = 0;
184	int depth = real_depth(2);
185
186	pud = pud_offset(p4d, addr);
187	do {
188 again:
189		next = pud_addr_end(addr, end);
190		if (pud_none(*pud)) {
191			if (ops->pte_hole)
192				err = ops->pte_hole(addr, next, depth, walk);
193			if (err)
194				break;
195			continue;
196		}
197
198		walk->action = ACTION_SUBTREE;
199
200		if (ops->pud_entry)
201			err = ops->pud_entry(pud, addr, next, walk);
202		if (err)
203			break;
204
205		if (walk->action == ACTION_AGAIN)
206			goto again;
207
208		if ((!walk->vma && (pud_leaf(*pud) || !pud_present(*pud))) ||
209		    walk->action == ACTION_CONTINUE ||
210		    !(ops->pmd_entry || ops->pte_entry))
211			continue;
212
213		if (walk->vma)
214			split_huge_pud(walk->vma, pud, addr);
215		if (pud_none(*pud))
216			goto again;
217
218		if (is_hugepd(__hugepd(pud_val(*pud))))
219			err = walk_hugepd_range((hugepd_t *)pud, addr, next, walk, PUD_SHIFT);
220		else
221			err = walk_pmd_range(pud, addr, next, walk);
222		if (err)
223			break;
224	} while (pud++, addr = next, addr != end);
225
226	return err;
227}
228
229static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
230			  struct mm_walk *walk)
231{
232	p4d_t *p4d;
233	unsigned long next;
234	const struct mm_walk_ops *ops = walk->ops;
235	int err = 0;
236	int depth = real_depth(1);
237
238	p4d = p4d_offset(pgd, addr);
239	do {
240		next = p4d_addr_end(addr, end);
241		if (p4d_none_or_clear_bad(p4d)) {
242			if (ops->pte_hole)
243				err = ops->pte_hole(addr, next, depth, walk);
244			if (err)
245				break;
246			continue;
247		}
248		if (ops->p4d_entry) {
249			err = ops->p4d_entry(p4d, addr, next, walk);
250			if (err)
251				break;
252		}
253		if (is_hugepd(__hugepd(p4d_val(*p4d))))
254			err = walk_hugepd_range((hugepd_t *)p4d, addr, next, walk, P4D_SHIFT);
255		else if (ops->pud_entry || ops->pmd_entry || ops->pte_entry)
256			err = walk_pud_range(p4d, addr, next, walk);
257		if (err)
258			break;
259	} while (p4d++, addr = next, addr != end);
260
261	return err;
262}
263
264static int walk_pgd_range(unsigned long addr, unsigned long end,
265			  struct mm_walk *walk)
266{
267	pgd_t *pgd;
268	unsigned long next;
269	const struct mm_walk_ops *ops = walk->ops;
270	int err = 0;
271
272	if (walk->pgd)
273		pgd = walk->pgd + pgd_index(addr);
274	else
275		pgd = pgd_offset(walk->mm, addr);
276	do {
277		next = pgd_addr_end(addr, end);
278		if (pgd_none_or_clear_bad(pgd)) {
279			if (ops->pte_hole)
280				err = ops->pte_hole(addr, next, 0, walk);
281			if (err)
282				break;
283			continue;
284		}
285		if (ops->pgd_entry) {
286			err = ops->pgd_entry(pgd, addr, next, walk);
287			if (err)
288				break;
289		}
290		if (is_hugepd(__hugepd(pgd_val(*pgd))))
291			err = walk_hugepd_range((hugepd_t *)pgd, addr, next, walk, PGDIR_SHIFT);
292		else if (ops->p4d_entry || ops->pud_entry || ops->pmd_entry || ops->pte_entry)
293			err = walk_p4d_range(pgd, addr, next, walk);
294		if (err)
295			break;
296	} while (pgd++, addr = next, addr != end);
297
298	return err;
299}
300
301#ifdef CONFIG_HUGETLB_PAGE
302static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
303				       unsigned long end)
304{
305	unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
306	return boundary < end ? boundary : end;
307}
308
309static int walk_hugetlb_range(unsigned long addr, unsigned long end,
310			      struct mm_walk *walk)
311{
312	struct vm_area_struct *vma = walk->vma;
313	struct hstate *h = hstate_vma(vma);
314	unsigned long next;
315	unsigned long hmask = huge_page_mask(h);
316	unsigned long sz = huge_page_size(h);
317	pte_t *pte;
318	const struct mm_walk_ops *ops = walk->ops;
319	int err = 0;
320
321	hugetlb_vma_lock_read(vma);
322	do {
323		next = hugetlb_entry_end(h, addr, end);
324		pte = hugetlb_walk(vma, addr & hmask, sz);
325		if (pte)
326			err = ops->hugetlb_entry(pte, hmask, addr, next, walk);
327		else if (ops->pte_hole)
328			err = ops->pte_hole(addr, next, -1, walk);
329		if (err)
330			break;
331	} while (addr = next, addr != end);
332	hugetlb_vma_unlock_read(vma);
333
334	return err;
335}
336
337#else /* CONFIG_HUGETLB_PAGE */
338static int walk_hugetlb_range(unsigned long addr, unsigned long end,
339			      struct mm_walk *walk)
340{
341	return 0;
342}
343
344#endif /* CONFIG_HUGETLB_PAGE */
345
346/*
347 * Decide whether we really walk over the current vma on [@start, @end)
348 * or skip it via the returned value. Return 0 if we do walk over the
349 * current vma, and return 1 if we skip the vma. Negative values means
350 * error, where we abort the current walk.
351 */
352static int walk_page_test(unsigned long start, unsigned long end,
353			struct mm_walk *walk)
354{
355	struct vm_area_struct *vma = walk->vma;
356	const struct mm_walk_ops *ops = walk->ops;
357
358	if (ops->test_walk)
359		return ops->test_walk(start, end, walk);
360
361	/*
362	 * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP
363	 * range, so we don't walk over it as we do for normal vmas. However,
364	 * Some callers are interested in handling hole range and they don't
365	 * want to just ignore any single address range. Such users certainly
366	 * define their ->pte_hole() callbacks, so let's delegate them to handle
367	 * vma(VM_PFNMAP).
368	 */
369	if (vma->vm_flags & VM_PFNMAP) {
370		int err = 1;
371		if (ops->pte_hole)
372			err = ops->pte_hole(start, end, -1, walk);
373		return err ? err : 1;
374	}
375	return 0;
376}
377
378static int __walk_page_range(unsigned long start, unsigned long end,
379			struct mm_walk *walk)
380{
381	int err = 0;
382	struct vm_area_struct *vma = walk->vma;
383	const struct mm_walk_ops *ops = walk->ops;
384
385	if (ops->pre_vma) {
386		err = ops->pre_vma(start, end, walk);
387		if (err)
388			return err;
389	}
390
391	if (is_vm_hugetlb_page(vma)) {
392		if (ops->hugetlb_entry)
393			err = walk_hugetlb_range(start, end, walk);
394	} else
395		err = walk_pgd_range(start, end, walk);
396
397	if (ops->post_vma)
398		ops->post_vma(walk);
399
400	return err;
401}
402
403static inline void process_mm_walk_lock(struct mm_struct *mm,
404					enum page_walk_lock walk_lock)
405{
406	if (walk_lock == PGWALK_RDLOCK)
407		mmap_assert_locked(mm);
408	else
409		mmap_assert_write_locked(mm);
410}
411
412static inline void process_vma_walk_lock(struct vm_area_struct *vma,
413					 enum page_walk_lock walk_lock)
414{
415#ifdef CONFIG_PER_VMA_LOCK
416	switch (walk_lock) {
417	case PGWALK_WRLOCK:
418		vma_start_write(vma);
419		break;
420	case PGWALK_WRLOCK_VERIFY:
421		vma_assert_write_locked(vma);
422		break;
423	case PGWALK_RDLOCK:
424		/* PGWALK_RDLOCK is handled by process_mm_walk_lock */
425		break;
426	}
427#endif
428}
429
430/**
431 * walk_page_range - walk page table with caller specific callbacks
432 * @mm:		mm_struct representing the target process of page table walk
433 * @start:	start address of the virtual address range
434 * @end:	end address of the virtual address range
435 * @ops:	operation to call during the walk
436 * @private:	private data for callbacks' usage
437 *
438 * Recursively walk the page table tree of the process represented by @mm
439 * within the virtual address range [@start, @end). During walking, we can do
440 * some caller-specific works for each entry, by setting up pmd_entry(),
441 * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these
442 * callbacks, the associated entries/pages are just ignored.
443 * The return values of these callbacks are commonly defined like below:
444 *
445 *  - 0  : succeeded to handle the current entry, and if you don't reach the
446 *         end address yet, continue to walk.
447 *  - >0 : succeeded to handle the current entry, and return to the caller
448 *         with caller specific value.
449 *  - <0 : failed to handle the current entry, and return to the caller
450 *         with error code.
451 *
452 * Before starting to walk page table, some callers want to check whether
453 * they really want to walk over the current vma, typically by checking
454 * its vm_flags. walk_page_test() and @ops->test_walk() are used for this
455 * purpose.
456 *
457 * If operations need to be staged before and committed after a vma is walked,
458 * there are two callbacks, pre_vma() and post_vma(). Note that post_vma(),
459 * since it is intended to handle commit-type operations, can't return any
460 * errors.
461 *
462 * struct mm_walk keeps current values of some common data like vma and pmd,
463 * which are useful for the access from callbacks. If you want to pass some
464 * caller-specific data to callbacks, @private should be helpful.
465 *
466 * Locking:
467 *   Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock,
468 *   because these function traverse vma list and/or access to vma's data.
469 */
470int walk_page_range(struct mm_struct *mm, unsigned long start,
471		unsigned long end, const struct mm_walk_ops *ops,
472		void *private)
473{
474	int err = 0;
475	unsigned long next;
476	struct vm_area_struct *vma;
477	struct mm_walk walk = {
478		.ops		= ops,
479		.mm		= mm,
480		.private	= private,
481	};
482
483	if (start >= end)
484		return -EINVAL;
485
486	if (!walk.mm)
487		return -EINVAL;
488
489	process_mm_walk_lock(walk.mm, ops->walk_lock);
490
491	vma = find_vma(walk.mm, start);
492	do {
493		if (!vma) { /* after the last vma */
494			walk.vma = NULL;
495			next = end;
496			if (ops->pte_hole)
497				err = ops->pte_hole(start, next, -1, &walk);
498		} else if (start < vma->vm_start) { /* outside vma */
499			walk.vma = NULL;
500			next = min(end, vma->vm_start);
501			if (ops->pte_hole)
502				err = ops->pte_hole(start, next, -1, &walk);
503		} else { /* inside vma */
504			process_vma_walk_lock(vma, ops->walk_lock);
505			walk.vma = vma;
506			next = min(end, vma->vm_end);
507			vma = find_vma(mm, vma->vm_end);
508
509			err = walk_page_test(start, next, &walk);
510			if (err > 0) {
511				/*
512				 * positive return values are purely for
513				 * controlling the pagewalk, so should never
514				 * be passed to the callers.
515				 */
516				err = 0;
517				continue;
518			}
519			if (err < 0)
520				break;
521			err = __walk_page_range(start, next, &walk);
522		}
523		if (err)
524			break;
525	} while (start = next, start < end);
526	return err;
527}
528
529/**
530 * walk_page_range_novma - walk a range of pagetables not backed by a vma
531 * @mm:		mm_struct representing the target process of page table walk
532 * @start:	start address of the virtual address range
533 * @end:	end address of the virtual address range
534 * @ops:	operation to call during the walk
535 * @pgd:	pgd to walk if different from mm->pgd
536 * @private:	private data for callbacks' usage
537 *
538 * Similar to walk_page_range() but can walk any page tables even if they are
539 * not backed by VMAs. Because 'unusual' entries may be walked this function
540 * will also not lock the PTEs for the pte_entry() callback. This is useful for
541 * walking the kernel pages tables or page tables for firmware.
542 *
543 * Note: Be careful to walk the kernel pages tables, the caller may be need to
544 * take other effective approache (mmap lock may be insufficient) to prevent
545 * the intermediate kernel page tables belonging to the specified address range
546 * from being freed (e.g. memory hot-remove).
547 */
548int walk_page_range_novma(struct mm_struct *mm, unsigned long start,
549			  unsigned long end, const struct mm_walk_ops *ops,
550			  pgd_t *pgd,
551			  void *private)
552{
553	struct mm_walk walk = {
554		.ops		= ops,
555		.mm		= mm,
556		.pgd		= pgd,
557		.private	= private,
558		.no_vma		= true
559	};
560
561	if (start >= end || !walk.mm)
562		return -EINVAL;
563
564	/*
565	 * 1) For walking the user virtual address space:
566	 *
567	 * The mmap lock protects the page walker from changes to the page
568	 * tables during the walk.  However a read lock is insufficient to
569	 * protect those areas which don't have a VMA as munmap() detaches
570	 * the VMAs before downgrading to a read lock and actually tearing
571	 * down PTEs/page tables. In which case, the mmap write lock should
572	 * be hold.
573	 *
574	 * 2) For walking the kernel virtual address space:
575	 *
576	 * The kernel intermediate page tables usually do not be freed, so
577	 * the mmap map read lock is sufficient. But there are some exceptions.
578	 * E.g. memory hot-remove. In which case, the mmap lock is insufficient
579	 * to prevent the intermediate kernel pages tables belonging to the
580	 * specified address range from being freed. The caller should take
581	 * other actions to prevent this race.
582	 */
583	if (mm == &init_mm)
584		mmap_assert_locked(walk.mm);
585	else
586		mmap_assert_write_locked(walk.mm);
587
588	return walk_pgd_range(start, end, &walk);
589}
590
591int walk_page_range_vma(struct vm_area_struct *vma, unsigned long start,
592			unsigned long end, const struct mm_walk_ops *ops,
593			void *private)
594{
595	struct mm_walk walk = {
596		.ops		= ops,
597		.mm		= vma->vm_mm,
598		.vma		= vma,
599		.private	= private,
600	};
601
602	if (start >= end || !walk.mm)
603		return -EINVAL;
604	if (start < vma->vm_start || end > vma->vm_end)
605		return -EINVAL;
606
607	process_mm_walk_lock(walk.mm, ops->walk_lock);
608	process_vma_walk_lock(vma, ops->walk_lock);
609	return __walk_page_range(start, end, &walk);
610}
611
612int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops,
613		void *private)
614{
615	struct mm_walk walk = {
616		.ops		= ops,
617		.mm		= vma->vm_mm,
618		.vma		= vma,
619		.private	= private,
620	};
621
622	if (!walk.mm)
623		return -EINVAL;
624
625	process_mm_walk_lock(walk.mm, ops->walk_lock);
626	process_vma_walk_lock(vma, ops->walk_lock);
627	return __walk_page_range(vma->vm_start, vma->vm_end, &walk);
628}
629
630/**
631 * walk_page_mapping - walk all memory areas mapped into a struct address_space.
632 * @mapping: Pointer to the struct address_space
633 * @first_index: First page offset in the address_space
634 * @nr: Number of incremental page offsets to cover
635 * @ops:	operation to call during the walk
636 * @private:	private data for callbacks' usage
637 *
638 * This function walks all memory areas mapped into a struct address_space.
639 * The walk is limited to only the given page-size index range, but if
640 * the index boundaries cross a huge page-table entry, that entry will be
641 * included.
642 *
643 * Also see walk_page_range() for additional information.
644 *
645 * Locking:
646 *   This function can't require that the struct mm_struct::mmap_lock is held,
647 *   since @mapping may be mapped by multiple processes. Instead
648 *   @mapping->i_mmap_rwsem must be held. This might have implications in the
649 *   callbacks, and it's up tho the caller to ensure that the
650 *   struct mm_struct::mmap_lock is not needed.
651 *
652 *   Also this means that a caller can't rely on the struct
653 *   vm_area_struct::vm_flags to be constant across a call,
654 *   except for immutable flags. Callers requiring this shouldn't use
655 *   this function.
656 *
657 * Return: 0 on success, negative error code on failure, positive number on
658 * caller defined premature termination.
659 */
660int walk_page_mapping(struct address_space *mapping, pgoff_t first_index,
661		      pgoff_t nr, const struct mm_walk_ops *ops,
662		      void *private)
663{
664	struct mm_walk walk = {
665		.ops		= ops,
666		.private	= private,
667	};
668	struct vm_area_struct *vma;
669	pgoff_t vba, vea, cba, cea;
670	unsigned long start_addr, end_addr;
671	int err = 0;
672
673	lockdep_assert_held(&mapping->i_mmap_rwsem);
674	vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index,
675				  first_index + nr - 1) {
676		/* Clip to the vma */
677		vba = vma->vm_pgoff;
678		vea = vba + vma_pages(vma);
679		cba = first_index;
680		cba = max(cba, vba);
681		cea = first_index + nr;
682		cea = min(cea, vea);
683
684		start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start;
685		end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start;
686		if (start_addr >= end_addr)
687			continue;
688
689		walk.vma = vma;
690		walk.mm = vma->vm_mm;
691
692		err = walk_page_test(vma->vm_start, vma->vm_end, &walk);
693		if (err > 0) {
694			err = 0;
695			break;
696		} else if (err < 0)
697			break;
698
699		err = __walk_page_range(start_addr, end_addr, &walk);
700		if (err)
701			break;
702	}
703
704	return err;
705}
706