1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/mm/page_alloc.c
4 *
5 *  Manages the free list, the system allocates free pages here.
6 *  Note that kmalloc() lives in slab.c
7 *
8 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9 *  Swap reorganised 29.12.95, Stephen Tweedie
10 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/highmem.h>
21#include <linux/interrupt.h>
22#include <linux/jiffies.h>
23#include <linux/compiler.h>
24#include <linux/kernel.h>
25#include <linux/kasan.h>
26#include <linux/kmsan.h>
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/ratelimit.h>
30#include <linux/oom.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/pagevec.h>
36#include <linux/memory_hotplug.h>
37#include <linux/nodemask.h>
38#include <linux/vmstat.h>
39#include <linux/fault-inject.h>
40#include <linux/compaction.h>
41#include <trace/events/kmem.h>
42#include <trace/events/oom.h>
43#include <linux/prefetch.h>
44#include <linux/mm_inline.h>
45#include <linux/mmu_notifier.h>
46#include <linux/migrate.h>
47#include <linux/sched/mm.h>
48#include <linux/page_owner.h>
49#include <linux/page_table_check.h>
50#include <linux/memcontrol.h>
51#include <linux/ftrace.h>
52#include <linux/lockdep.h>
53#include <linux/psi.h>
54#include <linux/khugepaged.h>
55#include <linux/delayacct.h>
56#include <linux/cacheinfo.h>
57#include <asm/div64.h>
58#include "internal.h"
59#include "shuffle.h"
60#include "page_reporting.h"
61
62/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
63typedef int __bitwise fpi_t;
64
65/* No special request */
66#define FPI_NONE		((__force fpi_t)0)
67
68/*
69 * Skip free page reporting notification for the (possibly merged) page.
70 * This does not hinder free page reporting from grabbing the page,
71 * reporting it and marking it "reported" -  it only skips notifying
72 * the free page reporting infrastructure about a newly freed page. For
73 * example, used when temporarily pulling a page from a freelist and
74 * putting it back unmodified.
75 */
76#define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
77
78/*
79 * Place the (possibly merged) page to the tail of the freelist. Will ignore
80 * page shuffling (relevant code - e.g., memory onlining - is expected to
81 * shuffle the whole zone).
82 *
83 * Note: No code should rely on this flag for correctness - it's purely
84 *       to allow for optimizations when handing back either fresh pages
85 *       (memory onlining) or untouched pages (page isolation, free page
86 *       reporting).
87 */
88#define FPI_TO_TAIL		((__force fpi_t)BIT(1))
89
90/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
91static DEFINE_MUTEX(pcp_batch_high_lock);
92#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
93
94#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
95/*
96 * On SMP, spin_trylock is sufficient protection.
97 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
98 */
99#define pcp_trylock_prepare(flags)	do { } while (0)
100#define pcp_trylock_finish(flag)	do { } while (0)
101#else
102
103/* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
104#define pcp_trylock_prepare(flags)	local_irq_save(flags)
105#define pcp_trylock_finish(flags)	local_irq_restore(flags)
106#endif
107
108/*
109 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
110 * a migration causing the wrong PCP to be locked and remote memory being
111 * potentially allocated, pin the task to the CPU for the lookup+lock.
112 * preempt_disable is used on !RT because it is faster than migrate_disable.
113 * migrate_disable is used on RT because otherwise RT spinlock usage is
114 * interfered with and a high priority task cannot preempt the allocator.
115 */
116#ifndef CONFIG_PREEMPT_RT
117#define pcpu_task_pin()		preempt_disable()
118#define pcpu_task_unpin()	preempt_enable()
119#else
120#define pcpu_task_pin()		migrate_disable()
121#define pcpu_task_unpin()	migrate_enable()
122#endif
123
124/*
125 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
126 * Return value should be used with equivalent unlock helper.
127 */
128#define pcpu_spin_lock(type, member, ptr)				\
129({									\
130	type *_ret;							\
131	pcpu_task_pin();						\
132	_ret = this_cpu_ptr(ptr);					\
133	spin_lock(&_ret->member);					\
134	_ret;								\
135})
136
137#define pcpu_spin_trylock(type, member, ptr)				\
138({									\
139	type *_ret;							\
140	pcpu_task_pin();						\
141	_ret = this_cpu_ptr(ptr);					\
142	if (!spin_trylock(&_ret->member)) {				\
143		pcpu_task_unpin();					\
144		_ret = NULL;						\
145	}								\
146	_ret;								\
147})
148
149#define pcpu_spin_unlock(member, ptr)					\
150({									\
151	spin_unlock(&ptr->member);					\
152	pcpu_task_unpin();						\
153})
154
155/* struct per_cpu_pages specific helpers. */
156#define pcp_spin_lock(ptr)						\
157	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
158
159#define pcp_spin_trylock(ptr)						\
160	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
161
162#define pcp_spin_unlock(ptr)						\
163	pcpu_spin_unlock(lock, ptr)
164
165#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
166DEFINE_PER_CPU(int, numa_node);
167EXPORT_PER_CPU_SYMBOL(numa_node);
168#endif
169
170DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
171
172#ifdef CONFIG_HAVE_MEMORYLESS_NODES
173/*
174 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
175 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
176 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
177 * defined in <linux/topology.h>.
178 */
179DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
180EXPORT_PER_CPU_SYMBOL(_numa_mem_);
181#endif
182
183static DEFINE_MUTEX(pcpu_drain_mutex);
184
185#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
186volatile unsigned long latent_entropy __latent_entropy;
187EXPORT_SYMBOL(latent_entropy);
188#endif
189
190/*
191 * Array of node states.
192 */
193nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
194	[N_POSSIBLE] = NODE_MASK_ALL,
195	[N_ONLINE] = { { [0] = 1UL } },
196#ifndef CONFIG_NUMA
197	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
198#ifdef CONFIG_HIGHMEM
199	[N_HIGH_MEMORY] = { { [0] = 1UL } },
200#endif
201	[N_MEMORY] = { { [0] = 1UL } },
202	[N_CPU] = { { [0] = 1UL } },
203#endif	/* NUMA */
204};
205EXPORT_SYMBOL(node_states);
206
207gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
208
209/*
210 * A cached value of the page's pageblock's migratetype, used when the page is
211 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
212 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
213 * Also the migratetype set in the page does not necessarily match the pcplist
214 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
215 * other index - this ensures that it will be put on the correct CMA freelist.
216 */
217static inline int get_pcppage_migratetype(struct page *page)
218{
219	return page->index;
220}
221
222static inline void set_pcppage_migratetype(struct page *page, int migratetype)
223{
224	page->index = migratetype;
225}
226
227#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
228unsigned int pageblock_order __read_mostly;
229#endif
230
231static void __free_pages_ok(struct page *page, unsigned int order,
232			    fpi_t fpi_flags);
233
234/*
235 * results with 256, 32 in the lowmem_reserve sysctl:
236 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
237 *	1G machine -> (16M dma, 784M normal, 224M high)
238 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
239 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
240 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
241 *
242 * TBD: should special case ZONE_DMA32 machines here - in those we normally
243 * don't need any ZONE_NORMAL reservation
244 */
245static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
246#ifdef CONFIG_ZONE_DMA
247	[ZONE_DMA] = 256,
248#endif
249#ifdef CONFIG_ZONE_DMA32
250	[ZONE_DMA32] = 256,
251#endif
252	[ZONE_NORMAL] = 32,
253#ifdef CONFIG_HIGHMEM
254	[ZONE_HIGHMEM] = 0,
255#endif
256	[ZONE_MOVABLE] = 0,
257};
258
259char * const zone_names[MAX_NR_ZONES] = {
260#ifdef CONFIG_ZONE_DMA
261	 "DMA",
262#endif
263#ifdef CONFIG_ZONE_DMA32
264	 "DMA32",
265#endif
266	 "Normal",
267#ifdef CONFIG_HIGHMEM
268	 "HighMem",
269#endif
270	 "Movable",
271#ifdef CONFIG_ZONE_DEVICE
272	 "Device",
273#endif
274};
275
276const char * const migratetype_names[MIGRATE_TYPES] = {
277	"Unmovable",
278	"Movable",
279	"Reclaimable",
280	"HighAtomic",
281#ifdef CONFIG_CMA
282	"CMA",
283#endif
284#ifdef CONFIG_MEMORY_ISOLATION
285	"Isolate",
286#endif
287};
288
289int min_free_kbytes = 1024;
290int user_min_free_kbytes = -1;
291static int watermark_boost_factor __read_mostly = 15000;
292static int watermark_scale_factor = 10;
293
294/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
295int movable_zone;
296EXPORT_SYMBOL(movable_zone);
297
298#if MAX_NUMNODES > 1
299unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
300unsigned int nr_online_nodes __read_mostly = 1;
301EXPORT_SYMBOL(nr_node_ids);
302EXPORT_SYMBOL(nr_online_nodes);
303#endif
304
305static bool page_contains_unaccepted(struct page *page, unsigned int order);
306static void accept_page(struct page *page, unsigned int order);
307static bool try_to_accept_memory(struct zone *zone, unsigned int order);
308static inline bool has_unaccepted_memory(void);
309static bool __free_unaccepted(struct page *page);
310
311int page_group_by_mobility_disabled __read_mostly;
312
313#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
314/*
315 * During boot we initialize deferred pages on-demand, as needed, but once
316 * page_alloc_init_late() has finished, the deferred pages are all initialized,
317 * and we can permanently disable that path.
318 */
319DEFINE_STATIC_KEY_TRUE(deferred_pages);
320
321static inline bool deferred_pages_enabled(void)
322{
323	return static_branch_unlikely(&deferred_pages);
324}
325
326/*
327 * deferred_grow_zone() is __init, but it is called from
328 * get_page_from_freelist() during early boot until deferred_pages permanently
329 * disables this call. This is why we have refdata wrapper to avoid warning,
330 * and to ensure that the function body gets unloaded.
331 */
332static bool __ref
333_deferred_grow_zone(struct zone *zone, unsigned int order)
334{
335       return deferred_grow_zone(zone, order);
336}
337#else
338static inline bool deferred_pages_enabled(void)
339{
340	return false;
341}
342#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
343
344/* Return a pointer to the bitmap storing bits affecting a block of pages */
345static inline unsigned long *get_pageblock_bitmap(const struct page *page,
346							unsigned long pfn)
347{
348#ifdef CONFIG_SPARSEMEM
349	return section_to_usemap(__pfn_to_section(pfn));
350#else
351	return page_zone(page)->pageblock_flags;
352#endif /* CONFIG_SPARSEMEM */
353}
354
355static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
356{
357#ifdef CONFIG_SPARSEMEM
358	pfn &= (PAGES_PER_SECTION-1);
359#else
360	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
361#endif /* CONFIG_SPARSEMEM */
362	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
363}
364
365/**
366 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
367 * @page: The page within the block of interest
368 * @pfn: The target page frame number
369 * @mask: mask of bits that the caller is interested in
370 *
371 * Return: pageblock_bits flags
372 */
373unsigned long get_pfnblock_flags_mask(const struct page *page,
374					unsigned long pfn, unsigned long mask)
375{
376	unsigned long *bitmap;
377	unsigned long bitidx, word_bitidx;
378	unsigned long word;
379
380	bitmap = get_pageblock_bitmap(page, pfn);
381	bitidx = pfn_to_bitidx(page, pfn);
382	word_bitidx = bitidx / BITS_PER_LONG;
383	bitidx &= (BITS_PER_LONG-1);
384	/*
385	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
386	 * a consistent read of the memory array, so that results, even though
387	 * racy, are not corrupted.
388	 */
389	word = READ_ONCE(bitmap[word_bitidx]);
390	return (word >> bitidx) & mask;
391}
392
393static __always_inline int get_pfnblock_migratetype(const struct page *page,
394					unsigned long pfn)
395{
396	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
397}
398
399/**
400 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
401 * @page: The page within the block of interest
402 * @flags: The flags to set
403 * @pfn: The target page frame number
404 * @mask: mask of bits that the caller is interested in
405 */
406void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
407					unsigned long pfn,
408					unsigned long mask)
409{
410	unsigned long *bitmap;
411	unsigned long bitidx, word_bitidx;
412	unsigned long word;
413
414	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
415	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
416
417	bitmap = get_pageblock_bitmap(page, pfn);
418	bitidx = pfn_to_bitidx(page, pfn);
419	word_bitidx = bitidx / BITS_PER_LONG;
420	bitidx &= (BITS_PER_LONG-1);
421
422	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
423
424	mask <<= bitidx;
425	flags <<= bitidx;
426
427	word = READ_ONCE(bitmap[word_bitidx]);
428	do {
429	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
430}
431
432void set_pageblock_migratetype(struct page *page, int migratetype)
433{
434	if (unlikely(page_group_by_mobility_disabled &&
435		     migratetype < MIGRATE_PCPTYPES))
436		migratetype = MIGRATE_UNMOVABLE;
437
438	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
439				page_to_pfn(page), MIGRATETYPE_MASK);
440}
441
442#ifdef CONFIG_DEBUG_VM
443static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
444{
445	int ret;
446	unsigned seq;
447	unsigned long pfn = page_to_pfn(page);
448	unsigned long sp, start_pfn;
449
450	do {
451		seq = zone_span_seqbegin(zone);
452		start_pfn = zone->zone_start_pfn;
453		sp = zone->spanned_pages;
454		ret = !zone_spans_pfn(zone, pfn);
455	} while (zone_span_seqretry(zone, seq));
456
457	if (ret)
458		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
459			pfn, zone_to_nid(zone), zone->name,
460			start_pfn, start_pfn + sp);
461
462	return ret;
463}
464
465/*
466 * Temporary debugging check for pages not lying within a given zone.
467 */
468static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
469{
470	if (page_outside_zone_boundaries(zone, page))
471		return true;
472	if (zone != page_zone(page))
473		return true;
474
475	return false;
476}
477#else
478static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
479{
480	return false;
481}
482#endif
483
484static void bad_page(struct page *page, const char *reason)
485{
486	static unsigned long resume;
487	static unsigned long nr_shown;
488	static unsigned long nr_unshown;
489
490	/*
491	 * Allow a burst of 60 reports, then keep quiet for that minute;
492	 * or allow a steady drip of one report per second.
493	 */
494	if (nr_shown == 60) {
495		if (time_before(jiffies, resume)) {
496			nr_unshown++;
497			goto out;
498		}
499		if (nr_unshown) {
500			pr_alert(
501			      "BUG: Bad page state: %lu messages suppressed\n",
502				nr_unshown);
503			nr_unshown = 0;
504		}
505		nr_shown = 0;
506	}
507	if (nr_shown++ == 0)
508		resume = jiffies + 60 * HZ;
509
510	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
511		current->comm, page_to_pfn(page));
512	dump_page(page, reason);
513
514	print_modules();
515	dump_stack();
516out:
517	/* Leave bad fields for debug, except PageBuddy could make trouble */
518	page_mapcount_reset(page); /* remove PageBuddy */
519	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
520}
521
522static inline unsigned int order_to_pindex(int migratetype, int order)
523{
524#ifdef CONFIG_TRANSPARENT_HUGEPAGE
525	if (order > PAGE_ALLOC_COSTLY_ORDER) {
526		VM_BUG_ON(order != pageblock_order);
527		return NR_LOWORDER_PCP_LISTS;
528	}
529#else
530	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
531#endif
532
533	return (MIGRATE_PCPTYPES * order) + migratetype;
534}
535
536static inline int pindex_to_order(unsigned int pindex)
537{
538	int order = pindex / MIGRATE_PCPTYPES;
539
540#ifdef CONFIG_TRANSPARENT_HUGEPAGE
541	if (pindex == NR_LOWORDER_PCP_LISTS)
542		order = pageblock_order;
543#else
544	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
545#endif
546
547	return order;
548}
549
550static inline bool pcp_allowed_order(unsigned int order)
551{
552	if (order <= PAGE_ALLOC_COSTLY_ORDER)
553		return true;
554#ifdef CONFIG_TRANSPARENT_HUGEPAGE
555	if (order == pageblock_order)
556		return true;
557#endif
558	return false;
559}
560
561static inline void free_the_page(struct page *page, unsigned int order)
562{
563	if (pcp_allowed_order(order))		/* Via pcp? */
564		free_unref_page(page, order);
565	else
566		__free_pages_ok(page, order, FPI_NONE);
567}
568
569/*
570 * Higher-order pages are called "compound pages".  They are structured thusly:
571 *
572 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
573 *
574 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
575 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
576 *
577 * The first tail page's ->compound_order holds the order of allocation.
578 * This usage means that zero-order pages may not be compound.
579 */
580
581void prep_compound_page(struct page *page, unsigned int order)
582{
583	int i;
584	int nr_pages = 1 << order;
585
586	__SetPageHead(page);
587	for (i = 1; i < nr_pages; i++)
588		prep_compound_tail(page, i);
589
590	prep_compound_head(page, order);
591}
592
593void destroy_large_folio(struct folio *folio)
594{
595	if (folio_test_hugetlb(folio)) {
596		free_huge_folio(folio);
597		return;
598	}
599
600	if (folio_test_large_rmappable(folio))
601		folio_undo_large_rmappable(folio);
602
603	mem_cgroup_uncharge(folio);
604	free_the_page(&folio->page, folio_order(folio));
605}
606
607static inline void set_buddy_order(struct page *page, unsigned int order)
608{
609	set_page_private(page, order);
610	__SetPageBuddy(page);
611}
612
613#ifdef CONFIG_COMPACTION
614static inline struct capture_control *task_capc(struct zone *zone)
615{
616	struct capture_control *capc = current->capture_control;
617
618	return unlikely(capc) &&
619		!(current->flags & PF_KTHREAD) &&
620		!capc->page &&
621		capc->cc->zone == zone ? capc : NULL;
622}
623
624static inline bool
625compaction_capture(struct capture_control *capc, struct page *page,
626		   int order, int migratetype)
627{
628	if (!capc || order != capc->cc->order)
629		return false;
630
631	/* Do not accidentally pollute CMA or isolated regions*/
632	if (is_migrate_cma(migratetype) ||
633	    is_migrate_isolate(migratetype))
634		return false;
635
636	/*
637	 * Do not let lower order allocations pollute a movable pageblock.
638	 * This might let an unmovable request use a reclaimable pageblock
639	 * and vice-versa but no more than normal fallback logic which can
640	 * have trouble finding a high-order free page.
641	 */
642	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
643		return false;
644
645	capc->page = page;
646	return true;
647}
648
649#else
650static inline struct capture_control *task_capc(struct zone *zone)
651{
652	return NULL;
653}
654
655static inline bool
656compaction_capture(struct capture_control *capc, struct page *page,
657		   int order, int migratetype)
658{
659	return false;
660}
661#endif /* CONFIG_COMPACTION */
662
663/* Used for pages not on another list */
664static inline void add_to_free_list(struct page *page, struct zone *zone,
665				    unsigned int order, int migratetype)
666{
667	struct free_area *area = &zone->free_area[order];
668
669	list_add(&page->buddy_list, &area->free_list[migratetype]);
670	area->nr_free++;
671}
672
673/* Used for pages not on another list */
674static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
675					 unsigned int order, int migratetype)
676{
677	struct free_area *area = &zone->free_area[order];
678
679	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
680	area->nr_free++;
681}
682
683/*
684 * Used for pages which are on another list. Move the pages to the tail
685 * of the list - so the moved pages won't immediately be considered for
686 * allocation again (e.g., optimization for memory onlining).
687 */
688static inline void move_to_free_list(struct page *page, struct zone *zone,
689				     unsigned int order, int migratetype)
690{
691	struct free_area *area = &zone->free_area[order];
692
693	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
694}
695
696static inline void del_page_from_free_list(struct page *page, struct zone *zone,
697					   unsigned int order)
698{
699	/* clear reported state and update reported page count */
700	if (page_reported(page))
701		__ClearPageReported(page);
702
703	list_del(&page->buddy_list);
704	__ClearPageBuddy(page);
705	set_page_private(page, 0);
706	zone->free_area[order].nr_free--;
707}
708
709static inline struct page *get_page_from_free_area(struct free_area *area,
710					    int migratetype)
711{
712	return list_first_entry_or_null(&area->free_list[migratetype],
713					struct page, buddy_list);
714}
715
716/*
717 * If this is not the largest possible page, check if the buddy
718 * of the next-highest order is free. If it is, it's possible
719 * that pages are being freed that will coalesce soon. In case,
720 * that is happening, add the free page to the tail of the list
721 * so it's less likely to be used soon and more likely to be merged
722 * as a higher order page
723 */
724static inline bool
725buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
726		   struct page *page, unsigned int order)
727{
728	unsigned long higher_page_pfn;
729	struct page *higher_page;
730
731	if (order >= MAX_PAGE_ORDER - 1)
732		return false;
733
734	higher_page_pfn = buddy_pfn & pfn;
735	higher_page = page + (higher_page_pfn - pfn);
736
737	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
738			NULL) != NULL;
739}
740
741/*
742 * Freeing function for a buddy system allocator.
743 *
744 * The concept of a buddy system is to maintain direct-mapped table
745 * (containing bit values) for memory blocks of various "orders".
746 * The bottom level table contains the map for the smallest allocatable
747 * units of memory (here, pages), and each level above it describes
748 * pairs of units from the levels below, hence, "buddies".
749 * At a high level, all that happens here is marking the table entry
750 * at the bottom level available, and propagating the changes upward
751 * as necessary, plus some accounting needed to play nicely with other
752 * parts of the VM system.
753 * At each level, we keep a list of pages, which are heads of continuous
754 * free pages of length of (1 << order) and marked with PageBuddy.
755 * Page's order is recorded in page_private(page) field.
756 * So when we are allocating or freeing one, we can derive the state of the
757 * other.  That is, if we allocate a small block, and both were
758 * free, the remainder of the region must be split into blocks.
759 * If a block is freed, and its buddy is also free, then this
760 * triggers coalescing into a block of larger size.
761 *
762 * -- nyc
763 */
764
765static inline void __free_one_page(struct page *page,
766		unsigned long pfn,
767		struct zone *zone, unsigned int order,
768		int migratetype, fpi_t fpi_flags)
769{
770	struct capture_control *capc = task_capc(zone);
771	unsigned long buddy_pfn = 0;
772	unsigned long combined_pfn;
773	struct page *buddy;
774	bool to_tail;
775
776	VM_BUG_ON(!zone_is_initialized(zone));
777	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
778
779	VM_BUG_ON(migratetype == -1);
780	if (likely(!is_migrate_isolate(migratetype)))
781		__mod_zone_freepage_state(zone, 1 << order, migratetype);
782
783	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
784	VM_BUG_ON_PAGE(bad_range(zone, page), page);
785
786	while (order < MAX_PAGE_ORDER) {
787		if (compaction_capture(capc, page, order, migratetype)) {
788			__mod_zone_freepage_state(zone, -(1 << order),
789								migratetype);
790			return;
791		}
792
793		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
794		if (!buddy)
795			goto done_merging;
796
797		if (unlikely(order >= pageblock_order)) {
798			/*
799			 * We want to prevent merge between freepages on pageblock
800			 * without fallbacks and normal pageblock. Without this,
801			 * pageblock isolation could cause incorrect freepage or CMA
802			 * accounting or HIGHATOMIC accounting.
803			 */
804			int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
805
806			if (migratetype != buddy_mt
807					&& (!migratetype_is_mergeable(migratetype) ||
808						!migratetype_is_mergeable(buddy_mt)))
809				goto done_merging;
810		}
811
812		/*
813		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
814		 * merge with it and move up one order.
815		 */
816		if (page_is_guard(buddy))
817			clear_page_guard(zone, buddy, order, migratetype);
818		else
819			del_page_from_free_list(buddy, zone, order);
820		combined_pfn = buddy_pfn & pfn;
821		page = page + (combined_pfn - pfn);
822		pfn = combined_pfn;
823		order++;
824	}
825
826done_merging:
827	set_buddy_order(page, order);
828
829	if (fpi_flags & FPI_TO_TAIL)
830		to_tail = true;
831	else if (is_shuffle_order(order))
832		to_tail = shuffle_pick_tail();
833	else
834		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
835
836	if (to_tail)
837		add_to_free_list_tail(page, zone, order, migratetype);
838	else
839		add_to_free_list(page, zone, order, migratetype);
840
841	/* Notify page reporting subsystem of freed page */
842	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
843		page_reporting_notify_free(order);
844}
845
846/**
847 * split_free_page() -- split a free page at split_pfn_offset
848 * @free_page:		the original free page
849 * @order:		the order of the page
850 * @split_pfn_offset:	split offset within the page
851 *
852 * Return -ENOENT if the free page is changed, otherwise 0
853 *
854 * It is used when the free page crosses two pageblocks with different migratetypes
855 * at split_pfn_offset within the page. The split free page will be put into
856 * separate migratetype lists afterwards. Otherwise, the function achieves
857 * nothing.
858 */
859int split_free_page(struct page *free_page,
860			unsigned int order, unsigned long split_pfn_offset)
861{
862	struct zone *zone = page_zone(free_page);
863	unsigned long free_page_pfn = page_to_pfn(free_page);
864	unsigned long pfn;
865	unsigned long flags;
866	int free_page_order;
867	int mt;
868	int ret = 0;
869
870	if (split_pfn_offset == 0)
871		return ret;
872
873	spin_lock_irqsave(&zone->lock, flags);
874
875	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
876		ret = -ENOENT;
877		goto out;
878	}
879
880	mt = get_pfnblock_migratetype(free_page, free_page_pfn);
881	if (likely(!is_migrate_isolate(mt)))
882		__mod_zone_freepage_state(zone, -(1UL << order), mt);
883
884	del_page_from_free_list(free_page, zone, order);
885	for (pfn = free_page_pfn;
886	     pfn < free_page_pfn + (1UL << order);) {
887		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
888
889		free_page_order = min_t(unsigned int,
890					pfn ? __ffs(pfn) : order,
891					__fls(split_pfn_offset));
892		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
893				mt, FPI_NONE);
894		pfn += 1UL << free_page_order;
895		split_pfn_offset -= (1UL << free_page_order);
896		/* we have done the first part, now switch to second part */
897		if (split_pfn_offset == 0)
898			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
899	}
900out:
901	spin_unlock_irqrestore(&zone->lock, flags);
902	return ret;
903}
904/*
905 * A bad page could be due to a number of fields. Instead of multiple branches,
906 * try and check multiple fields with one check. The caller must do a detailed
907 * check if necessary.
908 */
909static inline bool page_expected_state(struct page *page,
910					unsigned long check_flags)
911{
912	if (unlikely(atomic_read(&page->_mapcount) != -1))
913		return false;
914
915	if (unlikely((unsigned long)page->mapping |
916			page_ref_count(page) |
917#ifdef CONFIG_MEMCG
918			page->memcg_data |
919#endif
920#ifdef CONFIG_PAGE_POOL
921			((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
922#endif
923			(page->flags & check_flags)))
924		return false;
925
926	return true;
927}
928
929static const char *page_bad_reason(struct page *page, unsigned long flags)
930{
931	const char *bad_reason = NULL;
932
933	if (unlikely(atomic_read(&page->_mapcount) != -1))
934		bad_reason = "nonzero mapcount";
935	if (unlikely(page->mapping != NULL))
936		bad_reason = "non-NULL mapping";
937	if (unlikely(page_ref_count(page) != 0))
938		bad_reason = "nonzero _refcount";
939	if (unlikely(page->flags & flags)) {
940		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
941			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
942		else
943			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
944	}
945#ifdef CONFIG_MEMCG
946	if (unlikely(page->memcg_data))
947		bad_reason = "page still charged to cgroup";
948#endif
949#ifdef CONFIG_PAGE_POOL
950	if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
951		bad_reason = "page_pool leak";
952#endif
953	return bad_reason;
954}
955
956static void free_page_is_bad_report(struct page *page)
957{
958	bad_page(page,
959		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
960}
961
962static inline bool free_page_is_bad(struct page *page)
963{
964	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
965		return false;
966
967	/* Something has gone sideways, find it */
968	free_page_is_bad_report(page);
969	return true;
970}
971
972static inline bool is_check_pages_enabled(void)
973{
974	return static_branch_unlikely(&check_pages_enabled);
975}
976
977static int free_tail_page_prepare(struct page *head_page, struct page *page)
978{
979	struct folio *folio = (struct folio *)head_page;
980	int ret = 1;
981
982	/*
983	 * We rely page->lru.next never has bit 0 set, unless the page
984	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
985	 */
986	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
987
988	if (!is_check_pages_enabled()) {
989		ret = 0;
990		goto out;
991	}
992	switch (page - head_page) {
993	case 1:
994		/* the first tail page: these may be in place of ->mapping */
995		if (unlikely(folio_entire_mapcount(folio))) {
996			bad_page(page, "nonzero entire_mapcount");
997			goto out;
998		}
999		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1000			bad_page(page, "nonzero nr_pages_mapped");
1001			goto out;
1002		}
1003		if (unlikely(atomic_read(&folio->_pincount))) {
1004			bad_page(page, "nonzero pincount");
1005			goto out;
1006		}
1007		break;
1008	case 2:
1009		/*
1010		 * the second tail page: ->mapping is
1011		 * deferred_list.next -- ignore value.
1012		 */
1013		break;
1014	default:
1015		if (page->mapping != TAIL_MAPPING) {
1016			bad_page(page, "corrupted mapping in tail page");
1017			goto out;
1018		}
1019		break;
1020	}
1021	if (unlikely(!PageTail(page))) {
1022		bad_page(page, "PageTail not set");
1023		goto out;
1024	}
1025	if (unlikely(compound_head(page) != head_page)) {
1026		bad_page(page, "compound_head not consistent");
1027		goto out;
1028	}
1029	ret = 0;
1030out:
1031	page->mapping = NULL;
1032	clear_compound_head(page);
1033	return ret;
1034}
1035
1036/*
1037 * Skip KASAN memory poisoning when either:
1038 *
1039 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1040 *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1041 *    using page tags instead (see below).
1042 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1043 *    that error detection is disabled for accesses via the page address.
1044 *
1045 * Pages will have match-all tags in the following circumstances:
1046 *
1047 * 1. Pages are being initialized for the first time, including during deferred
1048 *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1049 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1050 *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1051 * 3. The allocation was excluded from being checked due to sampling,
1052 *    see the call to kasan_unpoison_pages.
1053 *
1054 * Poisoning pages during deferred memory init will greatly lengthen the
1055 * process and cause problem in large memory systems as the deferred pages
1056 * initialization is done with interrupt disabled.
1057 *
1058 * Assuming that there will be no reference to those newly initialized
1059 * pages before they are ever allocated, this should have no effect on
1060 * KASAN memory tracking as the poison will be properly inserted at page
1061 * allocation time. The only corner case is when pages are allocated by
1062 * on-demand allocation and then freed again before the deferred pages
1063 * initialization is done, but this is not likely to happen.
1064 */
1065static inline bool should_skip_kasan_poison(struct page *page)
1066{
1067	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1068		return deferred_pages_enabled();
1069
1070	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1071}
1072
1073static void kernel_init_pages(struct page *page, int numpages)
1074{
1075	int i;
1076
1077	/* s390's use of memset() could override KASAN redzones. */
1078	kasan_disable_current();
1079	for (i = 0; i < numpages; i++)
1080		clear_highpage_kasan_tagged(page + i);
1081	kasan_enable_current();
1082}
1083
1084__always_inline bool free_pages_prepare(struct page *page,
1085			unsigned int order)
1086{
1087	int bad = 0;
1088	bool skip_kasan_poison = should_skip_kasan_poison(page);
1089	bool init = want_init_on_free();
1090	bool compound = PageCompound(page);
1091
1092	VM_BUG_ON_PAGE(PageTail(page), page);
1093
1094	trace_mm_page_free(page, order);
1095	kmsan_free_page(page, order);
1096
1097	if (memcg_kmem_online() && PageMemcgKmem(page))
1098		__memcg_kmem_uncharge_page(page, order);
1099
1100	if (unlikely(PageHWPoison(page)) && !order) {
1101		/* Do not let hwpoison pages hit pcplists/buddy */
1102		reset_page_owner(page, order);
1103		page_table_check_free(page, order);
1104		return false;
1105	}
1106
1107	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1108
1109	/*
1110	 * Check tail pages before head page information is cleared to
1111	 * avoid checking PageCompound for order-0 pages.
1112	 */
1113	if (unlikely(order)) {
1114		int i;
1115
1116		if (compound)
1117			page[1].flags &= ~PAGE_FLAGS_SECOND;
1118		for (i = 1; i < (1 << order); i++) {
1119			if (compound)
1120				bad += free_tail_page_prepare(page, page + i);
1121			if (is_check_pages_enabled()) {
1122				if (free_page_is_bad(page + i)) {
1123					bad++;
1124					continue;
1125				}
1126			}
1127			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1128		}
1129	}
1130	if (PageMappingFlags(page))
1131		page->mapping = NULL;
1132	if (is_check_pages_enabled()) {
1133		if (free_page_is_bad(page))
1134			bad++;
1135		if (bad)
1136			return false;
1137	}
1138
1139	page_cpupid_reset_last(page);
1140	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1141	reset_page_owner(page, order);
1142	page_table_check_free(page, order);
1143
1144	if (!PageHighMem(page)) {
1145		debug_check_no_locks_freed(page_address(page),
1146					   PAGE_SIZE << order);
1147		debug_check_no_obj_freed(page_address(page),
1148					   PAGE_SIZE << order);
1149	}
1150
1151	kernel_poison_pages(page, 1 << order);
1152
1153	/*
1154	 * As memory initialization might be integrated into KASAN,
1155	 * KASAN poisoning and memory initialization code must be
1156	 * kept together to avoid discrepancies in behavior.
1157	 *
1158	 * With hardware tag-based KASAN, memory tags must be set before the
1159	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1160	 */
1161	if (!skip_kasan_poison) {
1162		kasan_poison_pages(page, order, init);
1163
1164		/* Memory is already initialized if KASAN did it internally. */
1165		if (kasan_has_integrated_init())
1166			init = false;
1167	}
1168	if (init)
1169		kernel_init_pages(page, 1 << order);
1170
1171	/*
1172	 * arch_free_page() can make the page's contents inaccessible.  s390
1173	 * does this.  So nothing which can access the page's contents should
1174	 * happen after this.
1175	 */
1176	arch_free_page(page, order);
1177
1178	debug_pagealloc_unmap_pages(page, 1 << order);
1179
1180	return true;
1181}
1182
1183/*
1184 * Frees a number of pages from the PCP lists
1185 * Assumes all pages on list are in same zone.
1186 * count is the number of pages to free.
1187 */
1188static void free_pcppages_bulk(struct zone *zone, int count,
1189					struct per_cpu_pages *pcp,
1190					int pindex)
1191{
1192	unsigned long flags;
1193	unsigned int order;
1194	bool isolated_pageblocks;
1195	struct page *page;
1196
1197	/*
1198	 * Ensure proper count is passed which otherwise would stuck in the
1199	 * below while (list_empty(list)) loop.
1200	 */
1201	count = min(pcp->count, count);
1202
1203	/* Ensure requested pindex is drained first. */
1204	pindex = pindex - 1;
1205
1206	spin_lock_irqsave(&zone->lock, flags);
1207	isolated_pageblocks = has_isolate_pageblock(zone);
1208
1209	while (count > 0) {
1210		struct list_head *list;
1211		int nr_pages;
1212
1213		/* Remove pages from lists in a round-robin fashion. */
1214		do {
1215			if (++pindex > NR_PCP_LISTS - 1)
1216				pindex = 0;
1217			list = &pcp->lists[pindex];
1218		} while (list_empty(list));
1219
1220		order = pindex_to_order(pindex);
1221		nr_pages = 1 << order;
1222		do {
1223			int mt;
1224
1225			page = list_last_entry(list, struct page, pcp_list);
1226			mt = get_pcppage_migratetype(page);
1227
1228			/* must delete to avoid corrupting pcp list */
1229			list_del(&page->pcp_list);
1230			count -= nr_pages;
1231			pcp->count -= nr_pages;
1232
1233			/* MIGRATE_ISOLATE page should not go to pcplists */
1234			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1235			/* Pageblock could have been isolated meanwhile */
1236			if (unlikely(isolated_pageblocks))
1237				mt = get_pageblock_migratetype(page);
1238
1239			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1240			trace_mm_page_pcpu_drain(page, order, mt);
1241		} while (count > 0 && !list_empty(list));
1242	}
1243
1244	spin_unlock_irqrestore(&zone->lock, flags);
1245}
1246
1247static void free_one_page(struct zone *zone,
1248				struct page *page, unsigned long pfn,
1249				unsigned int order,
1250				int migratetype, fpi_t fpi_flags)
1251{
1252	unsigned long flags;
1253
1254	spin_lock_irqsave(&zone->lock, flags);
1255	if (unlikely(has_isolate_pageblock(zone) ||
1256		is_migrate_isolate(migratetype))) {
1257		migratetype = get_pfnblock_migratetype(page, pfn);
1258	}
1259	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1260	spin_unlock_irqrestore(&zone->lock, flags);
1261}
1262
1263static void __free_pages_ok(struct page *page, unsigned int order,
1264			    fpi_t fpi_flags)
1265{
1266	int migratetype;
1267	unsigned long pfn = page_to_pfn(page);
1268	struct zone *zone = page_zone(page);
1269
1270	if (!free_pages_prepare(page, order))
1271		return;
1272
1273	/*
1274	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1275	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1276	 * This will reduce the lock holding time.
1277	 */
1278	migratetype = get_pfnblock_migratetype(page, pfn);
1279
1280	free_one_page(zone, page, pfn, order, migratetype, fpi_flags);
1281
1282	__count_vm_events(PGFREE, 1 << order);
1283}
1284
1285void __free_pages_core(struct page *page, unsigned int order)
1286{
1287	unsigned int nr_pages = 1 << order;
1288	struct page *p = page;
1289	unsigned int loop;
1290
1291	/*
1292	 * When initializing the memmap, __init_single_page() sets the refcount
1293	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1294	 * refcount of all involved pages to 0.
1295	 */
1296	prefetchw(p);
1297	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1298		prefetchw(p + 1);
1299		__ClearPageReserved(p);
1300		set_page_count(p, 0);
1301	}
1302	__ClearPageReserved(p);
1303	set_page_count(p, 0);
1304
1305	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1306
1307	if (page_contains_unaccepted(page, order)) {
1308		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1309			return;
1310
1311		accept_page(page, order);
1312	}
1313
1314	/*
1315	 * Bypass PCP and place fresh pages right to the tail, primarily
1316	 * relevant for memory onlining.
1317	 */
1318	__free_pages_ok(page, order, FPI_TO_TAIL);
1319}
1320
1321/*
1322 * Check that the whole (or subset of) a pageblock given by the interval of
1323 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1324 * with the migration of free compaction scanner.
1325 *
1326 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1327 *
1328 * It's possible on some configurations to have a setup like node0 node1 node0
1329 * i.e. it's possible that all pages within a zones range of pages do not
1330 * belong to a single zone. We assume that a border between node0 and node1
1331 * can occur within a single pageblock, but not a node0 node1 node0
1332 * interleaving within a single pageblock. It is therefore sufficient to check
1333 * the first and last page of a pageblock and avoid checking each individual
1334 * page in a pageblock.
1335 *
1336 * Note: the function may return non-NULL struct page even for a page block
1337 * which contains a memory hole (i.e. there is no physical memory for a subset
1338 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1339 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1340 * even though the start pfn is online and valid. This should be safe most of
1341 * the time because struct pages are still initialized via init_unavailable_range()
1342 * and pfn walkers shouldn't touch any physical memory range for which they do
1343 * not recognize any specific metadata in struct pages.
1344 */
1345struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1346				     unsigned long end_pfn, struct zone *zone)
1347{
1348	struct page *start_page;
1349	struct page *end_page;
1350
1351	/* end_pfn is one past the range we are checking */
1352	end_pfn--;
1353
1354	if (!pfn_valid(end_pfn))
1355		return NULL;
1356
1357	start_page = pfn_to_online_page(start_pfn);
1358	if (!start_page)
1359		return NULL;
1360
1361	if (page_zone(start_page) != zone)
1362		return NULL;
1363
1364	end_page = pfn_to_page(end_pfn);
1365
1366	/* This gives a shorter code than deriving page_zone(end_page) */
1367	if (page_zone_id(start_page) != page_zone_id(end_page))
1368		return NULL;
1369
1370	return start_page;
1371}
1372
1373/*
1374 * The order of subdivision here is critical for the IO subsystem.
1375 * Please do not alter this order without good reasons and regression
1376 * testing. Specifically, as large blocks of memory are subdivided,
1377 * the order in which smaller blocks are delivered depends on the order
1378 * they're subdivided in this function. This is the primary factor
1379 * influencing the order in which pages are delivered to the IO
1380 * subsystem according to empirical testing, and this is also justified
1381 * by considering the behavior of a buddy system containing a single
1382 * large block of memory acted on by a series of small allocations.
1383 * This behavior is a critical factor in sglist merging's success.
1384 *
1385 * -- nyc
1386 */
1387static inline void expand(struct zone *zone, struct page *page,
1388	int low, int high, int migratetype)
1389{
1390	unsigned long size = 1 << high;
1391
1392	while (high > low) {
1393		high--;
1394		size >>= 1;
1395		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1396
1397		/*
1398		 * Mark as guard pages (or page), that will allow to
1399		 * merge back to allocator when buddy will be freed.
1400		 * Corresponding page table entries will not be touched,
1401		 * pages will stay not present in virtual address space
1402		 */
1403		if (set_page_guard(zone, &page[size], high, migratetype))
1404			continue;
1405
1406		add_to_free_list(&page[size], zone, high, migratetype);
1407		set_buddy_order(&page[size], high);
1408	}
1409}
1410
1411static void check_new_page_bad(struct page *page)
1412{
1413	if (unlikely(page->flags & __PG_HWPOISON)) {
1414		/* Don't complain about hwpoisoned pages */
1415		page_mapcount_reset(page); /* remove PageBuddy */
1416		return;
1417	}
1418
1419	bad_page(page,
1420		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1421}
1422
1423/*
1424 * This page is about to be returned from the page allocator
1425 */
1426static bool check_new_page(struct page *page)
1427{
1428	if (likely(page_expected_state(page,
1429				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1430		return false;
1431
1432	check_new_page_bad(page);
1433	return true;
1434}
1435
1436static inline bool check_new_pages(struct page *page, unsigned int order)
1437{
1438	if (is_check_pages_enabled()) {
1439		for (int i = 0; i < (1 << order); i++) {
1440			struct page *p = page + i;
1441
1442			if (check_new_page(p))
1443				return true;
1444		}
1445	}
1446
1447	return false;
1448}
1449
1450static inline bool should_skip_kasan_unpoison(gfp_t flags)
1451{
1452	/* Don't skip if a software KASAN mode is enabled. */
1453	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1454	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1455		return false;
1456
1457	/* Skip, if hardware tag-based KASAN is not enabled. */
1458	if (!kasan_hw_tags_enabled())
1459		return true;
1460
1461	/*
1462	 * With hardware tag-based KASAN enabled, skip if this has been
1463	 * requested via __GFP_SKIP_KASAN.
1464	 */
1465	return flags & __GFP_SKIP_KASAN;
1466}
1467
1468static inline bool should_skip_init(gfp_t flags)
1469{
1470	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1471	if (!kasan_hw_tags_enabled())
1472		return false;
1473
1474	/* For hardware tag-based KASAN, skip if requested. */
1475	return (flags & __GFP_SKIP_ZERO);
1476}
1477
1478inline void post_alloc_hook(struct page *page, unsigned int order,
1479				gfp_t gfp_flags)
1480{
1481	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1482			!should_skip_init(gfp_flags);
1483	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1484	int i;
1485
1486	set_page_private(page, 0);
1487	set_page_refcounted(page);
1488
1489	arch_alloc_page(page, order);
1490	debug_pagealloc_map_pages(page, 1 << order);
1491
1492	/*
1493	 * Page unpoisoning must happen before memory initialization.
1494	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1495	 * allocations and the page unpoisoning code will complain.
1496	 */
1497	kernel_unpoison_pages(page, 1 << order);
1498
1499	/*
1500	 * As memory initialization might be integrated into KASAN,
1501	 * KASAN unpoisoning and memory initializion code must be
1502	 * kept together to avoid discrepancies in behavior.
1503	 */
1504
1505	/*
1506	 * If memory tags should be zeroed
1507	 * (which happens only when memory should be initialized as well).
1508	 */
1509	if (zero_tags) {
1510		/* Initialize both memory and memory tags. */
1511		for (i = 0; i != 1 << order; ++i)
1512			tag_clear_highpage(page + i);
1513
1514		/* Take note that memory was initialized by the loop above. */
1515		init = false;
1516	}
1517	if (!should_skip_kasan_unpoison(gfp_flags) &&
1518	    kasan_unpoison_pages(page, order, init)) {
1519		/* Take note that memory was initialized by KASAN. */
1520		if (kasan_has_integrated_init())
1521			init = false;
1522	} else {
1523		/*
1524		 * If memory tags have not been set by KASAN, reset the page
1525		 * tags to ensure page_address() dereferencing does not fault.
1526		 */
1527		for (i = 0; i != 1 << order; ++i)
1528			page_kasan_tag_reset(page + i);
1529	}
1530	/* If memory is still not initialized, initialize it now. */
1531	if (init)
1532		kernel_init_pages(page, 1 << order);
1533
1534	set_page_owner(page, order, gfp_flags);
1535	page_table_check_alloc(page, order);
1536}
1537
1538static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1539							unsigned int alloc_flags)
1540{
1541	post_alloc_hook(page, order, gfp_flags);
1542
1543	if (order && (gfp_flags & __GFP_COMP))
1544		prep_compound_page(page, order);
1545
1546	/*
1547	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1548	 * allocate the page. The expectation is that the caller is taking
1549	 * steps that will free more memory. The caller should avoid the page
1550	 * being used for !PFMEMALLOC purposes.
1551	 */
1552	if (alloc_flags & ALLOC_NO_WATERMARKS)
1553		set_page_pfmemalloc(page);
1554	else
1555		clear_page_pfmemalloc(page);
1556}
1557
1558/*
1559 * Go through the free lists for the given migratetype and remove
1560 * the smallest available page from the freelists
1561 */
1562static __always_inline
1563struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1564						int migratetype)
1565{
1566	unsigned int current_order;
1567	struct free_area *area;
1568	struct page *page;
1569
1570	/* Find a page of the appropriate size in the preferred list */
1571	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1572		area = &(zone->free_area[current_order]);
1573		page = get_page_from_free_area(area, migratetype);
1574		if (!page)
1575			continue;
1576		del_page_from_free_list(page, zone, current_order);
1577		expand(zone, page, order, current_order, migratetype);
1578		set_pcppage_migratetype(page, migratetype);
1579		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1580				pcp_allowed_order(order) &&
1581				migratetype < MIGRATE_PCPTYPES);
1582		return page;
1583	}
1584
1585	return NULL;
1586}
1587
1588
1589/*
1590 * This array describes the order lists are fallen back to when
1591 * the free lists for the desirable migrate type are depleted
1592 *
1593 * The other migratetypes do not have fallbacks.
1594 */
1595static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1596	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1597	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1598	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1599};
1600
1601#ifdef CONFIG_CMA
1602static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1603					unsigned int order)
1604{
1605	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1606}
1607#else
1608static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1609					unsigned int order) { return NULL; }
1610#endif
1611
1612/*
1613 * Move the free pages in a range to the freelist tail of the requested type.
1614 * Note that start_page and end_pages are not aligned on a pageblock
1615 * boundary. If alignment is required, use move_freepages_block()
1616 */
1617static int move_freepages(struct zone *zone,
1618			  unsigned long start_pfn, unsigned long end_pfn,
1619			  int migratetype, int *num_movable)
1620{
1621	struct page *page;
1622	unsigned long pfn;
1623	unsigned int order;
1624	int pages_moved = 0;
1625
1626	for (pfn = start_pfn; pfn <= end_pfn;) {
1627		page = pfn_to_page(pfn);
1628		if (!PageBuddy(page)) {
1629			/*
1630			 * We assume that pages that could be isolated for
1631			 * migration are movable. But we don't actually try
1632			 * isolating, as that would be expensive.
1633			 */
1634			if (num_movable &&
1635					(PageLRU(page) || __PageMovable(page)))
1636				(*num_movable)++;
1637			pfn++;
1638			continue;
1639		}
1640
1641		/* Make sure we are not inadvertently changing nodes */
1642		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1643		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1644
1645		order = buddy_order(page);
1646		move_to_free_list(page, zone, order, migratetype);
1647		pfn += 1 << order;
1648		pages_moved += 1 << order;
1649	}
1650
1651	return pages_moved;
1652}
1653
1654int move_freepages_block(struct zone *zone, struct page *page,
1655				int migratetype, int *num_movable)
1656{
1657	unsigned long start_pfn, end_pfn, pfn;
1658
1659	if (num_movable)
1660		*num_movable = 0;
1661
1662	pfn = page_to_pfn(page);
1663	start_pfn = pageblock_start_pfn(pfn);
1664	end_pfn = pageblock_end_pfn(pfn) - 1;
1665
1666	/* Do not cross zone boundaries */
1667	if (!zone_spans_pfn(zone, start_pfn))
1668		start_pfn = pfn;
1669	if (!zone_spans_pfn(zone, end_pfn))
1670		return 0;
1671
1672	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1673								num_movable);
1674}
1675
1676static void change_pageblock_range(struct page *pageblock_page,
1677					int start_order, int migratetype)
1678{
1679	int nr_pageblocks = 1 << (start_order - pageblock_order);
1680
1681	while (nr_pageblocks--) {
1682		set_pageblock_migratetype(pageblock_page, migratetype);
1683		pageblock_page += pageblock_nr_pages;
1684	}
1685}
1686
1687/*
1688 * When we are falling back to another migratetype during allocation, try to
1689 * steal extra free pages from the same pageblocks to satisfy further
1690 * allocations, instead of polluting multiple pageblocks.
1691 *
1692 * If we are stealing a relatively large buddy page, it is likely there will
1693 * be more free pages in the pageblock, so try to steal them all. For
1694 * reclaimable and unmovable allocations, we steal regardless of page size,
1695 * as fragmentation caused by those allocations polluting movable pageblocks
1696 * is worse than movable allocations stealing from unmovable and reclaimable
1697 * pageblocks.
1698 */
1699static bool can_steal_fallback(unsigned int order, int start_mt)
1700{
1701	/*
1702	 * Leaving this order check is intended, although there is
1703	 * relaxed order check in next check. The reason is that
1704	 * we can actually steal whole pageblock if this condition met,
1705	 * but, below check doesn't guarantee it and that is just heuristic
1706	 * so could be changed anytime.
1707	 */
1708	if (order >= pageblock_order)
1709		return true;
1710
1711	if (order >= pageblock_order / 2 ||
1712		start_mt == MIGRATE_RECLAIMABLE ||
1713		start_mt == MIGRATE_UNMOVABLE ||
1714		page_group_by_mobility_disabled)
1715		return true;
1716
1717	return false;
1718}
1719
1720static inline bool boost_watermark(struct zone *zone)
1721{
1722	unsigned long max_boost;
1723
1724	if (!watermark_boost_factor)
1725		return false;
1726	/*
1727	 * Don't bother in zones that are unlikely to produce results.
1728	 * On small machines, including kdump capture kernels running
1729	 * in a small area, boosting the watermark can cause an out of
1730	 * memory situation immediately.
1731	 */
1732	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1733		return false;
1734
1735	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1736			watermark_boost_factor, 10000);
1737
1738	/*
1739	 * high watermark may be uninitialised if fragmentation occurs
1740	 * very early in boot so do not boost. We do not fall
1741	 * through and boost by pageblock_nr_pages as failing
1742	 * allocations that early means that reclaim is not going
1743	 * to help and it may even be impossible to reclaim the
1744	 * boosted watermark resulting in a hang.
1745	 */
1746	if (!max_boost)
1747		return false;
1748
1749	max_boost = max(pageblock_nr_pages, max_boost);
1750
1751	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1752		max_boost);
1753
1754	return true;
1755}
1756
1757/*
1758 * This function implements actual steal behaviour. If order is large enough,
1759 * we can steal whole pageblock. If not, we first move freepages in this
1760 * pageblock to our migratetype and determine how many already-allocated pages
1761 * are there in the pageblock with a compatible migratetype. If at least half
1762 * of pages are free or compatible, we can change migratetype of the pageblock
1763 * itself, so pages freed in the future will be put on the correct free list.
1764 */
1765static void steal_suitable_fallback(struct zone *zone, struct page *page,
1766		unsigned int alloc_flags, int start_type, bool whole_block)
1767{
1768	unsigned int current_order = buddy_order(page);
1769	int free_pages, movable_pages, alike_pages;
1770	int old_block_type;
1771
1772	old_block_type = get_pageblock_migratetype(page);
1773
1774	/*
1775	 * This can happen due to races and we want to prevent broken
1776	 * highatomic accounting.
1777	 */
1778	if (is_migrate_highatomic(old_block_type))
1779		goto single_page;
1780
1781	/* Take ownership for orders >= pageblock_order */
1782	if (current_order >= pageblock_order) {
1783		change_pageblock_range(page, current_order, start_type);
1784		goto single_page;
1785	}
1786
1787	/*
1788	 * Boost watermarks to increase reclaim pressure to reduce the
1789	 * likelihood of future fallbacks. Wake kswapd now as the node
1790	 * may be balanced overall and kswapd will not wake naturally.
1791	 */
1792	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1793		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1794
1795	/* We are not allowed to try stealing from the whole block */
1796	if (!whole_block)
1797		goto single_page;
1798
1799	free_pages = move_freepages_block(zone, page, start_type,
1800						&movable_pages);
1801	/* moving whole block can fail due to zone boundary conditions */
1802	if (!free_pages)
1803		goto single_page;
1804
1805	/*
1806	 * Determine how many pages are compatible with our allocation.
1807	 * For movable allocation, it's the number of movable pages which
1808	 * we just obtained. For other types it's a bit more tricky.
1809	 */
1810	if (start_type == MIGRATE_MOVABLE) {
1811		alike_pages = movable_pages;
1812	} else {
1813		/*
1814		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1815		 * to MOVABLE pageblock, consider all non-movable pages as
1816		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1817		 * vice versa, be conservative since we can't distinguish the
1818		 * exact migratetype of non-movable pages.
1819		 */
1820		if (old_block_type == MIGRATE_MOVABLE)
1821			alike_pages = pageblock_nr_pages
1822						- (free_pages + movable_pages);
1823		else
1824			alike_pages = 0;
1825	}
1826	/*
1827	 * If a sufficient number of pages in the block are either free or of
1828	 * compatible migratability as our allocation, claim the whole block.
1829	 */
1830	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1831			page_group_by_mobility_disabled)
1832		set_pageblock_migratetype(page, start_type);
1833
1834	return;
1835
1836single_page:
1837	move_to_free_list(page, zone, current_order, start_type);
1838}
1839
1840/*
1841 * Check whether there is a suitable fallback freepage with requested order.
1842 * If only_stealable is true, this function returns fallback_mt only if
1843 * we can steal other freepages all together. This would help to reduce
1844 * fragmentation due to mixed migratetype pages in one pageblock.
1845 */
1846int find_suitable_fallback(struct free_area *area, unsigned int order,
1847			int migratetype, bool only_stealable, bool *can_steal)
1848{
1849	int i;
1850	int fallback_mt;
1851
1852	if (area->nr_free == 0)
1853		return -1;
1854
1855	*can_steal = false;
1856	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1857		fallback_mt = fallbacks[migratetype][i];
1858		if (free_area_empty(area, fallback_mt))
1859			continue;
1860
1861		if (can_steal_fallback(order, migratetype))
1862			*can_steal = true;
1863
1864		if (!only_stealable)
1865			return fallback_mt;
1866
1867		if (*can_steal)
1868			return fallback_mt;
1869	}
1870
1871	return -1;
1872}
1873
1874/*
1875 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1876 * there are no empty page blocks that contain a page with a suitable order
1877 */
1878static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1879{
1880	int mt;
1881	unsigned long max_managed, flags;
1882
1883	/*
1884	 * The number reserved as: minimum is 1 pageblock, maximum is
1885	 * roughly 1% of a zone. But if 1% of a zone falls below a
1886	 * pageblock size, then don't reserve any pageblocks.
1887	 * Check is race-prone but harmless.
1888	 */
1889	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
1890		return;
1891	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
1892	if (zone->nr_reserved_highatomic >= max_managed)
1893		return;
1894
1895	spin_lock_irqsave(&zone->lock, flags);
1896
1897	/* Recheck the nr_reserved_highatomic limit under the lock */
1898	if (zone->nr_reserved_highatomic >= max_managed)
1899		goto out_unlock;
1900
1901	/* Yoink! */
1902	mt = get_pageblock_migratetype(page);
1903	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1904	if (migratetype_is_mergeable(mt)) {
1905		zone->nr_reserved_highatomic += pageblock_nr_pages;
1906		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1907		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1908	}
1909
1910out_unlock:
1911	spin_unlock_irqrestore(&zone->lock, flags);
1912}
1913
1914/*
1915 * Used when an allocation is about to fail under memory pressure. This
1916 * potentially hurts the reliability of high-order allocations when under
1917 * intense memory pressure but failed atomic allocations should be easier
1918 * to recover from than an OOM.
1919 *
1920 * If @force is true, try to unreserve a pageblock even though highatomic
1921 * pageblock is exhausted.
1922 */
1923static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1924						bool force)
1925{
1926	struct zonelist *zonelist = ac->zonelist;
1927	unsigned long flags;
1928	struct zoneref *z;
1929	struct zone *zone;
1930	struct page *page;
1931	int order;
1932	bool ret;
1933
1934	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1935								ac->nodemask) {
1936		/*
1937		 * Preserve at least one pageblock unless memory pressure
1938		 * is really high.
1939		 */
1940		if (!force && zone->nr_reserved_highatomic <=
1941					pageblock_nr_pages)
1942			continue;
1943
1944		spin_lock_irqsave(&zone->lock, flags);
1945		for (order = 0; order < NR_PAGE_ORDERS; order++) {
1946			struct free_area *area = &(zone->free_area[order]);
1947
1948			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1949			if (!page)
1950				continue;
1951
1952			/*
1953			 * In page freeing path, migratetype change is racy so
1954			 * we can counter several free pages in a pageblock
1955			 * in this loop although we changed the pageblock type
1956			 * from highatomic to ac->migratetype. So we should
1957			 * adjust the count once.
1958			 */
1959			if (is_migrate_highatomic_page(page)) {
1960				/*
1961				 * It should never happen but changes to
1962				 * locking could inadvertently allow a per-cpu
1963				 * drain to add pages to MIGRATE_HIGHATOMIC
1964				 * while unreserving so be safe and watch for
1965				 * underflows.
1966				 */
1967				zone->nr_reserved_highatomic -= min(
1968						pageblock_nr_pages,
1969						zone->nr_reserved_highatomic);
1970			}
1971
1972			/*
1973			 * Convert to ac->migratetype and avoid the normal
1974			 * pageblock stealing heuristics. Minimally, the caller
1975			 * is doing the work and needs the pages. More
1976			 * importantly, if the block was always converted to
1977			 * MIGRATE_UNMOVABLE or another type then the number
1978			 * of pageblocks that cannot be completely freed
1979			 * may increase.
1980			 */
1981			set_pageblock_migratetype(page, ac->migratetype);
1982			ret = move_freepages_block(zone, page, ac->migratetype,
1983									NULL);
1984			if (ret) {
1985				spin_unlock_irqrestore(&zone->lock, flags);
1986				return ret;
1987			}
1988		}
1989		spin_unlock_irqrestore(&zone->lock, flags);
1990	}
1991
1992	return false;
1993}
1994
1995/*
1996 * Try finding a free buddy page on the fallback list and put it on the free
1997 * list of requested migratetype, possibly along with other pages from the same
1998 * block, depending on fragmentation avoidance heuristics. Returns true if
1999 * fallback was found so that __rmqueue_smallest() can grab it.
2000 *
2001 * The use of signed ints for order and current_order is a deliberate
2002 * deviation from the rest of this file, to make the for loop
2003 * condition simpler.
2004 */
2005static __always_inline bool
2006__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2007						unsigned int alloc_flags)
2008{
2009	struct free_area *area;
2010	int current_order;
2011	int min_order = order;
2012	struct page *page;
2013	int fallback_mt;
2014	bool can_steal;
2015
2016	/*
2017	 * Do not steal pages from freelists belonging to other pageblocks
2018	 * i.e. orders < pageblock_order. If there are no local zones free,
2019	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2020	 */
2021	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2022		min_order = pageblock_order;
2023
2024	/*
2025	 * Find the largest available free page in the other list. This roughly
2026	 * approximates finding the pageblock with the most free pages, which
2027	 * would be too costly to do exactly.
2028	 */
2029	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2030				--current_order) {
2031		area = &(zone->free_area[current_order]);
2032		fallback_mt = find_suitable_fallback(area, current_order,
2033				start_migratetype, false, &can_steal);
2034		if (fallback_mt == -1)
2035			continue;
2036
2037		/*
2038		 * We cannot steal all free pages from the pageblock and the
2039		 * requested migratetype is movable. In that case it's better to
2040		 * steal and split the smallest available page instead of the
2041		 * largest available page, because even if the next movable
2042		 * allocation falls back into a different pageblock than this
2043		 * one, it won't cause permanent fragmentation.
2044		 */
2045		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2046					&& current_order > order)
2047			goto find_smallest;
2048
2049		goto do_steal;
2050	}
2051
2052	return false;
2053
2054find_smallest:
2055	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2056		area = &(zone->free_area[current_order]);
2057		fallback_mt = find_suitable_fallback(area, current_order,
2058				start_migratetype, false, &can_steal);
2059		if (fallback_mt != -1)
2060			break;
2061	}
2062
2063	/*
2064	 * This should not happen - we already found a suitable fallback
2065	 * when looking for the largest page.
2066	 */
2067	VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2068
2069do_steal:
2070	page = get_page_from_free_area(area, fallback_mt);
2071
2072	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2073								can_steal);
2074
2075	trace_mm_page_alloc_extfrag(page, order, current_order,
2076		start_migratetype, fallback_mt);
2077
2078	return true;
2079
2080}
2081
2082/*
2083 * Do the hard work of removing an element from the buddy allocator.
2084 * Call me with the zone->lock already held.
2085 */
2086static __always_inline struct page *
2087__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2088						unsigned int alloc_flags)
2089{
2090	struct page *page;
2091
2092	if (IS_ENABLED(CONFIG_CMA)) {
2093		/*
2094		 * Balance movable allocations between regular and CMA areas by
2095		 * allocating from CMA when over half of the zone's free memory
2096		 * is in the CMA area.
2097		 */
2098		if (alloc_flags & ALLOC_CMA &&
2099		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2100		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2101			page = __rmqueue_cma_fallback(zone, order);
2102			if (page)
2103				return page;
2104		}
2105	}
2106retry:
2107	page = __rmqueue_smallest(zone, order, migratetype);
2108	if (unlikely(!page)) {
2109		if (alloc_flags & ALLOC_CMA)
2110			page = __rmqueue_cma_fallback(zone, order);
2111
2112		if (!page && __rmqueue_fallback(zone, order, migratetype,
2113								alloc_flags))
2114			goto retry;
2115	}
2116	return page;
2117}
2118
2119/*
2120 * Obtain a specified number of elements from the buddy allocator, all under
2121 * a single hold of the lock, for efficiency.  Add them to the supplied list.
2122 * Returns the number of new pages which were placed at *list.
2123 */
2124static int rmqueue_bulk(struct zone *zone, unsigned int order,
2125			unsigned long count, struct list_head *list,
2126			int migratetype, unsigned int alloc_flags)
2127{
2128	unsigned long flags;
2129	int i;
2130
2131	spin_lock_irqsave(&zone->lock, flags);
2132	for (i = 0; i < count; ++i) {
2133		struct page *page = __rmqueue(zone, order, migratetype,
2134								alloc_flags);
2135		if (unlikely(page == NULL))
2136			break;
2137
2138		/*
2139		 * Split buddy pages returned by expand() are received here in
2140		 * physical page order. The page is added to the tail of
2141		 * caller's list. From the callers perspective, the linked list
2142		 * is ordered by page number under some conditions. This is
2143		 * useful for IO devices that can forward direction from the
2144		 * head, thus also in the physical page order. This is useful
2145		 * for IO devices that can merge IO requests if the physical
2146		 * pages are ordered properly.
2147		 */
2148		list_add_tail(&page->pcp_list, list);
2149		if (is_migrate_cma(get_pcppage_migratetype(page)))
2150			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2151					      -(1 << order));
2152	}
2153
2154	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2155	spin_unlock_irqrestore(&zone->lock, flags);
2156
2157	return i;
2158}
2159
2160/*
2161 * Called from the vmstat counter updater to decay the PCP high.
2162 * Return whether there are addition works to do.
2163 */
2164int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2165{
2166	int high_min, to_drain, batch;
2167	int todo = 0;
2168
2169	high_min = READ_ONCE(pcp->high_min);
2170	batch = READ_ONCE(pcp->batch);
2171	/*
2172	 * Decrease pcp->high periodically to try to free possible
2173	 * idle PCP pages.  And, avoid to free too many pages to
2174	 * control latency.  This caps pcp->high decrement too.
2175	 */
2176	if (pcp->high > high_min) {
2177		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2178				 pcp->high - (pcp->high >> 3), high_min);
2179		if (pcp->high > high_min)
2180			todo++;
2181	}
2182
2183	to_drain = pcp->count - pcp->high;
2184	if (to_drain > 0) {
2185		spin_lock(&pcp->lock);
2186		free_pcppages_bulk(zone, to_drain, pcp, 0);
2187		spin_unlock(&pcp->lock);
2188		todo++;
2189	}
2190
2191	return todo;
2192}
2193
2194#ifdef CONFIG_NUMA
2195/*
2196 * Called from the vmstat counter updater to drain pagesets of this
2197 * currently executing processor on remote nodes after they have
2198 * expired.
2199 */
2200void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2201{
2202	int to_drain, batch;
2203
2204	batch = READ_ONCE(pcp->batch);
2205	to_drain = min(pcp->count, batch);
2206	if (to_drain > 0) {
2207		spin_lock(&pcp->lock);
2208		free_pcppages_bulk(zone, to_drain, pcp, 0);
2209		spin_unlock(&pcp->lock);
2210	}
2211}
2212#endif
2213
2214/*
2215 * Drain pcplists of the indicated processor and zone.
2216 */
2217static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2218{
2219	struct per_cpu_pages *pcp;
2220
2221	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2222	if (pcp->count) {
2223		spin_lock(&pcp->lock);
2224		free_pcppages_bulk(zone, pcp->count, pcp, 0);
2225		spin_unlock(&pcp->lock);
2226	}
2227}
2228
2229/*
2230 * Drain pcplists of all zones on the indicated processor.
2231 */
2232static void drain_pages(unsigned int cpu)
2233{
2234	struct zone *zone;
2235
2236	for_each_populated_zone(zone) {
2237		drain_pages_zone(cpu, zone);
2238	}
2239}
2240
2241/*
2242 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2243 */
2244void drain_local_pages(struct zone *zone)
2245{
2246	int cpu = smp_processor_id();
2247
2248	if (zone)
2249		drain_pages_zone(cpu, zone);
2250	else
2251		drain_pages(cpu);
2252}
2253
2254/*
2255 * The implementation of drain_all_pages(), exposing an extra parameter to
2256 * drain on all cpus.
2257 *
2258 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2259 * not empty. The check for non-emptiness can however race with a free to
2260 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2261 * that need the guarantee that every CPU has drained can disable the
2262 * optimizing racy check.
2263 */
2264static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2265{
2266	int cpu;
2267
2268	/*
2269	 * Allocate in the BSS so we won't require allocation in
2270	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2271	 */
2272	static cpumask_t cpus_with_pcps;
2273
2274	/*
2275	 * Do not drain if one is already in progress unless it's specific to
2276	 * a zone. Such callers are primarily CMA and memory hotplug and need
2277	 * the drain to be complete when the call returns.
2278	 */
2279	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2280		if (!zone)
2281			return;
2282		mutex_lock(&pcpu_drain_mutex);
2283	}
2284
2285	/*
2286	 * We don't care about racing with CPU hotplug event
2287	 * as offline notification will cause the notified
2288	 * cpu to drain that CPU pcps and on_each_cpu_mask
2289	 * disables preemption as part of its processing
2290	 */
2291	for_each_online_cpu(cpu) {
2292		struct per_cpu_pages *pcp;
2293		struct zone *z;
2294		bool has_pcps = false;
2295
2296		if (force_all_cpus) {
2297			/*
2298			 * The pcp.count check is racy, some callers need a
2299			 * guarantee that no cpu is missed.
2300			 */
2301			has_pcps = true;
2302		} else if (zone) {
2303			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2304			if (pcp->count)
2305				has_pcps = true;
2306		} else {
2307			for_each_populated_zone(z) {
2308				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2309				if (pcp->count) {
2310					has_pcps = true;
2311					break;
2312				}
2313			}
2314		}
2315
2316		if (has_pcps)
2317			cpumask_set_cpu(cpu, &cpus_with_pcps);
2318		else
2319			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2320	}
2321
2322	for_each_cpu(cpu, &cpus_with_pcps) {
2323		if (zone)
2324			drain_pages_zone(cpu, zone);
2325		else
2326			drain_pages(cpu);
2327	}
2328
2329	mutex_unlock(&pcpu_drain_mutex);
2330}
2331
2332/*
2333 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2334 *
2335 * When zone parameter is non-NULL, spill just the single zone's pages.
2336 */
2337void drain_all_pages(struct zone *zone)
2338{
2339	__drain_all_pages(zone, false);
2340}
2341
2342static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2343							unsigned int order)
2344{
2345	int migratetype;
2346
2347	if (!free_pages_prepare(page, order))
2348		return false;
2349
2350	migratetype = get_pfnblock_migratetype(page, pfn);
2351	set_pcppage_migratetype(page, migratetype);
2352	return true;
2353}
2354
2355static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2356{
2357	int min_nr_free, max_nr_free;
2358
2359	/* Free as much as possible if batch freeing high-order pages. */
2360	if (unlikely(free_high))
2361		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2362
2363	/* Check for PCP disabled or boot pageset */
2364	if (unlikely(high < batch))
2365		return 1;
2366
2367	/* Leave at least pcp->batch pages on the list */
2368	min_nr_free = batch;
2369	max_nr_free = high - batch;
2370
2371	/*
2372	 * Increase the batch number to the number of the consecutive
2373	 * freed pages to reduce zone lock contention.
2374	 */
2375	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2376
2377	return batch;
2378}
2379
2380static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2381		       int batch, bool free_high)
2382{
2383	int high, high_min, high_max;
2384
2385	high_min = READ_ONCE(pcp->high_min);
2386	high_max = READ_ONCE(pcp->high_max);
2387	high = pcp->high = clamp(pcp->high, high_min, high_max);
2388
2389	if (unlikely(!high))
2390		return 0;
2391
2392	if (unlikely(free_high)) {
2393		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2394				high_min);
2395		return 0;
2396	}
2397
2398	/*
2399	 * If reclaim is active, limit the number of pages that can be
2400	 * stored on pcp lists
2401	 */
2402	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2403		int free_count = max_t(int, pcp->free_count, batch);
2404
2405		pcp->high = max(high - free_count, high_min);
2406		return min(batch << 2, pcp->high);
2407	}
2408
2409	if (high_min == high_max)
2410		return high;
2411
2412	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2413		int free_count = max_t(int, pcp->free_count, batch);
2414
2415		pcp->high = max(high - free_count, high_min);
2416		high = max(pcp->count, high_min);
2417	} else if (pcp->count >= high) {
2418		int need_high = pcp->free_count + batch;
2419
2420		/* pcp->high should be large enough to hold batch freed pages */
2421		if (pcp->high < need_high)
2422			pcp->high = clamp(need_high, high_min, high_max);
2423	}
2424
2425	return high;
2426}
2427
2428static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2429				   struct page *page, int migratetype,
2430				   unsigned int order)
2431{
2432	int high, batch;
2433	int pindex;
2434	bool free_high = false;
2435
2436	/*
2437	 * On freeing, reduce the number of pages that are batch allocated.
2438	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2439	 * allocations.
2440	 */
2441	pcp->alloc_factor >>= 1;
2442	__count_vm_events(PGFREE, 1 << order);
2443	pindex = order_to_pindex(migratetype, order);
2444	list_add(&page->pcp_list, &pcp->lists[pindex]);
2445	pcp->count += 1 << order;
2446
2447	batch = READ_ONCE(pcp->batch);
2448	/*
2449	 * As high-order pages other than THP's stored on PCP can contribute
2450	 * to fragmentation, limit the number stored when PCP is heavily
2451	 * freeing without allocation. The remainder after bulk freeing
2452	 * stops will be drained from vmstat refresh context.
2453	 */
2454	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2455		free_high = (pcp->free_count >= batch &&
2456			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2457			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2458			      pcp->count >= READ_ONCE(batch)));
2459		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2460	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2461		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2462	}
2463	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2464		pcp->free_count += (1 << order);
2465	high = nr_pcp_high(pcp, zone, batch, free_high);
2466	if (pcp->count >= high) {
2467		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2468				   pcp, pindex);
2469		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2470		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2471				      ZONE_MOVABLE, 0))
2472			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2473	}
2474}
2475
2476/*
2477 * Free a pcp page
2478 */
2479void free_unref_page(struct page *page, unsigned int order)
2480{
2481	unsigned long __maybe_unused UP_flags;
2482	struct per_cpu_pages *pcp;
2483	struct zone *zone;
2484	unsigned long pfn = page_to_pfn(page);
2485	int migratetype, pcpmigratetype;
2486
2487	if (!free_unref_page_prepare(page, pfn, order))
2488		return;
2489
2490	/*
2491	 * We only track unmovable, reclaimable and movable on pcp lists.
2492	 * Place ISOLATE pages on the isolated list because they are being
2493	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2494	 * get those areas back if necessary. Otherwise, we may have to free
2495	 * excessively into the page allocator
2496	 */
2497	migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2498	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2499		if (unlikely(is_migrate_isolate(migratetype))) {
2500			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2501			return;
2502		}
2503		pcpmigratetype = MIGRATE_MOVABLE;
2504	}
2505
2506	zone = page_zone(page);
2507	pcp_trylock_prepare(UP_flags);
2508	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2509	if (pcp) {
2510		free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2511		pcp_spin_unlock(pcp);
2512	} else {
2513		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2514	}
2515	pcp_trylock_finish(UP_flags);
2516}
2517
2518/*
2519 * Free a batch of folios
2520 */
2521void free_unref_folios(struct folio_batch *folios)
2522{
2523	unsigned long __maybe_unused UP_flags;
2524	struct per_cpu_pages *pcp = NULL;
2525	struct zone *locked_zone = NULL;
2526	int i, j, migratetype;
2527
2528	/* Prepare folios for freeing */
2529	for (i = 0, j = 0; i < folios->nr; i++) {
2530		struct folio *folio = folios->folios[i];
2531		unsigned long pfn = folio_pfn(folio);
2532		unsigned int order = folio_order(folio);
2533
2534		if (order > 0 && folio_test_large_rmappable(folio))
2535			folio_undo_large_rmappable(folio);
2536		if (!free_unref_page_prepare(&folio->page, pfn, order))
2537			continue;
2538
2539		/*
2540		 * Free isolated folios and orders not handled on the PCP
2541		 * directly to the allocator, see comment in free_unref_page.
2542		 */
2543		migratetype = get_pcppage_migratetype(&folio->page);
2544		if (!pcp_allowed_order(order) ||
2545		    is_migrate_isolate(migratetype)) {
2546			free_one_page(folio_zone(folio), &folio->page, pfn,
2547					order, migratetype, FPI_NONE);
2548			continue;
2549		}
2550		folio->private = (void *)(unsigned long)order;
2551		if (j != i)
2552			folios->folios[j] = folio;
2553		j++;
2554	}
2555	folios->nr = j;
2556
2557	for (i = 0; i < folios->nr; i++) {
2558		struct folio *folio = folios->folios[i];
2559		struct zone *zone = folio_zone(folio);
2560		unsigned int order = (unsigned long)folio->private;
2561
2562		folio->private = NULL;
2563		migratetype = get_pcppage_migratetype(&folio->page);
2564
2565		/* Different zone requires a different pcp lock */
2566		if (zone != locked_zone) {
2567			if (pcp) {
2568				pcp_spin_unlock(pcp);
2569				pcp_trylock_finish(UP_flags);
2570			}
2571
2572			/*
2573			 * trylock is necessary as folios may be getting freed
2574			 * from IRQ or SoftIRQ context after an IO completion.
2575			 */
2576			pcp_trylock_prepare(UP_flags);
2577			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2578			if (unlikely(!pcp)) {
2579				pcp_trylock_finish(UP_flags);
2580				free_one_page(zone, &folio->page,
2581						folio_pfn(folio), order,
2582						migratetype, FPI_NONE);
2583				locked_zone = NULL;
2584				continue;
2585			}
2586			locked_zone = zone;
2587		}
2588
2589		/*
2590		 * Non-isolated types over MIGRATE_PCPTYPES get added
2591		 * to the MIGRATE_MOVABLE pcp list.
2592		 */
2593		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2594			migratetype = MIGRATE_MOVABLE;
2595
2596		trace_mm_page_free_batched(&folio->page);
2597		free_unref_page_commit(zone, pcp, &folio->page, migratetype,
2598				order);
2599	}
2600
2601	if (pcp) {
2602		pcp_spin_unlock(pcp);
2603		pcp_trylock_finish(UP_flags);
2604	}
2605	folio_batch_reinit(folios);
2606}
2607
2608/*
2609 * split_page takes a non-compound higher-order page, and splits it into
2610 * n (1<<order) sub-pages: page[0..n]
2611 * Each sub-page must be freed individually.
2612 *
2613 * Note: this is probably too low level an operation for use in drivers.
2614 * Please consult with lkml before using this in your driver.
2615 */
2616void split_page(struct page *page, unsigned int order)
2617{
2618	int i;
2619
2620	VM_BUG_ON_PAGE(PageCompound(page), page);
2621	VM_BUG_ON_PAGE(!page_count(page), page);
2622
2623	for (i = 1; i < (1 << order); i++)
2624		set_page_refcounted(page + i);
2625	split_page_owner(page, order, 0);
2626	split_page_memcg(page, order, 0);
2627}
2628EXPORT_SYMBOL_GPL(split_page);
2629
2630int __isolate_free_page(struct page *page, unsigned int order)
2631{
2632	struct zone *zone = page_zone(page);
2633	int mt = get_pageblock_migratetype(page);
2634
2635	if (!is_migrate_isolate(mt)) {
2636		unsigned long watermark;
2637		/*
2638		 * Obey watermarks as if the page was being allocated. We can
2639		 * emulate a high-order watermark check with a raised order-0
2640		 * watermark, because we already know our high-order page
2641		 * exists.
2642		 */
2643		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2644		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2645			return 0;
2646
2647		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2648	}
2649
2650	del_page_from_free_list(page, zone, order);
2651
2652	/*
2653	 * Set the pageblock if the isolated page is at least half of a
2654	 * pageblock
2655	 */
2656	if (order >= pageblock_order - 1) {
2657		struct page *endpage = page + (1 << order) - 1;
2658		for (; page < endpage; page += pageblock_nr_pages) {
2659			int mt = get_pageblock_migratetype(page);
2660			/*
2661			 * Only change normal pageblocks (i.e., they can merge
2662			 * with others)
2663			 */
2664			if (migratetype_is_mergeable(mt))
2665				set_pageblock_migratetype(page,
2666							  MIGRATE_MOVABLE);
2667		}
2668	}
2669
2670	return 1UL << order;
2671}
2672
2673/**
2674 * __putback_isolated_page - Return a now-isolated page back where we got it
2675 * @page: Page that was isolated
2676 * @order: Order of the isolated page
2677 * @mt: The page's pageblock's migratetype
2678 *
2679 * This function is meant to return a page pulled from the free lists via
2680 * __isolate_free_page back to the free lists they were pulled from.
2681 */
2682void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2683{
2684	struct zone *zone = page_zone(page);
2685
2686	/* zone lock should be held when this function is called */
2687	lockdep_assert_held(&zone->lock);
2688
2689	/* Return isolated page to tail of freelist. */
2690	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2691			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2692}
2693
2694/*
2695 * Update NUMA hit/miss statistics
2696 */
2697static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2698				   long nr_account)
2699{
2700#ifdef CONFIG_NUMA
2701	enum numa_stat_item local_stat = NUMA_LOCAL;
2702
2703	/* skip numa counters update if numa stats is disabled */
2704	if (!static_branch_likely(&vm_numa_stat_key))
2705		return;
2706
2707	if (zone_to_nid(z) != numa_node_id())
2708		local_stat = NUMA_OTHER;
2709
2710	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2711		__count_numa_events(z, NUMA_HIT, nr_account);
2712	else {
2713		__count_numa_events(z, NUMA_MISS, nr_account);
2714		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2715	}
2716	__count_numa_events(z, local_stat, nr_account);
2717#endif
2718}
2719
2720static __always_inline
2721struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2722			   unsigned int order, unsigned int alloc_flags,
2723			   int migratetype)
2724{
2725	struct page *page;
2726	unsigned long flags;
2727
2728	do {
2729		page = NULL;
2730		spin_lock_irqsave(&zone->lock, flags);
2731		if (alloc_flags & ALLOC_HIGHATOMIC)
2732			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2733		if (!page) {
2734			page = __rmqueue(zone, order, migratetype, alloc_flags);
2735
2736			/*
2737			 * If the allocation fails, allow OOM handling access
2738			 * to HIGHATOMIC reserves as failing now is worse than
2739			 * failing a high-order atomic allocation in the
2740			 * future.
2741			 */
2742			if (!page && (alloc_flags & ALLOC_OOM))
2743				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2744
2745			if (!page) {
2746				spin_unlock_irqrestore(&zone->lock, flags);
2747				return NULL;
2748			}
2749		}
2750		__mod_zone_freepage_state(zone, -(1 << order),
2751					  get_pcppage_migratetype(page));
2752		spin_unlock_irqrestore(&zone->lock, flags);
2753	} while (check_new_pages(page, order));
2754
2755	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2756	zone_statistics(preferred_zone, zone, 1);
2757
2758	return page;
2759}
2760
2761static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2762{
2763	int high, base_batch, batch, max_nr_alloc;
2764	int high_max, high_min;
2765
2766	base_batch = READ_ONCE(pcp->batch);
2767	high_min = READ_ONCE(pcp->high_min);
2768	high_max = READ_ONCE(pcp->high_max);
2769	high = pcp->high = clamp(pcp->high, high_min, high_max);
2770
2771	/* Check for PCP disabled or boot pageset */
2772	if (unlikely(high < base_batch))
2773		return 1;
2774
2775	if (order)
2776		batch = base_batch;
2777	else
2778		batch = (base_batch << pcp->alloc_factor);
2779
2780	/*
2781	 * If we had larger pcp->high, we could avoid to allocate from
2782	 * zone.
2783	 */
2784	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2785		high = pcp->high = min(high + batch, high_max);
2786
2787	if (!order) {
2788		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2789		/*
2790		 * Double the number of pages allocated each time there is
2791		 * subsequent allocation of order-0 pages without any freeing.
2792		 */
2793		if (batch <= max_nr_alloc &&
2794		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2795			pcp->alloc_factor++;
2796		batch = min(batch, max_nr_alloc);
2797	}
2798
2799	/*
2800	 * Scale batch relative to order if batch implies free pages
2801	 * can be stored on the PCP. Batch can be 1 for small zones or
2802	 * for boot pagesets which should never store free pages as
2803	 * the pages may belong to arbitrary zones.
2804	 */
2805	if (batch > 1)
2806		batch = max(batch >> order, 2);
2807
2808	return batch;
2809}
2810
2811/* Remove page from the per-cpu list, caller must protect the list */
2812static inline
2813struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2814			int migratetype,
2815			unsigned int alloc_flags,
2816			struct per_cpu_pages *pcp,
2817			struct list_head *list)
2818{
2819	struct page *page;
2820
2821	do {
2822		if (list_empty(list)) {
2823			int batch = nr_pcp_alloc(pcp, zone, order);
2824			int alloced;
2825
2826			alloced = rmqueue_bulk(zone, order,
2827					batch, list,
2828					migratetype, alloc_flags);
2829
2830			pcp->count += alloced << order;
2831			if (unlikely(list_empty(list)))
2832				return NULL;
2833		}
2834
2835		page = list_first_entry(list, struct page, pcp_list);
2836		list_del(&page->pcp_list);
2837		pcp->count -= 1 << order;
2838	} while (check_new_pages(page, order));
2839
2840	return page;
2841}
2842
2843/* Lock and remove page from the per-cpu list */
2844static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2845			struct zone *zone, unsigned int order,
2846			int migratetype, unsigned int alloc_flags)
2847{
2848	struct per_cpu_pages *pcp;
2849	struct list_head *list;
2850	struct page *page;
2851	unsigned long __maybe_unused UP_flags;
2852
2853	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2854	pcp_trylock_prepare(UP_flags);
2855	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2856	if (!pcp) {
2857		pcp_trylock_finish(UP_flags);
2858		return NULL;
2859	}
2860
2861	/*
2862	 * On allocation, reduce the number of pages that are batch freed.
2863	 * See nr_pcp_free() where free_factor is increased for subsequent
2864	 * frees.
2865	 */
2866	pcp->free_count >>= 1;
2867	list = &pcp->lists[order_to_pindex(migratetype, order)];
2868	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2869	pcp_spin_unlock(pcp);
2870	pcp_trylock_finish(UP_flags);
2871	if (page) {
2872		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2873		zone_statistics(preferred_zone, zone, 1);
2874	}
2875	return page;
2876}
2877
2878/*
2879 * Allocate a page from the given zone.
2880 * Use pcplists for THP or "cheap" high-order allocations.
2881 */
2882
2883/*
2884 * Do not instrument rmqueue() with KMSAN. This function may call
2885 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2886 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2887 * may call rmqueue() again, which will result in a deadlock.
2888 */
2889__no_sanitize_memory
2890static inline
2891struct page *rmqueue(struct zone *preferred_zone,
2892			struct zone *zone, unsigned int order,
2893			gfp_t gfp_flags, unsigned int alloc_flags,
2894			int migratetype)
2895{
2896	struct page *page;
2897
2898	/*
2899	 * We most definitely don't want callers attempting to
2900	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2901	 */
2902	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2903
2904	if (likely(pcp_allowed_order(order))) {
2905		page = rmqueue_pcplist(preferred_zone, zone, order,
2906				       migratetype, alloc_flags);
2907		if (likely(page))
2908			goto out;
2909	}
2910
2911	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2912							migratetype);
2913
2914out:
2915	/* Separate test+clear to avoid unnecessary atomics */
2916	if ((alloc_flags & ALLOC_KSWAPD) &&
2917	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2918		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2919		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2920	}
2921
2922	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2923	return page;
2924}
2925
2926noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2927{
2928	return __should_fail_alloc_page(gfp_mask, order);
2929}
2930ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2931
2932static inline long __zone_watermark_unusable_free(struct zone *z,
2933				unsigned int order, unsigned int alloc_flags)
2934{
2935	long unusable_free = (1 << order) - 1;
2936
2937	/*
2938	 * If the caller does not have rights to reserves below the min
2939	 * watermark then subtract the high-atomic reserves. This will
2940	 * over-estimate the size of the atomic reserve but it avoids a search.
2941	 */
2942	if (likely(!(alloc_flags & ALLOC_RESERVES)))
2943		unusable_free += z->nr_reserved_highatomic;
2944
2945#ifdef CONFIG_CMA
2946	/* If allocation can't use CMA areas don't use free CMA pages */
2947	if (!(alloc_flags & ALLOC_CMA))
2948		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2949#endif
2950#ifdef CONFIG_UNACCEPTED_MEMORY
2951	unusable_free += zone_page_state(z, NR_UNACCEPTED);
2952#endif
2953
2954	return unusable_free;
2955}
2956
2957/*
2958 * Return true if free base pages are above 'mark'. For high-order checks it
2959 * will return true of the order-0 watermark is reached and there is at least
2960 * one free page of a suitable size. Checking now avoids taking the zone lock
2961 * to check in the allocation paths if no pages are free.
2962 */
2963bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2964			 int highest_zoneidx, unsigned int alloc_flags,
2965			 long free_pages)
2966{
2967	long min = mark;
2968	int o;
2969
2970	/* free_pages may go negative - that's OK */
2971	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2972
2973	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2974		/*
2975		 * __GFP_HIGH allows access to 50% of the min reserve as well
2976		 * as OOM.
2977		 */
2978		if (alloc_flags & ALLOC_MIN_RESERVE) {
2979			min -= min / 2;
2980
2981			/*
2982			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2983			 * access more reserves than just __GFP_HIGH. Other
2984			 * non-blocking allocations requests such as GFP_NOWAIT
2985			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2986			 * access to the min reserve.
2987			 */
2988			if (alloc_flags & ALLOC_NON_BLOCK)
2989				min -= min / 4;
2990		}
2991
2992		/*
2993		 * OOM victims can try even harder than the normal reserve
2994		 * users on the grounds that it's definitely going to be in
2995		 * the exit path shortly and free memory. Any allocation it
2996		 * makes during the free path will be small and short-lived.
2997		 */
2998		if (alloc_flags & ALLOC_OOM)
2999			min -= min / 2;
3000	}
3001
3002	/*
3003	 * Check watermarks for an order-0 allocation request. If these
3004	 * are not met, then a high-order request also cannot go ahead
3005	 * even if a suitable page happened to be free.
3006	 */
3007	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3008		return false;
3009
3010	/* If this is an order-0 request then the watermark is fine */
3011	if (!order)
3012		return true;
3013
3014	/* For a high-order request, check at least one suitable page is free */
3015	for (o = order; o < NR_PAGE_ORDERS; o++) {
3016		struct free_area *area = &z->free_area[o];
3017		int mt;
3018
3019		if (!area->nr_free)
3020			continue;
3021
3022		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3023			if (!free_area_empty(area, mt))
3024				return true;
3025		}
3026
3027#ifdef CONFIG_CMA
3028		if ((alloc_flags & ALLOC_CMA) &&
3029		    !free_area_empty(area, MIGRATE_CMA)) {
3030			return true;
3031		}
3032#endif
3033		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3034		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3035			return true;
3036		}
3037	}
3038	return false;
3039}
3040
3041bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3042		      int highest_zoneidx, unsigned int alloc_flags)
3043{
3044	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3045					zone_page_state(z, NR_FREE_PAGES));
3046}
3047
3048static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3049				unsigned long mark, int highest_zoneidx,
3050				unsigned int alloc_flags, gfp_t gfp_mask)
3051{
3052	long free_pages;
3053
3054	free_pages = zone_page_state(z, NR_FREE_PAGES);
3055
3056	/*
3057	 * Fast check for order-0 only. If this fails then the reserves
3058	 * need to be calculated.
3059	 */
3060	if (!order) {
3061		long usable_free;
3062		long reserved;
3063
3064		usable_free = free_pages;
3065		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3066
3067		/* reserved may over estimate high-atomic reserves. */
3068		usable_free -= min(usable_free, reserved);
3069		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3070			return true;
3071	}
3072
3073	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3074					free_pages))
3075		return true;
3076
3077	/*
3078	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3079	 * when checking the min watermark. The min watermark is the
3080	 * point where boosting is ignored so that kswapd is woken up
3081	 * when below the low watermark.
3082	 */
3083	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3084		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3085		mark = z->_watermark[WMARK_MIN];
3086		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3087					alloc_flags, free_pages);
3088	}
3089
3090	return false;
3091}
3092
3093bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3094			unsigned long mark, int highest_zoneidx)
3095{
3096	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3097
3098	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3099		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3100
3101	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3102								free_pages);
3103}
3104
3105#ifdef CONFIG_NUMA
3106int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3107
3108static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3109{
3110	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3111				node_reclaim_distance;
3112}
3113#else	/* CONFIG_NUMA */
3114static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3115{
3116	return true;
3117}
3118#endif	/* CONFIG_NUMA */
3119
3120/*
3121 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3122 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3123 * premature use of a lower zone may cause lowmem pressure problems that
3124 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3125 * probably too small. It only makes sense to spread allocations to avoid
3126 * fragmentation between the Normal and DMA32 zones.
3127 */
3128static inline unsigned int
3129alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3130{
3131	unsigned int alloc_flags;
3132
3133	/*
3134	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3135	 * to save a branch.
3136	 */
3137	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3138
3139#ifdef CONFIG_ZONE_DMA32
3140	if (!zone)
3141		return alloc_flags;
3142
3143	if (zone_idx(zone) != ZONE_NORMAL)
3144		return alloc_flags;
3145
3146	/*
3147	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3148	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3149	 * on UMA that if Normal is populated then so is DMA32.
3150	 */
3151	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3152	if (nr_online_nodes > 1 && !populated_zone(--zone))
3153		return alloc_flags;
3154
3155	alloc_flags |= ALLOC_NOFRAGMENT;
3156#endif /* CONFIG_ZONE_DMA32 */
3157	return alloc_flags;
3158}
3159
3160/* Must be called after current_gfp_context() which can change gfp_mask */
3161static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3162						  unsigned int alloc_flags)
3163{
3164#ifdef CONFIG_CMA
3165	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3166		alloc_flags |= ALLOC_CMA;
3167#endif
3168	return alloc_flags;
3169}
3170
3171/*
3172 * get_page_from_freelist goes through the zonelist trying to allocate
3173 * a page.
3174 */
3175static struct page *
3176get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3177						const struct alloc_context *ac)
3178{
3179	struct zoneref *z;
3180	struct zone *zone;
3181	struct pglist_data *last_pgdat = NULL;
3182	bool last_pgdat_dirty_ok = false;
3183	bool no_fallback;
3184
3185retry:
3186	/*
3187	 * Scan zonelist, looking for a zone with enough free.
3188	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3189	 */
3190	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3191	z = ac->preferred_zoneref;
3192	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3193					ac->nodemask) {
3194		struct page *page;
3195		unsigned long mark;
3196
3197		if (cpusets_enabled() &&
3198			(alloc_flags & ALLOC_CPUSET) &&
3199			!__cpuset_zone_allowed(zone, gfp_mask))
3200				continue;
3201		/*
3202		 * When allocating a page cache page for writing, we
3203		 * want to get it from a node that is within its dirty
3204		 * limit, such that no single node holds more than its
3205		 * proportional share of globally allowed dirty pages.
3206		 * The dirty limits take into account the node's
3207		 * lowmem reserves and high watermark so that kswapd
3208		 * should be able to balance it without having to
3209		 * write pages from its LRU list.
3210		 *
3211		 * XXX: For now, allow allocations to potentially
3212		 * exceed the per-node dirty limit in the slowpath
3213		 * (spread_dirty_pages unset) before going into reclaim,
3214		 * which is important when on a NUMA setup the allowed
3215		 * nodes are together not big enough to reach the
3216		 * global limit.  The proper fix for these situations
3217		 * will require awareness of nodes in the
3218		 * dirty-throttling and the flusher threads.
3219		 */
3220		if (ac->spread_dirty_pages) {
3221			if (last_pgdat != zone->zone_pgdat) {
3222				last_pgdat = zone->zone_pgdat;
3223				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3224			}
3225
3226			if (!last_pgdat_dirty_ok)
3227				continue;
3228		}
3229
3230		if (no_fallback && nr_online_nodes > 1 &&
3231		    zone != ac->preferred_zoneref->zone) {
3232			int local_nid;
3233
3234			/*
3235			 * If moving to a remote node, retry but allow
3236			 * fragmenting fallbacks. Locality is more important
3237			 * than fragmentation avoidance.
3238			 */
3239			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3240			if (zone_to_nid(zone) != local_nid) {
3241				alloc_flags &= ~ALLOC_NOFRAGMENT;
3242				goto retry;
3243			}
3244		}
3245
3246		/*
3247		 * Detect whether the number of free pages is below high
3248		 * watermark.  If so, we will decrease pcp->high and free
3249		 * PCP pages in free path to reduce the possibility of
3250		 * premature page reclaiming.  Detection is done here to
3251		 * avoid to do that in hotter free path.
3252		 */
3253		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3254			goto check_alloc_wmark;
3255
3256		mark = high_wmark_pages(zone);
3257		if (zone_watermark_fast(zone, order, mark,
3258					ac->highest_zoneidx, alloc_flags,
3259					gfp_mask))
3260			goto try_this_zone;
3261		else
3262			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3263
3264check_alloc_wmark:
3265		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3266		if (!zone_watermark_fast(zone, order, mark,
3267				       ac->highest_zoneidx, alloc_flags,
3268				       gfp_mask)) {
3269			int ret;
3270
3271			if (has_unaccepted_memory()) {
3272				if (try_to_accept_memory(zone, order))
3273					goto try_this_zone;
3274			}
3275
3276#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3277			/*
3278			 * Watermark failed for this zone, but see if we can
3279			 * grow this zone if it contains deferred pages.
3280			 */
3281			if (deferred_pages_enabled()) {
3282				if (_deferred_grow_zone(zone, order))
3283					goto try_this_zone;
3284			}
3285#endif
3286			/* Checked here to keep the fast path fast */
3287			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3288			if (alloc_flags & ALLOC_NO_WATERMARKS)
3289				goto try_this_zone;
3290
3291			if (!node_reclaim_enabled() ||
3292			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3293				continue;
3294
3295			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3296			switch (ret) {
3297			case NODE_RECLAIM_NOSCAN:
3298				/* did not scan */
3299				continue;
3300			case NODE_RECLAIM_FULL:
3301				/* scanned but unreclaimable */
3302				continue;
3303			default:
3304				/* did we reclaim enough */
3305				if (zone_watermark_ok(zone, order, mark,
3306					ac->highest_zoneidx, alloc_flags))
3307					goto try_this_zone;
3308
3309				continue;
3310			}
3311		}
3312
3313try_this_zone:
3314		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3315				gfp_mask, alloc_flags, ac->migratetype);
3316		if (page) {
3317			prep_new_page(page, order, gfp_mask, alloc_flags);
3318
3319			/*
3320			 * If this is a high-order atomic allocation then check
3321			 * if the pageblock should be reserved for the future
3322			 */
3323			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3324				reserve_highatomic_pageblock(page, zone);
3325
3326			return page;
3327		} else {
3328			if (has_unaccepted_memory()) {
3329				if (try_to_accept_memory(zone, order))
3330					goto try_this_zone;
3331			}
3332
3333#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3334			/* Try again if zone has deferred pages */
3335			if (deferred_pages_enabled()) {
3336				if (_deferred_grow_zone(zone, order))
3337					goto try_this_zone;
3338			}
3339#endif
3340		}
3341	}
3342
3343	/*
3344	 * It's possible on a UMA machine to get through all zones that are
3345	 * fragmented. If avoiding fragmentation, reset and try again.
3346	 */
3347	if (no_fallback) {
3348		alloc_flags &= ~ALLOC_NOFRAGMENT;
3349		goto retry;
3350	}
3351
3352	return NULL;
3353}
3354
3355static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3356{
3357	unsigned int filter = SHOW_MEM_FILTER_NODES;
3358
3359	/*
3360	 * This documents exceptions given to allocations in certain
3361	 * contexts that are allowed to allocate outside current's set
3362	 * of allowed nodes.
3363	 */
3364	if (!(gfp_mask & __GFP_NOMEMALLOC))
3365		if (tsk_is_oom_victim(current) ||
3366		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3367			filter &= ~SHOW_MEM_FILTER_NODES;
3368	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3369		filter &= ~SHOW_MEM_FILTER_NODES;
3370
3371	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3372}
3373
3374void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3375{
3376	struct va_format vaf;
3377	va_list args;
3378	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3379
3380	if ((gfp_mask & __GFP_NOWARN) ||
3381	     !__ratelimit(&nopage_rs) ||
3382	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3383		return;
3384
3385	va_start(args, fmt);
3386	vaf.fmt = fmt;
3387	vaf.va = &args;
3388	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3389			current->comm, &vaf, gfp_mask, &gfp_mask,
3390			nodemask_pr_args(nodemask));
3391	va_end(args);
3392
3393	cpuset_print_current_mems_allowed();
3394	pr_cont("\n");
3395	dump_stack();
3396	warn_alloc_show_mem(gfp_mask, nodemask);
3397}
3398
3399static inline struct page *
3400__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3401			      unsigned int alloc_flags,
3402			      const struct alloc_context *ac)
3403{
3404	struct page *page;
3405
3406	page = get_page_from_freelist(gfp_mask, order,
3407			alloc_flags|ALLOC_CPUSET, ac);
3408	/*
3409	 * fallback to ignore cpuset restriction if our nodes
3410	 * are depleted
3411	 */
3412	if (!page)
3413		page = get_page_from_freelist(gfp_mask, order,
3414				alloc_flags, ac);
3415
3416	return page;
3417}
3418
3419static inline struct page *
3420__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3421	const struct alloc_context *ac, unsigned long *did_some_progress)
3422{
3423	struct oom_control oc = {
3424		.zonelist = ac->zonelist,
3425		.nodemask = ac->nodemask,
3426		.memcg = NULL,
3427		.gfp_mask = gfp_mask,
3428		.order = order,
3429	};
3430	struct page *page;
3431
3432	*did_some_progress = 0;
3433
3434	/*
3435	 * Acquire the oom lock.  If that fails, somebody else is
3436	 * making progress for us.
3437	 */
3438	if (!mutex_trylock(&oom_lock)) {
3439		*did_some_progress = 1;
3440		schedule_timeout_uninterruptible(1);
3441		return NULL;
3442	}
3443
3444	/*
3445	 * Go through the zonelist yet one more time, keep very high watermark
3446	 * here, this is only to catch a parallel oom killing, we must fail if
3447	 * we're still under heavy pressure. But make sure that this reclaim
3448	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3449	 * allocation which will never fail due to oom_lock already held.
3450	 */
3451	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3452				      ~__GFP_DIRECT_RECLAIM, order,
3453				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3454	if (page)
3455		goto out;
3456
3457	/* Coredumps can quickly deplete all memory reserves */
3458	if (current->flags & PF_DUMPCORE)
3459		goto out;
3460	/* The OOM killer will not help higher order allocs */
3461	if (order > PAGE_ALLOC_COSTLY_ORDER)
3462		goto out;
3463	/*
3464	 * We have already exhausted all our reclaim opportunities without any
3465	 * success so it is time to admit defeat. We will skip the OOM killer
3466	 * because it is very likely that the caller has a more reasonable
3467	 * fallback than shooting a random task.
3468	 *
3469	 * The OOM killer may not free memory on a specific node.
3470	 */
3471	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3472		goto out;
3473	/* The OOM killer does not needlessly kill tasks for lowmem */
3474	if (ac->highest_zoneidx < ZONE_NORMAL)
3475		goto out;
3476	if (pm_suspended_storage())
3477		goto out;
3478	/*
3479	 * XXX: GFP_NOFS allocations should rather fail than rely on
3480	 * other request to make a forward progress.
3481	 * We are in an unfortunate situation where out_of_memory cannot
3482	 * do much for this context but let's try it to at least get
3483	 * access to memory reserved if the current task is killed (see
3484	 * out_of_memory). Once filesystems are ready to handle allocation
3485	 * failures more gracefully we should just bail out here.
3486	 */
3487
3488	/* Exhausted what can be done so it's blame time */
3489	if (out_of_memory(&oc) ||
3490	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3491		*did_some_progress = 1;
3492
3493		/*
3494		 * Help non-failing allocations by giving them access to memory
3495		 * reserves
3496		 */
3497		if (gfp_mask & __GFP_NOFAIL)
3498			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3499					ALLOC_NO_WATERMARKS, ac);
3500	}
3501out:
3502	mutex_unlock(&oom_lock);
3503	return page;
3504}
3505
3506/*
3507 * Maximum number of compaction retries with a progress before OOM
3508 * killer is consider as the only way to move forward.
3509 */
3510#define MAX_COMPACT_RETRIES 16
3511
3512#ifdef CONFIG_COMPACTION
3513/* Try memory compaction for high-order allocations before reclaim */
3514static struct page *
3515__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3516		unsigned int alloc_flags, const struct alloc_context *ac,
3517		enum compact_priority prio, enum compact_result *compact_result)
3518{
3519	struct page *page = NULL;
3520	unsigned long pflags;
3521	unsigned int noreclaim_flag;
3522
3523	if (!order)
3524		return NULL;
3525
3526	psi_memstall_enter(&pflags);
3527	delayacct_compact_start();
3528	noreclaim_flag = memalloc_noreclaim_save();
3529
3530	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3531								prio, &page);
3532
3533	memalloc_noreclaim_restore(noreclaim_flag);
3534	psi_memstall_leave(&pflags);
3535	delayacct_compact_end();
3536
3537	if (*compact_result == COMPACT_SKIPPED)
3538		return NULL;
3539	/*
3540	 * At least in one zone compaction wasn't deferred or skipped, so let's
3541	 * count a compaction stall
3542	 */
3543	count_vm_event(COMPACTSTALL);
3544
3545	/* Prep a captured page if available */
3546	if (page)
3547		prep_new_page(page, order, gfp_mask, alloc_flags);
3548
3549	/* Try get a page from the freelist if available */
3550	if (!page)
3551		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3552
3553	if (page) {
3554		struct zone *zone = page_zone(page);
3555
3556		zone->compact_blockskip_flush = false;
3557		compaction_defer_reset(zone, order, true);
3558		count_vm_event(COMPACTSUCCESS);
3559		return page;
3560	}
3561
3562	/*
3563	 * It's bad if compaction run occurs and fails. The most likely reason
3564	 * is that pages exist, but not enough to satisfy watermarks.
3565	 */
3566	count_vm_event(COMPACTFAIL);
3567
3568	cond_resched();
3569
3570	return NULL;
3571}
3572
3573static inline bool
3574should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3575		     enum compact_result compact_result,
3576		     enum compact_priority *compact_priority,
3577		     int *compaction_retries)
3578{
3579	int max_retries = MAX_COMPACT_RETRIES;
3580	int min_priority;
3581	bool ret = false;
3582	int retries = *compaction_retries;
3583	enum compact_priority priority = *compact_priority;
3584
3585	if (!order)
3586		return false;
3587
3588	if (fatal_signal_pending(current))
3589		return false;
3590
3591	/*
3592	 * Compaction was skipped due to a lack of free order-0
3593	 * migration targets. Continue if reclaim can help.
3594	 */
3595	if (compact_result == COMPACT_SKIPPED) {
3596		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3597		goto out;
3598	}
3599
3600	/*
3601	 * Compaction managed to coalesce some page blocks, but the
3602	 * allocation failed presumably due to a race. Retry some.
3603	 */
3604	if (compact_result == COMPACT_SUCCESS) {
3605		/*
3606		 * !costly requests are much more important than
3607		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3608		 * facto nofail and invoke OOM killer to move on while
3609		 * costly can fail and users are ready to cope with
3610		 * that. 1/4 retries is rather arbitrary but we would
3611		 * need much more detailed feedback from compaction to
3612		 * make a better decision.
3613		 */
3614		if (order > PAGE_ALLOC_COSTLY_ORDER)
3615			max_retries /= 4;
3616
3617		if (++(*compaction_retries) <= max_retries) {
3618			ret = true;
3619			goto out;
3620		}
3621	}
3622
3623	/*
3624	 * Compaction failed. Retry with increasing priority.
3625	 */
3626	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3627			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3628
3629	if (*compact_priority > min_priority) {
3630		(*compact_priority)--;
3631		*compaction_retries = 0;
3632		ret = true;
3633	}
3634out:
3635	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3636	return ret;
3637}
3638#else
3639static inline struct page *
3640__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3641		unsigned int alloc_flags, const struct alloc_context *ac,
3642		enum compact_priority prio, enum compact_result *compact_result)
3643{
3644	*compact_result = COMPACT_SKIPPED;
3645	return NULL;
3646}
3647
3648static inline bool
3649should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3650		     enum compact_result compact_result,
3651		     enum compact_priority *compact_priority,
3652		     int *compaction_retries)
3653{
3654	struct zone *zone;
3655	struct zoneref *z;
3656
3657	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3658		return false;
3659
3660	/*
3661	 * There are setups with compaction disabled which would prefer to loop
3662	 * inside the allocator rather than hit the oom killer prematurely.
3663	 * Let's give them a good hope and keep retrying while the order-0
3664	 * watermarks are OK.
3665	 */
3666	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3667				ac->highest_zoneidx, ac->nodemask) {
3668		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3669					ac->highest_zoneidx, alloc_flags))
3670			return true;
3671	}
3672	return false;
3673}
3674#endif /* CONFIG_COMPACTION */
3675
3676#ifdef CONFIG_LOCKDEP
3677static struct lockdep_map __fs_reclaim_map =
3678	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3679
3680static bool __need_reclaim(gfp_t gfp_mask)
3681{
3682	/* no reclaim without waiting on it */
3683	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3684		return false;
3685
3686	/* this guy won't enter reclaim */
3687	if (current->flags & PF_MEMALLOC)
3688		return false;
3689
3690	if (gfp_mask & __GFP_NOLOCKDEP)
3691		return false;
3692
3693	return true;
3694}
3695
3696void __fs_reclaim_acquire(unsigned long ip)
3697{
3698	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3699}
3700
3701void __fs_reclaim_release(unsigned long ip)
3702{
3703	lock_release(&__fs_reclaim_map, ip);
3704}
3705
3706void fs_reclaim_acquire(gfp_t gfp_mask)
3707{
3708	gfp_mask = current_gfp_context(gfp_mask);
3709
3710	if (__need_reclaim(gfp_mask)) {
3711		if (gfp_mask & __GFP_FS)
3712			__fs_reclaim_acquire(_RET_IP_);
3713
3714#ifdef CONFIG_MMU_NOTIFIER
3715		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3716		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3717#endif
3718
3719	}
3720}
3721EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3722
3723void fs_reclaim_release(gfp_t gfp_mask)
3724{
3725	gfp_mask = current_gfp_context(gfp_mask);
3726
3727	if (__need_reclaim(gfp_mask)) {
3728		if (gfp_mask & __GFP_FS)
3729			__fs_reclaim_release(_RET_IP_);
3730	}
3731}
3732EXPORT_SYMBOL_GPL(fs_reclaim_release);
3733#endif
3734
3735/*
3736 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3737 * have been rebuilt so allocation retries. Reader side does not lock and
3738 * retries the allocation if zonelist changes. Writer side is protected by the
3739 * embedded spin_lock.
3740 */
3741static DEFINE_SEQLOCK(zonelist_update_seq);
3742
3743static unsigned int zonelist_iter_begin(void)
3744{
3745	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3746		return read_seqbegin(&zonelist_update_seq);
3747
3748	return 0;
3749}
3750
3751static unsigned int check_retry_zonelist(unsigned int seq)
3752{
3753	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3754		return read_seqretry(&zonelist_update_seq, seq);
3755
3756	return seq;
3757}
3758
3759/* Perform direct synchronous page reclaim */
3760static unsigned long
3761__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3762					const struct alloc_context *ac)
3763{
3764	unsigned int noreclaim_flag;
3765	unsigned long progress;
3766
3767	cond_resched();
3768
3769	/* We now go into synchronous reclaim */
3770	cpuset_memory_pressure_bump();
3771	fs_reclaim_acquire(gfp_mask);
3772	noreclaim_flag = memalloc_noreclaim_save();
3773
3774	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3775								ac->nodemask);
3776
3777	memalloc_noreclaim_restore(noreclaim_flag);
3778	fs_reclaim_release(gfp_mask);
3779
3780	cond_resched();
3781
3782	return progress;
3783}
3784
3785/* The really slow allocator path where we enter direct reclaim */
3786static inline struct page *
3787__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3788		unsigned int alloc_flags, const struct alloc_context *ac,
3789		unsigned long *did_some_progress)
3790{
3791	struct page *page = NULL;
3792	unsigned long pflags;
3793	bool drained = false;
3794
3795	psi_memstall_enter(&pflags);
3796	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3797	if (unlikely(!(*did_some_progress)))
3798		goto out;
3799
3800retry:
3801	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3802
3803	/*
3804	 * If an allocation failed after direct reclaim, it could be because
3805	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3806	 * Shrink them and try again
3807	 */
3808	if (!page && !drained) {
3809		unreserve_highatomic_pageblock(ac, false);
3810		drain_all_pages(NULL);
3811		drained = true;
3812		goto retry;
3813	}
3814out:
3815	psi_memstall_leave(&pflags);
3816
3817	return page;
3818}
3819
3820static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3821			     const struct alloc_context *ac)
3822{
3823	struct zoneref *z;
3824	struct zone *zone;
3825	pg_data_t *last_pgdat = NULL;
3826	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3827
3828	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3829					ac->nodemask) {
3830		if (!managed_zone(zone))
3831			continue;
3832		if (last_pgdat != zone->zone_pgdat) {
3833			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3834			last_pgdat = zone->zone_pgdat;
3835		}
3836	}
3837}
3838
3839static inline unsigned int
3840gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3841{
3842	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3843
3844	/*
3845	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3846	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3847	 * to save two branches.
3848	 */
3849	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3850	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3851
3852	/*
3853	 * The caller may dip into page reserves a bit more if the caller
3854	 * cannot run direct reclaim, or if the caller has realtime scheduling
3855	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3856	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3857	 */
3858	alloc_flags |= (__force int)
3859		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3860
3861	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3862		/*
3863		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3864		 * if it can't schedule.
3865		 */
3866		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3867			alloc_flags |= ALLOC_NON_BLOCK;
3868
3869			if (order > 0)
3870				alloc_flags |= ALLOC_HIGHATOMIC;
3871		}
3872
3873		/*
3874		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3875		 * GFP_ATOMIC) rather than fail, see the comment for
3876		 * cpuset_node_allowed().
3877		 */
3878		if (alloc_flags & ALLOC_MIN_RESERVE)
3879			alloc_flags &= ~ALLOC_CPUSET;
3880	} else if (unlikely(rt_task(current)) && in_task())
3881		alloc_flags |= ALLOC_MIN_RESERVE;
3882
3883	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3884
3885	return alloc_flags;
3886}
3887
3888static bool oom_reserves_allowed(struct task_struct *tsk)
3889{
3890	if (!tsk_is_oom_victim(tsk))
3891		return false;
3892
3893	/*
3894	 * !MMU doesn't have oom reaper so give access to memory reserves
3895	 * only to the thread with TIF_MEMDIE set
3896	 */
3897	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3898		return false;
3899
3900	return true;
3901}
3902
3903/*
3904 * Distinguish requests which really need access to full memory
3905 * reserves from oom victims which can live with a portion of it
3906 */
3907static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3908{
3909	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3910		return 0;
3911	if (gfp_mask & __GFP_MEMALLOC)
3912		return ALLOC_NO_WATERMARKS;
3913	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3914		return ALLOC_NO_WATERMARKS;
3915	if (!in_interrupt()) {
3916		if (current->flags & PF_MEMALLOC)
3917			return ALLOC_NO_WATERMARKS;
3918		else if (oom_reserves_allowed(current))
3919			return ALLOC_OOM;
3920	}
3921
3922	return 0;
3923}
3924
3925bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3926{
3927	return !!__gfp_pfmemalloc_flags(gfp_mask);
3928}
3929
3930/*
3931 * Checks whether it makes sense to retry the reclaim to make a forward progress
3932 * for the given allocation request.
3933 *
3934 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3935 * without success, or when we couldn't even meet the watermark if we
3936 * reclaimed all remaining pages on the LRU lists.
3937 *
3938 * Returns true if a retry is viable or false to enter the oom path.
3939 */
3940static inline bool
3941should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3942		     struct alloc_context *ac, int alloc_flags,
3943		     bool did_some_progress, int *no_progress_loops)
3944{
3945	struct zone *zone;
3946	struct zoneref *z;
3947	bool ret = false;
3948
3949	/*
3950	 * Costly allocations might have made a progress but this doesn't mean
3951	 * their order will become available due to high fragmentation so
3952	 * always increment the no progress counter for them
3953	 */
3954	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3955		*no_progress_loops = 0;
3956	else
3957		(*no_progress_loops)++;
3958
3959	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3960		goto out;
3961
3962
3963	/*
3964	 * Keep reclaiming pages while there is a chance this will lead
3965	 * somewhere.  If none of the target zones can satisfy our allocation
3966	 * request even if all reclaimable pages are considered then we are
3967	 * screwed and have to go OOM.
3968	 */
3969	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3970				ac->highest_zoneidx, ac->nodemask) {
3971		unsigned long available;
3972		unsigned long reclaimable;
3973		unsigned long min_wmark = min_wmark_pages(zone);
3974		bool wmark;
3975
3976		available = reclaimable = zone_reclaimable_pages(zone);
3977		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3978
3979		/*
3980		 * Would the allocation succeed if we reclaimed all
3981		 * reclaimable pages?
3982		 */
3983		wmark = __zone_watermark_ok(zone, order, min_wmark,
3984				ac->highest_zoneidx, alloc_flags, available);
3985		trace_reclaim_retry_zone(z, order, reclaimable,
3986				available, min_wmark, *no_progress_loops, wmark);
3987		if (wmark) {
3988			ret = true;
3989			break;
3990		}
3991	}
3992
3993	/*
3994	 * Memory allocation/reclaim might be called from a WQ context and the
3995	 * current implementation of the WQ concurrency control doesn't
3996	 * recognize that a particular WQ is congested if the worker thread is
3997	 * looping without ever sleeping. Therefore we have to do a short sleep
3998	 * here rather than calling cond_resched().
3999	 */
4000	if (current->flags & PF_WQ_WORKER)
4001		schedule_timeout_uninterruptible(1);
4002	else
4003		cond_resched();
4004out:
4005	/* Before OOM, exhaust highatomic_reserve */
4006	if (!ret)
4007		return unreserve_highatomic_pageblock(ac, true);
4008
4009	return ret;
4010}
4011
4012static inline bool
4013check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4014{
4015	/*
4016	 * It's possible that cpuset's mems_allowed and the nodemask from
4017	 * mempolicy don't intersect. This should be normally dealt with by
4018	 * policy_nodemask(), but it's possible to race with cpuset update in
4019	 * such a way the check therein was true, and then it became false
4020	 * before we got our cpuset_mems_cookie here.
4021	 * This assumes that for all allocations, ac->nodemask can come only
4022	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4023	 * when it does not intersect with the cpuset restrictions) or the
4024	 * caller can deal with a violated nodemask.
4025	 */
4026	if (cpusets_enabled() && ac->nodemask &&
4027			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4028		ac->nodemask = NULL;
4029		return true;
4030	}
4031
4032	/*
4033	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4034	 * possible to race with parallel threads in such a way that our
4035	 * allocation can fail while the mask is being updated. If we are about
4036	 * to fail, check if the cpuset changed during allocation and if so,
4037	 * retry.
4038	 */
4039	if (read_mems_allowed_retry(cpuset_mems_cookie))
4040		return true;
4041
4042	return false;
4043}
4044
4045static inline struct page *
4046__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4047						struct alloc_context *ac)
4048{
4049	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4050	bool can_compact = gfp_compaction_allowed(gfp_mask);
4051	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4052	struct page *page = NULL;
4053	unsigned int alloc_flags;
4054	unsigned long did_some_progress;
4055	enum compact_priority compact_priority;
4056	enum compact_result compact_result;
4057	int compaction_retries;
4058	int no_progress_loops;
4059	unsigned int cpuset_mems_cookie;
4060	unsigned int zonelist_iter_cookie;
4061	int reserve_flags;
4062
4063restart:
4064	compaction_retries = 0;
4065	no_progress_loops = 0;
4066	compact_priority = DEF_COMPACT_PRIORITY;
4067	cpuset_mems_cookie = read_mems_allowed_begin();
4068	zonelist_iter_cookie = zonelist_iter_begin();
4069
4070	/*
4071	 * The fast path uses conservative alloc_flags to succeed only until
4072	 * kswapd needs to be woken up, and to avoid the cost of setting up
4073	 * alloc_flags precisely. So we do that now.
4074	 */
4075	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4076
4077	/*
4078	 * We need to recalculate the starting point for the zonelist iterator
4079	 * because we might have used different nodemask in the fast path, or
4080	 * there was a cpuset modification and we are retrying - otherwise we
4081	 * could end up iterating over non-eligible zones endlessly.
4082	 */
4083	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4084					ac->highest_zoneidx, ac->nodemask);
4085	if (!ac->preferred_zoneref->zone)
4086		goto nopage;
4087
4088	/*
4089	 * Check for insane configurations where the cpuset doesn't contain
4090	 * any suitable zone to satisfy the request - e.g. non-movable
4091	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4092	 */
4093	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4094		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4095					ac->highest_zoneidx,
4096					&cpuset_current_mems_allowed);
4097		if (!z->zone)
4098			goto nopage;
4099	}
4100
4101	if (alloc_flags & ALLOC_KSWAPD)
4102		wake_all_kswapds(order, gfp_mask, ac);
4103
4104	/*
4105	 * The adjusted alloc_flags might result in immediate success, so try
4106	 * that first
4107	 */
4108	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4109	if (page)
4110		goto got_pg;
4111
4112	/*
4113	 * For costly allocations, try direct compaction first, as it's likely
4114	 * that we have enough base pages and don't need to reclaim. For non-
4115	 * movable high-order allocations, do that as well, as compaction will
4116	 * try prevent permanent fragmentation by migrating from blocks of the
4117	 * same migratetype.
4118	 * Don't try this for allocations that are allowed to ignore
4119	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4120	 */
4121	if (can_direct_reclaim && can_compact &&
4122			(costly_order ||
4123			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4124			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4125		page = __alloc_pages_direct_compact(gfp_mask, order,
4126						alloc_flags, ac,
4127						INIT_COMPACT_PRIORITY,
4128						&compact_result);
4129		if (page)
4130			goto got_pg;
4131
4132		/*
4133		 * Checks for costly allocations with __GFP_NORETRY, which
4134		 * includes some THP page fault allocations
4135		 */
4136		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4137			/*
4138			 * If allocating entire pageblock(s) and compaction
4139			 * failed because all zones are below low watermarks
4140			 * or is prohibited because it recently failed at this
4141			 * order, fail immediately unless the allocator has
4142			 * requested compaction and reclaim retry.
4143			 *
4144			 * Reclaim is
4145			 *  - potentially very expensive because zones are far
4146			 *    below their low watermarks or this is part of very
4147			 *    bursty high order allocations,
4148			 *  - not guaranteed to help because isolate_freepages()
4149			 *    may not iterate over freed pages as part of its
4150			 *    linear scan, and
4151			 *  - unlikely to make entire pageblocks free on its
4152			 *    own.
4153			 */
4154			if (compact_result == COMPACT_SKIPPED ||
4155			    compact_result == COMPACT_DEFERRED)
4156				goto nopage;
4157
4158			/*
4159			 * Looks like reclaim/compaction is worth trying, but
4160			 * sync compaction could be very expensive, so keep
4161			 * using async compaction.
4162			 */
4163			compact_priority = INIT_COMPACT_PRIORITY;
4164		}
4165	}
4166
4167retry:
4168	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4169	if (alloc_flags & ALLOC_KSWAPD)
4170		wake_all_kswapds(order, gfp_mask, ac);
4171
4172	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4173	if (reserve_flags)
4174		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4175					  (alloc_flags & ALLOC_KSWAPD);
4176
4177	/*
4178	 * Reset the nodemask and zonelist iterators if memory policies can be
4179	 * ignored. These allocations are high priority and system rather than
4180	 * user oriented.
4181	 */
4182	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4183		ac->nodemask = NULL;
4184		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4185					ac->highest_zoneidx, ac->nodemask);
4186	}
4187
4188	/* Attempt with potentially adjusted zonelist and alloc_flags */
4189	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4190	if (page)
4191		goto got_pg;
4192
4193	/* Caller is not willing to reclaim, we can't balance anything */
4194	if (!can_direct_reclaim)
4195		goto nopage;
4196
4197	/* Avoid recursion of direct reclaim */
4198	if (current->flags & PF_MEMALLOC)
4199		goto nopage;
4200
4201	/* Try direct reclaim and then allocating */
4202	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4203							&did_some_progress);
4204	if (page)
4205		goto got_pg;
4206
4207	/* Try direct compaction and then allocating */
4208	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4209					compact_priority, &compact_result);
4210	if (page)
4211		goto got_pg;
4212
4213	/* Do not loop if specifically requested */
4214	if (gfp_mask & __GFP_NORETRY)
4215		goto nopage;
4216
4217	/*
4218	 * Do not retry costly high order allocations unless they are
4219	 * __GFP_RETRY_MAYFAIL and we can compact
4220	 */
4221	if (costly_order && (!can_compact ||
4222			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4223		goto nopage;
4224
4225	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4226				 did_some_progress > 0, &no_progress_loops))
4227		goto retry;
4228
4229	/*
4230	 * It doesn't make any sense to retry for the compaction if the order-0
4231	 * reclaim is not able to make any progress because the current
4232	 * implementation of the compaction depends on the sufficient amount
4233	 * of free memory (see __compaction_suitable)
4234	 */
4235	if (did_some_progress > 0 && can_compact &&
4236			should_compact_retry(ac, order, alloc_flags,
4237				compact_result, &compact_priority,
4238				&compaction_retries))
4239		goto retry;
4240
4241
4242	/*
4243	 * Deal with possible cpuset update races or zonelist updates to avoid
4244	 * a unnecessary OOM kill.
4245	 */
4246	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4247	    check_retry_zonelist(zonelist_iter_cookie))
4248		goto restart;
4249
4250	/* Reclaim has failed us, start killing things */
4251	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4252	if (page)
4253		goto got_pg;
4254
4255	/* Avoid allocations with no watermarks from looping endlessly */
4256	if (tsk_is_oom_victim(current) &&
4257	    (alloc_flags & ALLOC_OOM ||
4258	     (gfp_mask & __GFP_NOMEMALLOC)))
4259		goto nopage;
4260
4261	/* Retry as long as the OOM killer is making progress */
4262	if (did_some_progress) {
4263		no_progress_loops = 0;
4264		goto retry;
4265	}
4266
4267nopage:
4268	/*
4269	 * Deal with possible cpuset update races or zonelist updates to avoid
4270	 * a unnecessary OOM kill.
4271	 */
4272	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4273	    check_retry_zonelist(zonelist_iter_cookie))
4274		goto restart;
4275
4276	/*
4277	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4278	 * we always retry
4279	 */
4280	if (gfp_mask & __GFP_NOFAIL) {
4281		/*
4282		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4283		 * of any new users that actually require GFP_NOWAIT
4284		 */
4285		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4286			goto fail;
4287
4288		/*
4289		 * PF_MEMALLOC request from this context is rather bizarre
4290		 * because we cannot reclaim anything and only can loop waiting
4291		 * for somebody to do a work for us
4292		 */
4293		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4294
4295		/*
4296		 * non failing costly orders are a hard requirement which we
4297		 * are not prepared for much so let's warn about these users
4298		 * so that we can identify them and convert them to something
4299		 * else.
4300		 */
4301		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4302
4303		/*
4304		 * Help non-failing allocations by giving some access to memory
4305		 * reserves normally used for high priority non-blocking
4306		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4307		 * could deplete whole memory reserves which would just make
4308		 * the situation worse.
4309		 */
4310		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4311		if (page)
4312			goto got_pg;
4313
4314		cond_resched();
4315		goto retry;
4316	}
4317fail:
4318	warn_alloc(gfp_mask, ac->nodemask,
4319			"page allocation failure: order:%u", order);
4320got_pg:
4321	return page;
4322}
4323
4324static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4325		int preferred_nid, nodemask_t *nodemask,
4326		struct alloc_context *ac, gfp_t *alloc_gfp,
4327		unsigned int *alloc_flags)
4328{
4329	ac->highest_zoneidx = gfp_zone(gfp_mask);
4330	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4331	ac->nodemask = nodemask;
4332	ac->migratetype = gfp_migratetype(gfp_mask);
4333
4334	if (cpusets_enabled()) {
4335		*alloc_gfp |= __GFP_HARDWALL;
4336		/*
4337		 * When we are in the interrupt context, it is irrelevant
4338		 * to the current task context. It means that any node ok.
4339		 */
4340		if (in_task() && !ac->nodemask)
4341			ac->nodemask = &cpuset_current_mems_allowed;
4342		else
4343			*alloc_flags |= ALLOC_CPUSET;
4344	}
4345
4346	might_alloc(gfp_mask);
4347
4348	if (should_fail_alloc_page(gfp_mask, order))
4349		return false;
4350
4351	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4352
4353	/* Dirty zone balancing only done in the fast path */
4354	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4355
4356	/*
4357	 * The preferred zone is used for statistics but crucially it is
4358	 * also used as the starting point for the zonelist iterator. It
4359	 * may get reset for allocations that ignore memory policies.
4360	 */
4361	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4362					ac->highest_zoneidx, ac->nodemask);
4363
4364	return true;
4365}
4366
4367/*
4368 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4369 * @gfp: GFP flags for the allocation
4370 * @preferred_nid: The preferred NUMA node ID to allocate from
4371 * @nodemask: Set of nodes to allocate from, may be NULL
4372 * @nr_pages: The number of pages desired on the list or array
4373 * @page_list: Optional list to store the allocated pages
4374 * @page_array: Optional array to store the pages
4375 *
4376 * This is a batched version of the page allocator that attempts to
4377 * allocate nr_pages quickly. Pages are added to page_list if page_list
4378 * is not NULL, otherwise it is assumed that the page_array is valid.
4379 *
4380 * For lists, nr_pages is the number of pages that should be allocated.
4381 *
4382 * For arrays, only NULL elements are populated with pages and nr_pages
4383 * is the maximum number of pages that will be stored in the array.
4384 *
4385 * Returns the number of pages on the list or array.
4386 */
4387unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4388			nodemask_t *nodemask, int nr_pages,
4389			struct list_head *page_list,
4390			struct page **page_array)
4391{
4392	struct page *page;
4393	unsigned long __maybe_unused UP_flags;
4394	struct zone *zone;
4395	struct zoneref *z;
4396	struct per_cpu_pages *pcp;
4397	struct list_head *pcp_list;
4398	struct alloc_context ac;
4399	gfp_t alloc_gfp;
4400	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4401	int nr_populated = 0, nr_account = 0;
4402
4403	/*
4404	 * Skip populated array elements to determine if any pages need
4405	 * to be allocated before disabling IRQs.
4406	 */
4407	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4408		nr_populated++;
4409
4410	/* No pages requested? */
4411	if (unlikely(nr_pages <= 0))
4412		goto out;
4413
4414	/* Already populated array? */
4415	if (unlikely(page_array && nr_pages - nr_populated == 0))
4416		goto out;
4417
4418	/* Bulk allocator does not support memcg accounting. */
4419	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4420		goto failed;
4421
4422	/* Use the single page allocator for one page. */
4423	if (nr_pages - nr_populated == 1)
4424		goto failed;
4425
4426#ifdef CONFIG_PAGE_OWNER
4427	/*
4428	 * PAGE_OWNER may recurse into the allocator to allocate space to
4429	 * save the stack with pagesets.lock held. Releasing/reacquiring
4430	 * removes much of the performance benefit of bulk allocation so
4431	 * force the caller to allocate one page at a time as it'll have
4432	 * similar performance to added complexity to the bulk allocator.
4433	 */
4434	if (static_branch_unlikely(&page_owner_inited))
4435		goto failed;
4436#endif
4437
4438	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4439	gfp &= gfp_allowed_mask;
4440	alloc_gfp = gfp;
4441	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4442		goto out;
4443	gfp = alloc_gfp;
4444
4445	/* Find an allowed local zone that meets the low watermark. */
4446	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4447		unsigned long mark;
4448
4449		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4450		    !__cpuset_zone_allowed(zone, gfp)) {
4451			continue;
4452		}
4453
4454		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4455		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4456			goto failed;
4457		}
4458
4459		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4460		if (zone_watermark_fast(zone, 0,  mark,
4461				zonelist_zone_idx(ac.preferred_zoneref),
4462				alloc_flags, gfp)) {
4463			break;
4464		}
4465	}
4466
4467	/*
4468	 * If there are no allowed local zones that meets the watermarks then
4469	 * try to allocate a single page and reclaim if necessary.
4470	 */
4471	if (unlikely(!zone))
4472		goto failed;
4473
4474	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4475	pcp_trylock_prepare(UP_flags);
4476	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4477	if (!pcp)
4478		goto failed_irq;
4479
4480	/* Attempt the batch allocation */
4481	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4482	while (nr_populated < nr_pages) {
4483
4484		/* Skip existing pages */
4485		if (page_array && page_array[nr_populated]) {
4486			nr_populated++;
4487			continue;
4488		}
4489
4490		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4491								pcp, pcp_list);
4492		if (unlikely(!page)) {
4493			/* Try and allocate at least one page */
4494			if (!nr_account) {
4495				pcp_spin_unlock(pcp);
4496				goto failed_irq;
4497			}
4498			break;
4499		}
4500		nr_account++;
4501
4502		prep_new_page(page, 0, gfp, 0);
4503		if (page_list)
4504			list_add(&page->lru, page_list);
4505		else
4506			page_array[nr_populated] = page;
4507		nr_populated++;
4508	}
4509
4510	pcp_spin_unlock(pcp);
4511	pcp_trylock_finish(UP_flags);
4512
4513	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4514	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4515
4516out:
4517	return nr_populated;
4518
4519failed_irq:
4520	pcp_trylock_finish(UP_flags);
4521
4522failed:
4523	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4524	if (page) {
4525		if (page_list)
4526			list_add(&page->lru, page_list);
4527		else
4528			page_array[nr_populated] = page;
4529		nr_populated++;
4530	}
4531
4532	goto out;
4533}
4534EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4535
4536/*
4537 * This is the 'heart' of the zoned buddy allocator.
4538 */
4539struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4540							nodemask_t *nodemask)
4541{
4542	struct page *page;
4543	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4544	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4545	struct alloc_context ac = { };
4546
4547	/*
4548	 * There are several places where we assume that the order value is sane
4549	 * so bail out early if the request is out of bound.
4550	 */
4551	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4552		return NULL;
4553
4554	gfp &= gfp_allowed_mask;
4555	/*
4556	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4557	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4558	 * from a particular context which has been marked by
4559	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4560	 * movable zones are not used during allocation.
4561	 */
4562	gfp = current_gfp_context(gfp);
4563	alloc_gfp = gfp;
4564	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4565			&alloc_gfp, &alloc_flags))
4566		return NULL;
4567
4568	/*
4569	 * Forbid the first pass from falling back to types that fragment
4570	 * memory until all local zones are considered.
4571	 */
4572	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4573
4574	/* First allocation attempt */
4575	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4576	if (likely(page))
4577		goto out;
4578
4579	alloc_gfp = gfp;
4580	ac.spread_dirty_pages = false;
4581
4582	/*
4583	 * Restore the original nodemask if it was potentially replaced with
4584	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4585	 */
4586	ac.nodemask = nodemask;
4587
4588	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4589
4590out:
4591	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4592	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4593		__free_pages(page, order);
4594		page = NULL;
4595	}
4596
4597	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4598	kmsan_alloc_page(page, order, alloc_gfp);
4599
4600	return page;
4601}
4602EXPORT_SYMBOL(__alloc_pages);
4603
4604struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4605		nodemask_t *nodemask)
4606{
4607	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4608					preferred_nid, nodemask);
4609	return page_rmappable_folio(page);
4610}
4611EXPORT_SYMBOL(__folio_alloc);
4612
4613/*
4614 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4615 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4616 * you need to access high mem.
4617 */
4618unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4619{
4620	struct page *page;
4621
4622	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4623	if (!page)
4624		return 0;
4625	return (unsigned long) page_address(page);
4626}
4627EXPORT_SYMBOL(__get_free_pages);
4628
4629unsigned long get_zeroed_page(gfp_t gfp_mask)
4630{
4631	return __get_free_page(gfp_mask | __GFP_ZERO);
4632}
4633EXPORT_SYMBOL(get_zeroed_page);
4634
4635/**
4636 * __free_pages - Free pages allocated with alloc_pages().
4637 * @page: The page pointer returned from alloc_pages().
4638 * @order: The order of the allocation.
4639 *
4640 * This function can free multi-page allocations that are not compound
4641 * pages.  It does not check that the @order passed in matches that of
4642 * the allocation, so it is easy to leak memory.  Freeing more memory
4643 * than was allocated will probably emit a warning.
4644 *
4645 * If the last reference to this page is speculative, it will be released
4646 * by put_page() which only frees the first page of a non-compound
4647 * allocation.  To prevent the remaining pages from being leaked, we free
4648 * the subsequent pages here.  If you want to use the page's reference
4649 * count to decide when to free the allocation, you should allocate a
4650 * compound page, and use put_page() instead of __free_pages().
4651 *
4652 * Context: May be called in interrupt context or while holding a normal
4653 * spinlock, but not in NMI context or while holding a raw spinlock.
4654 */
4655void __free_pages(struct page *page, unsigned int order)
4656{
4657	/* get PageHead before we drop reference */
4658	int head = PageHead(page);
4659
4660	if (put_page_testzero(page))
4661		free_the_page(page, order);
4662	else if (!head)
4663		while (order-- > 0)
4664			free_the_page(page + (1 << order), order);
4665}
4666EXPORT_SYMBOL(__free_pages);
4667
4668void free_pages(unsigned long addr, unsigned int order)
4669{
4670	if (addr != 0) {
4671		VM_BUG_ON(!virt_addr_valid((void *)addr));
4672		__free_pages(virt_to_page((void *)addr), order);
4673	}
4674}
4675
4676EXPORT_SYMBOL(free_pages);
4677
4678/*
4679 * Page Fragment:
4680 *  An arbitrary-length arbitrary-offset area of memory which resides
4681 *  within a 0 or higher order page.  Multiple fragments within that page
4682 *  are individually refcounted, in the page's reference counter.
4683 *
4684 * The page_frag functions below provide a simple allocation framework for
4685 * page fragments.  This is used by the network stack and network device
4686 * drivers to provide a backing region of memory for use as either an
4687 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4688 */
4689static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4690					     gfp_t gfp_mask)
4691{
4692	struct page *page = NULL;
4693	gfp_t gfp = gfp_mask;
4694
4695#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4696	gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) |  __GFP_COMP |
4697		   __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC;
4698	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4699				PAGE_FRAG_CACHE_MAX_ORDER);
4700	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4701#endif
4702	if (unlikely(!page))
4703		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4704
4705	nc->va = page ? page_address(page) : NULL;
4706
4707	return page;
4708}
4709
4710void page_frag_cache_drain(struct page_frag_cache *nc)
4711{
4712	if (!nc->va)
4713		return;
4714
4715	__page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias);
4716	nc->va = NULL;
4717}
4718EXPORT_SYMBOL(page_frag_cache_drain);
4719
4720void __page_frag_cache_drain(struct page *page, unsigned int count)
4721{
4722	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4723
4724	if (page_ref_sub_and_test(page, count))
4725		free_the_page(page, compound_order(page));
4726}
4727EXPORT_SYMBOL(__page_frag_cache_drain);
4728
4729void *__page_frag_alloc_align(struct page_frag_cache *nc,
4730			      unsigned int fragsz, gfp_t gfp_mask,
4731			      unsigned int align_mask)
4732{
4733	unsigned int size = PAGE_SIZE;
4734	struct page *page;
4735	int offset;
4736
4737	if (unlikely(!nc->va)) {
4738refill:
4739		page = __page_frag_cache_refill(nc, gfp_mask);
4740		if (!page)
4741			return NULL;
4742
4743#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4744		/* if size can vary use size else just use PAGE_SIZE */
4745		size = nc->size;
4746#endif
4747		/* Even if we own the page, we do not use atomic_set().
4748		 * This would break get_page_unless_zero() users.
4749		 */
4750		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4751
4752		/* reset page count bias and offset to start of new frag */
4753		nc->pfmemalloc = page_is_pfmemalloc(page);
4754		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4755		nc->offset = size;
4756	}
4757
4758	offset = nc->offset - fragsz;
4759	if (unlikely(offset < 0)) {
4760		page = virt_to_page(nc->va);
4761
4762		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4763			goto refill;
4764
4765		if (unlikely(nc->pfmemalloc)) {
4766			free_the_page(page, compound_order(page));
4767			goto refill;
4768		}
4769
4770#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4771		/* if size can vary use size else just use PAGE_SIZE */
4772		size = nc->size;
4773#endif
4774		/* OK, page count is 0, we can safely set it */
4775		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4776
4777		/* reset page count bias and offset to start of new frag */
4778		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4779		offset = size - fragsz;
4780		if (unlikely(offset < 0)) {
4781			/*
4782			 * The caller is trying to allocate a fragment
4783			 * with fragsz > PAGE_SIZE but the cache isn't big
4784			 * enough to satisfy the request, this may
4785			 * happen in low memory conditions.
4786			 * We don't release the cache page because
4787			 * it could make memory pressure worse
4788			 * so we simply return NULL here.
4789			 */
4790			return NULL;
4791		}
4792	}
4793
4794	nc->pagecnt_bias--;
4795	offset &= align_mask;
4796	nc->offset = offset;
4797
4798	return nc->va + offset;
4799}
4800EXPORT_SYMBOL(__page_frag_alloc_align);
4801
4802/*
4803 * Frees a page fragment allocated out of either a compound or order 0 page.
4804 */
4805void page_frag_free(void *addr)
4806{
4807	struct page *page = virt_to_head_page(addr);
4808
4809	if (unlikely(put_page_testzero(page)))
4810		free_the_page(page, compound_order(page));
4811}
4812EXPORT_SYMBOL(page_frag_free);
4813
4814static void *make_alloc_exact(unsigned long addr, unsigned int order,
4815		size_t size)
4816{
4817	if (addr) {
4818		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4819		struct page *page = virt_to_page((void *)addr);
4820		struct page *last = page + nr;
4821
4822		split_page_owner(page, order, 0);
4823		split_page_memcg(page, order, 0);
4824		while (page < --last)
4825			set_page_refcounted(last);
4826
4827		last = page + (1UL << order);
4828		for (page += nr; page < last; page++)
4829			__free_pages_ok(page, 0, FPI_TO_TAIL);
4830	}
4831	return (void *)addr;
4832}
4833
4834/**
4835 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4836 * @size: the number of bytes to allocate
4837 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4838 *
4839 * This function is similar to alloc_pages(), except that it allocates the
4840 * minimum number of pages to satisfy the request.  alloc_pages() can only
4841 * allocate memory in power-of-two pages.
4842 *
4843 * This function is also limited by MAX_PAGE_ORDER.
4844 *
4845 * Memory allocated by this function must be released by free_pages_exact().
4846 *
4847 * Return: pointer to the allocated area or %NULL in case of error.
4848 */
4849void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4850{
4851	unsigned int order = get_order(size);
4852	unsigned long addr;
4853
4854	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4855		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4856
4857	addr = __get_free_pages(gfp_mask, order);
4858	return make_alloc_exact(addr, order, size);
4859}
4860EXPORT_SYMBOL(alloc_pages_exact);
4861
4862/**
4863 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4864 *			   pages on a node.
4865 * @nid: the preferred node ID where memory should be allocated
4866 * @size: the number of bytes to allocate
4867 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4868 *
4869 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4870 * back.
4871 *
4872 * Return: pointer to the allocated area or %NULL in case of error.
4873 */
4874void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4875{
4876	unsigned int order = get_order(size);
4877	struct page *p;
4878
4879	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4880		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4881
4882	p = alloc_pages_node(nid, gfp_mask, order);
4883	if (!p)
4884		return NULL;
4885	return make_alloc_exact((unsigned long)page_address(p), order, size);
4886}
4887
4888/**
4889 * free_pages_exact - release memory allocated via alloc_pages_exact()
4890 * @virt: the value returned by alloc_pages_exact.
4891 * @size: size of allocation, same value as passed to alloc_pages_exact().
4892 *
4893 * Release the memory allocated by a previous call to alloc_pages_exact.
4894 */
4895void free_pages_exact(void *virt, size_t size)
4896{
4897	unsigned long addr = (unsigned long)virt;
4898	unsigned long end = addr + PAGE_ALIGN(size);
4899
4900	while (addr < end) {
4901		free_page(addr);
4902		addr += PAGE_SIZE;
4903	}
4904}
4905EXPORT_SYMBOL(free_pages_exact);
4906
4907/**
4908 * nr_free_zone_pages - count number of pages beyond high watermark
4909 * @offset: The zone index of the highest zone
4910 *
4911 * nr_free_zone_pages() counts the number of pages which are beyond the
4912 * high watermark within all zones at or below a given zone index.  For each
4913 * zone, the number of pages is calculated as:
4914 *
4915 *     nr_free_zone_pages = managed_pages - high_pages
4916 *
4917 * Return: number of pages beyond high watermark.
4918 */
4919static unsigned long nr_free_zone_pages(int offset)
4920{
4921	struct zoneref *z;
4922	struct zone *zone;
4923
4924	/* Just pick one node, since fallback list is circular */
4925	unsigned long sum = 0;
4926
4927	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4928
4929	for_each_zone_zonelist(zone, z, zonelist, offset) {
4930		unsigned long size = zone_managed_pages(zone);
4931		unsigned long high = high_wmark_pages(zone);
4932		if (size > high)
4933			sum += size - high;
4934	}
4935
4936	return sum;
4937}
4938
4939/**
4940 * nr_free_buffer_pages - count number of pages beyond high watermark
4941 *
4942 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4943 * watermark within ZONE_DMA and ZONE_NORMAL.
4944 *
4945 * Return: number of pages beyond high watermark within ZONE_DMA and
4946 * ZONE_NORMAL.
4947 */
4948unsigned long nr_free_buffer_pages(void)
4949{
4950	return nr_free_zone_pages(gfp_zone(GFP_USER));
4951}
4952EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4953
4954static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4955{
4956	zoneref->zone = zone;
4957	zoneref->zone_idx = zone_idx(zone);
4958}
4959
4960/*
4961 * Builds allocation fallback zone lists.
4962 *
4963 * Add all populated zones of a node to the zonelist.
4964 */
4965static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4966{
4967	struct zone *zone;
4968	enum zone_type zone_type = MAX_NR_ZONES;
4969	int nr_zones = 0;
4970
4971	do {
4972		zone_type--;
4973		zone = pgdat->node_zones + zone_type;
4974		if (populated_zone(zone)) {
4975			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4976			check_highest_zone(zone_type);
4977		}
4978	} while (zone_type);
4979
4980	return nr_zones;
4981}
4982
4983#ifdef CONFIG_NUMA
4984
4985static int __parse_numa_zonelist_order(char *s)
4986{
4987	/*
4988	 * We used to support different zonelists modes but they turned
4989	 * out to be just not useful. Let's keep the warning in place
4990	 * if somebody still use the cmd line parameter so that we do
4991	 * not fail it silently
4992	 */
4993	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4994		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4995		return -EINVAL;
4996	}
4997	return 0;
4998}
4999
5000static char numa_zonelist_order[] = "Node";
5001#define NUMA_ZONELIST_ORDER_LEN	16
5002/*
5003 * sysctl handler for numa_zonelist_order
5004 */
5005static int numa_zonelist_order_handler(struct ctl_table *table, int write,
5006		void *buffer, size_t *length, loff_t *ppos)
5007{
5008	if (write)
5009		return __parse_numa_zonelist_order(buffer);
5010	return proc_dostring(table, write, buffer, length, ppos);
5011}
5012
5013static int node_load[MAX_NUMNODES];
5014
5015/**
5016 * find_next_best_node - find the next node that should appear in a given node's fallback list
5017 * @node: node whose fallback list we're appending
5018 * @used_node_mask: nodemask_t of already used nodes
5019 *
5020 * We use a number of factors to determine which is the next node that should
5021 * appear on a given node's fallback list.  The node should not have appeared
5022 * already in @node's fallback list, and it should be the next closest node
5023 * according to the distance array (which contains arbitrary distance values
5024 * from each node to each node in the system), and should also prefer nodes
5025 * with no CPUs, since presumably they'll have very little allocation pressure
5026 * on them otherwise.
5027 *
5028 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5029 */
5030int find_next_best_node(int node, nodemask_t *used_node_mask)
5031{
5032	int n, val;
5033	int min_val = INT_MAX;
5034	int best_node = NUMA_NO_NODE;
5035
5036	/*
5037	 * Use the local node if we haven't already, but for memoryless local
5038	 * node, we should skip it and fall back to other nodes.
5039	 */
5040	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5041		node_set(node, *used_node_mask);
5042		return node;
5043	}
5044
5045	for_each_node_state(n, N_MEMORY) {
5046
5047		/* Don't want a node to appear more than once */
5048		if (node_isset(n, *used_node_mask))
5049			continue;
5050
5051		/* Use the distance array to find the distance */
5052		val = node_distance(node, n);
5053
5054		/* Penalize nodes under us ("prefer the next node") */
5055		val += (n < node);
5056
5057		/* Give preference to headless and unused nodes */
5058		if (!cpumask_empty(cpumask_of_node(n)))
5059			val += PENALTY_FOR_NODE_WITH_CPUS;
5060
5061		/* Slight preference for less loaded node */
5062		val *= MAX_NUMNODES;
5063		val += node_load[n];
5064
5065		if (val < min_val) {
5066			min_val = val;
5067			best_node = n;
5068		}
5069	}
5070
5071	if (best_node >= 0)
5072		node_set(best_node, *used_node_mask);
5073
5074	return best_node;
5075}
5076
5077
5078/*
5079 * Build zonelists ordered by node and zones within node.
5080 * This results in maximum locality--normal zone overflows into local
5081 * DMA zone, if any--but risks exhausting DMA zone.
5082 */
5083static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5084		unsigned nr_nodes)
5085{
5086	struct zoneref *zonerefs;
5087	int i;
5088
5089	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5090
5091	for (i = 0; i < nr_nodes; i++) {
5092		int nr_zones;
5093
5094		pg_data_t *node = NODE_DATA(node_order[i]);
5095
5096		nr_zones = build_zonerefs_node(node, zonerefs);
5097		zonerefs += nr_zones;
5098	}
5099	zonerefs->zone = NULL;
5100	zonerefs->zone_idx = 0;
5101}
5102
5103/*
5104 * Build gfp_thisnode zonelists
5105 */
5106static void build_thisnode_zonelists(pg_data_t *pgdat)
5107{
5108	struct zoneref *zonerefs;
5109	int nr_zones;
5110
5111	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5112	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5113	zonerefs += nr_zones;
5114	zonerefs->zone = NULL;
5115	zonerefs->zone_idx = 0;
5116}
5117
5118/*
5119 * Build zonelists ordered by zone and nodes within zones.
5120 * This results in conserving DMA zone[s] until all Normal memory is
5121 * exhausted, but results in overflowing to remote node while memory
5122 * may still exist in local DMA zone.
5123 */
5124
5125static void build_zonelists(pg_data_t *pgdat)
5126{
5127	static int node_order[MAX_NUMNODES];
5128	int node, nr_nodes = 0;
5129	nodemask_t used_mask = NODE_MASK_NONE;
5130	int local_node, prev_node;
5131
5132	/* NUMA-aware ordering of nodes */
5133	local_node = pgdat->node_id;
5134	prev_node = local_node;
5135
5136	memset(node_order, 0, sizeof(node_order));
5137	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5138		/*
5139		 * We don't want to pressure a particular node.
5140		 * So adding penalty to the first node in same
5141		 * distance group to make it round-robin.
5142		 */
5143		if (node_distance(local_node, node) !=
5144		    node_distance(local_node, prev_node))
5145			node_load[node] += 1;
5146
5147		node_order[nr_nodes++] = node;
5148		prev_node = node;
5149	}
5150
5151	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5152	build_thisnode_zonelists(pgdat);
5153	pr_info("Fallback order for Node %d: ", local_node);
5154	for (node = 0; node < nr_nodes; node++)
5155		pr_cont("%d ", node_order[node]);
5156	pr_cont("\n");
5157}
5158
5159#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5160/*
5161 * Return node id of node used for "local" allocations.
5162 * I.e., first node id of first zone in arg node's generic zonelist.
5163 * Used for initializing percpu 'numa_mem', which is used primarily
5164 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5165 */
5166int local_memory_node(int node)
5167{
5168	struct zoneref *z;
5169
5170	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5171				   gfp_zone(GFP_KERNEL),
5172				   NULL);
5173	return zone_to_nid(z->zone);
5174}
5175#endif
5176
5177static void setup_min_unmapped_ratio(void);
5178static void setup_min_slab_ratio(void);
5179#else	/* CONFIG_NUMA */
5180
5181static void build_zonelists(pg_data_t *pgdat)
5182{
5183	int node, local_node;
5184	struct zoneref *zonerefs;
5185	int nr_zones;
5186
5187	local_node = pgdat->node_id;
5188
5189	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5190	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5191	zonerefs += nr_zones;
5192
5193	/*
5194	 * Now we build the zonelist so that it contains the zones
5195	 * of all the other nodes.
5196	 * We don't want to pressure a particular node, so when
5197	 * building the zones for node N, we make sure that the
5198	 * zones coming right after the local ones are those from
5199	 * node N+1 (modulo N)
5200	 */
5201	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5202		if (!node_online(node))
5203			continue;
5204		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5205		zonerefs += nr_zones;
5206	}
5207	for (node = 0; node < local_node; node++) {
5208		if (!node_online(node))
5209			continue;
5210		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5211		zonerefs += nr_zones;
5212	}
5213
5214	zonerefs->zone = NULL;
5215	zonerefs->zone_idx = 0;
5216}
5217
5218#endif	/* CONFIG_NUMA */
5219
5220/*
5221 * Boot pageset table. One per cpu which is going to be used for all
5222 * zones and all nodes. The parameters will be set in such a way
5223 * that an item put on a list will immediately be handed over to
5224 * the buddy list. This is safe since pageset manipulation is done
5225 * with interrupts disabled.
5226 *
5227 * The boot_pagesets must be kept even after bootup is complete for
5228 * unused processors and/or zones. They do play a role for bootstrapping
5229 * hotplugged processors.
5230 *
5231 * zoneinfo_show() and maybe other functions do
5232 * not check if the processor is online before following the pageset pointer.
5233 * Other parts of the kernel may not check if the zone is available.
5234 */
5235static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5236/* These effectively disable the pcplists in the boot pageset completely */
5237#define BOOT_PAGESET_HIGH	0
5238#define BOOT_PAGESET_BATCH	1
5239static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5240static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5241
5242static void __build_all_zonelists(void *data)
5243{
5244	int nid;
5245	int __maybe_unused cpu;
5246	pg_data_t *self = data;
5247	unsigned long flags;
5248
5249	/*
5250	 * The zonelist_update_seq must be acquired with irqsave because the
5251	 * reader can be invoked from IRQ with GFP_ATOMIC.
5252	 */
5253	write_seqlock_irqsave(&zonelist_update_seq, flags);
5254	/*
5255	 * Also disable synchronous printk() to prevent any printk() from
5256	 * trying to hold port->lock, for
5257	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5258	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5259	 */
5260	printk_deferred_enter();
5261
5262#ifdef CONFIG_NUMA
5263	memset(node_load, 0, sizeof(node_load));
5264#endif
5265
5266	/*
5267	 * This node is hotadded and no memory is yet present.   So just
5268	 * building zonelists is fine - no need to touch other nodes.
5269	 */
5270	if (self && !node_online(self->node_id)) {
5271		build_zonelists(self);
5272	} else {
5273		/*
5274		 * All possible nodes have pgdat preallocated
5275		 * in free_area_init
5276		 */
5277		for_each_node(nid) {
5278			pg_data_t *pgdat = NODE_DATA(nid);
5279
5280			build_zonelists(pgdat);
5281		}
5282
5283#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5284		/*
5285		 * We now know the "local memory node" for each node--
5286		 * i.e., the node of the first zone in the generic zonelist.
5287		 * Set up numa_mem percpu variable for on-line cpus.  During
5288		 * boot, only the boot cpu should be on-line;  we'll init the
5289		 * secondary cpus' numa_mem as they come on-line.  During
5290		 * node/memory hotplug, we'll fixup all on-line cpus.
5291		 */
5292		for_each_online_cpu(cpu)
5293			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5294#endif
5295	}
5296
5297	printk_deferred_exit();
5298	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5299}
5300
5301static noinline void __init
5302build_all_zonelists_init(void)
5303{
5304	int cpu;
5305
5306	__build_all_zonelists(NULL);
5307
5308	/*
5309	 * Initialize the boot_pagesets that are going to be used
5310	 * for bootstrapping processors. The real pagesets for
5311	 * each zone will be allocated later when the per cpu
5312	 * allocator is available.
5313	 *
5314	 * boot_pagesets are used also for bootstrapping offline
5315	 * cpus if the system is already booted because the pagesets
5316	 * are needed to initialize allocators on a specific cpu too.
5317	 * F.e. the percpu allocator needs the page allocator which
5318	 * needs the percpu allocator in order to allocate its pagesets
5319	 * (a chicken-egg dilemma).
5320	 */
5321	for_each_possible_cpu(cpu)
5322		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5323
5324	mminit_verify_zonelist();
5325	cpuset_init_current_mems_allowed();
5326}
5327
5328/*
5329 * unless system_state == SYSTEM_BOOTING.
5330 *
5331 * __ref due to call of __init annotated helper build_all_zonelists_init
5332 * [protected by SYSTEM_BOOTING].
5333 */
5334void __ref build_all_zonelists(pg_data_t *pgdat)
5335{
5336	unsigned long vm_total_pages;
5337
5338	if (system_state == SYSTEM_BOOTING) {
5339		build_all_zonelists_init();
5340	} else {
5341		__build_all_zonelists(pgdat);
5342		/* cpuset refresh routine should be here */
5343	}
5344	/* Get the number of free pages beyond high watermark in all zones. */
5345	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5346	/*
5347	 * Disable grouping by mobility if the number of pages in the
5348	 * system is too low to allow the mechanism to work. It would be
5349	 * more accurate, but expensive to check per-zone. This check is
5350	 * made on memory-hotadd so a system can start with mobility
5351	 * disabled and enable it later
5352	 */
5353	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5354		page_group_by_mobility_disabled = 1;
5355	else
5356		page_group_by_mobility_disabled = 0;
5357
5358	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5359		nr_online_nodes,
5360		page_group_by_mobility_disabled ? "off" : "on",
5361		vm_total_pages);
5362#ifdef CONFIG_NUMA
5363	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5364#endif
5365}
5366
5367static int zone_batchsize(struct zone *zone)
5368{
5369#ifdef CONFIG_MMU
5370	int batch;
5371
5372	/*
5373	 * The number of pages to batch allocate is either ~0.1%
5374	 * of the zone or 1MB, whichever is smaller. The batch
5375	 * size is striking a balance between allocation latency
5376	 * and zone lock contention.
5377	 */
5378	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5379	batch /= 4;		/* We effectively *= 4 below */
5380	if (batch < 1)
5381		batch = 1;
5382
5383	/*
5384	 * Clamp the batch to a 2^n - 1 value. Having a power
5385	 * of 2 value was found to be more likely to have
5386	 * suboptimal cache aliasing properties in some cases.
5387	 *
5388	 * For example if 2 tasks are alternately allocating
5389	 * batches of pages, one task can end up with a lot
5390	 * of pages of one half of the possible page colors
5391	 * and the other with pages of the other colors.
5392	 */
5393	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5394
5395	return batch;
5396
5397#else
5398	/* The deferral and batching of frees should be suppressed under NOMMU
5399	 * conditions.
5400	 *
5401	 * The problem is that NOMMU needs to be able to allocate large chunks
5402	 * of contiguous memory as there's no hardware page translation to
5403	 * assemble apparent contiguous memory from discontiguous pages.
5404	 *
5405	 * Queueing large contiguous runs of pages for batching, however,
5406	 * causes the pages to actually be freed in smaller chunks.  As there
5407	 * can be a significant delay between the individual batches being
5408	 * recycled, this leads to the once large chunks of space being
5409	 * fragmented and becoming unavailable for high-order allocations.
5410	 */
5411	return 0;
5412#endif
5413}
5414
5415static int percpu_pagelist_high_fraction;
5416static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5417			 int high_fraction)
5418{
5419#ifdef CONFIG_MMU
5420	int high;
5421	int nr_split_cpus;
5422	unsigned long total_pages;
5423
5424	if (!high_fraction) {
5425		/*
5426		 * By default, the high value of the pcp is based on the zone
5427		 * low watermark so that if they are full then background
5428		 * reclaim will not be started prematurely.
5429		 */
5430		total_pages = low_wmark_pages(zone);
5431	} else {
5432		/*
5433		 * If percpu_pagelist_high_fraction is configured, the high
5434		 * value is based on a fraction of the managed pages in the
5435		 * zone.
5436		 */
5437		total_pages = zone_managed_pages(zone) / high_fraction;
5438	}
5439
5440	/*
5441	 * Split the high value across all online CPUs local to the zone. Note
5442	 * that early in boot that CPUs may not be online yet and that during
5443	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5444	 * onlined. For memory nodes that have no CPUs, split the high value
5445	 * across all online CPUs to mitigate the risk that reclaim is triggered
5446	 * prematurely due to pages stored on pcp lists.
5447	 */
5448	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5449	if (!nr_split_cpus)
5450		nr_split_cpus = num_online_cpus();
5451	high = total_pages / nr_split_cpus;
5452
5453	/*
5454	 * Ensure high is at least batch*4. The multiple is based on the
5455	 * historical relationship between high and batch.
5456	 */
5457	high = max(high, batch << 2);
5458
5459	return high;
5460#else
5461	return 0;
5462#endif
5463}
5464
5465/*
5466 * pcp->high and pcp->batch values are related and generally batch is lower
5467 * than high. They are also related to pcp->count such that count is lower
5468 * than high, and as soon as it reaches high, the pcplist is flushed.
5469 *
5470 * However, guaranteeing these relations at all times would require e.g. write
5471 * barriers here but also careful usage of read barriers at the read side, and
5472 * thus be prone to error and bad for performance. Thus the update only prevents
5473 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5474 * should ensure they can cope with those fields changing asynchronously, and
5475 * fully trust only the pcp->count field on the local CPU with interrupts
5476 * disabled.
5477 *
5478 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5479 * outside of boot time (or some other assurance that no concurrent updaters
5480 * exist).
5481 */
5482static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5483			   unsigned long high_max, unsigned long batch)
5484{
5485	WRITE_ONCE(pcp->batch, batch);
5486	WRITE_ONCE(pcp->high_min, high_min);
5487	WRITE_ONCE(pcp->high_max, high_max);
5488}
5489
5490static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5491{
5492	int pindex;
5493
5494	memset(pcp, 0, sizeof(*pcp));
5495	memset(pzstats, 0, sizeof(*pzstats));
5496
5497	spin_lock_init(&pcp->lock);
5498	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5499		INIT_LIST_HEAD(&pcp->lists[pindex]);
5500
5501	/*
5502	 * Set batch and high values safe for a boot pageset. A true percpu
5503	 * pageset's initialization will update them subsequently. Here we don't
5504	 * need to be as careful as pageset_update() as nobody can access the
5505	 * pageset yet.
5506	 */
5507	pcp->high_min = BOOT_PAGESET_HIGH;
5508	pcp->high_max = BOOT_PAGESET_HIGH;
5509	pcp->batch = BOOT_PAGESET_BATCH;
5510	pcp->free_count = 0;
5511}
5512
5513static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5514					      unsigned long high_max, unsigned long batch)
5515{
5516	struct per_cpu_pages *pcp;
5517	int cpu;
5518
5519	for_each_possible_cpu(cpu) {
5520		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5521		pageset_update(pcp, high_min, high_max, batch);
5522	}
5523}
5524
5525/*
5526 * Calculate and set new high and batch values for all per-cpu pagesets of a
5527 * zone based on the zone's size.
5528 */
5529static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5530{
5531	int new_high_min, new_high_max, new_batch;
5532
5533	new_batch = max(1, zone_batchsize(zone));
5534	if (percpu_pagelist_high_fraction) {
5535		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5536					     percpu_pagelist_high_fraction);
5537		/*
5538		 * PCP high is tuned manually, disable auto-tuning via
5539		 * setting high_min and high_max to the manual value.
5540		 */
5541		new_high_max = new_high_min;
5542	} else {
5543		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5544		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5545					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5546	}
5547
5548	if (zone->pageset_high_min == new_high_min &&
5549	    zone->pageset_high_max == new_high_max &&
5550	    zone->pageset_batch == new_batch)
5551		return;
5552
5553	zone->pageset_high_min = new_high_min;
5554	zone->pageset_high_max = new_high_max;
5555	zone->pageset_batch = new_batch;
5556
5557	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5558					  new_batch);
5559}
5560
5561void __meminit setup_zone_pageset(struct zone *zone)
5562{
5563	int cpu;
5564
5565	/* Size may be 0 on !SMP && !NUMA */
5566	if (sizeof(struct per_cpu_zonestat) > 0)
5567		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5568
5569	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5570	for_each_possible_cpu(cpu) {
5571		struct per_cpu_pages *pcp;
5572		struct per_cpu_zonestat *pzstats;
5573
5574		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5575		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5576		per_cpu_pages_init(pcp, pzstats);
5577	}
5578
5579	zone_set_pageset_high_and_batch(zone, 0);
5580}
5581
5582/*
5583 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5584 * page high values need to be recalculated.
5585 */
5586static void zone_pcp_update(struct zone *zone, int cpu_online)
5587{
5588	mutex_lock(&pcp_batch_high_lock);
5589	zone_set_pageset_high_and_batch(zone, cpu_online);
5590	mutex_unlock(&pcp_batch_high_lock);
5591}
5592
5593static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5594{
5595	struct per_cpu_pages *pcp;
5596	struct cpu_cacheinfo *cci;
5597
5598	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5599	cci = get_cpu_cacheinfo(cpu);
5600	/*
5601	 * If data cache slice of CPU is large enough, "pcp->batch"
5602	 * pages can be preserved in PCP before draining PCP for
5603	 * consecutive high-order pages freeing without allocation.
5604	 * This can reduce zone lock contention without hurting
5605	 * cache-hot pages sharing.
5606	 */
5607	spin_lock(&pcp->lock);
5608	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5609		pcp->flags |= PCPF_FREE_HIGH_BATCH;
5610	else
5611		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5612	spin_unlock(&pcp->lock);
5613}
5614
5615void setup_pcp_cacheinfo(unsigned int cpu)
5616{
5617	struct zone *zone;
5618
5619	for_each_populated_zone(zone)
5620		zone_pcp_update_cacheinfo(zone, cpu);
5621}
5622
5623/*
5624 * Allocate per cpu pagesets and initialize them.
5625 * Before this call only boot pagesets were available.
5626 */
5627void __init setup_per_cpu_pageset(void)
5628{
5629	struct pglist_data *pgdat;
5630	struct zone *zone;
5631	int __maybe_unused cpu;
5632
5633	for_each_populated_zone(zone)
5634		setup_zone_pageset(zone);
5635
5636#ifdef CONFIG_NUMA
5637	/*
5638	 * Unpopulated zones continue using the boot pagesets.
5639	 * The numa stats for these pagesets need to be reset.
5640	 * Otherwise, they will end up skewing the stats of
5641	 * the nodes these zones are associated with.
5642	 */
5643	for_each_possible_cpu(cpu) {
5644		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5645		memset(pzstats->vm_numa_event, 0,
5646		       sizeof(pzstats->vm_numa_event));
5647	}
5648#endif
5649
5650	for_each_online_pgdat(pgdat)
5651		pgdat->per_cpu_nodestats =
5652			alloc_percpu(struct per_cpu_nodestat);
5653}
5654
5655__meminit void zone_pcp_init(struct zone *zone)
5656{
5657	/*
5658	 * per cpu subsystem is not up at this point. The following code
5659	 * relies on the ability of the linker to provide the
5660	 * offset of a (static) per cpu variable into the per cpu area.
5661	 */
5662	zone->per_cpu_pageset = &boot_pageset;
5663	zone->per_cpu_zonestats = &boot_zonestats;
5664	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5665	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5666	zone->pageset_batch = BOOT_PAGESET_BATCH;
5667
5668	if (populated_zone(zone))
5669		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5670			 zone->present_pages, zone_batchsize(zone));
5671}
5672
5673void adjust_managed_page_count(struct page *page, long count)
5674{
5675	atomic_long_add(count, &page_zone(page)->managed_pages);
5676	totalram_pages_add(count);
5677#ifdef CONFIG_HIGHMEM
5678	if (PageHighMem(page))
5679		totalhigh_pages_add(count);
5680#endif
5681}
5682EXPORT_SYMBOL(adjust_managed_page_count);
5683
5684unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5685{
5686	void *pos;
5687	unsigned long pages = 0;
5688
5689	start = (void *)PAGE_ALIGN((unsigned long)start);
5690	end = (void *)((unsigned long)end & PAGE_MASK);
5691	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5692		struct page *page = virt_to_page(pos);
5693		void *direct_map_addr;
5694
5695		/*
5696		 * 'direct_map_addr' might be different from 'pos'
5697		 * because some architectures' virt_to_page()
5698		 * work with aliases.  Getting the direct map
5699		 * address ensures that we get a _writeable_
5700		 * alias for the memset().
5701		 */
5702		direct_map_addr = page_address(page);
5703		/*
5704		 * Perform a kasan-unchecked memset() since this memory
5705		 * has not been initialized.
5706		 */
5707		direct_map_addr = kasan_reset_tag(direct_map_addr);
5708		if ((unsigned int)poison <= 0xFF)
5709			memset(direct_map_addr, poison, PAGE_SIZE);
5710
5711		free_reserved_page(page);
5712	}
5713
5714	if (pages && s)
5715		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5716
5717	return pages;
5718}
5719
5720static int page_alloc_cpu_dead(unsigned int cpu)
5721{
5722	struct zone *zone;
5723
5724	lru_add_drain_cpu(cpu);
5725	mlock_drain_remote(cpu);
5726	drain_pages(cpu);
5727
5728	/*
5729	 * Spill the event counters of the dead processor
5730	 * into the current processors event counters.
5731	 * This artificially elevates the count of the current
5732	 * processor.
5733	 */
5734	vm_events_fold_cpu(cpu);
5735
5736	/*
5737	 * Zero the differential counters of the dead processor
5738	 * so that the vm statistics are consistent.
5739	 *
5740	 * This is only okay since the processor is dead and cannot
5741	 * race with what we are doing.
5742	 */
5743	cpu_vm_stats_fold(cpu);
5744
5745	for_each_populated_zone(zone)
5746		zone_pcp_update(zone, 0);
5747
5748	return 0;
5749}
5750
5751static int page_alloc_cpu_online(unsigned int cpu)
5752{
5753	struct zone *zone;
5754
5755	for_each_populated_zone(zone)
5756		zone_pcp_update(zone, 1);
5757	return 0;
5758}
5759
5760void __init page_alloc_init_cpuhp(void)
5761{
5762	int ret;
5763
5764	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5765					"mm/page_alloc:pcp",
5766					page_alloc_cpu_online,
5767					page_alloc_cpu_dead);
5768	WARN_ON(ret < 0);
5769}
5770
5771/*
5772 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5773 *	or min_free_kbytes changes.
5774 */
5775static void calculate_totalreserve_pages(void)
5776{
5777	struct pglist_data *pgdat;
5778	unsigned long reserve_pages = 0;
5779	enum zone_type i, j;
5780
5781	for_each_online_pgdat(pgdat) {
5782
5783		pgdat->totalreserve_pages = 0;
5784
5785		for (i = 0; i < MAX_NR_ZONES; i++) {
5786			struct zone *zone = pgdat->node_zones + i;
5787			long max = 0;
5788			unsigned long managed_pages = zone_managed_pages(zone);
5789
5790			/* Find valid and maximum lowmem_reserve in the zone */
5791			for (j = i; j < MAX_NR_ZONES; j++) {
5792				if (zone->lowmem_reserve[j] > max)
5793					max = zone->lowmem_reserve[j];
5794			}
5795
5796			/* we treat the high watermark as reserved pages. */
5797			max += high_wmark_pages(zone);
5798
5799			if (max > managed_pages)
5800				max = managed_pages;
5801
5802			pgdat->totalreserve_pages += max;
5803
5804			reserve_pages += max;
5805		}
5806	}
5807	totalreserve_pages = reserve_pages;
5808}
5809
5810/*
5811 * setup_per_zone_lowmem_reserve - called whenever
5812 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5813 *	has a correct pages reserved value, so an adequate number of
5814 *	pages are left in the zone after a successful __alloc_pages().
5815 */
5816static void setup_per_zone_lowmem_reserve(void)
5817{
5818	struct pglist_data *pgdat;
5819	enum zone_type i, j;
5820
5821	for_each_online_pgdat(pgdat) {
5822		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5823			struct zone *zone = &pgdat->node_zones[i];
5824			int ratio = sysctl_lowmem_reserve_ratio[i];
5825			bool clear = !ratio || !zone_managed_pages(zone);
5826			unsigned long managed_pages = 0;
5827
5828			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5829				struct zone *upper_zone = &pgdat->node_zones[j];
5830
5831				managed_pages += zone_managed_pages(upper_zone);
5832
5833				if (clear)
5834					zone->lowmem_reserve[j] = 0;
5835				else
5836					zone->lowmem_reserve[j] = managed_pages / ratio;
5837			}
5838		}
5839	}
5840
5841	/* update totalreserve_pages */
5842	calculate_totalreserve_pages();
5843}
5844
5845static void __setup_per_zone_wmarks(void)
5846{
5847	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5848	unsigned long lowmem_pages = 0;
5849	struct zone *zone;
5850	unsigned long flags;
5851
5852	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5853	for_each_zone(zone) {
5854		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5855			lowmem_pages += zone_managed_pages(zone);
5856	}
5857
5858	for_each_zone(zone) {
5859		u64 tmp;
5860
5861		spin_lock_irqsave(&zone->lock, flags);
5862		tmp = (u64)pages_min * zone_managed_pages(zone);
5863		tmp = div64_ul(tmp, lowmem_pages);
5864		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5865			/*
5866			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5867			 * need highmem and movable zones pages, so cap pages_min
5868			 * to a small  value here.
5869			 *
5870			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5871			 * deltas control async page reclaim, and so should
5872			 * not be capped for highmem and movable zones.
5873			 */
5874			unsigned long min_pages;
5875
5876			min_pages = zone_managed_pages(zone) / 1024;
5877			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5878			zone->_watermark[WMARK_MIN] = min_pages;
5879		} else {
5880			/*
5881			 * If it's a lowmem zone, reserve a number of pages
5882			 * proportionate to the zone's size.
5883			 */
5884			zone->_watermark[WMARK_MIN] = tmp;
5885		}
5886
5887		/*
5888		 * Set the kswapd watermarks distance according to the
5889		 * scale factor in proportion to available memory, but
5890		 * ensure a minimum size on small systems.
5891		 */
5892		tmp = max_t(u64, tmp >> 2,
5893			    mult_frac(zone_managed_pages(zone),
5894				      watermark_scale_factor, 10000));
5895
5896		zone->watermark_boost = 0;
5897		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5898		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5899		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5900
5901		spin_unlock_irqrestore(&zone->lock, flags);
5902	}
5903
5904	/* update totalreserve_pages */
5905	calculate_totalreserve_pages();
5906}
5907
5908/**
5909 * setup_per_zone_wmarks - called when min_free_kbytes changes
5910 * or when memory is hot-{added|removed}
5911 *
5912 * Ensures that the watermark[min,low,high] values for each zone are set
5913 * correctly with respect to min_free_kbytes.
5914 */
5915void setup_per_zone_wmarks(void)
5916{
5917	struct zone *zone;
5918	static DEFINE_SPINLOCK(lock);
5919
5920	spin_lock(&lock);
5921	__setup_per_zone_wmarks();
5922	spin_unlock(&lock);
5923
5924	/*
5925	 * The watermark size have changed so update the pcpu batch
5926	 * and high limits or the limits may be inappropriate.
5927	 */
5928	for_each_zone(zone)
5929		zone_pcp_update(zone, 0);
5930}
5931
5932/*
5933 * Initialise min_free_kbytes.
5934 *
5935 * For small machines we want it small (128k min).  For large machines
5936 * we want it large (256MB max).  But it is not linear, because network
5937 * bandwidth does not increase linearly with machine size.  We use
5938 *
5939 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5940 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5941 *
5942 * which yields
5943 *
5944 * 16MB:	512k
5945 * 32MB:	724k
5946 * 64MB:	1024k
5947 * 128MB:	1448k
5948 * 256MB:	2048k
5949 * 512MB:	2896k
5950 * 1024MB:	4096k
5951 * 2048MB:	5792k
5952 * 4096MB:	8192k
5953 * 8192MB:	11584k
5954 * 16384MB:	16384k
5955 */
5956void calculate_min_free_kbytes(void)
5957{
5958	unsigned long lowmem_kbytes;
5959	int new_min_free_kbytes;
5960
5961	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5962	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5963
5964	if (new_min_free_kbytes > user_min_free_kbytes)
5965		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5966	else
5967		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5968				new_min_free_kbytes, user_min_free_kbytes);
5969
5970}
5971
5972int __meminit init_per_zone_wmark_min(void)
5973{
5974	calculate_min_free_kbytes();
5975	setup_per_zone_wmarks();
5976	refresh_zone_stat_thresholds();
5977	setup_per_zone_lowmem_reserve();
5978
5979#ifdef CONFIG_NUMA
5980	setup_min_unmapped_ratio();
5981	setup_min_slab_ratio();
5982#endif
5983
5984	khugepaged_min_free_kbytes_update();
5985
5986	return 0;
5987}
5988postcore_initcall(init_per_zone_wmark_min)
5989
5990/*
5991 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5992 *	that we can call two helper functions whenever min_free_kbytes
5993 *	changes.
5994 */
5995static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5996		void *buffer, size_t *length, loff_t *ppos)
5997{
5998	int rc;
5999
6000	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6001	if (rc)
6002		return rc;
6003
6004	if (write) {
6005		user_min_free_kbytes = min_free_kbytes;
6006		setup_per_zone_wmarks();
6007	}
6008	return 0;
6009}
6010
6011static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6012		void *buffer, size_t *length, loff_t *ppos)
6013{
6014	int rc;
6015
6016	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6017	if (rc)
6018		return rc;
6019
6020	if (write)
6021		setup_per_zone_wmarks();
6022
6023	return 0;
6024}
6025
6026#ifdef CONFIG_NUMA
6027static void setup_min_unmapped_ratio(void)
6028{
6029	pg_data_t *pgdat;
6030	struct zone *zone;
6031
6032	for_each_online_pgdat(pgdat)
6033		pgdat->min_unmapped_pages = 0;
6034
6035	for_each_zone(zone)
6036		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6037						         sysctl_min_unmapped_ratio) / 100;
6038}
6039
6040
6041static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6042		void *buffer, size_t *length, loff_t *ppos)
6043{
6044	int rc;
6045
6046	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6047	if (rc)
6048		return rc;
6049
6050	setup_min_unmapped_ratio();
6051
6052	return 0;
6053}
6054
6055static void setup_min_slab_ratio(void)
6056{
6057	pg_data_t *pgdat;
6058	struct zone *zone;
6059
6060	for_each_online_pgdat(pgdat)
6061		pgdat->min_slab_pages = 0;
6062
6063	for_each_zone(zone)
6064		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6065						     sysctl_min_slab_ratio) / 100;
6066}
6067
6068static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6069		void *buffer, size_t *length, loff_t *ppos)
6070{
6071	int rc;
6072
6073	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6074	if (rc)
6075		return rc;
6076
6077	setup_min_slab_ratio();
6078
6079	return 0;
6080}
6081#endif
6082
6083/*
6084 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6085 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6086 *	whenever sysctl_lowmem_reserve_ratio changes.
6087 *
6088 * The reserve ratio obviously has absolutely no relation with the
6089 * minimum watermarks. The lowmem reserve ratio can only make sense
6090 * if in function of the boot time zone sizes.
6091 */
6092static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
6093		int write, void *buffer, size_t *length, loff_t *ppos)
6094{
6095	int i;
6096
6097	proc_dointvec_minmax(table, write, buffer, length, ppos);
6098
6099	for (i = 0; i < MAX_NR_ZONES; i++) {
6100		if (sysctl_lowmem_reserve_ratio[i] < 1)
6101			sysctl_lowmem_reserve_ratio[i] = 0;
6102	}
6103
6104	setup_per_zone_lowmem_reserve();
6105	return 0;
6106}
6107
6108/*
6109 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6110 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6111 * pagelist can have before it gets flushed back to buddy allocator.
6112 */
6113static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
6114		int write, void *buffer, size_t *length, loff_t *ppos)
6115{
6116	struct zone *zone;
6117	int old_percpu_pagelist_high_fraction;
6118	int ret;
6119
6120	mutex_lock(&pcp_batch_high_lock);
6121	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6122
6123	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6124	if (!write || ret < 0)
6125		goto out;
6126
6127	/* Sanity checking to avoid pcp imbalance */
6128	if (percpu_pagelist_high_fraction &&
6129	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6130		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6131		ret = -EINVAL;
6132		goto out;
6133	}
6134
6135	/* No change? */
6136	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6137		goto out;
6138
6139	for_each_populated_zone(zone)
6140		zone_set_pageset_high_and_batch(zone, 0);
6141out:
6142	mutex_unlock(&pcp_batch_high_lock);
6143	return ret;
6144}
6145
6146static struct ctl_table page_alloc_sysctl_table[] = {
6147	{
6148		.procname	= "min_free_kbytes",
6149		.data		= &min_free_kbytes,
6150		.maxlen		= sizeof(min_free_kbytes),
6151		.mode		= 0644,
6152		.proc_handler	= min_free_kbytes_sysctl_handler,
6153		.extra1		= SYSCTL_ZERO,
6154	},
6155	{
6156		.procname	= "watermark_boost_factor",
6157		.data		= &watermark_boost_factor,
6158		.maxlen		= sizeof(watermark_boost_factor),
6159		.mode		= 0644,
6160		.proc_handler	= proc_dointvec_minmax,
6161		.extra1		= SYSCTL_ZERO,
6162	},
6163	{
6164		.procname	= "watermark_scale_factor",
6165		.data		= &watermark_scale_factor,
6166		.maxlen		= sizeof(watermark_scale_factor),
6167		.mode		= 0644,
6168		.proc_handler	= watermark_scale_factor_sysctl_handler,
6169		.extra1		= SYSCTL_ONE,
6170		.extra2		= SYSCTL_THREE_THOUSAND,
6171	},
6172	{
6173		.procname	= "percpu_pagelist_high_fraction",
6174		.data		= &percpu_pagelist_high_fraction,
6175		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6176		.mode		= 0644,
6177		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6178		.extra1		= SYSCTL_ZERO,
6179	},
6180	{
6181		.procname	= "lowmem_reserve_ratio",
6182		.data		= &sysctl_lowmem_reserve_ratio,
6183		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6184		.mode		= 0644,
6185		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6186	},
6187#ifdef CONFIG_NUMA
6188	{
6189		.procname	= "numa_zonelist_order",
6190		.data		= &numa_zonelist_order,
6191		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6192		.mode		= 0644,
6193		.proc_handler	= numa_zonelist_order_handler,
6194	},
6195	{
6196		.procname	= "min_unmapped_ratio",
6197		.data		= &sysctl_min_unmapped_ratio,
6198		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6199		.mode		= 0644,
6200		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6201		.extra1		= SYSCTL_ZERO,
6202		.extra2		= SYSCTL_ONE_HUNDRED,
6203	},
6204	{
6205		.procname	= "min_slab_ratio",
6206		.data		= &sysctl_min_slab_ratio,
6207		.maxlen		= sizeof(sysctl_min_slab_ratio),
6208		.mode		= 0644,
6209		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6210		.extra1		= SYSCTL_ZERO,
6211		.extra2		= SYSCTL_ONE_HUNDRED,
6212	},
6213#endif
6214	{}
6215};
6216
6217void __init page_alloc_sysctl_init(void)
6218{
6219	register_sysctl_init("vm", page_alloc_sysctl_table);
6220}
6221
6222#ifdef CONFIG_CONTIG_ALLOC
6223/* Usage: See admin-guide/dynamic-debug-howto.rst */
6224static void alloc_contig_dump_pages(struct list_head *page_list)
6225{
6226	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6227
6228	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6229		struct page *page;
6230
6231		dump_stack();
6232		list_for_each_entry(page, page_list, lru)
6233			dump_page(page, "migration failure");
6234	}
6235}
6236
6237/*
6238 * [start, end) must belong to a single zone.
6239 * @migratetype: using migratetype to filter the type of migration in
6240 *		trace_mm_alloc_contig_migrate_range_info.
6241 */
6242int __alloc_contig_migrate_range(struct compact_control *cc,
6243					unsigned long start, unsigned long end,
6244					int migratetype)
6245{
6246	/* This function is based on compact_zone() from compaction.c. */
6247	unsigned int nr_reclaimed;
6248	unsigned long pfn = start;
6249	unsigned int tries = 0;
6250	int ret = 0;
6251	struct migration_target_control mtc = {
6252		.nid = zone_to_nid(cc->zone),
6253		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6254	};
6255	struct page *page;
6256	unsigned long total_mapped = 0;
6257	unsigned long total_migrated = 0;
6258	unsigned long total_reclaimed = 0;
6259
6260	lru_cache_disable();
6261
6262	while (pfn < end || !list_empty(&cc->migratepages)) {
6263		if (fatal_signal_pending(current)) {
6264			ret = -EINTR;
6265			break;
6266		}
6267
6268		if (list_empty(&cc->migratepages)) {
6269			cc->nr_migratepages = 0;
6270			ret = isolate_migratepages_range(cc, pfn, end);
6271			if (ret && ret != -EAGAIN)
6272				break;
6273			pfn = cc->migrate_pfn;
6274			tries = 0;
6275		} else if (++tries == 5) {
6276			ret = -EBUSY;
6277			break;
6278		}
6279
6280		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6281							&cc->migratepages);
6282		cc->nr_migratepages -= nr_reclaimed;
6283
6284		if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6285			total_reclaimed += nr_reclaimed;
6286			list_for_each_entry(page, &cc->migratepages, lru)
6287				total_mapped += page_mapcount(page);
6288		}
6289
6290		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6291			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6292
6293		if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6294			total_migrated += cc->nr_migratepages;
6295
6296		/*
6297		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6298		 * to retry again over this error, so do the same here.
6299		 */
6300		if (ret == -ENOMEM)
6301			break;
6302	}
6303
6304	lru_cache_enable();
6305	if (ret < 0) {
6306		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6307			alloc_contig_dump_pages(&cc->migratepages);
6308		putback_movable_pages(&cc->migratepages);
6309	}
6310
6311	trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6312						 total_migrated,
6313						 total_reclaimed,
6314						 total_mapped);
6315	return (ret < 0) ? ret : 0;
6316}
6317
6318/**
6319 * alloc_contig_range() -- tries to allocate given range of pages
6320 * @start:	start PFN to allocate
6321 * @end:	one-past-the-last PFN to allocate
6322 * @migratetype:	migratetype of the underlying pageblocks (either
6323 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6324 *			in range must have the same migratetype and it must
6325 *			be either of the two.
6326 * @gfp_mask:	GFP mask to use during compaction
6327 *
6328 * The PFN range does not have to be pageblock aligned. The PFN range must
6329 * belong to a single zone.
6330 *
6331 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6332 * pageblocks in the range.  Once isolated, the pageblocks should not
6333 * be modified by others.
6334 *
6335 * Return: zero on success or negative error code.  On success all
6336 * pages which PFN is in [start, end) are allocated for the caller and
6337 * need to be freed with free_contig_range().
6338 */
6339int alloc_contig_range(unsigned long start, unsigned long end,
6340		       unsigned migratetype, gfp_t gfp_mask)
6341{
6342	unsigned long outer_start, outer_end;
6343	int order;
6344	int ret = 0;
6345
6346	struct compact_control cc = {
6347		.nr_migratepages = 0,
6348		.order = -1,
6349		.zone = page_zone(pfn_to_page(start)),
6350		.mode = MIGRATE_SYNC,
6351		.ignore_skip_hint = true,
6352		.no_set_skip_hint = true,
6353		.gfp_mask = current_gfp_context(gfp_mask),
6354		.alloc_contig = true,
6355	};
6356	INIT_LIST_HEAD(&cc.migratepages);
6357
6358	/*
6359	 * What we do here is we mark all pageblocks in range as
6360	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6361	 * have different sizes, and due to the way page allocator
6362	 * work, start_isolate_page_range() has special handlings for this.
6363	 *
6364	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6365	 * migrate the pages from an unaligned range (ie. pages that
6366	 * we are interested in). This will put all the pages in
6367	 * range back to page allocator as MIGRATE_ISOLATE.
6368	 *
6369	 * When this is done, we take the pages in range from page
6370	 * allocator removing them from the buddy system.  This way
6371	 * page allocator will never consider using them.
6372	 *
6373	 * This lets us mark the pageblocks back as
6374	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6375	 * aligned range but not in the unaligned, original range are
6376	 * put back to page allocator so that buddy can use them.
6377	 */
6378
6379	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6380	if (ret)
6381		goto done;
6382
6383	drain_all_pages(cc.zone);
6384
6385	/*
6386	 * In case of -EBUSY, we'd like to know which page causes problem.
6387	 * So, just fall through. test_pages_isolated() has a tracepoint
6388	 * which will report the busy page.
6389	 *
6390	 * It is possible that busy pages could become available before
6391	 * the call to test_pages_isolated, and the range will actually be
6392	 * allocated.  So, if we fall through be sure to clear ret so that
6393	 * -EBUSY is not accidentally used or returned to caller.
6394	 */
6395	ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6396	if (ret && ret != -EBUSY)
6397		goto done;
6398	ret = 0;
6399
6400	/*
6401	 * Pages from [start, end) are within a pageblock_nr_pages
6402	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6403	 * more, all pages in [start, end) are free in page allocator.
6404	 * What we are going to do is to allocate all pages from
6405	 * [start, end) (that is remove them from page allocator).
6406	 *
6407	 * The only problem is that pages at the beginning and at the
6408	 * end of interesting range may be not aligned with pages that
6409	 * page allocator holds, ie. they can be part of higher order
6410	 * pages.  Because of this, we reserve the bigger range and
6411	 * once this is done free the pages we are not interested in.
6412	 *
6413	 * We don't have to hold zone->lock here because the pages are
6414	 * isolated thus they won't get removed from buddy.
6415	 */
6416
6417	order = 0;
6418	outer_start = start;
6419	while (!PageBuddy(pfn_to_page(outer_start))) {
6420		if (++order > MAX_PAGE_ORDER) {
6421			outer_start = start;
6422			break;
6423		}
6424		outer_start &= ~0UL << order;
6425	}
6426
6427	if (outer_start != start) {
6428		order = buddy_order(pfn_to_page(outer_start));
6429
6430		/*
6431		 * outer_start page could be small order buddy page and
6432		 * it doesn't include start page. Adjust outer_start
6433		 * in this case to report failed page properly
6434		 * on tracepoint in test_pages_isolated()
6435		 */
6436		if (outer_start + (1UL << order) <= start)
6437			outer_start = start;
6438	}
6439
6440	/* Make sure the range is really isolated. */
6441	if (test_pages_isolated(outer_start, end, 0)) {
6442		ret = -EBUSY;
6443		goto done;
6444	}
6445
6446	/* Grab isolated pages from freelists. */
6447	outer_end = isolate_freepages_range(&cc, outer_start, end);
6448	if (!outer_end) {
6449		ret = -EBUSY;
6450		goto done;
6451	}
6452
6453	/* Free head and tail (if any) */
6454	if (start != outer_start)
6455		free_contig_range(outer_start, start - outer_start);
6456	if (end != outer_end)
6457		free_contig_range(end, outer_end - end);
6458
6459done:
6460	undo_isolate_page_range(start, end, migratetype);
6461	return ret;
6462}
6463EXPORT_SYMBOL(alloc_contig_range);
6464
6465static int __alloc_contig_pages(unsigned long start_pfn,
6466				unsigned long nr_pages, gfp_t gfp_mask)
6467{
6468	unsigned long end_pfn = start_pfn + nr_pages;
6469
6470	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6471				  gfp_mask);
6472}
6473
6474static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6475				   unsigned long nr_pages)
6476{
6477	unsigned long i, end_pfn = start_pfn + nr_pages;
6478	struct page *page;
6479
6480	for (i = start_pfn; i < end_pfn; i++) {
6481		page = pfn_to_online_page(i);
6482		if (!page)
6483			return false;
6484
6485		if (page_zone(page) != z)
6486			return false;
6487
6488		if (PageReserved(page))
6489			return false;
6490
6491		if (PageHuge(page))
6492			return false;
6493	}
6494	return true;
6495}
6496
6497static bool zone_spans_last_pfn(const struct zone *zone,
6498				unsigned long start_pfn, unsigned long nr_pages)
6499{
6500	unsigned long last_pfn = start_pfn + nr_pages - 1;
6501
6502	return zone_spans_pfn(zone, last_pfn);
6503}
6504
6505/**
6506 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6507 * @nr_pages:	Number of contiguous pages to allocate
6508 * @gfp_mask:	GFP mask to limit search and used during compaction
6509 * @nid:	Target node
6510 * @nodemask:	Mask for other possible nodes
6511 *
6512 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6513 * on an applicable zonelist to find a contiguous pfn range which can then be
6514 * tried for allocation with alloc_contig_range(). This routine is intended
6515 * for allocation requests which can not be fulfilled with the buddy allocator.
6516 *
6517 * The allocated memory is always aligned to a page boundary. If nr_pages is a
6518 * power of two, then allocated range is also guaranteed to be aligned to same
6519 * nr_pages (e.g. 1GB request would be aligned to 1GB).
6520 *
6521 * Allocated pages can be freed with free_contig_range() or by manually calling
6522 * __free_page() on each allocated page.
6523 *
6524 * Return: pointer to contiguous pages on success, or NULL if not successful.
6525 */
6526struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6527				int nid, nodemask_t *nodemask)
6528{
6529	unsigned long ret, pfn, flags;
6530	struct zonelist *zonelist;
6531	struct zone *zone;
6532	struct zoneref *z;
6533
6534	zonelist = node_zonelist(nid, gfp_mask);
6535	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6536					gfp_zone(gfp_mask), nodemask) {
6537		spin_lock_irqsave(&zone->lock, flags);
6538
6539		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6540		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6541			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6542				/*
6543				 * We release the zone lock here because
6544				 * alloc_contig_range() will also lock the zone
6545				 * at some point. If there's an allocation
6546				 * spinning on this lock, it may win the race
6547				 * and cause alloc_contig_range() to fail...
6548				 */
6549				spin_unlock_irqrestore(&zone->lock, flags);
6550				ret = __alloc_contig_pages(pfn, nr_pages,
6551							gfp_mask);
6552				if (!ret)
6553					return pfn_to_page(pfn);
6554				spin_lock_irqsave(&zone->lock, flags);
6555			}
6556			pfn += nr_pages;
6557		}
6558		spin_unlock_irqrestore(&zone->lock, flags);
6559	}
6560	return NULL;
6561}
6562#endif /* CONFIG_CONTIG_ALLOC */
6563
6564void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6565{
6566	unsigned long count = 0;
6567
6568	for (; nr_pages--; pfn++) {
6569		struct page *page = pfn_to_page(pfn);
6570
6571		count += page_count(page) != 1;
6572		__free_page(page);
6573	}
6574	WARN(count != 0, "%lu pages are still in use!\n", count);
6575}
6576EXPORT_SYMBOL(free_contig_range);
6577
6578/*
6579 * Effectively disable pcplists for the zone by setting the high limit to 0
6580 * and draining all cpus. A concurrent page freeing on another CPU that's about
6581 * to put the page on pcplist will either finish before the drain and the page
6582 * will be drained, or observe the new high limit and skip the pcplist.
6583 *
6584 * Must be paired with a call to zone_pcp_enable().
6585 */
6586void zone_pcp_disable(struct zone *zone)
6587{
6588	mutex_lock(&pcp_batch_high_lock);
6589	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6590	__drain_all_pages(zone, true);
6591}
6592
6593void zone_pcp_enable(struct zone *zone)
6594{
6595	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6596		zone->pageset_high_max, zone->pageset_batch);
6597	mutex_unlock(&pcp_batch_high_lock);
6598}
6599
6600void zone_pcp_reset(struct zone *zone)
6601{
6602	int cpu;
6603	struct per_cpu_zonestat *pzstats;
6604
6605	if (zone->per_cpu_pageset != &boot_pageset) {
6606		for_each_online_cpu(cpu) {
6607			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6608			drain_zonestat(zone, pzstats);
6609		}
6610		free_percpu(zone->per_cpu_pageset);
6611		zone->per_cpu_pageset = &boot_pageset;
6612		if (zone->per_cpu_zonestats != &boot_zonestats) {
6613			free_percpu(zone->per_cpu_zonestats);
6614			zone->per_cpu_zonestats = &boot_zonestats;
6615		}
6616	}
6617}
6618
6619#ifdef CONFIG_MEMORY_HOTREMOVE
6620/*
6621 * All pages in the range must be in a single zone, must not contain holes,
6622 * must span full sections, and must be isolated before calling this function.
6623 */
6624void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6625{
6626	unsigned long pfn = start_pfn;
6627	struct page *page;
6628	struct zone *zone;
6629	unsigned int order;
6630	unsigned long flags;
6631
6632	offline_mem_sections(pfn, end_pfn);
6633	zone = page_zone(pfn_to_page(pfn));
6634	spin_lock_irqsave(&zone->lock, flags);
6635	while (pfn < end_pfn) {
6636		page = pfn_to_page(pfn);
6637		/*
6638		 * The HWPoisoned page may be not in buddy system, and
6639		 * page_count() is not 0.
6640		 */
6641		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6642			pfn++;
6643			continue;
6644		}
6645		/*
6646		 * At this point all remaining PageOffline() pages have a
6647		 * reference count of 0 and can simply be skipped.
6648		 */
6649		if (PageOffline(page)) {
6650			BUG_ON(page_count(page));
6651			BUG_ON(PageBuddy(page));
6652			pfn++;
6653			continue;
6654		}
6655
6656		BUG_ON(page_count(page));
6657		BUG_ON(!PageBuddy(page));
6658		order = buddy_order(page);
6659		del_page_from_free_list(page, zone, order);
6660		pfn += (1 << order);
6661	}
6662	spin_unlock_irqrestore(&zone->lock, flags);
6663}
6664#endif
6665
6666/*
6667 * This function returns a stable result only if called under zone lock.
6668 */
6669bool is_free_buddy_page(struct page *page)
6670{
6671	unsigned long pfn = page_to_pfn(page);
6672	unsigned int order;
6673
6674	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6675		struct page *page_head = page - (pfn & ((1 << order) - 1));
6676
6677		if (PageBuddy(page_head) &&
6678		    buddy_order_unsafe(page_head) >= order)
6679			break;
6680	}
6681
6682	return order <= MAX_PAGE_ORDER;
6683}
6684EXPORT_SYMBOL(is_free_buddy_page);
6685
6686#ifdef CONFIG_MEMORY_FAILURE
6687/*
6688 * Break down a higher-order page in sub-pages, and keep our target out of
6689 * buddy allocator.
6690 */
6691static void break_down_buddy_pages(struct zone *zone, struct page *page,
6692				   struct page *target, int low, int high,
6693				   int migratetype)
6694{
6695	unsigned long size = 1 << high;
6696	struct page *current_buddy;
6697
6698	while (high > low) {
6699		high--;
6700		size >>= 1;
6701
6702		if (target >= &page[size]) {
6703			current_buddy = page;
6704			page = page + size;
6705		} else {
6706			current_buddy = page + size;
6707		}
6708
6709		if (set_page_guard(zone, current_buddy, high, migratetype))
6710			continue;
6711
6712		add_to_free_list(current_buddy, zone, high, migratetype);
6713		set_buddy_order(current_buddy, high);
6714	}
6715}
6716
6717/*
6718 * Take a page that will be marked as poisoned off the buddy allocator.
6719 */
6720bool take_page_off_buddy(struct page *page)
6721{
6722	struct zone *zone = page_zone(page);
6723	unsigned long pfn = page_to_pfn(page);
6724	unsigned long flags;
6725	unsigned int order;
6726	bool ret = false;
6727
6728	spin_lock_irqsave(&zone->lock, flags);
6729	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6730		struct page *page_head = page - (pfn & ((1 << order) - 1));
6731		int page_order = buddy_order(page_head);
6732
6733		if (PageBuddy(page_head) && page_order >= order) {
6734			unsigned long pfn_head = page_to_pfn(page_head);
6735			int migratetype = get_pfnblock_migratetype(page_head,
6736								   pfn_head);
6737
6738			del_page_from_free_list(page_head, zone, page_order);
6739			break_down_buddy_pages(zone, page_head, page, 0,
6740						page_order, migratetype);
6741			SetPageHWPoisonTakenOff(page);
6742			if (!is_migrate_isolate(migratetype))
6743				__mod_zone_freepage_state(zone, -1, migratetype);
6744			ret = true;
6745			break;
6746		}
6747		if (page_count(page_head) > 0)
6748			break;
6749	}
6750	spin_unlock_irqrestore(&zone->lock, flags);
6751	return ret;
6752}
6753
6754/*
6755 * Cancel takeoff done by take_page_off_buddy().
6756 */
6757bool put_page_back_buddy(struct page *page)
6758{
6759	struct zone *zone = page_zone(page);
6760	unsigned long pfn = page_to_pfn(page);
6761	unsigned long flags;
6762	int migratetype = get_pfnblock_migratetype(page, pfn);
6763	bool ret = false;
6764
6765	spin_lock_irqsave(&zone->lock, flags);
6766	if (put_page_testzero(page)) {
6767		ClearPageHWPoisonTakenOff(page);
6768		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6769		if (TestClearPageHWPoison(page)) {
6770			ret = true;
6771		}
6772	}
6773	spin_unlock_irqrestore(&zone->lock, flags);
6774
6775	return ret;
6776}
6777#endif
6778
6779#ifdef CONFIG_ZONE_DMA
6780bool has_managed_dma(void)
6781{
6782	struct pglist_data *pgdat;
6783
6784	for_each_online_pgdat(pgdat) {
6785		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6786
6787		if (managed_zone(zone))
6788			return true;
6789	}
6790	return false;
6791}
6792#endif /* CONFIG_ZONE_DMA */
6793
6794#ifdef CONFIG_UNACCEPTED_MEMORY
6795
6796/* Counts number of zones with unaccepted pages. */
6797static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6798
6799static bool lazy_accept = true;
6800
6801static int __init accept_memory_parse(char *p)
6802{
6803	if (!strcmp(p, "lazy")) {
6804		lazy_accept = true;
6805		return 0;
6806	} else if (!strcmp(p, "eager")) {
6807		lazy_accept = false;
6808		return 0;
6809	} else {
6810		return -EINVAL;
6811	}
6812}
6813early_param("accept_memory", accept_memory_parse);
6814
6815static bool page_contains_unaccepted(struct page *page, unsigned int order)
6816{
6817	phys_addr_t start = page_to_phys(page);
6818	phys_addr_t end = start + (PAGE_SIZE << order);
6819
6820	return range_contains_unaccepted_memory(start, end);
6821}
6822
6823static void accept_page(struct page *page, unsigned int order)
6824{
6825	phys_addr_t start = page_to_phys(page);
6826
6827	accept_memory(start, start + (PAGE_SIZE << order));
6828}
6829
6830static bool try_to_accept_memory_one(struct zone *zone)
6831{
6832	unsigned long flags;
6833	struct page *page;
6834	bool last;
6835
6836	if (list_empty(&zone->unaccepted_pages))
6837		return false;
6838
6839	spin_lock_irqsave(&zone->lock, flags);
6840	page = list_first_entry_or_null(&zone->unaccepted_pages,
6841					struct page, lru);
6842	if (!page) {
6843		spin_unlock_irqrestore(&zone->lock, flags);
6844		return false;
6845	}
6846
6847	list_del(&page->lru);
6848	last = list_empty(&zone->unaccepted_pages);
6849
6850	__mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6851	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6852	spin_unlock_irqrestore(&zone->lock, flags);
6853
6854	accept_page(page, MAX_PAGE_ORDER);
6855
6856	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
6857
6858	if (last)
6859		static_branch_dec(&zones_with_unaccepted_pages);
6860
6861	return true;
6862}
6863
6864static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6865{
6866	long to_accept;
6867	int ret = false;
6868
6869	/* How much to accept to get to high watermark? */
6870	to_accept = high_wmark_pages(zone) -
6871		    (zone_page_state(zone, NR_FREE_PAGES) -
6872		    __zone_watermark_unusable_free(zone, order, 0));
6873
6874	/* Accept at least one page */
6875	do {
6876		if (!try_to_accept_memory_one(zone))
6877			break;
6878		ret = true;
6879		to_accept -= MAX_ORDER_NR_PAGES;
6880	} while (to_accept > 0);
6881
6882	return ret;
6883}
6884
6885static inline bool has_unaccepted_memory(void)
6886{
6887	return static_branch_unlikely(&zones_with_unaccepted_pages);
6888}
6889
6890static bool __free_unaccepted(struct page *page)
6891{
6892	struct zone *zone = page_zone(page);
6893	unsigned long flags;
6894	bool first = false;
6895
6896	if (!lazy_accept)
6897		return false;
6898
6899	spin_lock_irqsave(&zone->lock, flags);
6900	first = list_empty(&zone->unaccepted_pages);
6901	list_add_tail(&page->lru, &zone->unaccepted_pages);
6902	__mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6903	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6904	spin_unlock_irqrestore(&zone->lock, flags);
6905
6906	if (first)
6907		static_branch_inc(&zones_with_unaccepted_pages);
6908
6909	return true;
6910}
6911
6912#else
6913
6914static bool page_contains_unaccepted(struct page *page, unsigned int order)
6915{
6916	return false;
6917}
6918
6919static void accept_page(struct page *page, unsigned int order)
6920{
6921}
6922
6923static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6924{
6925	return false;
6926}
6927
6928static inline bool has_unaccepted_memory(void)
6929{
6930	return false;
6931}
6932
6933static bool __free_unaccepted(struct page *page)
6934{
6935	BUILD_BUG();
6936	return false;
6937}
6938
6939#endif /* CONFIG_UNACCEPTED_MEMORY */
6940